1
|
Martins D, Pinoteau MA, Leger R. Development of a back-titration assay to quantitate functional lympho-epithelial Kazal-type inhibitors (LEKTI) in skin samples. Anal Biochem 2024; 690:115524. [PMID: 38556114 DOI: 10.1016/j.ab.2024.115524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
The lympho-epithelial Kazal-type inhibitors (LEKTI) are key to control skin turnover, and their absence causes Netherton syndrome. For clinical sample testing of LEKTI-based therapies, a robust analytical method to measure LEKTI-like activity in skin is required. This work reports on the development of a back-titration method to determine incremental LEKTI-like activity in skin samples. The method meets the analytical requirements for study sample testing, and reliable quantification can be achieved with negligible skin matrix interference. This assay does not provide analyte identity, but it can be used to measure treatment-driven increments of LEKTI-like activity within the skin epidermis.
Collapse
Affiliation(s)
- Dorival Martins
- Azitra Inc, 21 Business Park Drive, Branford, CT, 06405, USA.
| | | | - Roger Leger
- Azitra Inc, 21 Business Park Drive, Branford, CT, 06405, USA
| |
Collapse
|
2
|
Schmuth M, Eckmann S, Moosbrugger-Martinz V, Ortner-Tobider D, Blunder S, Trafoier T, Gruber R, Elias PM. Skin Barrier in Atopic Dermatitis. J Invest Dermatol 2024; 144:989-1000.e1. [PMID: 38643989 DOI: 10.1016/j.jid.2024.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 04/23/2024]
Abstract
A compromised permeability barrier is a hallmark of atopic dermatitis (AD). Localized to the outermost skin layer, the stratum corneum (SC) is critically dependent on terminal differentiation of epidermal keratinocytes, which transform into protein-rich corneocytes surrounded by extracellular lamellae of unique epidermal lipids, conferring permeability barrier function. These structures are disrupted in AD. A leaky barrier is prone to environmental insult, which in AD elicits type 2-dominant inflammation, in turn resulting in a vicious cycle further impairing the SC structure. Therapies directed at enforcing SC structure and anti-inflammatory strategies administered by topical and systemic route as well as UV therapy have differential effects on the permeability barrier. The expanding armamentarium of therapeutic modalities for AD treatment warrants optimization of their effects on permeability barrier function.
Collapse
Affiliation(s)
- Matthias Schmuth
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria; Institute for Pediatric Dermatology and Rare Diseases, Karl Landsteiner Society, Innsbruck, Austria.
| | - Sonja Eckmann
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | | | | | - Stefan Blunder
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Trafoier
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | - Robert Gruber
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria; Institute for Pediatric Dermatology and Rare Diseases, Karl Landsteiner Society, Innsbruck, Austria
| | - Peter M Elias
- Dermatology, Veteran Affairs Health Care System, San Francisco, California, USA; University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
3
|
Lei D, Ye L, Wen S, Zhang J, Zhang L, Man MQ. Preventive and Therapeutic Benefits of Natural Ingredients in Photo-Induced Epidermal Dysfunction. Skin Pharmacol Physiol 2024; 37:1-18. [PMID: 38615652 DOI: 10.1159/000538832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND The skin, particularly the epidermis, is subjected to various external stresses, including ultraviolet (UV) irradiation. UV irradiation, mainly UVB at wavelength of 280-315 nm, can alter several epidermal functions, including cutaneous inflammation, epidermal hyperproliferation, DNA damage, disruption of epidermal permeability barrier and reduction in stratum corneum hydration levels. Because of the negative impacts of UVB irradiation on epidermal functions, great efforts have been made to develop regimens for the protection of alterations in epidermal function induced by UV irradiation. SUMMARY While sunscreen can provide physical barrier to UV light, some natural ingredients can also effectively protect the skin from UVB irradiation-induced damages. Studies have demonstrated that either topical or oral administrations of some natural ingredients attenuate UVB irradiation-induced alterations in the epidermal function. The underlying mechanisms by which natural ingredients improve epidermal functions are attributable to antioxidation, stimulation of keratinocyte differentiation, increases in the content of epidermal natural moisturizers and inhibition of inflammation. KEY MESSAGE Some natural ingredients exhibit protective and therapeutical benefits in photo-induced epidermal dysfunctions via divergent mechanisms.
Collapse
Affiliation(s)
- Dongyun Lei
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Li Ye
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Si Wen
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Junling Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Litao Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Mao-Qiang Man
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Song Y, Bai G, Li X, Zhou L, Si Y, Liu X, Deng Y, Shi Y. Bioinformatics analysis of human kallikrein 5 ( KLK5) expression in metaplastic triple-negative breast cancer. CANCER INNOVATION 2023; 2:376-390. [PMID: 38090381 PMCID: PMC10686124 DOI: 10.1002/cai2.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 10/15/2024]
Abstract
Background Metaplastic breast carcinoma (MBC) is a rare breast cancer subtype; most cases are triple-negative breast cancers (TNBCs) and are poorly responsive to conventional systemic therapy. Few potential diagnostic and prognostic markers for distinguishing between metaplastic TNBC and nonmetaplastic TNBC have been discovered. We performed bioinformatic analysis to explore the underlying mechanism by which metaplastic TNBC differs from nonmetaplastic TNBC and provides potential pathogenic genes of metaplastic TNBC. Methods Differentially expressed genes (DEGs) in metaplastic tumors and nonmetaplastic tumors from TNBC patients were screened using GSE165407. The GSE76275 data set and The Cancer Genome Atlas (TCGA) database were used to screen DEGs in TNBC and non-TNBC. Metascape and DAVID were used for the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Gene Ontology (GO) analysis of DEGs. Online databases, including UALCAN, GEPIA, HPA, Breast Cancer Gene-Expression Miner, and quantitative PCR and western blot, were used to examine KLK5 messenger RNA and protein expression in breast cancer. Analysis of KLK5‑associated genes was performed with TCGA data, and the LinkedOmics database was used to detect the genes co-expressed with KLK5. STRING (Search Tool for the Retrieval of Interacting Genes) and Cytoscape were used to screen for hub genes. Kaplan‑Meier plotter was used for survival analysis. Results KLK5 was identified among the DEGs in nonmetaplastic TNBC and metaplastic TNBC. The KLK5 gene was overexpressed in nonmetaplastic TNBC but downregulated in metaplastic TNBC. KEGG and GO analyses revealed that epithelial-to-mesenchymal transition was a pathogenic mechanism in metaplastic TNBC and an important pathway by which KLK5 and its associated genes DSG1 and DSG3 influence metaplastic TNBC progression. Prognosis analysis showed that only low expression of KLK5 in metaplastic TNBC had clinical significance. Conclusion Our research indicated that KLK5 may be a pivotal molecule with a key role in the mechanism of tumorigenesis in metaplastic TNBC.
Collapse
Affiliation(s)
- Yue Song
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Guiying Bai
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Xiaoqing Li
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Liyan Zhou
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Yiran Si
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Xiaohui Liu
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Yilin Deng
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Yehui Shi
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
- Medical Oncology Department of Breast CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- National Clinical Research Center for CancerTianjinChina
| |
Collapse
|
5
|
Barresi V, Di Bella V, Lo Nigro L, Privitera AP, Bonaccorso P, Scuderi C, Condorelli DF. Temporary serine protease inhibition and the role of SPINK2 in human bone marrow. iScience 2023; 26:106949. [PMID: 37378330 PMCID: PMC10291479 DOI: 10.1016/j.isci.2023.106949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/23/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Protease temporary inhibitors are true substrates that bind the catalytic site with high affinity but are slowly degraded, thus acting as inhibitor for a defined time window. Serine peptidase inhibitor Kazal type (SPINK) family is endowed with such functional property whose physiological meaning is poorly explored. High expression of SPINK2 in some hematopoietic malignancies prompted us to investigate its role in adult human bone marrow. We report here the physiological expression of SPINK2 in hematopoietic stem and progenitor cells (HSPCs) and mobilized cluster differentiation 34 (CD34)+ cells. We determined the SPINK2 degradation constant and derived a mathematical relationship predicting the zone of inhibited target protease activity surrounding the SPINK2-secreting HSPCs. Analysis of putative target proteases for SPINK2 revealed the expression of PRSS2 and PRSS57 in HSPCs. Our combined results suggest that SPINK2 and its target serine proteases might play a role in the intercellular communication within the hematopoietic stem cell niche.
Collapse
Affiliation(s)
- Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy
| | - Virginia Di Bella
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy
| | - Luca Lo Nigro
- Cytogenetic-Cytofluorimetric-Molecular Biology Lab, 95123 Catania, Italy
- Center of Pediatric Hematology-Oncology, Azienda Policlinico – San Marco, 95123 Catania, Italy
| | - Anna Provvidenza Privitera
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy
| | - Paola Bonaccorso
- Cytogenetic-Cytofluorimetric-Molecular Biology Lab, 95123 Catania, Italy
- Center of Pediatric Hematology-Oncology, Azienda Policlinico – San Marco, 95123 Catania, Italy
| | - Chiara Scuderi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy
| | - Daniele Filippo Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy
| |
Collapse
|
6
|
Grafanaki K, Antonatos C, Maniatis A, Petropoulou A, Vryzaki E, Vasilopoulos Y, Georgiou S, Gregoriou S. Intrinsic Effects of Exposome in Atopic Dermatitis: Genomics, Epigenomics and Regulatory Layers. J Clin Med 2023; 12:4000. [PMID: 37373692 DOI: 10.3390/jcm12124000] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Atopic dermatitis (AD) or atopic eczema is an increasingly manifested inflammatory skin disorder of complex etiology which is modulated by both extrinsic and intrinsic factors. The exposome includes a person's lifetime exposures and their effects. We recently reviewed the extrinsic exposome's environmental risk factors that contribute to AD. The periods of pregnancy, infancy, and teenage years are recognized as crucial stages in the formation of AD, where the exposome leads to enduring impacts on the immune system. However, research is now focusing on the interactions between intrinsic pathways that are modulated by the extrinsic exposome, including genetic variation, epigenetic modifications, and signals, such as diet, stress, and microbiome interactions. As a result, immune dysregulation, barrier dysfunction, hormonal fluctuations, and skin microbiome dysbiosis are important factors contributing to AD development, and their in-depth understanding is crucial not only for AD treatment but also for similar inflammatory disorders.
Collapse
Affiliation(s)
- Katerina Grafanaki
- Department of Dermatology-Venereology, School of Medicine, University of Patras, 26504 Patras, Greece
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Charalabos Antonatos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Alexandros Maniatis
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Antonia Petropoulou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Eleftheria Vryzaki
- Department of Dermatology-Venereology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Yiannis Vasilopoulos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Sophia Georgiou
- Department of Dermatology-Venereology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Stamatis Gregoriou
- Department of Dermatology-Venereology, Faculty of Medicine, Andreas Sygros Hospital, National and Kapodistrian University of Athens, 16121 Athens, Greece
| |
Collapse
|
7
|
Genetic/Protein Association of Atopic Dermatitis and Tooth Agenesis. Int J Mol Sci 2023; 24:ijms24065754. [PMID: 36982827 PMCID: PMC10055628 DOI: 10.3390/ijms24065754] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Atopic dermatitis and abnormalities in tooth development (including hypomineralization, hypodontia and microdontia) have been observed to co-occur in some patients. A common pathogenesis pathway that involves genes and protein interactions has been hypothesized. This review aims to first provide a description of the key gene mutations and signaling pathways associated with atopic dermatitis and tooth agenesis (i.e., the absence of teeth due to developmental failure) and identify the possible association between the two diseases. Second, utilizing a list of genes most commonly associated with the two diseases, we conducted a protein–protein network interaction analysis using the STRING database and identified a novel association between the Wnt/β-catenin signaling pathway (major pathway responsible for TA) and desmosomal proteins (component of skin barrier that affect the pathogenesis of AD). Further investigation into the mechanisms that may drive their co-occurrence and underlie the development of the two diseases is warranted.
Collapse
|
8
|
Chavarria-Smith J, Chiu CPC, Jackman JK, Yin J, Zhang J, Hackney JA, Lin WY, Tyagi T, Sun Y, Tao J, Dunlap D, Morton WD, Ghodge SV, Maun HR, Li H, Hernandez-Barry H, Loyet KM, Chen E, Liu J, Tam C, Yaspan BL, Cai H, Balazs M, Arron JR, Li J, Wittwer AJ, Pappu R, Austin CD, Lee WP, Lazarus RA, Sudhamsu J, Koerber JT, Yi T. Dual antibody inhibition of KLK5 and KLK7 for Netherton syndrome and atopic dermatitis. Sci Transl Med 2022; 14:eabp9159. [PMID: 36516271 DOI: 10.1126/scitranslmed.abp9159] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The epidermis is a barrier that prevents water loss while keeping harmful substances from penetrating the host. The impermeable cornified layer of the stratum corneum is maintained by balancing continuous turnover driven by epidermal basal cell proliferation, suprabasal cell differentiation, and corneal shedding. The epidermal desquamation process is tightly regulated by balance of the activities of serine proteases of the Kallikrein-related peptidases (KLK) family and their cognate inhibitor lymphoepithelial Kazal type-related inhibitor (LEKTI), which is encoded by the serine peptidase inhibitor Kazal type 5 gene. Imbalance of proteolytic activity caused by a deficiency of LEKTI leads to excessive desquamation due to increased activities of KLK5, KLK7, and KLK14 and results in Netherton syndrome (NS), a debilitating condition with an unmet clinical need. Increased activity of KLKs may also be pathological in other dermatoses such as atopic dermatitis (AD). Here, we describe the discovery of inhibitory antibodies against murine KLK5 and KLK7 that could compensate for the deficiency of LEKTI in NS. These antibodies are protective in mouse models of NS and AD and, when combined, promote improved skin barrier integrity and reduced inflammation. To translate these findings, we engineered a humanized bispecific antibody capable of potent inhibition of human KLK5 and KLK7. A crystal structure of KLK5 bound to the inhibitory Fab revealed that the antibody binds distal to its active site and uses a relatively unappreciated allosteric inhibition mechanism. Treatment with the bispecific anti-KLK5/7 antibody represents a promising therapy for clinical development in NS and other inflammatory dermatoses.
Collapse
Affiliation(s)
- Joseph Chavarria-Smith
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Cecilia P C Chiu
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Janet K Jackman
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jianping Yin
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Juan Zhang
- Department of Translational Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jason A Hackney
- Department of Bioinformatics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wei-Yu Lin
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tulika Tyagi
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yonglian Sun
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Janet Tao
- Department of Pathology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Debra Dunlap
- Department of Pathology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - William D Morton
- Confluence Discovery Technologies Inc., 4320 Duncan Ave, Suite 400, St. Louis, MO 63108, USA
| | - Swapnil V Ghodge
- Departments of Biological Chemistry and Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Henry R Maun
- Departments of Biological Chemistry and Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hong Li
- Department of Protein Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hilda Hernandez-Barry
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kelly M Loyet
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Emily Chen
- Department of Translational Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - John Liu
- Department of Translational Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Christine Tam
- Department of Biomolecular Resources, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Brian L Yaspan
- Department of Human Genetics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hao Cai
- Department of Preclinical and Translational Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mercedesz Balazs
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Joseph R Arron
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jing Li
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Arthur J Wittwer
- Confluence Discovery Technologies Inc., 4320 Duncan Ave, Suite 400, St. Louis, MO 63108, USA
| | - Rajita Pappu
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Cary D Austin
- Department of Pathology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wyne P Lee
- Department of Translational Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Robert A Lazarus
- Departments of Biological Chemistry and Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - James T Koerber
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tangsheng Yi
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
9
|
Nouwen AEM, Schappin R, Nguyen NT, Ragamin A, Bygum A, Bodemer C, Dalm VASH, Pasmans SGMA. Outcomes of Systemic Treatment in Children and Adults With Netherton Syndrome: A Systematic Review. Front Immunol 2022; 13:864449. [PMID: 35464459 PMCID: PMC9022473 DOI: 10.3389/fimmu.2022.864449] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 01/24/2023] Open
Abstract
Background Comèl-Netherton syndrome (NS) is a rare disease caused by pathogenic variants in the SPINK5 gene, leading to severe skin barrier impairment and proinflammatory upregulation. Given the severity of the disease, treatment of NS is challenging. Current treatment regimens are mainly topical and supportive. Although novel systemic treatment options for NS have been suggested in recent literature, little is known about their outcomes. Objective to provide an overview of systemic treatment options and their outcomes in adults and children with NS. Methods Embase, MEDLINE, Web of Science, Cochrane Central Register of Controlled Trials, and Google Scholar were searched up to July 22, 2021. Empirical studies published in English language mentioning systemic treatment in NS were enrolled. Studies that did not define a treatment period or report at least one outcome were excluded. Methodological quality was evaluated by the Joanna Briggs Institute critical appraisal checklist for case reports or case series. Overall quality of evidence of the primary outcome, skin, was assessed by the GRADE approach. Results 36 case series and case reports were included. The effects of 15 systemic therapies were described in 48 patients, of which 27 were children. Therapies included retinoids, prednisolone, cyclosporine, immunoglobulins, and biologicals. In retinoids both worsening (4/15 cases) and improvement (6/15 cases) of the skin was observed. Use of prednisolone and cyclosporine was only reported in one patient. Immunoglobulins (13/15 cases) and biologicals (18/21 cases) showed improvement of the skin. Certainty of evidence was rated as very low. Conclusion NS is a rare disease, which is reflected in the scarce literature on systemic treatment outcomes in children and adults with NS. Studies showed large heterogeneity in outcome measures. Adverse events were scarcely reported. Long-term outcomes were reported in a minority of cases. Nonetheless, a general beneficial effect of systemic treatment was found. Immunoglobulins and biologicals showed the most promising results and should be further explored. Future research should focus on determining a core outcome set and measurement instruments for NS to improve quality of research. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=217933, PROSPERO (ID: 217933).
Collapse
Affiliation(s)
- Anouk E M Nouwen
- Department of Dermatology-Center of Pediatric Dermatology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Renske Schappin
- Department of Dermatology-Center of Pediatric Dermatology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - N Tan Nguyen
- Department of Dermatology-Center of Pediatric Dermatology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Aviël Ragamin
- Department of Dermatology-Center of Pediatric Dermatology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Anette Bygum
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Christine Bodemer
- Department of Dermatology, Reference Centre for Genodermatoses and Rare Skin Diseases (MAGEC), Necker-Enfants Malades Hospital (AP-HP), Paris Centre University, Paris, France
| | - Virgil A S H Dalm
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Suzanne G M A Pasmans
- Department of Dermatology-Center of Pediatric Dermatology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| |
Collapse
|
10
|
Zani MB, Sant'Ana AM, Tognato RC, Chagas JR, Puzer L. Human Tissue Kallikreins-Related Peptidases Are Targets for the Treatment of Skin Desquamation Diseases. Front Med (Lausanne) 2022; 8:777619. [PMID: 35356049 PMCID: PMC8959125 DOI: 10.3389/fmed.2021.777619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Human tissue Kallikrein-related peptidases (hKLKs) are serine proteases distributed in several tissues that are involved in several biological processes. In skin, many are responsible for skin desquamation in the Stratum Corneum (SC) of the epidermis, specially hKLK5, hKLK7, hKLK6, hKLK8, and hKLK14. In SC, hKLKs cleave proteins of corneodesmosomes, an important structure responsible to maintain corneocytes attached. As part of skin desquamation, hKLKs are also involved in skin diseases with abnormal desquamation and inflammation, such as Atopic Dermatitis (AD), psoriasis, and the rare disease Netherton Syndrome (NS). Many studies point to hKLK overexpression or overactive in skin diseases, and they are also part of the natural skin inflammation process, through the PAR2 cleavage pathway. Therefore, the control of hKLK activity may offer successful treatments for skin diseases, improving the quality of life in patients. Diseases like AD, Psoriasis, and NS have an impact on social life, causing pain, itchy and mental disorders. In this review, we address the molecular mechanisms of skin desquamation, emphasizing the roles of human tissue Kallikrein-related peptidases, and the promising therapies targeting the inhibition of hKLKs.
Collapse
Affiliation(s)
- Marcelo B. Zani
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Sao Bernardo do Campo, Brazil
| | - Aquiles M. Sant'Ana
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Sao Bernardo do Campo, Brazil
| | - Rafael C. Tognato
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Sao Bernardo do Campo, Brazil
| | - Jair R. Chagas
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luciano Puzer
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Sao Bernardo do Campo, Brazil
- *Correspondence: Luciano Puzer
| |
Collapse
|
11
|
Liao C, Wang Q, An J, Zhang M, Chen J, Li X, Xiao L, Wang J, Long Q, Liu J, Guan X. SPINKs in Tumors: Potential Therapeutic Targets. Front Oncol 2022; 12:833741. [PMID: 35223512 PMCID: PMC8873584 DOI: 10.3389/fonc.2022.833741] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
The serine protease inhibitor Kazal type (SPINK) family includes SPINK1-14 and is the largest branch in the serine protease inhibitor family. SPINKs play an important role in pancreatic physiology and disease, sperm maturation and capacitation, Nager syndrome, inflammation and the skin barrier. Evidence shows that the unregulated expression of SPINK1, 2, 4, 5, 6, 7, and 13 is closely related to human tumors. Different SPINKs exhibit various regulatory modes in different tumors and can be used as tumor prognostic markers. This article reviews the role of SPINK1, 2, 4, 5, 6, 7, and 13 in different human cancer processes and helps to identify new cancer treatment targets.
Collapse
Affiliation(s)
- Chengcheng Liao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Qian Wang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Minglin Zhang
- Department of Gastroenterology, Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, China
| | - Jie Chen
- Department of Urology, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaolan Li
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi, China
| | - Linlin Xiao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Jiajia Wang
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Qian Long
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Qian Long, ; Xiaoyan Guan, ; Jianguo Liu,
| | - Jianguo Liu
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Qian Long, ; Xiaoyan Guan, ; Jianguo Liu,
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Qian Long, ; Xiaoyan Guan, ; Jianguo Liu,
| |
Collapse
|
12
|
Peskoller M, Bhosale A, Göbel K, Löhr J, Miceli S, Perot S, Persa O, Rübsam M, Shah J, Zhang H, Niessen CM. ESDR 50th Anniversary Lecture summary: How to build and regenerate a functional skin barrier: the adhesive and cell shaping travels of a keratinocyte. J Invest Dermatol 2022; 142:1020-1025. [DOI: 10.1016/j.jid.2021.12.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023]
|
13
|
Peters F, Rahn S, Mengel M, Scharfenberg F, Otte A, Koudelka T, Wagner EF, Wunderlich FT, Haase M, Naumann R, Tholey A, Becker-Pauly C. Syndecan-1 shedding by meprin β impairs keratinocyte adhesion and differentiation in hyperkeratosis. Matrix Biol 2021; 102:37-69. [PMID: 34508852 DOI: 10.1016/j.matbio.2021.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/06/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022]
Abstract
Dysregulation of proteolytic enzymes has huge impact on epidermal homeostasis, which can result in severe pathological conditions such as fibrosis or Netherton syndrome. The metalloprotease meprin β was found to be upregulated in hyperproliferative skin diseases. AP-1 transcription factor complex has been reported to induce Mep1b expression. Since AP-1 and its subunit fos-related antigen 2 (fra-2) are associated with the onset and progression of psoriasis, we wanted to investigate if this could partially be attributed to increased meprin β activity. Here, we demonstrate that fra-2 transgenic mice show increased meprin β expression and proteolytic activity in the epidermis. To avoid influence by other fra-2 regulated genes, we additionally generated a mouse model that enabled tamoxifen-inducible expression of meprin β under the Krt5-promotor to mimic the pathological condition. Interestingly, induced meprin β expression in the epidermis resulted in hyperkeratosis, hair loss and mottled pigmentation of the skin. Employing N-terminomics revealed syndecan-1 as a substrate of meprin β in skin. Shedding of syndecan-1 at the cell surface caused delayed calcium-induced differentiation and impaired adhesion of keratinocytes, which was blocked by the meprin β inhibitor fetuin-B.
Collapse
Affiliation(s)
- Florian Peters
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel 24118, Germany; Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Schlieren, Zurich 8952, Switzerland
| | - Sascha Rahn
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| | - Marion Mengel
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| | - Franka Scharfenberg
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| | - Anna Otte
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| | - Tomas Koudelka
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| | - Erwin F Wagner
- Laboratory Genes and Disease, Department of Dermatology and Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - F Thomas Wunderlich
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Max Planck Institute for Metabolism Research, Cologne 50931, Germany
| | - Michael Haase
- Department of Pediatric Surgery, Medical Faculty, Dresden University, Dresden 01307, Germany
| | - Ronald Naumann
- MPI of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Andreas Tholey
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| | | |
Collapse
|
14
|
Wang Q, Qiu F, Wu H, Fan YM. New compound heterozygous SPINK5 mutations in a Chinese infant with Netherton syndrome. J Eur Acad Dermatol Venereol 2021; 35:e782-e784. [PMID: 34138484 DOI: 10.1111/jdv.17457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Q Wang
- Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - F Qiu
- Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - H Wu
- Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Y-M Fan
- Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
15
|
Liddle J, Beneton V, Benson M, Bingham R, Bouillot A, Boullay AB, Brook E, Cryan J, Denis A, Edgar E, Ferrie A, Fouchet MH, Grillot D, Holmes DS, Howes A, Krysa G, Laroze A, Lennon M, McClure F, Moquette A, Nicodeme E, Santiago B, Santos L, Smith KJ, Thorpe JH, Thripp G, Trottet L, Walker AL, Ward SA, Wang Y, Wilson S, Pearce AC, Hovnanian A. A Potent and Selective Kallikrein-5 Inhibitor Delivers High Pharmacological Activity in Skin from Patients with Netherton Syndrome. J Invest Dermatol 2021; 141:2272-2279. [PMID: 33744298 DOI: 10.1016/j.jid.2021.01.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/10/2020] [Accepted: 01/06/2021] [Indexed: 12/01/2022]
Abstract
Regulation of proteolytic activity in the skin plays a pivotal role in epidermal homeostasis. This is best exemplified in Netherton syndrome, a severe genetic skin condition caused by loss-of-function mutations in the gene serine protease inhibitor Kazal-type 5 encoding lympho-epithelial Kazal-type-related inhibitor, a serine protease inhibitor that regulates kallikrein (KLK)-related peptidase 5, 7, and 14 activities. KLK5 plays a central role in stratum corneum shedding and inflammatory cell signaling, activates KLK7 and KLK14, and is therefore an optimal therapeutic target. We aimed to identify a potent and selective small-molecule inhibitor of KLK5 amenable to epidermal delivery. GSK951 was identified using a structure-based design strategy and showed a half maximal inhibitory concentration of 250 pM for KLK5 and greater than 100-fold selectivity over KLK7 and KLK14. Cocrystal structure analysis identified the critical catalytic site interactions to a surrogate for KLK5. Topical application of GSK951-containing cream inhibited KLK5 activity in TgKLK5 mouse skin, reduced transepidermal water loss, and decreased proinflammatory cytokine expression. GSK951 achieved high concentrations in healthy human epidermis following topical application in a cream formulation. Finally, KLK5 protease activity was increased in stratum corneum of patients with Netherton syndrome and significantly inhibited by GSK951. These findings unveil a KLK5-specific small-molecule inhibitor with a high therapeutic potential for patients with Netherton syndrome.
Collapse
Affiliation(s)
- John Liddle
- Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | | | - Matthew Benson
- Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - Ryan Bingham
- Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | | | | | - Eloisa Brook
- Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - Jenni Cryan
- Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | | | - Emma Edgar
- Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - Alan Ferrie
- Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | | | | | - Duncan S Holmes
- Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - Ashleigh Howes
- Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | | | | | - Mark Lennon
- Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - Fiona McClure
- Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | | | | | - Brandon Santiago
- Discovery and Preclinical Development, GSK Dermatology Unit, Collegeville, Pennsylvania, USA
| | - Leandro Santos
- Discovery and Preclinical Development, GSK Dermatology Unit, Collegeville, Pennsylvania, USA
| | - Kathrine J Smith
- Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - James H Thorpe
- Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - Gary Thripp
- Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | | | - Ann L Walker
- Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - Simon A Ward
- Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - Yichen Wang
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1163, Laboratory of Genetic Skin Diseases, Imagine Institute, Paris, France
| | - Steve Wilson
- Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - Andrew C Pearce
- Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - Alain Hovnanian
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1163, Laboratory of Genetic Skin Diseases, Imagine Institute, Paris, France; University of Paris, Paris, France; Department of Genetics, Necker hospital for sick children, Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
16
|
Novel Homozygous Mutations in the Genes TGM1, SULT2B1, SPINK5 and FLG in Four Families Underlying Congenital Ichthyosis. Genes (Basel) 2021; 12:genes12030373. [PMID: 33807935 PMCID: PMC7999895 DOI: 10.3390/genes12030373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Ichthyoses are a large group of hereditary cornification disorders, which are both clinically and etiologically heterogeneous and affect mostly all the skin surface of the patients. Ichthyosis has its origin in an ancient Greek word “ichthys” meaning fish, this is because the ichthyosis patients have dry, thickened, and scaly skin. There is an excess accumulation of epidermal cells resulting in the appearance of continuous and widespread scales on the body. There are many varieties of ichthyosis with a broad spectrum of intensity, severity, and associated symptoms, most of them are extremely rare. Ichthyosis vulgaris is the most frequently occurring type of ichthyoses. Method: The present study consists of four Pakistani ichthyosis families (A, B, C, and D). Whole exome sequencing (WES) approach was used to identify the pathogenic sequence variants in probands. The segregation of these variants in other participants was confirmed by Sanger sequencing. Results: Total four variants including, two splice site (TGM1: c.2088 + 1G > A) and (SPINK5: c.882 + 1G > T), a missense (SULT2B1: c.419C > T; p. Ala140Val), and a nonsense (FLG: c.6109C > T; p. Arg2037Ter) variant were identified in families A, C, B, and D, respectively, as causative mutations responsible for ichthyosis in these families. Conclusion: Our study unravels the molecular etiology of the four Pakistani ichthyosis families and validates the involvement of TGM1, SULT2B1, SPINK5, and FLG, in the etiology of different forms of ichthyosis. In addition, this study also aims to give a detailed clinical report of the studied ichthyosis families.
Collapse
|
17
|
Mintoff D, Borg I, Vornweg J, Mercieca L, Merdzanic R, Numrich J, Aquilina S, Pace NP, Fischer J. A novel SPINK5 donor splice site variant in a child with Netherton syndrome. Mol Genet Genomic Med 2021; 9:e1611. [PMID: 33534181 PMCID: PMC8104165 DOI: 10.1002/mgg3.1611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Netherton syndrome (NS) is a genodermatosis caused by loss-of-function mutations in SPINK5, resulting in aberrant LEKTI expression. METHOD Next-generation sequencing of SPINK5 (NM_001127698.1) was carried out and functional studies were performed by immunofluorescence microscopy of a lesional skin biopsy using anti-LEKTI antibodies. RESULTS We describe a novel SPINK5 likely pathogenic donor splice site variant (NM_001127698.1:c.2015+5G>A) in a patient with NS and confirm its functional significance by demonstrating complete loss of LEKTI expression in lesional skin by immunofluorescence analysis. CONCLUSION The 2015+5G>A is a novel, likely pathogenic variant in NS. Herein we review and assimilate documented SPINK5 pathogenic variants and discuss possible genotype-phenotype associations in NS.
Collapse
Affiliation(s)
- Dillon Mintoff
- Department of Dermatology, Mater Dei Hospital, Msida, Malta
| | - Isabella Borg
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Medical Genetics Unit, Department of Pathology, Mater Dei Hospital, Msida, Malta.,Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Julia Vornweg
- Institute of Human Genetics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Liam Mercieca
- Department of Dermatology, Mater Dei Hospital, Msida, Malta
| | | | | | - Susan Aquilina
- Department of Dermatology, Mater Dei Hospital, Msida, Malta
| | - Nikolai Paul Pace
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Judith Fischer
- Institute of Human Genetics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
18
|
Zhang Z, Pan C, Wei R, Li H, Yang Y, Chen J, Li M, Yao Z. Netherton syndrome caused by compound heterozygous mutation, c.80A>G mutation in SPINK5 and large-sized genomic deletion mutation, and successful treatment of intravenous immunoglobulin. Mol Genet Genomic Med 2021; 9:e1600. [PMID: 33452875 PMCID: PMC8104177 DOI: 10.1002/mgg3.1600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Background Netherton syndrome (NS) is an autosomal recessive disorder due to mutations in the SPINK5 gene. Here, we report the first case of NS caused by a large genomic deletion. Methods We present the clinical data of a 3‐year‐old Chinese boy who was initially misdiagnosed with severe atopic dermatitis. Subsequently, the patient presented with typical ichthyosis linearis circumflexa and had representative hair shaft of trichorrhexis invaginate, which alerted the physician of the high possibility of NS. A genomic DNA sample was extracted from peripheral blood and whole‐exome sequencing (WES) was performed. Sanger sequencing and quantitative real‐time polymerase chain reaction (qRT‐PCR) were performed to verify the mutation and genomic deletion, respectively, in the pedigree. Results WES revealed compound heterozygous mutations in SPINK5, including a c.80A>G mutation and a ~275 Kb‐sized genomic deletion (chr5:147443576‐147719312). The c.80A>G mutation was verified by Sanger sequencing in the pedigree. The father had the same heterozygous mutation; however, the mutation was absent in the proband's mother. The qRT‐PCR results identified a large deletion (chr5:147444834‐147445034) in SPINK5 in the proband and his mother. The eruptions improved remarkably after intravenous immunoglobulin (IVIG) therapy. Conclusions This is the first observation of NS caused by a large deletion. Our findings have important implications for mutation screening and genetic counseling in NS. Our report also verifies and supports the safety and efficacy of IVIG therapy in patients with NS.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chaolan Pan
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruoqu Wei
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huaguo Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yijun Yang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiawen Chen
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhirong Yao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Kumar DV, Sivaranjani Y, Rao GV. Immunohistochemical expression of kallikrein 7 in oral squamous cell carcinoma. J Oral Maxillofac Pathol 2021; 24:580. [PMID: 33967508 PMCID: PMC8083413 DOI: 10.4103/jomfp.jomfp_244_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/25/2020] [Accepted: 10/07/2020] [Indexed: 11/04/2022] Open
Abstract
Background and Objectives: The kallikrein (KLK) family of genes consists of 15 members, many of which are highly expressed in number of cancers compared to their normal parent tissues. KLK7 was initially characterized as an enzyme implicated in the degradation of intercellular cohesive structures in the stratum corneum of stratified squamous epithelia, preceding desquamation in the skin. It catalyzes the degradation of desmosomes in the outermost layer of skin and permits cell shedding to take place at the skin surface. Overexpression of KLK7 in tumor cells has been reported to significantly enhance the invasive potential in intracranial malignancies and ovarian cancer cells. Thus, KLK7 could contribute to the degradation of extracellular matrices in oral squamous cell carcinoma (OSCC) tissues, promoting invasion of neoplastic cells locally and facilitating metastasis to regional lymph nodes. The objectives of the present study were to compare the expression of KLK 7 in normal subjects and patients with OSCC, to correlate the expression of KLK 7 with respect to the clinical staging of OSCC and to evaluate the expression of KLK 7with respect to different histopathological grades of OSCC. Materials and Methods: Thirty cases of OSCC were staged clinically and graded histopathologically. The immunohistochemical method was used to detect the expression of KLK 7 in OSCC. The scores obtained were documented and compared statistically. Results: KLK 7 immunoreactivity was noticed in all cases of OSCC. A statistically significant difference was observed in immunoreactivity of KLK 7 between the normal and OSCC (P = 0.0001*) and in different histopathological grades (P = 0.0001*) and in different clinical stages (P = 0.0127*) of OSCC using Kruskal–Wallis analysis of variance test. Conclusion: The KLK 7 immunoexpression histopathologically increased from low grade to high grade and clinically from Stage 1 to Stage 4 in OSCC. Hence, increased expression of KLK 7 may be related to poor prognosis in patients with OSCC.
Collapse
Affiliation(s)
- Dodda Venkatesh Kumar
- Department of Oral Pathology and Microbiology, Mamata Dental College, Khammam, Telangana, India
| | - Y Sivaranjani
- Department of Oral Pathology and Microbiology, Mamata Dental College, Khammam, Telangana, India
| | | |
Collapse
|
20
|
Moosbrugger-Martinz V, Hackl H, Gruber R, Pilecky M, Knabl L, Orth-Höller D, Dubrac S. Initial Evidence of Distinguishable Bacterial and Fungal Dysbiosis in the Skin of Patients with Atopic Dermatitis or Netherton Syndrome. J Invest Dermatol 2021; 141:114-123. [PMID: 32553662 DOI: 10.1016/j.jid.2020.05.102] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
Atopic dermatitis (AD) is an inflammatory skin disease in which epidermal barrier impairment, often owing to FLG null mutations, precedes immune hyperresponsiveness. Ichthyosis vulgaris is characterized by FLG null mutations and noninflamed dry skin. Netherton syndrome (NS), caused by SPINK5 null mutations, is characterized by generalized erythroderma with scaling and atopic manifestations. The goal of this work was to evaluate associations between specific skin disease features, such as ichthyotic and/or atopic manifestations, and the skin bacterial and fungal microbiota. Taxon diversity showed greater variation in the bacterial microbiota than in the fungal microbiota in the skin diseases. The relative abundances of Firmicutes (Staphylococcus) and Actinobacteria (Corynebacterium) were augmented in ichthyosis vulgaris, AD, and NS, whereas those of Proteobacteria/Enhydrobacter and Bacteroidetes were reduced, regardless of body site. Furthermore, proportions of Staphylococcus were correlated with transepidermal water loss and serum IgE levels. Nevertheless, the skin of patients with low to mild AD was overcolonized with Staphylococcus epidermidis and not with Staphylococcus aureus. Ascomycota were increased in both AD and NS, but from expansion of different fungal species. Finally, the expansion of pathologic bacteria in AD and NS might be supported by surrounding fungi. Thus, distinguishable bacterial and fungal skin dysbiosis in AD, NS, and ichthyosis vulgaris emphasizes disease-specific pathomechanisms.
Collapse
Affiliation(s)
- Verena Moosbrugger-Martinz
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hubert Hackl
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Robert Gruber
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Pilecky
- Center for Biomedical Technology, Department for Health Sciences and Biomedicine, Danube University Krems, Krems, Austria
| | - Ludwig Knabl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dorothea Orth-Höller
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
21
|
Petrova E, Hovnanian A. Advances in understanding of Netherton syndrome and therapeutic implications. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1857724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Evgeniya Petrova
- Laboratory of genetic skin diseases, Université de Paris, Imagine Institute, INSERM UMR1163, Paris, France
| | - Alain Hovnanian
- Laboratory of genetic skin diseases, Université de Paris, Imagine Institute, INSERM UMR1163, Paris, France
- Departement of Genetics, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
22
|
Elias PM, Wakefield JS. Provozieren konvergierende zelluläre und Signalübertragungs‐Störungen die atopische Dermatitis? J Dtsch Dermatol Ges 2020; 18:1215-1224. [DOI: 10.1111/ddg.14232_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/18/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Peter M. Elias
- Dermatology Service Veterans Affairs Medical Center and Department of Dermatology University of California San Francisco CA USA
| | - Joan S. Wakefield
- Dermatology Service Veterans Affairs Medical Center and Department of Dermatology University of California San Francisco CA USA
| |
Collapse
|
23
|
Elias PM, Wakefield JS. Could cellular and signaling abnormalities converge to provoke atopic dermatitis? J Dtsch Dermatol Ges 2020; 18:1215-1223. [PMID: 33048449 PMCID: PMC11249044 DOI: 10.1111/ddg.14232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/18/2020] [Indexed: 11/28/2022]
Abstract
Diverse inherited and acquired abnormalities in epidermal structural and enzymatic proteins compromise permeability, barrier function and antimicrobial defense in atopic dermatitis (AD). Though several mutations in filaggrin (FLG) predominate, alterations in other S-100, cornified envelope precursor proteins (hornerin [HRNR], filaggrin 2 [FLG2], SPRR3, mattrin) which regulate lamellar body formation; SPINK5, which encodes the serine protease inhibitor, LEKTI1, and a fatty acid transporter, FATP4, are all separately associated with an AD phenotype. Exogenous and endogenous stressors, such as prolonged psychological stress, a low environmental humidity, or exposure to basic soaps and surfactants can further compromise barrier function and are often required to trigger disease. In the immunologists' view, the barrier abnormality is relevant only because it allows antigen and pathogen access, while stimulating Th2 cytokine production. These proteins in turn downregulate lipid synthetic enzyme and antimicrobial peptide levels, as well as multiple epidermal structural proteins, including filaggrin. Each inherited and acquired abnormality can independently compromise lamellar body secretion production, resulting in defective lamellar membrane organization and antimicrobial defense. Furthermore, elevated pH of the SC is critical for AD pathogenesis, compromising post-secretory lipid processing, while also enhancing inflammation. There are various therapeutic options that interdict different stages in this pathogenic paradigm.
Collapse
Affiliation(s)
- Peter M Elias
- Dermatology Service, Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, CA, USA
| | - Joan S Wakefield
- Dermatology Service, Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, CA, USA
| |
Collapse
|
24
|
Stuvel K, Heeringa JJ, Dalm VASH, Meijers RWJ, Hoffen E, Gerritsen SAM, Zelm MC, Pasmans SGMA. Comel-Netherton syndrome: A local skin barrier defect in the absence of an underlying systemic immunodeficiency. Allergy 2020; 75:1710-1720. [PMID: 31975472 PMCID: PMC7384150 DOI: 10.1111/all.14197] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 10/14/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022]
Abstract
Background Comel‐Netherton syndrome (NS) is a rare autosomal disease, characterized by severe skin disease, hair shaft defects, atopic diathesis, and increased susceptibility for skin infections. Since patients with NS suffer from recurrent infections, it has been hypothesized that an underlying immunodeficiency attributes to this. Here, we studied clinical and immunological characteristics of the cohort of NS patients in the Netherlands in order to identify whether potential immunodeficiencies result in the increased risk of infectious complications. Methods Phenotypes were scored for severity of skin condition, specific hair shaft defects, atopy, and recurrent infections. Patients’ blood samples were collected for quantification of serum immunoglobulin (Ig) levels, specific antibodies against Streptococcuspneumoniae, and allergen‐specific IgE, as well as detailed immunophenotyping of blood leukocyte and lymphocyte subsets by flow cytometry. Results A total of 14 patients were included with age range 3‐46 years and varying degrees of skin involvement. All patients presented with atopic symptoms (food allergy, n = 13; hay fever, n = 10; asthma, n = 7). Recurrent skin infections were common, particularly in childhood (n = 12). Low levels of specific antibodies against S pneumoniae were found in 10 of 11 evaluated patients. Detailed immunological analysis was performed on 9 adult patients. Absolute numbers of lymphocyte subsets and serum immunoglobulin levels were all within normal ranges. Conclusion Multidisciplinary evaluation of our national cohort showed no evidence for a severe, clinically relevant systemic immunodeficiency. Therefore, we conclude that in Dutch NS patients the increased risk of infections most likely results from the skin barrier disruption and that increased allergen penetration predisposes to allergic sensitization.
Collapse
Affiliation(s)
- Kira Stuvel
- Department of Dermatology Erasmus MC University Medical Center Rotterdam The Netherlands
| | - Jorn J. Heeringa
- Department of Immunology Erasmus MC University Medical Center Rotterdam The Netherlands
| | - Virgil A. S. H. Dalm
- Department of Immunology Erasmus MC University Medical Center Rotterdam The Netherlands
- Department of Internal Medicine Division of Clinical Immunology Erasmus MC University Medical Center Rotterdam The Netherlands
- Academic Center for Rare Immunological Diseases (RIDC) Erasmus MC University Medical Center Rotterdam The Netherlands
| | - Ruud W. J. Meijers
- Department of Immunology Erasmus MC University Medical Center Rotterdam The Netherlands
| | - Els Hoffen
- Department of Dermatology and Allergology University Medical Center Utrecht The Netherlands
| | | | - Menno C. Zelm
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne Vic. Australia
- Department of Allergy, Immunology & Respiratory Medicine Alfred Hospital Melbourne Vic. Australia
| | - Suzanne G. M. A. Pasmans
- Department of Dermatology Erasmus MC University Medical Center Rotterdam The Netherlands
- Department of Pediatric Dermatology Sophia Children’s Hospital Erasmus MC University Medical Center Rotterdam The Netherlands
| |
Collapse
|
25
|
Di Paolo CT, Diamandis EP, Prassas I. The role of kallikreins in inflammatory skin disorders and their potential as therapeutic targets. Crit Rev Clin Lab Sci 2020; 58:1-16. [PMID: 32568598 DOI: 10.1080/10408363.2020.1775171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The skin is a vital organ of the human body, serving numerous protective and functional roles that are essential for survival. Residing in the epidermis are various epidermal proteases responsible for the establishment and regulation of barrier function. The human tissue kallikrein-related peptidase family conserves homeostasis of the skin barrier through their roles in desquamation, antimicrobial defense, innate immune response, and barrier maintenance. The activity of kallikreins is tightly regulated and dysregulation of kallikrein activity is seen to contribute to the formation of several inflammatory skin disorders. This review highlights the roles of kallikreins in skin homeostasis and pathologies. Due to their part in these skin disorders, inhibitors of the skin kallikreins have become attractive therapeutics. Over the past few years, both natural and synthetic inhibitors of several kallikreins have been identified and are undergoing further development as treatments to restore compromised barrier function. This review summarizes the kallikrein inhibitors under development for this purpose. These inhibitors remain promising therapeutics in cases of severe skin inflammation not well managed by current therapies.
Collapse
Affiliation(s)
- Caitlin T Di Paolo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
26
|
van Smeden J, Al-Khakany H, Wang Y, Visscher D, Stephens N, Absalah S, Overkleeft HS, Aerts JMFG, Hovnanian A, Bouwstra JA. Skin barrier lipid enzyme activity in Netherton patients is associated with protease activity and ceramide abnormalities. J Lipid Res 2020; 61:859-869. [PMID: 32265319 PMCID: PMC7269766 DOI: 10.1194/jlr.ra120000639] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/31/2020] [Indexed: 12/17/2022] Open
Abstract
Individuals with Netherton syndrome (NTS) have increased serine protease activity, which strongly impacts the barrier function of the skin epidermis and leads to skin inflammation. Here, we investigated how serine protease activity in NTS correlates with changes in the stratum corneum (SC) ceramides, which are crucial components of the skin barrier. We examined two key enzymes involved in epidermal ceramide biosynthesis, β-glucocerebrosidase (GBA) and acid-sphingomyelinase (ASM). We compared in situ expression levels and activities of GBA and ASM between NTS patients and controls and correlated the expression and activities with i) SC ceramide profiles, ii) in situ serine protease activity, and iii) clinical presentation of patients. Using activity-based probe labeling, we visualized and localized active epidermal GBA, and a newly developed in situ zymography method enabled us to visualize and localize active ASM. Reduction in active GBA in NTS patients coincided with increased ASM activity, particularly in areas with increased serine protease activity. NTS patients with scaly erythroderma exhibited more pronounced anomalies in GBA and ASM activities than patients with ichthyosis linearis circumflexa. They also displayed a stronger increase in SC ceramides processed via ASM. We conclude that changes in the localization of active GBA and ASM correlate with i) altered SC ceramide composition in NTS patients, ii) local serine protease activity, and iii) the clinical manifestation of NTS.
Collapse
Affiliation(s)
- Jeroen van Smeden
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Centre for Human Drug Research, Leiden, The Netherlands
| | - Hanin Al-Khakany
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Yichen Wang
- INSERM UMR1163, Imagine Institute, Paris Descartes University, Paris, France
| | - Dani Visscher
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Nicole Stephens
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Samira Absalah
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Herman S Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Johannes M F G Aerts
- Medical Biochemistry Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Alain Hovnanian
- INSERM UMR1163, Imagine Institute, Paris Descartes University, Paris, France; Department of Genetics Necker-Enfants Malades Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Joke A Bouwstra
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands. mailto:
| |
Collapse
|
27
|
Utsumi D, Yasuda M, Amano H, Suga Y, Seishima M, Takahashi K. Hair abnormality in Netherton syndrome observed under polarized light microscopy. J Am Acad Dermatol 2020; 83:847-853. [PMID: 32029302 DOI: 10.1016/j.jaad.2019.08.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 07/07/2019] [Accepted: 08/07/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Trichorrhexis invaginata, the main diagnostic feature of Netherton syndrome, is often difficult to detect, especially in adult patients. OBJECTIVE We sought to describe a characteristic feature of hairs in Netherton syndrome using a polarized light microscope and the underlying histopathologic changes. METHODS Hairs obtained from 8 patients with Netherton syndrome were observed under polarized light, and we evaluated the correlation between number of band-like patterns and disease severity. RESULTS Under polarized microscopy, the hair shafts of 8 patients showed a characteristic band-like pattern under polarized light that was not observed in healthy control individuals or patients with atopic dermatitis. This discontinuity of polarized light shows a band-like pattern in which the bands mostly ranged from 0.1 to 1.0 mm in width. The observed ratio of this finding was significantly higher than that of trichorrhexis invaginata observed under light microscopy, and patients with severe dermatitis tended to have a higher ratio than those with less severe dermatitis. LIMITATIONS Comparative examination among other congenital ichthyoses was not performed. CONCLUSIONS A band-like pattern in hairs with polarized light microscopy can be seen in Netherton syndrome and may have potential utility as a diagnostic marker.
Collapse
Affiliation(s)
- Daisuke Utsumi
- University of the Ryukyus, Graduate School of Medicine, Okinawa, Japan
| | - Masahito Yasuda
- Gunma University, Graduate School of Medicine, Okinawa, Gunma, Japan
| | - Hiroo Amano
- Gunma University, Graduate School of Medicine, Okinawa, Gunma, Japan; Iwate Medical University, Okinawa, Iwate, Japan
| | - Yasushi Suga
- Juntendo University, Urayasu Hospital, Okinawa, Chiba, Japan
| | | | - Kenzo Takahashi
- University of the Ryukyus, Graduate School of Medicine, Okinawa, Japan.
| |
Collapse
|
28
|
Seidl‐Philipp M, Schatz UA, Gasslitter I, Moosbrugger‐Martinz V, Blunder S, Schossig AS, Zschocke J, Schmuth M, Gruber R. Spektrum der Ichthyosen in einer österreichischen Ichthyosekohorte von 2004–2007. J Dtsch Dermatol Ges 2020; 18:17-26. [DOI: 10.1111/ddg.13968_g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Magdalena Seidl‐Philipp
- Universitätsklinik für DermatologieVenerologie und AllergologieMedizinische Universität Innsbruck Innsbruck Österreich
| | - Ulrich A. Schatz
- Division für HumangenetikMedizinische Universität Innsbruck Innsbruck Österreich
| | - Irina Gasslitter
- Universitätsklinik für Innere Medizin IIMedizinische Universität Innsbruck Innsbruck Österreich
| | - Verena Moosbrugger‐Martinz
- Universitätsklinik für DermatologieVenerologie und AllergologieMedizinische Universität Innsbruck Innsbruck Österreich
| | - Stefan Blunder
- Universitätsklinik für DermatologieVenerologie und AllergologieMedizinische Universität Innsbruck Innsbruck Österreich
| | - Anna S. Schossig
- Division für HumangenetikMedizinische Universität Innsbruck Innsbruck Österreich
| | - Johannes Zschocke
- Division für HumangenetikMedizinische Universität Innsbruck Innsbruck Österreich
| | - Matthias Schmuth
- Universitätsklinik für DermatologieVenerologie und AllergologieMedizinische Universität Innsbruck Innsbruck Österreich
| | - Robert Gruber
- Universitätsklinik für DermatologieVenerologie und AllergologieMedizinische Universität Innsbruck Innsbruck Österreich
| |
Collapse
|
29
|
Seidl-Philipp M, Schatz UA, Gasslitter I, Moosbrugger-Martinz V, Blunder S, Schossig AS, Zschocke J, Schmuth M, Gruber R. Spectrum of ichthyoses in an Austrian ichthyosis cohort from 2004 to 2017. J Dtsch Dermatol Ges 2019; 18:17-25. [PMID: 31642606 DOI: 10.1111/ddg.13968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ichthyoses are a heterogeneous disease group, which makes clinical classification challenging. An ichthyosis cohort at a center for genodermatoses is presented in detail. PATIENTS AND METHODS Patients with clinically and/or genetically confirmed ichthyosis seen from 2004 to 2017 and listed in a database were included. Disease onset, phenotype, histology, comorbidities and family history were described in detail. In genetically tested patients, the prevalence of various ARCI genes, ARCI phenotypes and syndromic ichthyoses, as well as genotype-phenotype correlation and year/method of genetic testing was assessed. RESULTS Of all 198 patients who were included in the cohort, 151 were genetically tested. 81 had ichthyosis vulgaris, 43 X-linked ichthyosis, 38 autosomal recessive congenital ichthyosis (ARCI), 9 keratinopathic ichthyosis (KPI) and one exfoliative ichthyosis. 26 individuals suffered from syndromic ichthyoses. A good genotype-phenotype correlation was observed for common ichthyoses and KPI; the correlation was less good in syndromic ichthyoses. In 91 % of ARCI patients an accurate diagnosis was obtained by genetic testing. In only 33 % of syndromic ichthyoses was the definitive diagnosis suspected before genetic testing, which revealed a causative mutation in 86 % of cases. CONCLUSION This study describes the spectrum of ichthyoses in a center of expertise and shows that genetic testing should become a diagnostic standard for this disease group.
Collapse
Affiliation(s)
- Magdalena Seidl-Philipp
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ulrich A Schatz
- Department of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Irina Gasslitter
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Moosbrugger-Martinz
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Blunder
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna S Schossig
- Department of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Zschocke
- Department of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Schmuth
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Robert Gruber
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
30
|
Drislane C, Irvine AD. The role of filaggrin in atopic dermatitis and allergic disease. Ann Allergy Asthma Immunol 2019; 124:36-43. [PMID: 31622670 DOI: 10.1016/j.anai.2019.10.008] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To provide an overview of filaggrin biology and the role of filaggrin variants in atopic dermatitis (AD) and allergic disease. DATA SOURCES We performed a PubMed literature review consisting mainly of studies relating to filaggrin in the last 5 years. STUDY SELECTIONS We selected articles that were found in PubMed using the search terms filaggrin, atopic dermatitis, skin barrier, and atopy. RESULTS Filaggrin plays an important role in the development of AD and allergic disease. Novel methods in measuring filaggrin expression and identifying filaggrin mutations aid in stratifying this patient cohort. We review new insights into understanding the role of filaggrin in AD and allergic disease. CONCLUSION Filaggrin remains a very important player in the pathogenesis of atopic dermatitis and allergic disease. This review looks at recent studies that aid our understanding of this crucial epidermal protein.
Collapse
Affiliation(s)
| | - Alan D Irvine
- Department of Paediatric Dermatology, Our Lady's Children's Hospital Crumlin, Dublin, National Children's Research Centre, Crumlin and Clinical Medicine, Trinity College Dublin, Ireland.
| |
Collapse
|
31
|
Crumrine D, Khnykin D, Krieg P, Man MQ, Celli A, Mauro TM, Wakefield JS, Menon G, Mauldin E, Miner JH, Lin MH, Brash AR, Sprecher E, Radner FPW, Choate K, Roop D, Uchida Y, Gruber R, Schmuth M, Elias PM. Mutations in Recessive Congenital Ichthyoses Illuminate the Origin and Functions of the Corneocyte Lipid Envelope. J Invest Dermatol 2019; 139:760-768. [PMID: 30471252 PMCID: PMC11249047 DOI: 10.1016/j.jid.2018.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 12/26/2022]
Abstract
The corneocyte lipid envelope (CLE), a monolayer of ω-hydroxyceramides whose function(s) remain(s) uncertain, is absent in patients with autosomal recessive congenital ichthyoses with mutations in enzymes that regulate epidermal lipid synthesis. Secreted lipids fail to transform into lamellar membranes in certain autosomal recessive congenital ichthyosis epidermis, suggesting the CLE provides a scaffold for the extracellular lamellae. However, because cornified envelopes are attenuated in these autosomal recessive congenital ichthyoses, the CLE may also provide a scaffold for subjacent cornified envelope formation, evidenced by restoration of cornified envelopes after CLE rescue. We provide multiple lines of evidence that the CLE originates as lamellar body-limiting membranes fuse with the plasma membrane: (i) ABCA12 patients and Abca12-/- mice display normal CLEs; (ii) CLEs are normal in Netherton syndrome, despite destruction of secreted LB contents; (iii) CLEs are absent in VSP33B-negative patients; (iv) limiting membranes of lamellar bodies are defective in lipid-synthetic autosomal recessive congenital ichthyoses; and (v) lipoxygenases, lipase activity, and LIPN co-localize within putative lamellar bodies.
Collapse
Affiliation(s)
- Debra Crumrine
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California-San Francisco, San Francisco, California, USA
| | - Denis Khnykin
- Department of Pathology, Oslo University Hospital, Oslo, Norway; Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Peter Krieg
- Molecular Diagnostics of Oncogenic Infections, German Cancer Research Center, Heidelberg, Germany
| | - Mao-Qiang Man
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California-San Francisco, San Francisco, California, USA
| | - Anna Celli
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California-San Francisco, San Francisco, California, USA
| | - Theodora M Mauro
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California-San Francisco, San Francisco, California, USA
| | - Joan S Wakefield
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California-San Francisco, San Francisco, California, USA
| | | | - Elizabeth Mauldin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeffrey H Miner
- Department of Medicine, Division of Nephrology, Washington University, St. Louis, Missouri, USA
| | - Meei-Hua Lin
- Department of Medicine, Division of Nephrology, Washington University, St. Louis, Missouri, USA
| | - Alan R Brash
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Franz P W Radner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Keith Choate
- Departments of Dermatology and Genetics, Yale University, New Haven, Connecticut, USA
| | - Dennis Roop
- Department of Dermatology, University of Colorado, Denver, Colorado, USA
| | - Yoshikazu Uchida
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California-San Francisco, San Francisco, California, USA
| | - Robert Gruber
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Schmuth
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter M Elias
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California-San Francisco, San Francisco, California, USA.
| |
Collapse
|
32
|
Goleva E, Berdyshev E, Leung DY. Epithelial barrier repair and prevention of allergy. J Clin Invest 2019; 129:1463-1474. [PMID: 30776025 DOI: 10.1172/jci124608] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Allergic diseases have in common a dysfunctional epithelial barrier, which allows the penetration of allergens and microbes, leading to the release of type 2 cytokines that drive allergic inflammation. The accessibility of skin, compared with lung or gastrointestinal tissue, has facilitated detailed investigations into mechanisms underlying epithelial barrier dysfunction in atopic dermatitis (AD). This Review describes the formation of the skin barrier and analyzes the link between altered skin barrier formation and the pathogenesis of AD. The keratinocyte differentiation process is under tight regulation. During epidermal differentiation, keratinocytes sequentially switch gene expression programs, resulting in terminal differentiation and the formation of a mature stratum corneum, which is essential for the skin to prevent allergen or microbial invasion. Abnormalities in keratinocyte differentiation in AD skin result in hyperproliferation of the basal layer of epidermis, inhibition of markers of terminal differentiation, and barrier lipid abnormalities, compromising skin barrier and antimicrobial function. There is also compelling evidence for epithelial dysregulation in asthma, food allergy, eosinophilic esophagitis, and allergic rhinosinusitis. This Review examines current epithelial barrier repair strategies as an approach for allergy prevention or intervention.
Collapse
Affiliation(s)
- Elena Goleva
- Division of Pediatric Allergy and Clinical Immunology, Department of Pediatrics, and
| | - Evgeny Berdyshev
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Donald Ym Leung
- Division of Pediatric Allergy and Clinical Immunology, Department of Pediatrics, and.,Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
33
|
Potent, multi-target serine protease inhibition achieved by a simplified β-sheet motif. PLoS One 2019; 14:e0210842. [PMID: 30668585 PMCID: PMC6342301 DOI: 10.1371/journal.pone.0210842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/02/2019] [Indexed: 11/19/2022] Open
Abstract
Engagement of an extended β-sheet is a common substrate/inhibitor interaction at the active site of serine proteases and is an important feature of Laskowski mechanism inhibitors that present a substrate-like loop to a target protease. This loop is cleaved but subsequently relegated forming a stable inhibitor/protease complex. Laskowski inhibitors are ubiquitous in nature and are used extensively in serine protease inhibitor design. However, most studies concentrate on introducing new sidechain interactions rather than the direct contributions of the substrate-like β-sheet to enzyme inhibition. Here we report the crystal structure of an simplified β-sheet inhibitory motif within the Sunflower Trypsin Inhibitor (SFTI) in complex with trypsin. We show that the intramolecular hydrogen bond network of this SFTI variant (SFTI-TCTR) engages the inhibitor sidechains that would normally interact with a target protease, giving mainchain interactions a more prominent role in complex formation. Despite having reduced sidechain interactions, this SFTI variant is remarkably potent and inhibits a diverse range of serine proteases. Crystal structural analysis and molecular modelling of SFTI-TCTR complexes again indicates an interface dominated by β–sheet interactions, highlighting the importance of this motif and the adaptability of SFTI as a scaffold for inhibitor design.
Collapse
|
34
|
Chiba T, Nakahara T, Kohda F, Ichiki T, Manabe M, Furue M. Measurement of trihydroxy-linoleic acids in stratum corneum by tape-stripping: Possible biomarker of barrier function in atopic dermatitis. PLoS One 2019; 14:e0210013. [PMID: 30608955 PMCID: PMC6319710 DOI: 10.1371/journal.pone.0210013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/14/2018] [Indexed: 12/19/2022] Open
Abstract
Epidermal ceramides are indispensable lipids that maintain the functions of the stratum corneum. Esterified omega-hydroxyacyl-sphingosine (EOS) ceramide with a linoleate moiety is one of the most important ceramide species for forming cornified lipid envelopes. This linoleate moiety is eventually metabolized to trihydroxy-linoleic acid (triol, 9,10,13-trihydroxy-11E-octadecenoic acid). Thus, we assumed that a decrease of triols might reflect skin barrier dysfunction. Against this background, the purposes of this study were to measure the triols by a simple tape-stripping method and to determine the correlation between the amount of triols and transepidermal water loss (TEWL) as an indicator of barrier dysfunction in atopic dermatitis patients. Twenty Japanese subjects with normal skin and 20 atopic dermatitis patients were enrolled in this study. TEWL was measured and triols of the stratum corneum were analyzed by tape-stripping. The results showed for the first time that triols in the stratum corneum could be simply measured using the tape-stripping method. The triol levels in atopic dermatitis patients were much higher than those in healthy subjects. Moreover, the triol levels correlated with TEWL of non-lesional forearm skin in patients with atopic dermatitis. The results suggest that the assaying of triol levels via non-invasive tape-stripping could be beneficial for monitoring barrier function in atopic dermatitis.
Collapse
Affiliation(s)
- Takahito Chiba
- Department of Dermatology and Plastic Surgery, Akita University Graduate School of Medicine, Akita, Japan
- * E-mail:
| | - Takeshi Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Futoshi Kohda
- Department of Dermatology, Aso Iizuka Hospital, Fukuoka, Japan
| | - Toshio Ichiki
- Department of Dermatology, Aso Iizuka Hospital, Fukuoka, Japan
| | - Motomu Manabe
- Department of Dermatology and Plastic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
35
|
A Homozygous Nonsense Mutation in the DSG3 Gene Causes Acantholytic Blisters in the Oral and Laryngeal Mucosa. J Invest Dermatol 2018; 139:1187-1190. [PMID: 30528827 DOI: 10.1016/j.jid.2018.09.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 11/21/2022]
|
36
|
Tsakok T, Woolf R, Smith CH, Weidinger S, Flohr C. Atopic dermatitis: the skin barrier and beyond. Br J Dermatol 2018; 180:464-474. [PMID: 29969827 DOI: 10.1111/bjd.16934] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Atopic dermatitis is the most common chronic inflammatory skin disorder, affecting up to 20% of children and 10% of adults in industrialized countries. This highly debilitating condition poses a considerable burden to both the individual and society at large. The pathophysiology of atopic dermatitis is complex, encompassing both genetic and environmental risk factors. METHODS This is a narrative review based on a systematic literature search. CONCLUSIONS Dysregulation of innate and adaptive immunity plays a key role; however, recent epidemiological, genetic and molecular research has focused interest on skin barrier dysfunction as a common precursor and pathological feature. Current understanding of the aetiology of atopic dermatitis highlights disruption of the epidermal barrier leading to increased permeability of the epidermis, pathological inflammation in the skin, and percutaneous sensitization to allergens. Thus, most novel treatment strategies seek to target specific aspects of the skin barrier or cutaneous inflammation. Several studies have also shown promise in preventing atopic dermatitis, such as the early use of emollients in high-risk infants. This may have broader implications in terms of halting the progression to atopic comorbidities including food allergy, hay fever and asthma.
Collapse
Affiliation(s)
- T Tsakok
- St John's Institute of Dermatology, King's College London, London, U.K
| | - R Woolf
- St John's Institute of Dermatology, King's College London, London, U.K
| | - C H Smith
- St John's Institute of Dermatology, King's College London, London, U.K
| | - S Weidinger
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - C Flohr
- St John's Institute of Dermatology, King's College London, London, U.K
| |
Collapse
|
37
|
Engebretsen K, Kezic S, Jakasa I, Hedengran A, Linneberg A, Skov L, Johansen J, Thyssen J. Effect of atopic skin stressors on natural moisturizing factors and cytokines in healthy adult epidermis. Br J Dermatol 2018; 179:679-688. [DOI: 10.1111/bjd.16487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2018] [Indexed: 12/29/2022]
Affiliation(s)
- K.A. Engebretsen
- National Allergy Research Centre; Department of Dermatology and Allergy; Herlev and Gentofte Hospital; University of Copenhagen; Hellerup Denmark
- Department of Dermatology and Allergy; Herlev and Gentofte Hospital; University of Copenhagen; Hellerup Denmark
| | - S. Kezic
- Coronel Institute of Occupational Health; Academic Medical Center; Amsterdam Public Health Research Institute; University of Amsterdam; 1100 DE Amsterdam The Netherlands
| | - I. Jakasa
- Laboratory for Analytical Chemistry; Department of Chemistry and Biochemistry; Faculty of Food Technology and Biotechnology; University of Zagreb; Zagreb Croatia
| | - A. Hedengran
- Department of Clinical Biochemistry; Herlev and Gentofte Hospital; University of Copenhagen; Hellerup Denmark
| | - A. Linneberg
- Research Centre for Prevention and Health; The Capital Region of Denmark; Copenhagen Denmark
- Department of Clinical Experimental Research; Rigshospitalet Glostrup Denmark
- Department of Clinical Medicine; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - L. Skov
- Department of Dermatology and Allergy; Herlev and Gentofte Hospital; University of Copenhagen; Hellerup Denmark
| | - J.D. Johansen
- National Allergy Research Centre; Department of Dermatology and Allergy; Herlev and Gentofte Hospital; University of Copenhagen; Hellerup Denmark
- Department of Dermatology and Allergy; Herlev and Gentofte Hospital; University of Copenhagen; Hellerup Denmark
| | - J.P. Thyssen
- National Allergy Research Centre; Department of Dermatology and Allergy; Herlev and Gentofte Hospital; University of Copenhagen; Hellerup Denmark
- Department of Dermatology and Allergy; Herlev and Gentofte Hospital; University of Copenhagen; Hellerup Denmark
| |
Collapse
|
38
|
Mauldin EA, Crumrine D, Casal ML, Jeong S, Opálka L, Vavrova K, Uchida Y, Park K, Craiglow B, Choate KA, Shin KO, Lee YM, Grove GL, Wakefield JS, Khnykin D, Elias PM. Cellular and Metabolic Basis for the Ichthyotic Phenotype in NIPAL4 (Ichthyin)-Deficient Canines. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1419-1429. [PMID: 29548991 DOI: 10.1016/j.ajpath.2018.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/02/2018] [Accepted: 02/08/2018] [Indexed: 12/11/2022]
Abstract
Mutations in several lipid synthetic enzymes that block fatty acid and ceramide production produce autosomal recessive congenital ichthyoses (ARCIs) and associated abnormalities in permeability barrier homeostasis. However, the basis for the phenotype in patients with NIPAL4 (ichthyin) mutations (among the most prevalent ARCIs) remains unknown. Barrier function was abnormal in an index patient and in canines with homozygous NIPAL4 mutations, attributable to extensive membrane stripping, likely from detergent effects of nonesterified free fatty acid. Cytotoxicity compromised not only lamellar body secretion but also formation of the corneocyte lipid envelope (CLE) and attenuation of the cornified envelope (CE), consistent with a previously unrecognized, scaffold function of the CLE. Together, these abnormalities result in failure to form normal lamellar bilayers, accounting for the permeability barrier abnormality and clinical phenotype in NIPA-like domain-containing 4 (NIPAL4) deficiency. Thus, NIPAL4 deficiency represents another lipid synthetic ARCI that converges on the CLE (and CE), compromising their putative scaffold function. However, the clinical phenotype only partially improved after normalization of CLE and CE structure with topical ω-O-acylceramide because of ongoing accumulation of toxic metabolites, further evidence that proximal, cytotoxic metabolites contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Elizabeth A Mauldin
- Department of Dermatopathology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Debra Crumrine
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California; Department of Dermatology, University of California, San Francisco, San Francisco, California
| | - Margret L Casal
- Department of Dermatopathology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sekyoo Jeong
- Department of BioCosmetics, Seowon University, Cheongju, South Korea
| | - Lukáš Opálka
- Department of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Katerina Vavrova
- Department of BioCosmetics, Seowon University, Cheongju, South Korea; Department of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Yoshikazu Uchida
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California; Department of Dermatology, University of California, San Francisco, San Francisco, California
| | - Kyungho Park
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California; Department of Dermatology, University of California, San Francisco, San Francisco, California
| | - Brittany Craiglow
- Department of Pharmacy, Charles University, Hradec Kralove, Czech Republic; Department of Dermatology, Genetics, and Pathology, Yale University, New Haven, Connecticut
| | - Keith A Choate
- Department of Pharmacy, Charles University, Hradec Kralove, Czech Republic; Department of Dermatology, Genetics, and Pathology, Yale University, New Haven, Connecticut
| | - Kyong-Oh Shin
- College of Pharmacy, Chungbuk Natl University, Cheongju, South Korea
| | - Yong-Moon Lee
- College of Pharmacy, Chungbuk Natl University, Cheongju, South Korea
| | - Gary L Grove
- Department of Research and Development, cyberDERM, Media, Pennsylvania
| | - Joan S Wakefield
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California; Department of Dermatology, University of California, San Francisco, San Francisco, California
| | - Denis Khnykin
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Peter M Elias
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California; Department of Dermatology, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
39
|
Fischer J, Meyer-Hoffert U. Regulation of kallikrein-related peptidases in the skin – from physiology to diseases to therapeutic options. Thromb Haemost 2017; 110:442-9. [DOI: 10.1160/th12-11-0836] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/25/2013] [Indexed: 12/21/2022]
Abstract
SummaryKallikrein-related peptidases (KLKs) constitute a family of 15 highly conserved serine proteases, which show a tissue-specific expression profile. This made them valuable tumour expression markers. It became evident that KLKs are involved in many physiological processes like semen liquefaction and skin desquamation. More recently, we have learnt that they are involved in many pathophysiological conditions and diseases making them promising target of therapeutic intervention. Therefore, regulation of KLKs raised the interest of numerous reports. Herein, we summarise the current knowledge on KLKs regulation with an emphasis on skin-relevant KLKs regulation processes. Regulation of KLKs takes place on the level of transcription, on protease activation and on protease inactivation. A variety of protease inhibitors has been described to interact with KLKs including the irreversible serine protease inhibitors (SERPINs) and the reversible serine protease inhibitors of Kazal-type (SPINKs). In an attempt to integrate current knowledge, we propose that KLK regulation has credentials as targets for therapeutic intervention.
Collapse
|
40
|
Bajpai A, Ishii T, Miyauchi K, Gupta V, Nishio-Masaike Y, Shimizu-Yoshida Y, Kubo M, Kitano H. Insights into gene expression profiles induced by Socs3 depletion in keratinocytes. Sci Rep 2017; 7:15830. [PMID: 29158586 PMCID: PMC5696538 DOI: 10.1038/s41598-017-16155-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Specific deletion of suppressor of cytokine signaling 3 (Socs3) in keratinocytes can cause severe skin inflammation with infiltration of immune cells. The molecular mechanisms and key regulatory pathways involved in these processes remain elusive. To investigate the role of Socs3 in keratinocytes, we generated and analyzed global RNA-Seq profiles from Socs3 conditional knockout (cKO) mice of two different ages (2 and 10 weeks). Over 400 genes were significantly regulated at both time points. Samples from 2-week-old mice exhibited down-regulation of genes involved in keratin-related functions and up-regulation of genes involved in lipid metabolism. At week 10, multiple chemokine and cytokine genes were up-regulated. Functional annotation revealed that the genes differentially expressed in the 2-week-old mice play roles in keratinization, keratinocyte differentiation, and epidermal cell differentiation. By contrast, differentially expressed genes in the 10-week-old animals are involved in acute immune-related functions. A group of activator protein-1-related genes were highly up-regulated in Socs3 cKO mice of both ages. This observation was validated using qRT-PCR by SOCS3-depleted human keratinocyte-derived HaCaT cells. Our results suggest that, in addition to participating in immune-mediated pathways, SOCS3 also plays important roles in skin barrier homeostasis.
Collapse
Affiliation(s)
- Archana Bajpai
- RIKEN-IMS, Laboratory for Disease Systems Modeling, Yokohama, Japan.
| | - Takashi Ishii
- RIKEN-IMS, Laboratory for Disease Systems Modeling, Yokohama, Japan
| | - Kosuke Miyauchi
- RIKEN-IMS, Laboratory for Cytokine Regulation, Yokohama, Japan
| | - Vipul Gupta
- RIKEN-IMS, Laboratory for Disease Systems Modeling, Yokohama, Japan
- The Systems Biology Institute, Tokyo, Japan
| | | | - Yuki Shimizu-Yoshida
- RIKEN-IMS, Laboratory for Disease Systems Modeling, Yokohama, Japan
- Sony Computer Science Laboratories, Inc, Tokyo, Japan
| | - Masato Kubo
- RIKEN-IMS, Laboratory for Cytokine Regulation, Yokohama, Japan
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Tokyo, Japan
| | - Hiroaki Kitano
- RIKEN-IMS, Laboratory for Disease Systems Modeling, Yokohama, Japan.
- The Systems Biology Institute, Tokyo, Japan.
- Sony Computer Science Laboratories, Inc, Tokyo, Japan.
- Okinawa Institute of Science and Technology, Okinawa, Japan.
| |
Collapse
|
41
|
Asrani K, Sood A, Torres A, Georgess D, Phatak P, Kaur H, Dubin A, Talbot CC, Elhelu L, Ewald AJ, Xiao B, Worley P, Lotan TL. mTORC1 loss impairs epidermal adhesion via TGF-β/Rho kinase activation. J Clin Invest 2017; 127:4001-4017. [PMID: 28945203 DOI: 10.1172/jci92893] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022] Open
Abstract
Despite its central position in oncogenic intracellular signaling networks, the role of mTORC1 in epithelial development has not been studied extensively in vivo. Here, we have used the epidermis as a model system to elucidate the cellular effects and signaling feedback sequelae of mTORC1 loss of function in epithelial tissue. In mice with conditional epidermal loss of the mTORC1 components Rheb or Rptor, mTORC1 loss of function unexpectedly resulted in a profound skin barrier defect with epidermal abrasions, blistering, and early postnatal lethality, due to a thinned epidermis with decreased desmosomal protein expression and incomplete biochemical differentiation. In mice with mTORC1 loss of function, we found that Rho kinase (ROCK) signaling was constitutively activated, resulting in increased cytoskeletal tension and impaired cell-cell adhesion. Inhibition or silencing of ROCK1 was sufficient to rescue keratinocyte adhesion and biochemical differentiation in these mice. mTORC1 loss of function also resulted in marked feedback upregulation of upstream TGF-β signaling, triggering ROCK activity and its downstream effects on desmosomal gene expression. These findings elucidate a role for mTORC1 in the regulation of epithelial barrier formation, cytoskeletal tension, and cell adhesion, underscoring the complexity of signaling feedback following mTORC1 inhibition.
Collapse
Affiliation(s)
| | | | | | - Dan Georgess
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pornima Phatak
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | | | | | | | | | - Andrew J Ewald
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology, and
| | - Bo Xiao
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Paul Worley
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tamara L Lotan
- Department of Pathology and.,Department of Oncology, and
| |
Collapse
|
42
|
The Skin as a Route of Allergen Exposure: Part I. Immune Components and Mechanisms. Curr Allergy Asthma Rep 2017; 17:6. [PMID: 28185161 DOI: 10.1007/s11882-017-0674-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW To highlight recent contributions in the literature that enhance our understanding of the cutaneous immune response to allergen. RECENT FINDINGS Defects in skin barrier function in infancy set the stage for the development of atopic dermatitis (AD) and allergy. Both genetic and environmental factors can contribute to damage of the stratum corneum (SC), with activation of specific protease enzymes under high pH conditions playing a key role. Immune cells and mediators in the dermis and epidermis impair SC repair mechanisms and support allergy development. In barrier-disrupted skin, type 2 innate lymphoid cells (ILC2s), mast cells (MCs), and basophils have been shown to promote AD and pathogenic Th2 responses in murine models. Skin barrier disruption favors induction of systemic Th2-associated inflammatory pathways. A better understanding of the ontogeny and regulation of these complex networks in infant skin is needed to guide future strategies for allergy treatment and prevention.
Collapse
|
43
|
Danso M, Boiten W, van Drongelen V, Gmelig Meijling K, Gooris G, El Ghalbzouri A, Absalah S, Vreeken R, Kezic S, van Smeden J, Lavrijsen S, Bouwstra J. Altered expression of epidermal lipid bio-synthesis enzymes in atopic dermatitis skin is accompanied by changes in stratum corneum lipid composition. J Dermatol Sci 2017; 88:57-66. [PMID: 28571749 DOI: 10.1016/j.jdermsci.2017.05.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 04/26/2017] [Accepted: 05/10/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND The barrier dysfunction in atopic dermatitis (AD) skin correlates with stratum corneum (SC) lipid abnormalities including reduction of global lipid content, shorter ceramide (CER) as well as free fatty acid (FFA) chain length and altered CER subclass levels. However, the underlying cause of these changes in lipid composition has not been fully investigated. AIM We investigated whether the expression of CER and FFA biosynthesis enzymes are altered in AD skin compared with control skin and determine whether changes in enzyme expression can be related with changes in lipid composition. METHODS In AD patients and controls the expression of enzymes involved in the biosynthesis of FFAs and CERs was analyzed in relation to the SC lipid composition. These enzymes include stearoyl CoA desaturase (SCD), elongase 1 (ELOVL1) and ELOVL6 involved in FFA synthesis and β-glucocerebrosidase (GBA), acid-sphingomyelinase (aSmase), ceramide synthase 3 (CerS3) involved in CER synthesis. In TH2 treated human skin equivalents (AD HSEs) mimicking lesional AD skin, the mRNA expression of these enzymes was investigated. RESULTS The results reveal an altered expression of SCD and ELOVL1 in AD lesional skin. This was accompanied by functional changes displayed by increased unsaturated FFAs (SCD) and reduced FFA C22-C28 (ELOVL1) in AD lesional skin. The expression of GBA, aSmase and CerS3 were also altered in lesional skin. The CER composition in AD lesional skin showed corresponding changes such as increased CER AS and NS (aSmase) and decreased esterified ω-hydroxy CERs (CerS3). In support of the results from AD skin, the AD HSEs showed reduced mRNA ELOVL1, GBA and a Smase levels. CONCLUSION This study shows that alterations in the expression of key enzymes involved in SC lipid synthesis contribute to changes in the lipid composition in AD skin and inflammation may influence expression of these enzymes.
Collapse
Affiliation(s)
- Mogbekeloluwa Danso
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands; Department of Dermatology, Leiden University Medical Centre, Leiden, 2333 ZA, The Netherlands
| | - Walter Boiten
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Vincent van Drongelen
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands; Department of Dermatology, Leiden University Medical Centre, Leiden, 2333 ZA, The Netherlands
| | - Kevin Gmelig Meijling
- Department of Dermatology, Leiden University Medical Centre, Leiden, 2333 ZA, The Netherlands
| | - Gert Gooris
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Abdoel El Ghalbzouri
- Department of Dermatology, Leiden University Medical Centre, Leiden, 2333 ZA, The Netherlands
| | - Samira Absalah
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Rob Vreeken
- Department of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Sanja Kezic
- Coronel Institute of Occupational Health, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Jeroen van Smeden
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Sjan Lavrijsen
- Department of Dermatology, Leiden University Medical Centre, Leiden, 2333 ZA, The Netherlands
| | - Joke Bouwstra
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands.
| |
Collapse
|
44
|
Ouedraogo ZG, Fouache A, Trousson A, Baron S, Lobaccaro JMA. Role of the liver X receptors in skin physiology: Putative pharmacological targets in human diseases. Chem Phys Lipids 2017; 207:59-68. [PMID: 28259649 DOI: 10.1016/j.chemphyslip.2017.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 02/07/2023]
Abstract
Liver X receptors (LXRs) are members of the nuclear receptor superfamily that have been shown to regulate various physiological functions such as lipid metabolism and cholesterol homeostasis. Concordant reports have elicited the possibility to target them to cure many human diseases including arteriosclerosis, cancer, arthritis, and diabetes. The high relevance of modulating LXR activities to treat numerous skin diseases, mainly those with exacerbated inflammation processes, contrasts with the lack of approved therapeutic use. This review makes an assessment to sum up the findings regarding the physiological roles of LXRs in skin and help progress towards the therapeutic and safe management of their activities. It focuses on the possible pharmacological targeting of LXRs to cure or prevent selected skin diseases.
Collapse
Affiliation(s)
- Zangbéwendé Guy Ouedraogo
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France
| | - Allan Fouache
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France
| | - Amalia Trousson
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France
| | - Silvère Baron
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| | - Jean-Marc A Lobaccaro
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| |
Collapse
|
45
|
Liang Y, Chang C, Lu Q. The Genetics and Epigenetics of Atopic Dermatitis-Filaggrin and Other Polymorphisms. Clin Rev Allergy Immunol 2017; 51:315-328. [PMID: 26385242 DOI: 10.1007/s12016-015-8508-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease caused by a combination of genetic and environmental factors. Genetic evidences depict a complex network comprising by epidermal barrier dysfunctions and dysregulation of innate and adaptive immunity in the pathogenesis of AD. Mutations in the human filaggrin gene (FLG) are the most significant and well-replicated genetic mutation associated with AD, and other mutations associated with epidermal barriers such as SPINK5, FLG-2, SPRR3, and CLDN1 have all been linked to AD. Gene variants may also contribute to the abnormal innate and adaptive responses found in AD, including mutations in PRRs and AMPs, TSLP and TSLPR, IL-1 family cytokines and receptors genes, vitamin D pathway genes, FCER1A, and Th2 and other cytokines genes. GWAS and Immunochip analysis have identified a total of 19 susceptibility loci for AD. Candidate genes at these susceptibility loci identified by GWAS and Immunochip analysis also suggest roles for epidermal barrier functions, innate and adaptive immunity, interleukin-1 family signaling, regulatory T cells, the vitamin D pathway, and the nerve growth factor pathway in the pathogenesis of AD. Increasing evidences show the modern lifestyle (i.e., the hygiene hypothesis, Western diet) and other environmental factors such as pollution and environmental tobacco smoke (ETS) lead to the increasing prevalence of AD with the development of industrialization. Epigenetic alterations in response to these environmental factors, including DNA methylation and microRNA related to immune system and skin barriers, have been found to contribute to the pathogenesis of AD. Genetic variants and epigenetic alteration might be the key tools for the molecular taxonomy of AD and provide the background for the personalized management.
Collapse
Affiliation(s)
- Yunsheng Liang
- Hunan Key Laboratory of Medical Epigenomics & Department of Dermatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Rd, Changsha, Hunan, 410011, China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, 95616, USA
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics & Department of Dermatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Rd, Changsha, Hunan, 410011, China.
| |
Collapse
|
46
|
Sarri CA, Roussaki-Schulze A, Vasilopoulos Y, Zafiriou E, Patsatsi A, Stamatis C, Gidarokosta P, Sotiriadis D, Sarafidou T, Mamuris Z. Netherton Syndrome: A Genotype-Phenotype Review. Mol Diagn Ther 2016; 21:137-152. [DOI: 10.1007/s40291-016-0243-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Voegeli R, Wikstroem P, Campiche R, Steinmetzer T, Jackson E, Gempeler M, Imfeld D, Rawlings AV. The effects of benzylsulfonyl-D-Ser-homoPhe-(4-amidino-benzylamide), a dual plasmin and urokinase inhibitor, on facial skin barrier function in subjects with sensitive skin. Int J Cosmet Sci 2016; 39:109-120. [PMID: 27434836 DOI: 10.1111/ics.12354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The aim of this study was to optimize the synthesis of the plasmin and urokinase (uPA) inhibitor benzylsulfonyl-D-Ser-homoPhe-(4-amidino-benzylamide) (BSFAB), to characterize its activity and mechanism of action and to assess its use to improve stratum corneum (SC) barrier function. METHODS Peptide coupling methods were used to synthesize BSFAB, and high-performance liquid chromatography-mass spectrometry (HPLC-MS) together with 1 H- and 13 C-nuclear magnetic resonance spectroscopy (NMR) were applied to clarify its structure and determine its purity. Its binding mode was determined by docking studies to the catalytic domains of plasmin and uPA. Inhibition constants (Ki ) were determined by enzyme kinetic studies, and the effect of BSFAB on plasmin, uPA and transglutaminase 1 expression was evaluated in non-cytokine and cytokine-stimulated keratinocytes. A vehicle-controlled clinical study on SC barrier function was conducted on facial skin of subjects with self-perceived sensitive skin. RESULTS BSFAB was synthesized with high purity (97.3%). In silico studies indicated that the amidine moiety of BSFAB was anchored in the S1 pocket of both enzymes by binding to Asp189, Ser190 and Gly219, whereas the backbone of the D-Ser residue makes an anti-parallel β-sheet interaction with Gly216. BSFAB was shown to be an effective inhibitor of plasmin and uPA with Ki values of 29 and 25 nM, respectively. BSFAB also inhibited keratinocyte-secreted protease activities in basal (plasmin inhibition 37.7%, P < 0.05 and uPA inhibition 96.6%, P < 0.01) and cytokine-induced conditions (plasmin inhibition 41.1%, P < 0.05 and uPA inhibition 97.0%, P < 0.001) and stimulated the gene expression of transglutaminase 1 in cytokine-stimulated keratinocytes (approximately 4.5 times increased expression, P < 0.01). Clinically, BSFAB was shown to improve SC barrier integrity (P < 0.02 on day 29) and subjective improvements in the perception of healthy skin (P < 0.05 on day 28). CONCLUSION BSFAB binds as a reversible competitive inhibitor to the active sites of plasmin and uPA. Additionally, BSFAB positively improved keratinocyte differentiation gene expression (transglutaminase 1). These effects were translated into improvements in SC barrier integrity clinically in subjects with dry and sensitive skin and improved their perception of having a healthy skin condition.
Collapse
Affiliation(s)
- R Voegeli
- DSM Nutritional Products Ltd., Wurmisweg 571, 4303, Kaiseraugst, Switzerland
| | - P Wikstroem
- DSM Nutritional Products Ltd., Wurmisweg 571, 4303, Kaiseraugst, Switzerland
| | - R Campiche
- DSM Nutritional Products Ltd., Wurmisweg 571, 4303, Kaiseraugst, Switzerland
| | - T Steinmetzer
- Philipps University, Department of Pharmacy, Marbacher Weg 6, 35032, Marburg, Germany
| | - E Jackson
- DSM Nutritional Products Ltd., Wurmisweg 571, 4303, Kaiseraugst, Switzerland
| | - M Gempeler
- DSM Nutritional Products Ltd., Wurmisweg 571, 4303, Kaiseraugst, Switzerland
| | - D Imfeld
- DSM Nutritional Products Ltd., Wurmisweg 571, 4303, Kaiseraugst, Switzerland
| | - A V Rawlings
- AVR Consulting Ltd, 26 Shavington Way, Northwich, Cheshire, UK
| |
Collapse
|
48
|
Paller AS, Renert-Yuval Y, Suprun M, Esaki H, Oliva M, Huynh TN, Ungar B, Kunjravia N, Friedland R, Peng X, Zheng X, Estrada YD, Krueger JG, Choate KA, Suárez-Fariñas M, Guttman-Yassky E. An IL-17-dominant immune profile is shared across the major orphan forms of ichthyosis. J Allergy Clin Immunol 2016; 139:152-165. [PMID: 27554821 DOI: 10.1016/j.jaci.2016.07.019] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/18/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND The ichthyoses are rare genetic disorders associated with generalized scaling, erythema, and epidermal barrier impairment. Pathogenesis-based therapy is largely lacking because the underlying molecular basis is poorly understood. OBJECTIVE We sought to characterize molecularly cutaneous inflammation and its correlation with clinical and barrier characteristics. METHODS We analyzed biopsy specimens from 21 genotyped patients with ichthyosis (congenital ichthyosiform erythroderma, n = 6; lamellar ichthyosis, n = 7; epidermolytic ichthyosis, n = 5; and Netherton syndrome, n = 3) using immunohistochemistry and RT-PCR and compared them with specimens from healthy control subjects, patients with atopic dermatitis (AD), and patients with psoriasis. Clinical measures included the Ichthyosis Area Severity Index (IASI), which integrates erythema (IASI-E) and scaling (IASI-S); transepidermal water loss; and pruritus. RESULTS Ichthyosis samples showed increased epidermal hyperplasia (increased thickness and keratin 16 expression) and T-cell and dendritic cell infiltrates. Increases of general inflammatory (IL-2), innate (IL-1β), and some TH1/interferon (IFN-γ) markers in patients with ichthyosis were comparable with those in patients with psoriasis or AD. TNF-α levels in patients with ichthyosis were increased only in those with Netherton syndrome but were much lower than in patients with psoriasis and those with AD. Expression of TH2 cytokines (IL-13 and IL-31) was similar to that seen in control subjects. The striking induction of IL-17-related genes or markers synergistically induced by IL-17 and TNF-α (IL-17A/C, IL-19, CXCL1, PI3, CCL20, and IL36G; P < .05) in patients with ichthyosis was similar to that seen in patients with psoriasis. IASI and IASI-E scores strongly correlated with IL-17A (r = 0.74, P < .001) and IL-17/TNF-synergistic/additive gene expression. These markers also significantly correlated with transepidermal water loss, suggesting a link between the barrier defect and inflammation in patients with ichthyosis. CONCLUSION Our data associate a shared TH17/IL-23 immune fingerprint with the major orphan forms of ichthyosis and raise the possibility of IL-17-targeting strategies.
Collapse
Affiliation(s)
- Amy S Paller
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| | - Yael Renert-Yuval
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Maria Suprun
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hitokazu Esaki
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY; Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Margeaux Oliva
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Thy Nhat Huynh
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Benjamin Ungar
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Norma Kunjravia
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Rivka Friedland
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Xiangyu Peng
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Xiuzhong Zheng
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Yeriel D Estrada
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - James G Krueger
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Keith A Choate
- Department of Dermatology, Yale University School of Medicine, New Haven, Conn
| | - Mayte Suárez-Fariñas
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY; Laboratory for Investigative Dermatology, Rockefeller University, New York, NY; Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY; Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| |
Collapse
|
49
|
Schmuth M, Blunder S, Dubrac S, Gruber R, Moosbrugger-Martinz V. Epidermal barrier in hereditary ichthyoses, atopic dermatitis, and psoriasis. J Dtsch Dermatol Ges 2016; 13:1119-23. [PMID: 26513068 DOI: 10.1111/ddg.12827] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Several skin disorders are associated with impaired skin barrier function. Primary dysfunction is caused by monogenic defects in key components of the epidermis (for example ichthyoses). Secondary barrier impairment occurs in inflammatory dermatoses marked by disturbed epidermal homeostasis (eczema, psoriasis, etc.). In these disorders, inflammation impedes the synthesis or maintenance of skin barrier components. Recent evidence suggests a combination of primary and secondary barrier dysfunction in atopic dermatitis and, to a lesser extent, also in psoriasis. In the future, subtypes of atopic dermatitis may likely be defined, in which one or the other is prevalent.
Collapse
Affiliation(s)
- Matthias Schmuth
- Department of Dermatology and Venereology, University of Innsbruck, Innsbruck, Austria
| | - Stefan Blunder
- Department of Dermatology and Venereology, University of Innsbruck, Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology and Venereology, University of Innsbruck, Innsbruck, Austria
| | - Robert Gruber
- Department of Dermatology and Venereology, University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
50
|
Molecular Mechanisms of Cutaneous Inflammatory Disorder: Atopic Dermatitis. Int J Mol Sci 2016; 17:ijms17081234. [PMID: 27483258 PMCID: PMC5000632 DOI: 10.3390/ijms17081234] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/21/2016] [Accepted: 07/26/2016] [Indexed: 02/06/2023] Open
Abstract
Atopic dermatitis (AD) is a multifactorial inflammatory skin disease resulting from interactions between genetic susceptibility and environmental factors. The pathogenesis of AD is poorly understood, and the treatment of recalcitrant AD is still challenging. There is accumulating evidence for new gene polymorphisms related to the epidermal barrier function and innate and adaptive immunity in patients with AD. Newly-found T cells and dendritic cell subsets, cytokines, chemokines and signaling pathways have extended our understanding of the molecular pathomechanism underlying AD. Genetic changes caused by environmental factors have been shown to contribute to the pathogenesis of AD. We herein present a review of the genetics, epigenetics, barrier dysfunction and immunological abnormalities in AD with a focus on updated molecular biology.
Collapse
|