1
|
Calvo MJ, Navarro C, Durán P, Galan-Freyle NJ, Parra Hernández LA, Pacheco-Londoño LC, Castelanich D, Bermúdez V, Chacin M. Antioxidants in Photoaging: From Molecular Insights to Clinical Applications. Int J Mol Sci 2024; 25:2403. [PMID: 38397077 PMCID: PMC10889126 DOI: 10.3390/ijms25042403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Photoaging (PA) is considered a silent disease affecting millions of people globally and is defined as skin damage due to prolonged exposure to ultraviolet radiation (UVR) from the sun. Physiologically, the skin is in a state of renewal and synthesis of components of the extracellular matrix (ECM). However, exposure to UVR affects the production of the ECM, and the functioning and response of skin cells to UVR begins to change, thus expressing clinical and phenotypic characteristics of PA. The primary mechanisms involved in PA are direct damage to the DNA of skin cells, increases in oxidative stress, the activation of cell signaling pathways responsible for the loss of skin integrity, and cytotoxicity. The medical and scientific community has been researching new therapeutic tools that counteract PA, considering that the damage caused by UVR exceeds the antioxidant defense mechanisms of the skin. Thus, in recent years, certain nutraceuticals and phytochemicals have been found to exhibit potential antioxidant and photoprotective effects. Therefore, the main objective of this review is to elucidate the molecular bases of PA and the latest pharmaceutical industry findings on antioxidant treatment against the progression of PA.
Collapse
Affiliation(s)
- María José Calvo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela (C.N.); (P.D.)
| | - Carolina Navarro
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela (C.N.); (P.D.)
| | - Pablo Durán
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela (C.N.); (P.D.)
| | - Nataly J. Galan-Freyle
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Barranquilla 080003, Colombia; (N.J.G.-F.); (L.C.P.-L.); (V.B.)
| | - Luis Alberto Parra Hernández
- International Society for Non-Surgical Facial Rejuvenation (SIRF), Barranquilla 080003, Colombia; (L.A.P.H.); (D.C.)
| | - Leonardo C Pacheco-Londoño
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Barranquilla 080003, Colombia; (N.J.G.-F.); (L.C.P.-L.); (V.B.)
| | - Desiree Castelanich
- International Society for Non-Surgical Facial Rejuvenation (SIRF), Barranquilla 080003, Colombia; (L.A.P.H.); (D.C.)
- Argentine Society of Dermatology, Buenos Aires B1228, Argentina
| | - Valmore Bermúdez
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Barranquilla 080003, Colombia; (N.J.G.-F.); (L.C.P.-L.); (V.B.)
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080003, Colombia
| | - Maricarmen Chacin
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Barranquilla 080003, Colombia; (N.J.G.-F.); (L.C.P.-L.); (V.B.)
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080003, Colombia
| |
Collapse
|
2
|
Ibuki Y, Komaki Y, Yang G, Toyooka T. Long-wavelength UVA enhances UVB-induced cell death in cultured keratinocytes: DSB formation and suppressed survival pathway. Photochem Photobiol Sci 2021; 20:639-652. [PMID: 33978941 DOI: 10.1007/s43630-021-00050-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/28/2021] [Indexed: 11/30/2022]
Abstract
Solar UV radiation consists of both UVA and UVB. The wavelength-specific molecular responses to UV radiation have been studied, but the interaction between UVA and UVB has not been well understood. In this study, we found that long-wavelength UVA, UVA1, augmented UVB-induced cell death, and examined the underlying mechanisms. Human keratinocytes HaCaT were exposed to UVA1, followed by UVB irradiation. Irradiation by UVA1 alone showed no effect on cell survival, whereas the UVA1 pre-irradiation remarkably enhanced UVB-induced cell death. UVA1 delayed the repair of pyrimidine dimers formed by UVB and the accumulation of nucleotide excision repair (NER) proteins to damaged sites. Gap synthesis during NER was also decreased, suggesting that UVA1 delayed NER, and unrepaired pyrimidine dimers and single-strand breaks generated in the process of NER were left behind. Accumulation of this unrepaired DNA damage might have led to the formation of DNA double-strand breaks (DSBs), as was detected using gel electrophoresis analysis and phosphorylated histone H2AX assay. Combined exposure enhanced the ATM-Chk2 signaling pathway, but not the ATR-Chk1 pathway, confirming the enhanced formation of DSBs. Moreover, UVA1 suppressed the UVB-induced phosphorylation of Akt, a survival signal pathway. These results indicated that UVA1 influenced the repair of UVB-induced DNA damage, which resulted in the formation of DSBs and enhanced cell death, suggesting the risk of simultaneous exposure to high doses of UVA1 and UVB.
Collapse
Affiliation(s)
- Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan.
| | - Yukako Komaki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan
| | - Guang Yang
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan
| | - Tatsushi Toyooka
- National Institute of Occupational Safety and Health, Kawasaki, Japan
| |
Collapse
|
3
|
Douki T. Wavelengths and temporal effects on the response of mammalian cells to UV radiation: Limitations of action spectra illustrated by genotoxicity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 217:112169. [PMID: 33713895 DOI: 10.1016/j.jphotobiol.2021.112169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 01/17/2023]
Abstract
All photobiological events depend on the wavelength of the incident radiation. In real-life situations and in the vast majority of laboratory experiments, exposure always involves sources with various emission spectra spreading over a wide wavelength range. Action spectra are often used to describe the efficiency of a process at different wavelengths and to predict the effects of a given light source by summation of the individual effects at each wavelength. However, a full understanding of the biological effects of complex sources requires more than considering these concomitant events at each specific wavelength. Indeed, photons of different energies may not have additive but synergistic or inhibitory effects on photochemical processes and cellular responses. The evolution of a photobiological response with post-irradiation time must also be considered. These two aspects may represent some limitations to the use of action spectra. The present review, focused on mammalian cells, illustrates the concept of action spectrum and discusses its drawbacks using theoretical considerations and examples taken from the literature. Emphasis is placed on genotoxicity for which wavelength effects have been extensively studied. Other effects of UV exposure are also mentioned.
Collapse
Affiliation(s)
- Thierry Douki
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000 Grenoble, France.
| |
Collapse
|
4
|
Tongkao-on W, Yang C, McCarthy BY, De Silva WGM, Rybchyn MS, Gordon-Thomson C, Dixon KM, Halliday GM, Reeve VE, Mason RS. Sex Differences in Photoprotective Responses to 1,25-Dihydroxyvitamin D3 in Mice Are Modulated by the Estrogen Receptor-β. Int J Mol Sci 2021; 22:1962. [PMID: 33669452 PMCID: PMC7920427 DOI: 10.3390/ijms22041962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/27/2022] Open
Abstract
Susceptibility to photoimmune suppression and photocarcinogenesis is greater in male than in female humans and mice and is exacerbated in female estrogen receptor-beta knockout (ER-β-/-) mice. We previously reported that the active vitamin D hormone, 1,25-dihydroxyvitamin D3 (1,25(OH)2D), applied topically protects against the ultraviolet radiation (UV) induction of cutaneous cyclobutane pyrimidine dimers (CPDs) and the suppression of contact hypersensitivity (CHS) in female mice. Here, we compare these responses in female versus male Skh:hr1 mice, in ER-β-/-/-- versus wild-type C57BL/6 mice, and in female ER-blockaded Skh:hr1 mice. The induction of CPDs was significantly greater in male than female Skh:hr1 mice and was more effectively reduced by 1,25(OH)2D in female Skh:hr1 and C57BL/6 mice than in male Skh:hr1 or ER-β-/- mice, respectively. This correlated with the reduced sunburn inflammation due to 1,25(OH)2D in female but not male Skh:hr1 mice. Furthermore, although 1,25(OH)2D alone dose-dependently suppressed basal CHS responses in male Skh:hr1 and ER-β-/- mice, UV-induced immunosuppression was universally observed. In female Skh:hr1 and C57BL/6 mice, the immunosuppression was decreased by 1,25(OH)2D dose-dependently, but not in male Skh:hr1, ER-β-/-, or ER-blockaded mice. These results reveal a sex bias in genetic, inflammatory, and immune photoprotection by 1,25(OH)2D favoring female mice that is dependent on the presence of ER-β.
Collapse
Affiliation(s)
- Wannit Tongkao-on
- Department of Physiology, University of Sydney, Sydney, NSW 2006, Australia; (W.T.-o.); (C.Y.); (B.Y.M.); (W.G.M.D.S.); (M.S.R.); (C.G.-T.)
| | - Chen Yang
- Department of Physiology, University of Sydney, Sydney, NSW 2006, Australia; (W.T.-o.); (C.Y.); (B.Y.M.); (W.G.M.D.S.); (M.S.R.); (C.G.-T.)
| | - Bianca Y. McCarthy
- Department of Physiology, University of Sydney, Sydney, NSW 2006, Australia; (W.T.-o.); (C.Y.); (B.Y.M.); (W.G.M.D.S.); (M.S.R.); (C.G.-T.)
| | - Warusavithana G. Manori De Silva
- Department of Physiology, University of Sydney, Sydney, NSW 2006, Australia; (W.T.-o.); (C.Y.); (B.Y.M.); (W.G.M.D.S.); (M.S.R.); (C.G.-T.)
| | - Mark S. Rybchyn
- Department of Physiology, University of Sydney, Sydney, NSW 2006, Australia; (W.T.-o.); (C.Y.); (B.Y.M.); (W.G.M.D.S.); (M.S.R.); (C.G.-T.)
| | - Clare Gordon-Thomson
- Department of Physiology, University of Sydney, Sydney, NSW 2006, Australia; (W.T.-o.); (C.Y.); (B.Y.M.); (W.G.M.D.S.); (M.S.R.); (C.G.-T.)
| | - Katie M. Dixon
- Anatomy and Histology, University of Sydney, Sydney, NSW 2006, Australia;
| | - Gary M. Halliday
- Dermatology, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Vivienne E. Reeve
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia;
| | - Rebecca S. Mason
- Department of Physiology, University of Sydney, Sydney, NSW 2006, Australia; (W.T.-o.); (C.Y.); (B.Y.M.); (W.G.M.D.S.); (M.S.R.); (C.G.-T.)
| |
Collapse
|
5
|
Abstract
In this article, we summarize the research that eventually led to the classification of the full ultraviolet (UV) radiation spectrum as carcinogenic to humans. We recall the pioneering works that led to the formulation of novel hypotheses on the reasons underlying the increasing burden of melanoma in light-skinned populations. It took long before having compelling evidence on the association between UV and melanoma, in particular, the importance of UV exposure during childhood for both the occurrence of melanoma and death. The role of UVA was established only after 2005. If molecular lesions caused by UV radiation are better known, the precise mechanism by which UV exposure drives melanoma occurrence and progression still needs to be elucidated. More research on the UV-melanoma relationships has led to more evidence-based sun-protection recommendations, especially for children, and to effective control of the artificial UV tanning fashion. Since around 1985-1995, the mortality because of melanoma has started to decrease in younger age groups in most light-skinned populations. If sun protection among children remain on top of public health agendas, there is a fairly great chance that melanoma mortality will stabilize and steadily decrease in all light-skinned populations. The introduction of effective therapies against metastatic disease will improve this reversal in mortality trends.
Collapse
Affiliation(s)
- Philippe Autier
- University of Strathclyde Institute of Global Public Health, International Prevention Research Institute (iPRI), Dardilly, France
| | | |
Collapse
|
6
|
Chen L, Karisma VW, Liu H, Zhong L. MicroRNA-300: A Transcellular Mediator in Exosome Regulates Melanoma Progression. Front Oncol 2019; 9:1005. [PMID: 31681565 PMCID: PMC6803498 DOI: 10.3389/fonc.2019.01005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/18/2019] [Indexed: 01/11/2023] Open
Abstract
Melanoma is a common and high-mortality skin cancer. Oxidative stress and DNA damage caused by ultraviolet light (UV) are major causative factors of melanoma formation. However, the specific molecular mechanism is still unclear. In this study, 218 dysregulated genes and 104 dysregulated miRNAs in response to UV were screened by analyzing sequencing datasets. Among them, 29 up-regulated miRNAs and 28 down-regulated miRNAs were involved in the melanoma pathway. As the only differential gene in the melanoma pathway, GADD45B severely affects the prognosis of melanoma patients. MiR-300 is the only differentially expressed miRNA that regulates GADD45B. In addition, compared to normal melanocytes, miR-300 was significantly down-regulated in melanoma cells (log FC = −1.63) and exosomes (log FC = −1.34). Among the transcription factors predicted to regulate miR-300, MYC, PPARG, and ZIC2 were significantly up-regulated in melanoma cells, and TP53, JUN, JUNB, FOS, and FOSB interacted with GADD45B. We attempted to reveal the pathogenesis of melanoma and screen new biomarkers by constructing a TF-mRNA-miRNA axis in turn to provide a view for further research.
Collapse
Affiliation(s)
- Long Chen
- Bioengineering Institute of Chongqing University, Chongqing, China
| | | | - Huawen Liu
- Three Gorges Central Hospital, Chongqing, China
| | - Li Zhong
- Bioengineering Institute of Chongqing University, Chongqing, China
| |
Collapse
|
7
|
Sondenheimer K, Krutmann J. Novel Means for Photoprotection. Front Med (Lausanne) 2018; 5:162. [PMID: 29896475 PMCID: PMC5986962 DOI: 10.3389/fmed.2018.00162] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
Due to changes in human lifestyle (expanded sunbathing, the use of solaria, etc.) and, most importantly, increasing lifetime and thus higher cumulative exposure to solar radiation, skin aging and skin cancer have become major health issues. As a consequence effective photoprotection is of outmost importance to humans. In this regard a lot has been learned in the past about the cellular and molecular basis underlying ultraviolet (UV) radiation-induced skin damage and, based on this knowledge, numerous skin protective approaches including organic and inorganic UV-filters, but also topically applicable antioxidants, DNA repair enzymes and compatible solutes as well as oral photoprotective strategies based on nutritional supplements have been developed. A new aspect is here that sun protection of human skin might even be possible after solar radiation-induced skin damage has occurred. A second, very important development was prompted by the discovery that also wavelengths beyond the UV spectrum can damage human skin. These include the blue light region of visible light (VIS) as well as the near infrared range (IRA) and corresponding sunprotection strategies have thus recently been or are still being developed. In this article we will provide a state of the art summary of these two novel developments and, at the end, we will also critically discuss strengths and weaknesses of the current attempts, which mainly focus on the prevention of skin damage by selected wavelengths but greatly ignore the possibility that wavelengths might interfere with each other. Such combined effects, however, need to be taken into account if photoprotection of human skin is intended to be global in nature.
Collapse
Affiliation(s)
- Kevin Sondenheimer
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Jean Krutmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.,Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
8
|
Kim KM, Lee JY, Im AR, Chae S. Phycocyanin Protects Against UVB-induced Apoptosis Through the PKC α/βII-Nrf-2/HO-1 Dependent Pathway in Human Primary Skin Cells. Molecules 2018; 23:molecules23020478. [PMID: 29470442 PMCID: PMC6017183 DOI: 10.3390/molecules23020478] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 12/30/2022] Open
Abstract
Phycocyanin (Pc) is one of the active pigment constituents of Spirulina microalgae. It has been used for its potent antioxidant and anti-inflammatory properties. However, the protective effects of Pc against ultraviolet-B (UVB)-induced primary skin cells damage are still undefined. In the present study, we investigated whether Pc prevented UVB-induced apoptotic cell death in human dermal fibroblasts (HDF) and human epidermal keratinocytes (HEK). Pc induced the transcription of heme oxygenase-1 (HO-1). Furthermore, Pc treatments resulted in a marked increase in nuclear factor erythroid-derived 2 (NF-E2)-like 2 (Nrf-2) nuclear translocation. Also, Pc protected UVB induced apoptosis and reduced the p53 and Bax levels, as well as caspase-3 activation. Pc treatment showed a significantly enhanced effect on the phosphorylation of protein kinase C (PKC) α/β II, but not that of p38 mitogen-activated protein kinase (MAPK) or Akt. Induction of HO-1 induced by Pc was suppressed by Go6976, a selective inhibitor of PKC α/β II. In addition, knockdown of HO-1 by small interfering (siRNA) caused a significant increase in poly (ADP-ribose) polymerase 1 (PARP-1) cleavage and caspase-3 activation after Pc pretreatment. Taken together, our results demonstrate that Pc-induced expression of HO-1 is mediated by the PKC α/β II-Nrf-2/HO-1 pathway, and inhibits UVB-induced apoptotic cell death in primary skin cells.
Collapse
Affiliation(s)
- Ki Mo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea.
- Department of Korean Life Science and Technology, Korea University of Science and Technology, Daejeon 34113, Korea.
| | - Joo Young Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea.
| | - A-Rang Im
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea.
| | - Sungwook Chae
- Department of Korean Life Science and Technology, Korea University of Science and Technology, Daejeon 34113, Korea.
| |
Collapse
|
9
|
Osmond-McLeod MJ, Oytam Y, Rowe A, Sobhanmanesh F, Greenoak G, Kirby J, McInnes EF, McCall MJ. Long-term exposure to commercially available sunscreens containing nanoparticles of TiO2 and ZnO revealed no biological impact in a hairless mouse model. Part Fibre Toxicol 2016; 13:44. [PMID: 27534937 PMCID: PMC4989375 DOI: 10.1186/s12989-016-0154-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/05/2016] [Indexed: 02/08/2023] Open
Abstract
Background The application of sunscreen is a critical component of a sun-safe strategy, however the possibility of unexpected, adverse outcomes resulting from long-term use of sunscreens containing nanoparticles of titanium dioxide (TiO2) and zinc oxide (ZnO) has not yet been examined. Here, immune-competent hairless mice were exposed over a 36-week period to weekly topical applications of sunscreens containing nanoparticles of ZnO or TiO2, or no metal oxide nanoparticles, with or without subsequent exposure to ultraviolet radiation (UVR). Control groups received no sunscreen applications, with or without UVR. Results Mice exposed to UVR in the absence of sunscreen developed statistically significant incidences of histologically-diagnosed malignant and benign skin neoplasms, whereas no statistically significant adverse biological outcomes were found in mice treated with the sunscreens containing ZnO or TiO2 nanoparticles. Elevated levels of Ti were detected in the livers of mice treated with sunscreen containing TiO2 nanoparticles compared to untreated control, but total Zn concentrations did not significantly alter in any major organs except for the skin of mice treated with ZnO sunscreen. Exposure to UVR did not have a significant impact on examined tissue concentrations of Zn or Ti. Few to no transcriptional changes were found in ZnO or TiO2-treated groups, but mice treated with the sunscreen containing only organic filters showed substantial gene disregulation. Conclusions Taken together with previous work, this long-term study provided no basis to avoid the use of sunscreens containing metal oxide nanoparticles.
Collapse
Affiliation(s)
- Megan J Osmond-McLeod
- CSIRO Advanced Materials TCP (Nanosafety), Manufacturing Flagship, North Ryde, NSW, 2113, Australia. .,CSIRO, Food & Nutrition Flagship, North Ryde, NSW, 2113, Australia. .,, PO Box 52, North Ryde, NSW, 1670, Australia.
| | - Yalchin Oytam
- CSIRO Advanced Materials TCP (Nanosafety), Manufacturing Flagship, North Ryde, NSW, 2113, Australia.,CSIRO, Food & Nutrition Flagship, North Ryde, NSW, 2113, Australia
| | - Anthony Rowe
- CSIRO, Food & Nutrition Flagship, North Ryde, NSW, 2113, Australia
| | | | - Gavin Greenoak
- Australian Photobiology Testing Facility, Forest Lodge, NSW, 2037, Australia
| | - Jason Kirby
- CSIRO Advanced Materials TCP (Nanosafety), Manufacturing Flagship, North Ryde, NSW, 2113, Australia.,CSIRO Land & Water Flagship, Urrbrae, SA, 5064, Australia
| | | | - Maxine J McCall
- CSIRO Advanced Materials TCP (Nanosafety), Manufacturing Flagship, North Ryde, NSW, 2113, Australia.,CSIRO, Food & Nutrition Flagship, North Ryde, NSW, 2113, Australia
| |
Collapse
|
10
|
Tiganescu A, Hupe M, Jiang YJ, Celli A, Uchida Y, Mauro TM, Bikle DD, Elias PM, Holleran WM. UVB induces epidermal 11β-hydroxysteroid dehydrogenase type 1 activity in vivo. Exp Dermatol 2016; 24:370-6. [PMID: 25739654 DOI: 10.1111/exd.12682] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2015] [Indexed: 12/15/2022]
Abstract
Detrimental consequences of ultraviolet radiation (UVR) in skin include photoageing, immunosuppression and photocarcinogenesis, processes also significantly regulated by local glucocorticoid (GC) availability. In man, the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) generates the active GC cortisol from cortisone (or corticosterone from 11-dehydrocorticosterone in rodents). 11β-HSD1 oxo-reductase activity requires the cofactor NADPH, generated by hexose-6-phosphate dehydrogenase. We previously demonstrated increased 11β-HSD1 levels in skin obtained from photoexposed versus photoprotected anatomical regions. However, the direct effect of UVR on 11β-HSD1 expression remains to be elucidated. To investigate the cutaneous regulation of 11β-HSD1 following UVR in vivo, the dorsal skin of female SKH1 mice was irradiated with 50, 100, 200 and 400 mJ/cm(2) UVB. Measurement of transepidermal water loss, 11β-HSD1 activity, mRNA/protein expression and histological studies was taken at 1, 3 and 7 days postexposure. 11β-HSD1 and hexose-6-phosphate dehydrogenase mRNA expression peaked 1 day postexposure to 400 mJ/cm(2) UVB before subsequently declining (days 3 and 7). Corresponding increases in 11β-HSD1 protein and enzyme activity were observed 3 days postexposure coinciding with reduced GC receptor mRNA expression. Immunofluorescence studies revealed 11β-HSD1 localization to hyperproliferative epidermal keratinocytes in UVB-exposed skin. 11β-HSD1 expression and activity were also induced by 200 and 100 (but not 50) mJ/cm(2) UVB and correlated with increased transepidermal water loss (indicative of barrier disruption). UVB-induced 11β-HSD1 activation represents a novel mechanism that may contribute to the regulation of cutaneous responses to UVR exposure.
Collapse
Affiliation(s)
- Ana Tiganescu
- Department of Dermatology, VA Medical Center and University of California San Francisco, 1700 Owens Street, San Francisco, CA, 94158, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mercurio D, Wagemaker T, Alves V, Benevenuto C, Gaspar L, Maia Campos P. In vivo photoprotective effects of cosmetic formulations containing UV filters, vitamins, Ginkgo biloba and red algae extracts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 153:121-6. [DOI: 10.1016/j.jphotobiol.2015.09.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/04/2015] [Accepted: 09/14/2015] [Indexed: 12/11/2022]
|
12
|
Vitamin D and ultraviolet phototherapy in Caucasians. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 147:69-74. [DOI: 10.1016/j.jphotobiol.2015.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 02/02/2023]
|
13
|
Parkinson LG, Toro A, Zhao H, Brown K, Tebbutt SJ, Granville DJ. Granzyme B mediates both direct and indirect cleavage of extracellular matrix in skin after chronic low-dose ultraviolet light irradiation. Aging Cell 2015; 14:67-77. [PMID: 25495009 PMCID: PMC4326907 DOI: 10.1111/acel.12298] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2014] [Indexed: 01/27/2023] Open
Abstract
Extracellular matrix (ECM) degradation is a hallmark of many chronic inflammatory diseases that can lead to a loss of function, aging, and disease progression. Ultraviolet light (UV) irradiation from the sun is widely considered as the major cause of visible human skin aging, causing increased inflammation and enhanced ECM degradation. Granzyme B (GzmB), a serine protease that is expressed by a variety of cells, accumulates in the extracellular milieu during chronic inflammation and cleaves a number of ECM proteins. We hypothesized that GzmB contributes to ECM degradation in the skin after UV irradiation through both direct cleavage of ECM proteins and indirectly through the induction of other proteinases. Wild-type and GzmB-knockout mice were repeatedly exposed to minimal erythemal doses of solar-simulated UV irradiation for 20 weeks. GzmB expression was significantly increased in wild-type treated skin compared to nonirradiated controls, colocalizing to keratinocytes and to an increased mast cell population. GzmB deficiency significantly protected against the formation of wrinkles and the loss of dermal collagen density, which was related to the cleavage of decorin, an abundant proteoglycan involved in collagen fibrillogenesis and integrity. GzmB also cleaved fibronectin, and GzmB-mediated fibronectin fragments increased the expression of collagen-degrading matrix metalloproteinase-1 (MMP-1) in fibroblasts. Collectively, these findings indicate a significant role for GzmB in ECM degradation that may have implications in many age-related chronic inflammatory diseases.
Collapse
Affiliation(s)
- Leigh G. Parkinson
- Centre for Heart Lung Innovation St. Paul's Hospital Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine University of British Columbia Vancouver British Columbia Canada
| | - Ana Toro
- Centre for Heart Lung Innovation St. Paul's Hospital Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine University of British Columbia Vancouver British Columbia Canada
| | - Hongyan Zhao
- Centre for Heart Lung Innovation St. Paul's Hospital Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine University of British Columbia Vancouver British Columbia Canada
| | - Keddie Brown
- Centre for Heart Lung Innovation St. Paul's Hospital Vancouver British Columbia Canada
| | - Scott J. Tebbutt
- Centre for Heart Lung Innovation St. Paul's Hospital Vancouver British Columbia Canada
- Department of Medicine Division of Respiratory Medicine University of British Columbia Vancouver British Columbia Canada
| | - David J. Granville
- Centre for Heart Lung Innovation St. Paul's Hospital Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
14
|
Lucas RM, Norval M, Neale RE, Young AR, de Gruijl FR, Takizawa Y, van der Leun JC. The consequences for human health of stratospheric ozone depletion in association with other environmental factors. Photochem Photobiol Sci 2015; 14:53-87. [DOI: 10.1039/c4pp90033b] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ozone depletion, climate and human health.
Collapse
Affiliation(s)
- R. M. Lucas
- National Centre for Epidemiology and Population Health
- The Australian National University
- Canberra 2601
- Australia
- Telethon Kids Institute
| | - M. Norval
- Biomedical Sciences
- University of Edinburgh Medical School
- Edinburgh EH8 9AG
- UK
| | - R. E. Neale
- QIMR Berghofer Medical Research Institute
- Brisbane 4029
- Australia
| | - A. R. Young
- King's College London (KCL)
- St John's Institute of Dermatology
- London SE1 9RT
- UK
| | - F. R. de Gruijl
- Department of Dermatology
- Leiden University Medical Centre
- NL-2300 RC Leiden
- The Netherlands
| | - Y. Takizawa
- Akita University Graduate School of Medicine
- Akita Prefecture
- Japan
- National Institute for Minamata Diseases
- Kumamoto Prefecture
| | | |
Collapse
|
15
|
Itri R, Junqueira HC, Mertins O, Baptista MS. Membrane changes under oxidative stress: the impact of oxidized lipids. Biophys Rev 2014; 6:47-61. [PMID: 28509959 DOI: 10.1007/s12551-013-0128-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 12/03/2013] [Indexed: 12/11/2022] Open
Abstract
Studying photosensitized oxidation of unsaturated phospholipids is of importance for understanding the basic processes underlying photodynamic therapy, photoaging and many other biological dysfunctions. In this review we show that the giant unilamellar vesicle, when used as a simplified model of biological membranes, is a powerful tool to investigate how in situ photogenerated oxidative species impact the phospholipid bilayer. The extent of membrane damage can be modulated by choosing a specific photosensitizer (PS) which is activated by light irradiation and can react by either type I and or type II mechanism. We will show that type II PS generates only singlet oxygen which reacts to the phospholipid acyl double bond. The byproduct thus formed is a lipid hydroperoxide which accumulates in the membrane as a function of singlet oxygen production and induces an increase in its area without significantly affecting membrane permeability. The presence of a lipid hydroperoxide can also play an important role in the formation of the lipid domain for mimetic plasma membranes. Lipid hydroperoxides can be also transformed in shortened chain compounds, such as aldehydes and carboxylic acids, in the presence of a PS that reacts via the type I mechanism. The presence of such byproducts may form hydrophilic pores in the membrane for moderate oxidative stress or promote membrane disruption for massive oxidation. Our results provide a new tool to explore membrane response to an oxidative stress and may have implications in biological signaling of redox misbalance.
Collapse
Affiliation(s)
- Rosangela Itri
- Departamento de Física Aplicada, Instituto de Física, Universidade de São Paulo, São Paulo, Brazil.
| | - Helena C Junqueira
- Departamento de Física Aplicada, Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
| | - Omar Mertins
- Departamento de Física Aplicada, Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
| | - Maurício S Baptista
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Xiang Y, Liu G, Yang L, Zhong JL. UVA-induced protection of skin through the induction of heme oxygenase-1. Biosci Trends 2012; 5:239-44. [PMID: 22281537 DOI: 10.5582/bst.2011.v5.6.239] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UVA (320-400 nm) and UVB (290-320 nm) are the major components of solar UV irradiation, which is associated with various pathological conditions. UVB causes direct damage to DNA of epidermal cells and is mainly responsible for erythema, immunosuppression, photoaging, and skin cancer. UVA has oxidizing properties that can cause damage or enhance UVB damaging effects on skin. On the other hand, UVA can also lead to high levels of heme oxygenase-1 (HO-1) expression of cells that can provide an antioxidant effect on skin as well as anti-inflammatory properties in mammals and rodents. Therefore, this review focuses on the potential protection of UVA wavebands for the skin immune response, instead of mechanisms that underlie UVA-induced damage. Also, the role of HO-1 in UVA-mediated protection against UVB-induced immunosuppression in skin will be summarized. Thus, this review facilitates further understanding of potential beneficial mechanisms of UVA irradiation, and using the longer UVA (UVA1, 340-400 nm) in combination with HO-1 for phototherapy and skin protection against sunlight exposure.
Collapse
Affiliation(s)
- Yuancai Xiang
- The "111 Project" Laboratory of Biomechanics & Tissue Repair Engineering, Ministry of Education, College of Bioengineering, Chongqing University, China
| | | | | | | |
Collapse
|
17
|
Mitchell D, Fernandez A. The photobiology of melanocytes modulates the impact of UVA on sunlight-induced melanoma. Photochem Photobiol Sci 2012; 11:69-73. [DOI: 10.1039/c1pp05146f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Cho JL, Allanson M, Reeve VE. Hypoxia inducible factor-1α contributes to UV radiation-induced inflammation, epidermal hyperplasia and immunosuppression in mice. Photochem Photobiol Sci 2011; 11:309-17. [PMID: 22048469 DOI: 10.1039/c1pp05265a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypoxia inducible factor-1α (HIF-1α), a ubiquitous inducible oxygen-sensing transcription factor, promotes cell survival under hypoxic conditions, including the early pre-angiogenic period of tumorigenesis, and is known to contribute to many malignancies. However HIF-1α can also be activated by inflammatory mediators, and can activate inflammation-modulating proteins itself, including heme oxygenase-1 (HO-1) and the cytokine IL-6. Recently HIF-1α was reported to be induced by UVB (290-320 nm) radiation in cultured human keratinocytes, acting as a stress protein associated with the release of reactive oxygen species. In this in vivo murine study we demonstrate that HIF-1α protein is an early responder to UV radiation in the skin, and its activation can be attenuated by treating mice with its post-translational inhibitor, YC-1. Treatment with YC-1 following UV-irradiation of mice has revealed the involvement of HIF-1α in UV-induced inflammation, IL-6 production, and epidermal hyperplasia. In addition, upregulated cutaneous HIF-1α was found to be an important factor in the UV-suppression of T cell-mediated immunity, measured by contact hypersensitivity (CHS). The mechanism remains unclear, however it did not appear to involve the immunosuppressive cutaneous photoproduct cis-urocanic acid, but HIF-1α induction was inhibited by irradiation with photoimmune protective UVA (320-400 nm), implicating a negative correlation between the two stress proteins, HIF-1α and the photoimmune protective UVA responder HO-1.
Collapse
Affiliation(s)
- Jun-Lae Cho
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
19
|
Reeve VE, Allanson M, Domanski D, Painter N. Gender differences in UV-induced inflammation and immunosuppression in mice reveal male unresponsiveness to UVA radiation. Photochem Photobiol Sci 2011; 11:173-9. [PMID: 21968628 DOI: 10.1039/c1pp05224a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Immunosuppression attributed mainly to the UVB (290-320 nm) waveband is a prerequisite for skin cancer development in mice and humans. The contribution of UVA (320-400 nm) is controversial, but in mice UVA irradiation has been found to antagonise immunosuppression by UVB. In other studies of photoimmune regulation, protection mediated via oestrogen receptor-β signalling was identified as a normal endogenous defence in mice, and was shown to depend on UVA irradiation. A gender bias in photoimmune responsiveness was thus suggested, and is tested in this study by comparing the UV-induced inflammatory and immune responses in male and female hairless mice. We report that male mice, which show greater skin thickness than females, developed a less intense but slower resolving sunburn inflammatory oedema, correlated with reduced epidermal expression of pro-inflammatory IL-6 than females following solar simulated UV (SSUV, 290-400 nm) exposure. On the other hand, the contact hypersensitivity reaction (CHS) was more severely suppressed by SSUV in males, correlated with increased epidermal expression of immunosuppressive IL-10. Exposure to the UVB waveband alone, or to cis-urocanic acid, suppressed CHS equally in males and females. However, whereas UVA irradiation induced immunoprotection against either UVB or cis-urocanic acid in females, this protection was significantly reduced or abrogated in males. The results indicate that males are compromised by a relative unresponsiveness to the photoimmune protective effects of UVA, alone or as a component of SSUV. This could explain the known gender bias in skin cancer development in both mice and humans.
Collapse
Affiliation(s)
- Vivienne E Reeve
- Faculty of Veterinary Science, University of Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|
20
|
Llamas-Velasco M, García-Díez A. Cambio climático y piel: retos diagnósticos y terapéuticos. ACTAS DERMO-SIFILIOGRAFICAS 2010. [DOI: 10.1016/j.ad.2009.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
21
|
|
22
|
Reeve VE, Allanson M, Cho JL, Arun SJ, Domanski D. Interdependence between heme oxygenase-1 induction and estrogen-receptor-beta signaling mediates photoimmune protection by UVA radiation in mice. J Invest Dermatol 2009; 129:2702-10. [PMID: 19474803 DOI: 10.1038/jid.2009.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous studies have found that signaling by the estrogen receptor-beta (Er-beta) attenuated solar-simulated UV radiation (SSUV)-induced immunosuppression. This study seeks evidence for a common mechanism for this immunoprotection for both Er-beta signaling and irradiation with the UVA waveband. In Skh:hr-1 hairless mice, the immunoprotection afforded by UVA exposure against subsequent UVB or cis-urocanic acid suppression of contact hypersensitivity (CHS) was abrogated by treatment with the antiestrogen, ICI 182,780. Furthermore, in normal C57BL mice, UVA enrichment of UVA/UVB sources provided protection against UVB-suppressed CHS and upregulated epidermal IL-10 expression, but this protection was inhibited in Er-beta-/- mice. These observations indicated that the immunoprotective response to UVA was dependent on Er-beta signaling. As earlier studies have established that UVA photoimmune protection depends on the induction of the stress enzyme, heme oxygenase (HO)-1, its activity was examined relative to Er-beta. Immunoprotection against SSUV by 17-beta-estradiol was prevented by inhibiting HO enzyme activity; immunoprotection against cis-urocanic acid by carbon monoxide (HO product) was prevented by ICI 182,780. In addition, the HO-1 gene was unresponsive to UVA induction in Er-beta-/- mice. Therefore, HO-1 inducibility and Er-beta signaling are interdependent requisite responses to the UVA waveband for its immunoprotective action against UVB exposure.
Collapse
Affiliation(s)
- Vivienne E Reeve
- Faculty of Veterinary Science, University of Sydney, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
23
|
Reeve VE, Tyrrell RM, Allanson M, Domanski D, Blyth L. The role of interleukin-6 in UVA protection against UVB-induced immunosuppression. J Invest Dermatol 2008; 129:1539-46. [PMID: 19110542 DOI: 10.1038/jid.2008.377] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The proinflammatory cytokine IL-6 is released in the skin following UVB irradiation, but its potential for photoimmune modulation remains unclear. This study utilizes IL-6-deficient mice to demonstrate that IL-6 does not contribute to the normal contact hypersensitivity response, nor to its systemic suppression by UVB radiation or cis-urocanic acid. In contrast, IL-6 was required for the attenuation of UVB- or cis-urocanic acid-induced immunosuppression by sequential or concomitant UVA irradiation. The IL-6 was essential for several reactions previously established to be relevant for UVA photoimmune protection, namely the induction of heme oxygenase-1 (HO-1), the activity of its product carbon monoxide in activating guanylyl cyclase, and the consequent elevation of cutaneous cyclic guanosine monophosphate concentration. In addition, IL-6-deficient mouse skin had an elevated constitutive overexpression of HO activity, apparently not associated with photoimmune protection. This suggested that both the cutaneous level of HO activity, and the receptiveness of the HO-1 gene to stressors like UVA, normally controlled by promoter-binding repressor proteins, may also be under IL-6 control. Thus IL-6 has an important photoimmune protective function through interaction at several levels in the pathway determining the immunologically advantageous actions of UVA radiation. This may constitute a valuable endogenous antiphotocarcinogenic regulatory mechanism.
Collapse
Affiliation(s)
- Vivienne E Reeve
- Faculty of Veterinary Science, University of Sydney, Sydney, Australia.
| | | | | | | | | |
Collapse
|
24
|
How DNA lesions are turned into powerful killing structures: insights from UV-induced apoptosis. Mutat Res 2008; 681:197-208. [PMID: 18845270 DOI: 10.1016/j.mrrev.2008.09.001] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 09/08/2008] [Accepted: 09/09/2008] [Indexed: 11/22/2022]
Abstract
Mammalian cells treated with ultraviolet (UV) light provide one of the best-known experimental systems for depicting the biological consequences of DNA damage. UV irradiation induces the formation of DNA photoproducts, mainly cyclobutane pyrimidine dimers (CPDs) and (6-4) pyrimidine-pyrimidone photoproducts [(6-4)PPs], that drastically impairs DNA metabolism, culminating in the induction of cell death by apoptosis. While CPDs are the most important apoptosis-inducing lesions in DNA repair proficient cells, recent data indicates that (6-4)PPs also signals for apoptosis in DNA repair deficient cells. The toxic effects of these unrepaired DNA lesions are commonly associated with transcription blockage, but there is increasing evidence supporting a role for replication blockage as an apoptosis-inducing signal. This is supported by the observations that DNA double-strand breaks (DSBs) arise at the sites of stalled replication forks, that these DSBs are potent inducers of apoptosis and that inhibition of S phase progression diminishes the apoptotic response. Reactive oxygen species, generated after exposure of mammalian cells to longer UV wavelengths, may also induce apoptotic responses. In this regard, emphasis is given to the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxoG), but indirect induced lesions such as lipoperoxide DNA adducts also deserve attention. ATR is the main established sensor molecule for UV-induced DNA damage. However, there is evidence that ATM as well as the MAPK pathway also play a role in the UV response by activating either the death receptor or the mitochondrial damage pathway. Adding more complexity to the subject, cells under stress suffer other types of processes that may result in cell death. Autophagy is one of these processes, with extensive cross-talks with apoptosis. No matter the mechanisms, cell death avoids cells to perpetuate mutations induced by genotoxic lesions. The understanding of such death responses may provide the means for the development of strategies for the prevention and treatment of cancer.
Collapse
|
25
|
Rünger TM. C-->T transition mutations are not solely UVB-signature mutations, because they are also generated by UVA. J Invest Dermatol 2008; 128:2138-40. [PMID: 18695684 DOI: 10.1038/jid.2008.165] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this issue, Ikehata et al. confirm data from cell culture models by showing that the C-->T transition mutation is also the most common UVA-generated mutation in vivo. This indicates that DNA photoproducts are the most important premutagenic lesions not only in UVB mutagenesis, but also in UVA mutagenesis. C-->T transitions cannot therefore be considered solely UVB-signature mutations. In addition, there is no consistent evidence for a separate UVA-generated UVA signature mutation. We hypothesize that weaker anti-mutagenic cellular responses to UVA, as compared to UVB, may result in higher rates of mutation formation for UVA-induced dimers.
Collapse
Affiliation(s)
- Thomas M Rünger
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
26
|
Hoerter JD, Ward CS, Bale KD, Gizachew AN, Graham R, Reynolds J, Ward ME, Choi C, Kagabo JL, Sauer M, Kuipers T, Hotchkiss T, Banner N, Chellson RA, Ohaeri T, Gant L, Vanderhill L. Effect of UVA fluence rate on indicators of oxidative stress in human dermal fibroblasts. Int J Biol Sci 2008; 4:63-70. [PMID: 18311331 PMCID: PMC2253953 DOI: 10.7150/ijbs.4.63] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 02/16/2008] [Indexed: 01/01/2023] Open
Abstract
During the course of a day human skin is exposed to solar UV radiation that fluctuates in fluence rate within the UVA (290-315 nm) and UVB (315-400 nm) spectrum. Variables affecting the fluence rate reaching skin cells include differences in UVA and UVB penetrating ability, presence or absence of sunscreens, atmospheric conditions, and season and geographical location where the exposure occurs. Our study determined the effect of UVA fluence rate in solar-simulated (SSR) and tanning-bed radiation (TBR) on four indicators of oxidative stress---protein oxidation, glutathione, heme oxygenase-1, and reactive oxygen species--in human dermal fibroblasts after receiving equivalent UVA and UVB doses. Our results show that the higher UVA fluence rate in TBR increases the level of all four indicators of oxidative stress. In sequential exposures when cells are exposed first to SSR, the lower UVA fluence rate in SSR induces a protective response that protects against oxidative stress following a second exposure to a higher UVA fluence rate. Our studies underscore the important role of UVA fluence rate in determining how human skin cells respond to a given dose of radiation containing both UVA and UVB radiation.
Collapse
Affiliation(s)
- James D Hoerter
- Ferris State University, Department of Biological Sciences, Big Rapids, MI 49307 USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Allanson M, Reeve VE. Carbon monoxide signalling reduces photocarcinogenesis in the hairless mouse. Cancer Immunol Immunother 2007; 56:1807-15. [PMID: 17440721 PMCID: PMC11030853 DOI: 10.1007/s00262-007-0324-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 03/23/2007] [Indexed: 11/29/2022]
Abstract
Exposure of the skin of mice to UVA (320-400 nm) radiation has been shown to provide protection against the immunosuppressive effects of UVB (290-320 nm) radiation. The UVA protection was mediated via the UVA induction of the stress protein heme oxygenase-1, and its enzymatic product carbon monoxide (CO). Because UVB-induced immunosuppression is an accompanying and prerequisite feature of the promotion phase of photocarcinogenesis, the potential for immunoprotective CO to act as an anti-skin cancer agent was tested in this study. Groups of female albino Skh:hr-1 hairless mice were irradiated chronically with daily minimally erythemogenic doses of solar simulated UV radiation (SSUV) during a 10 week-period to induce photocarcinogenesis. The effect of repeated topical application of lotions containing a CO-releasing molecule (CORM-2; tricarbonyldichlororuthenium (II) dimer) at 250 or 500 microM, that had previously been shown in short-term experiments to provide photoimmune protection in mice, was measured. Tumor development was monitored for 29 weeks. Topical CORM-2 treatment was observed to reduce the acute and chronic inflammatory erythema reaction compared with control irradiated mice that did not receive CORM-2 lotions, and to reduce the chronic epidermal hyperplasia accompanying tumor outgrowth. The CORM-2 treatments provided a significant moderate inhibition of early tumor appearance dose-dependently, significantly reduced the average tumor multiplicity, increased the regression of established tumors dose-dependently, and inhibited the formation of large locally invasive tumors. The CORM-2 treatments also reduced the expression of immunosuppressive IL-10 in the uninvolved epidermis and dermis of tumor-bearing mice, and enhanced immunopotentiating epidermal IL-12 expression. Therefore CO signalling was revealed to have previously unrecognized anti-carcinogenic functions in the skin, consistent with a protective modulation of the epidermal cytokines. This is a novel observation that also implies that the UVA waveband that produces CO physiologically in exposed skin, might likewise be found to have an anti-photocarcinogenic action.
Collapse
Affiliation(s)
- Munif Allanson
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006 Australia
| | - Vivienne E. Reeve
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006 Australia
| |
Collapse
|
28
|
Rünger TM. How different wavelengths of the ultraviolet spectrum contribute to skin carcinogenesis: the role of cellular damage responses. J Invest Dermatol 2007; 127:2103-5. [PMID: 17700622 DOI: 10.1038/sj.jid.5700988] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The carcinogenic properties of ultraviolet (UV) light are mediated by its ability to generate DNA damage. Cellular responses to UV-induced DNA damage profoundly modulate the carcinogenic effects of UV exposures, and these responses are wavelength dependent. However, the exact contributions of different wavelengths of UV light to DNA damage, cellular damage responses, mutation, and skin carcinogenesis are incompletely understood. Given that UV-induced apoptosis is a protective cellular response to UV that prevents survival of damaged cells, inhibition of UVB-induced apoptosis by adding UVA, as reported by Ibuki et al. in this issue, may be a mechanism by which UVA augments UVB-mediated mutation and skin cancer formation.
Collapse
Affiliation(s)
- Thomas M Rünger
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| |
Collapse
|