1
|
Sarate RM, Hochstetter J, Valet M, Hallou A, Song Y, Bansaccal N, Ligare M, Aragona M, Engelman D, Bauduin A, Campàs O, Simons BD, Blanpain C. Dynamic regulation of tissue fluidity controls skin repair during wound healing. Cell 2024; 187:5298-5315.e19. [PMID: 39168124 DOI: 10.1016/j.cell.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/05/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
During wound healing, different pools of stem cells (SCs) contribute to skin repair. However, how SCs become activated and drive the tissue remodeling essential for skin repair is still poorly understood. Here, by developing a mouse model allowing lineage tracing and basal cell lineage ablation, we monitor SC fate and tissue dynamics during regeneration using confocal and intravital imaging. Analysis of basal cell rearrangements shows dynamic transitions from a solid-like homeostatic state to a fluid-like state allowing tissue remodeling during repair, as predicted by a minimal mathematical modeling of the spatiotemporal dynamics and fate behavior of basal cells. The basal cell layer progressively returns to a solid-like state with re-epithelialization. Bulk, single-cell RNA, and epigenetic profiling of SCs, together with functional experiments, uncover a common regenerative state regulated by the EGFR/AP1 axis activated during tissue fluidization that is essential for skin SC activation and tissue repair.
Collapse
Affiliation(s)
- Rahul M Sarate
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Joel Hochstetter
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, UK; Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Manon Valet
- Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
| | - Adrien Hallou
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Yura Song
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nordin Bansaccal
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Melanie Ligare
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Mariaceleste Aragona
- Novo Nordisk Foundation Center for Stem Cell Biology, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dan Engelman
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Anaïs Bauduin
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Otger Campàs
- Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany.
| | - Benjamin D Simons
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, UK; Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK.
| | - Cedric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium; WEL Research Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
2
|
Reeder TL, Zarlenga DS, Dyer RM. Molecular evidence sterile tissue damage during pathogenesis of pododermatitis aseptica hemorrhagica circumscripta is associated with disturbed epidermal-dermal homeostasis. J Dairy Sci 2024:S0022-0302(24)00842-7. [PMID: 38825113 DOI: 10.3168/jds.2023-24577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/29/2024] [Indexed: 06/04/2024]
Abstract
Podermatitis aseptica hemorrhagica circumscripta is associated with metalloproteinase 2 weakening of distal phalangeal suspensory structures and sinkage of the distal phalanx in the claw capsule. Pressure from the tuberculum flexorium on the sole epidermis and dermis produces hemorrhagic tissue injury and defective horn production appearing as yellow-red, softened claw horn in region 4 of the sole. A model of the MAPK/ERK signal cascade orchestrating epidermal-dermal homeostasis was employed to determine if sterile inflammatory responses are linked to disturbed signal transduction for epidermal homeostasis in sole epidermis and dermis. The objective was to assess shifts in target genes of inflammation, up- and downstream MAPK/ERK signal elements, and targeted genes supporting epidermal proliferation and differentiation. Sole epidermis and dermis was removed from lateral claws bearing lesions of podermatitis aseptica hemorrhagica circumscripta, medial claws from the same limb and lateral claws from completely normal limbs of multiparous, lactating Holstein cows. The abundance levels of targeted transcripts were evaluated by real-time QPCR. Lesion effects were assessed by ANOVA, and mean comparisons were performed with t-tests to assess variations between mean expression in ulcer-bearing or medial claw dermis and epidermis and completely normal lateral claw dermis and epidermis or between ulcer-bearing dermis and epidermis and medial claw dermis and epidermis. The lesions were sterile and showed losses across multiple growth factors, their receptors, several downstream AP1 transcription components, CMYC, multiple cell cycle and terminal differentiation elements conducted by MAPK/ERK signals and β 4, α 6 and collagen 17A hemidesmosome components. These losses coincided with increased cytokeratin 6, β 1 integrin, proinflammatory metalloproteinases 2 and 9, IL1B and physiologic inhibitors of IL1B, the decoy receptor and receptor antagonist. Medial claw epidermis and dermis from limbs with lateral claws bearing podermatitis aseptica hemorrhagica circumscripta showed reductions in upstream MAPK/ERK signal elements and downstream targets that paralleled those in hemorrhagic lesions. Inhibitors of IL1B increased in the absence of real increases in inflammatory targets in the medial claw dermis and epidermis. Losses across multiple signal path elements and downstream targets were associated with negative effects on targeted transcripts supporting claw horn production and wound repair across lesion-bearing lateral claws and lesion-free medial claw dermis and epidermis. It was unclear if the sterile inflammation was causative or a consequence of these perturbations.
Collapse
Affiliation(s)
- T L Reeder
- Department of Animal and Food Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, Delaware 19717-1303
| | - D S Zarlenga
- Animal Parasitic Disease Laboratory, Beltsville Agriculture Research Center, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD 20705-2350
| | - R M Dyer
- Department of Animal and Food Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, Delaware 19717-1303.
| |
Collapse
|
3
|
Reeder TL, Zarlenga DS, Zeigler AL, Dyer RM. Transcriptional responses consistent with perturbation in dermo-epidermal homeostasis in septic sole ulceration. J Dairy Sci 2024:S0022-0302(24)00843-9. [PMID: 38825108 DOI: 10.3168/jds.2023-24578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/29/2024] [Indexed: 06/04/2024]
Abstract
The aim of this study was to evaluate transcriptional changes in sole epidermis and dermis of bovine claws with septic sole ulceration of the lateral claw. Assessment included changes in transcripts orchestrating epidermal homeostatic processes including epidermal proliferation, differentiation, inflammation, and cell signaling. Sole epidermis and dermis was removed from region 4 of lesion-bearing lateral and lesion-free medial claws of pelvic limbs in multiparous, lactating Holstein cows. Control sole epidermis and dermis was obtained from region 4 of lateral claws of normal pelvic limbs. Transcript abundances were evaluated by real-time QPCR and relative expression analyzed by ANOVA. Relative to normal lateral claws, sole epidermis and dermis in ulcer-bearing claws exhibited downregulation of genes associated with growth factors, growth factor receptors, activator protein 1 (AP-1) and proto-oncogene (CMYC) transcription components, cell cycle elements, lateral cell-to-cell signaling elements and structures of early and late keratinocyte differentiation. These changes were accompanied by upregulation of pro-inflammatory transcripts interleukin 1 α (IL1A), interleukin1 β (IL1B), interleukin 1 receptor 1 (IL1R1), inducible nitric oxide synthase (NOS2), the inflammasome components NOD like receptor protein 3 (NLRP3), pyrin and caspase recruitment domain (PYCARD), and caspase-1 interleukin converting enzyme (CASPASE), the matrix metalloproteinases (MMP2 and MMP9), and anti-inflammatory genes interleukin 1 receptor antagonist (IL1RN) and interleukin1 receptor 2 (IL1R2). Transcript abundance varied across epidermis and dermis from the ulcer center, margin and epidermis and dermis adjacent to the lesion. Sole epidermis and dermis of lesion-free medial claws exhibited changes paralleling those in the adjacent lateral claws in an environment lacking inflammatory transcripts and downregulated IL1A, interleukin 18 (IL18), tumor necrosis factor α (TNFA) and NOS2. These data imply perturbations in signal pathways driving epidermal proliferation and differentiation are associated with, but not inevitably linked to epidermis and dermis inflammation. Further work is warranted to better define the role of crushing tissue injury, sepsis, metalloproteinase activity, and inflammation in sole ulceration.
Collapse
Affiliation(s)
- T L Reeder
- Department of Animal and Food Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, DE 19717-1303
| | - D S Zarlenga
- Animal Parasitic Disease Laboratory, Beltsville Agriculture Research Center, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD 20705-2350
| | - A L Zeigler
- Comparative Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695
| | - R M Dyer
- Department of Animal and Food Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, DE 19717-1303.
| |
Collapse
|
4
|
Townsend EC, Cheong JZA, Radzietza M, Fritz B, Malone M, Bjarnsholt T, Ousey K, Swanson T, Schultz G, Gibson ALF, Kalan LR. What is slough? Defining the proteomic and microbial composition of slough and its implications for wound healing. Wound Repair Regen 2024:10.1111/wrr.13170. [PMID: 38558438 PMCID: PMC11442687 DOI: 10.1111/wrr.13170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024]
Abstract
Slough is a well-known feature of non-healing wounds. This pilot study aims to determine the proteomic and microbiologic components of slough as well as interrogate the associations between wound slough components and wound healing. Ten subjects with slow-to-heal wounds and visible slough were enrolled. Aetiologies included venous stasis ulcers, post-surgical site infections and pressure ulcers. Patient co-morbidities and wound healing outcome at 3-months post-sample collection was recorded. Debrided slough was analysed microscopically, through untargeted proteomics, and high-throughput bacterial 16S-ribosomal gene sequencing. Microscopic imaging revealed wound slough to be amorphous in structure and highly variable. 16S-profiling found slough microbial communities to associate with wound aetiology and location on the body. Across all subjects, slough largely consisted of proteins involved in skin structure and formation, blood-clot formation and immune processes. To predict variables associated with wound healing, protein, microbial and clinical datasets were integrated into a supervised discriminant analysis. This analysis revealed that healing wounds were enriched for proteins involved in skin barrier development and negative regulation of immune responses. While wounds that deteriorated over time started off with a higher baseline Bates-Jensen Wound Assessment Score and were enriched for anaerobic bacterial taxa and chronic inflammatory proteins. To our knowledge, this is the first study to integrate clinical, microbiome, and proteomic data to systematically characterise wound slough and integrate it into a single assessment to predict wound healing outcome. Collectively, our findings underscore how slough components can help identify wounds at risk of continued impaired healing and serves as an underutilised biomarker.
Collapse
Affiliation(s)
- Elizabeth C Townsend
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - J Z Alex Cheong
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael Radzietza
- Infectious Diseases and Microbiology, Western Sydney University, Sydney, Australia
| | - Blaine Fritz
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Matthew Malone
- Infectious Diseases and Microbiology, Western Sydney University, Sydney, Australia
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
- International Wound Infection Institute, London, UK
| | - Karen Ousey
- International Wound Infection Institute, London, UK
- Institute of Skin Integrity and Infection Prevention, University of Huddersfield, West Yorkshire, UK
| | | | - Gregory Schultz
- International Wound Infection Institute, London, UK
- Department of Obstetrics and Gynecology, University of Florida, Gainesville, Florida, USA
| | - Angela L F Gibson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Lindsay R Kalan
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- International Wound Infection Institute, London, UK
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Stelling-Férez J, López-Miranda S, Gabaldón JA, Nicolás FJ. Oleanolic Acid Complexation with Cyclodextrins Improves Its Cell Bio-Availability and Biological Activities for Cell Migration. Int J Mol Sci 2023; 24:14860. [PMID: 37834307 PMCID: PMC10573973 DOI: 10.3390/ijms241914860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Wound healing is a complex process to restore skin. Plant-derived bioactive compounds might be a source of substances for the treatment of wounds stalled in a non-resolving stage of wound healing. Oleanolic acid (OA), a pentacyclic triterpene, has shown favorable wound healing properties both in vitro and in vivo. Unfortunately, OA cannot be solubilized in aqueous media, and it needs to be helped by the use of dimethyl sulfoxide (DMSO). In this paper, we have shown that cyclodextrins (CDs) are a good alternative to DMSO as agents to deliver OA to cells, providing better features than DMSO. Cyclodextrins are natural macromolecules that show a unique tridimensional structure that can encapsulate a wide variety of hydrophobic compounds. We have studied the cyclodextrin-encapsulated form of OA with OA/DMSO, comparing their stability, biological properties for cell migration, and cell viability. In addition, detailed parameters related to cell migration and cytoskeletal reorganization have been measured and compared. Our results show that OA-encapsulateds compound exhibit several advantages when compared to non-encapsulated OA in terms of chemical stability, migration enhancement, and preservation of cell viability.
Collapse
Affiliation(s)
- Javier Stelling-Férez
- Department of Nutrition and Food Technology, Health Sciences PhD Program, Universidad Católica de San Antonio Murcia (UCAM), Campus de los Jerónimos n°135, Guadalupe, 30107 Murcia, Spain; (J.S.-F.); (S.L.-M.); (J.A.G.)
- Regeneration, Molecular Oncology and TGF-β, Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain
| | - Santiago López-Miranda
- Department of Nutrition and Food Technology, Health Sciences PhD Program, Universidad Católica de San Antonio Murcia (UCAM), Campus de los Jerónimos n°135, Guadalupe, 30107 Murcia, Spain; (J.S.-F.); (S.L.-M.); (J.A.G.)
| | - José Antonio Gabaldón
- Department of Nutrition and Food Technology, Health Sciences PhD Program, Universidad Católica de San Antonio Murcia (UCAM), Campus de los Jerónimos n°135, Guadalupe, 30107 Murcia, Spain; (J.S.-F.); (S.L.-M.); (J.A.G.)
| | - Francisco José Nicolás
- Regeneration, Molecular Oncology and TGF-β, Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain
| |
Collapse
|
6
|
Boudra R, Patenall BL, King S, Wang D, Best SA, Ko JY, Xu S, Padilla MG, Schmults CD, Barthel SR, Lian CG, Ramsey MR. PRMT1 Inhibition Selectively Targets BNC1-Dependent Proliferation, but not Migration in Squamous Cell Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.533164. [PMID: 37034732 PMCID: PMC10081292 DOI: 10.1101/2023.03.27.533164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Squamous Cell Carcinoma (SCC) develops in stratified epithelial tissues and demonstrates frequent alterations in transcriptional regulators. We sought to discover SCC-specific transcriptional programs and identified the transcription factor Basonuclin 1 (BNC1) as highly expressed in SCC compared to other tumor types. RNA-seq and ChIP-seq analysis identified pro-proliferative genes activated by BNC1 in SCC cells and keratinocytes. Inhibition of BNC1 in SCC cells suppressed proliferation and increased migration via FRA1. In contrast, BNC1 reduction in keratinocytes caused differentiation, which was abrogated by IRF6 knockdown, leading to increased migration. Protein interactome analysis identified PRMT1 as a co-activator of BNC1-dependent proliferative genes. Inhibition of PRMT1 resulted in a dose-dependent reduction in SCC cell proliferation without increasing migration. Importantly, therapeutic inhibition of PRMT1 in SCC xenografts significantly reduced tumor size, resembling functional effects of BNC1 knockdown. Together, we identify BNC1-PRMT1 as an SCC-lineage specific transcriptional axis that promotes cancer growth, which can be therapeutically targeted to inhibit SCC tumorigenesis.
Collapse
|
7
|
Inhibition of extracellular signal-regulated kinase pathway suppresses tracheal stenosis in a novel mouse model. PLoS One 2021; 16:e0256127. [PMID: 34587174 PMCID: PMC8480895 DOI: 10.1371/journal.pone.0256127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/29/2021] [Indexed: 11/21/2022] Open
Abstract
Tracheal stenosis is a refractory and recurrent disease induced by excessive cell proliferation within the restricted tracheal space. We investigated the role of extracellular signal-regulated kinase (ERK), which mediates a broad range of intracellular signal transduction processes in tracheal stenosis and the therapeutic effect of the MEK inhibitor which is the upstream kinase of ERK. We histologically analyzed cauterized tracheas to evaluate stenosis using a tracheal stenosis mouse model. Using Western blot, we analyzed the phosphorylation rate of ERK1/2 after cauterization with or without MEK inhibitor. MEK inhibitor was intraperitoneally injected 30 min prior to cauterization (single treatment) or 30 min prior to and 24, 48, 72, and 96 hours after cauterization (daily treatment). We compared the stenosis of non-inhibitor treatment, single treatment, and daily treatment group. We successfully established a novel mouse model of tracheal stenosis. The cauterized trachea increased the rate of stenosis compared with the normal control trachea. The phosphorylation rate of ERK1 and ERK2 was significantly increased at 5 min after the cauterization compared with the normal controls. After 5 min, the rates decreased over time. The daily treatment group had suppressed stenosis compared with the non-inhibitor treatment group. p-ERK1/2 activation after cauterization could play an important role in the tracheal wound healing process. Consecutive inhibition of ERK phosphorylation is a potentially useful therapeutic strategy for tracheal stenosis.
Collapse
|
8
|
Chornenka NM, Raetska YB, Dranitsina AS, Kalmukova OO, Beregova TV, Dzerzhynsky ME, Savchuk OM, Ostapchenko LI. Molecular Genetic and Cytological Features of Healing in Esophageal Alkaline Burns and When Melanin is Administered. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452720040027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
c-Jun Overexpression Accelerates Wound Healing in Diabetic Rats by Human Umbilical Cord-Derived Mesenchymal Stem Cells. Stem Cells Int 2020; 2020:7430968. [PMID: 32399050 PMCID: PMC7201444 DOI: 10.1155/2020/7430968] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
Objective Mesenchymal stem cells (MSCs) are considered a promising therapy for wound healing. Here, we explored the role of c-Jun in diabetic wound healing using human umbilical cord-derived MSCs (hUC-MSCs). Methods Freshly isolated hUC-MSCs were subjected to extensive in vitro subcultivation. The cell proliferative and migratory capacities were assessed by the Cell Counting Kit-8 and scratch assays, respectively. c-Jun expression was evaluated by RT-PCR and western blot analysis. The function of c-Jun was investigated with lentivirus transduction-based gene silencing and overexpression. Diabetes mellitus was induced in SD rats on a high-glucose/fat diet by streptozocin administration. Wounds were created on the dorsal skin. The effects of c-Jun silencing and overexpression on wound closure by hUC-MSCs were examined. Reepithelialization and angiogenesis were assessed by histological and immunohistochemical analysis, respectively. Platelet-derived growth factor A (PDGFA), hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF) levels were determined by western blot analysis. Results hUC-MSCs showed gradually decreased cell proliferation, migration, and c-Jun expression during subcultivation. c-Jun silencing inhibited cell proliferation and migration, while c-Jun overexpression enhanced proliferation but not migration. Compared with untransduced hUC-MSCs, local subcutaneous injection of c-Jun-overexpressing hUC-MSCs accelerated wound closure, enhanced angiogenesis and reepithelialization at the wound bed, and increased PDGFA and HGF levels in wound tissues. Conclusion c-Jun overexpression promoted hUC-MSC proliferation and migration in vitro and accelerated diabetic wound closure, reepithelization, and angiogenesis by hUC-MSCs in vivo. These beneficial effects of c-Jun overexpression in diabetic wound healing by hUC-MSCs were at least partially mediated by increased PDGFA and HGF levels in wound tissues.
Collapse
|
10
|
Rogerson C, O'Shaughnessy RFL. Protein kinases involved in epidermal barrier formation: The AKT family and other animals. Exp Dermatol 2019; 27:892-900. [PMID: 29845670 DOI: 10.1111/exd.13696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2018] [Indexed: 12/20/2022]
Abstract
Formation of a stratified epidermis is required for the performance of the essential functions of the skin; to act as an outside-in barrier against the access of microorganisms and other external factors, to prevent loss of water and solutes via inside-out barrier functions and to withstand mechanical stresses. Epidermal barrier function is initiated during embryonic development and is then maintained throughout life and restored after injury. A variety of interrelated processes are required for the formation of a stratified epidermis, and how these processes are both temporally and spatially regulated has long been an aspect of dermatological research. In this review, we describe the roles of multiple protein kinases in the regulation of processes required for epidermal barrier formation.
Collapse
Affiliation(s)
- Clare Rogerson
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, UK
| | - Ryan F L O'Shaughnessy
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
11
|
Gao X, Petricoin EF, Ward KR, Goldberg SR, Duane TM, Bonchev D, Arodz T, Diegelmann RF. Network proteomics of human dermal wound healing. Physiol Meas 2018; 39:124002. [PMID: 30524050 DOI: 10.1088/1361-6579/aaee19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The healing of wounds is critical in protecting the human body against environmental factors. The mechanisms involving protein expression during this complex physiological process have not been fully elucidated. APPROACH Here, we use reverse-phase protein microarrays (RPPA) involving 94 phosphoproteins to study tissue samples from tubes implanted in healing dermal wounds in seven human subjects tracked over two weeks. We compare the proteomic profiles to proteomes of controls obtained from skin biopsies from the same subjects. MAIN RESULTS Compared to previous proteomic studies of wound healing, our approach focuses on wound tissue instead of wound fluid, and has the sensitivity to go beyond measuring only highly abundant proteins. To study the temporal dynamics of networks involved in wound healing, we applied two network analysis methods that integrate the experimental results with prior knowledge about protein-protein physical and regulatory interactions, as well as higher-level biological processes and associated pathways. SIGNIFICANCE We uncovered densely connected networks of proteins that are up- or down-regulated during human wound healing, as well as their relationships to microRNAs and to proteins outside of our set of targets that we measured with proteomic microarrays.
Collapse
Affiliation(s)
- Xi Gao
- Department of Computer Science, School of Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Bajpai A, Ishii T, Miyauchi K, Gupta V, Nishio-Masaike Y, Shimizu-Yoshida Y, Kubo M, Kitano H. Insights into gene expression profiles induced by Socs3 depletion in keratinocytes. Sci Rep 2017; 7:15830. [PMID: 29158586 PMCID: PMC5696538 DOI: 10.1038/s41598-017-16155-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Specific deletion of suppressor of cytokine signaling 3 (Socs3) in keratinocytes can cause severe skin inflammation with infiltration of immune cells. The molecular mechanisms and key regulatory pathways involved in these processes remain elusive. To investigate the role of Socs3 in keratinocytes, we generated and analyzed global RNA-Seq profiles from Socs3 conditional knockout (cKO) mice of two different ages (2 and 10 weeks). Over 400 genes were significantly regulated at both time points. Samples from 2-week-old mice exhibited down-regulation of genes involved in keratin-related functions and up-regulation of genes involved in lipid metabolism. At week 10, multiple chemokine and cytokine genes were up-regulated. Functional annotation revealed that the genes differentially expressed in the 2-week-old mice play roles in keratinization, keratinocyte differentiation, and epidermal cell differentiation. By contrast, differentially expressed genes in the 10-week-old animals are involved in acute immune-related functions. A group of activator protein-1-related genes were highly up-regulated in Socs3 cKO mice of both ages. This observation was validated using qRT-PCR by SOCS3-depleted human keratinocyte-derived HaCaT cells. Our results suggest that, in addition to participating in immune-mediated pathways, SOCS3 also plays important roles in skin barrier homeostasis.
Collapse
Affiliation(s)
- Archana Bajpai
- RIKEN-IMS, Laboratory for Disease Systems Modeling, Yokohama, Japan.
| | - Takashi Ishii
- RIKEN-IMS, Laboratory for Disease Systems Modeling, Yokohama, Japan
| | - Kosuke Miyauchi
- RIKEN-IMS, Laboratory for Cytokine Regulation, Yokohama, Japan
| | - Vipul Gupta
- RIKEN-IMS, Laboratory for Disease Systems Modeling, Yokohama, Japan
- The Systems Biology Institute, Tokyo, Japan
| | | | - Yuki Shimizu-Yoshida
- RIKEN-IMS, Laboratory for Disease Systems Modeling, Yokohama, Japan
- Sony Computer Science Laboratories, Inc, Tokyo, Japan
| | - Masato Kubo
- RIKEN-IMS, Laboratory for Cytokine Regulation, Yokohama, Japan
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Tokyo, Japan
| | - Hiroaki Kitano
- RIKEN-IMS, Laboratory for Disease Systems Modeling, Yokohama, Japan.
- The Systems Biology Institute, Tokyo, Japan.
- Sony Computer Science Laboratories, Inc, Tokyo, Japan.
- Okinawa Institute of Science and Technology, Okinawa, Japan.
| |
Collapse
|
13
|
Schneebauer G, Dirks RP, Pelster B. Anguillicola crassus infection affects mRNA expression levels in gas gland tissue of European yellow and silver eel. PLoS One 2017; 12:e0183128. [PMID: 28817599 PMCID: PMC5560681 DOI: 10.1371/journal.pone.0183128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022] Open
Abstract
Using Illumina sequencing, we investigated transcriptional changes caused by the nematode Anguillicola crassus within yellow and silver eels by comparing swimbladder samples of uninfected yellow with infected yellow eels, and uninfected silver with infected silver eels, respectively. In yellow eel gas gland, the infection caused a modification of steady state mRNA levels of 1675 genes, most of them being upregulated. Functional annotation analysis based on GO terms was used to categorize identified genes with regard to swimbladder metabolism or response to the infection. In yellow eels, the most prominent category was 'immune response', including various inflammatory components, complement proteins, and immunoglobulins. The elevated expression of several glucose and monocarboxylate transporters indicated an attempt to maintain the level of glucose metabolism, even in due to the infection thickened swimbladder tissue. In silver eel swimbladder tissue, on the contrary, the mRNA levels of only 291 genes were affected. Genes in the categories 'glucose metabolism' and 'ROS metabolism' barely responded to the infection and even the reaction of the immune system was much less pronounced compared to infected yellow eels. However, in the category 'extracellular matrix', the mRNA levels of several mucin genes were strongly elevated, suggesting increased mucus production as a defense reaction against the parasite. The present study revealed a strong reaction to an Anguillicola crassus infection on mRNA expression levels in swimbladder tissue of yellow eels, whereas in silver eels the changes ware almost negligible. A possible explanation for this difference is that the silvering process requires so much energy that there is not much scope to cope with the additional challenge of a nematode infection. Another possible explanation could be that gas-secreting activity of the silver eel swimbladder was largely reduced, which could coincide with a reduced responsiveness to other challenges, like a nematode infection.
Collapse
Affiliation(s)
- Gabriel Schneebauer
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences, University Innsbruck, Innsbruck, Austria
| | | | - Bernd Pelster
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences, University Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Volksdorf T, Heilmann J, Eming SA, Schawjinski K, Zorn-Kruppa M, Ueck C, Vidal-Y-Sy S, Windhorst S, Jücker M, Moll I, Brandner JM. Tight Junction Proteins Claudin-1 and Occludin Are Important for Cutaneous Wound Healing. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1301-1312. [PMID: 28412298 DOI: 10.1016/j.ajpath.2017.02.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 02/07/2017] [Indexed: 12/31/2022]
Abstract
Tight junction (TJ) proteins are known to be involved in proliferation and differentiation. These processes are essential for normal skin wound healing. Here, we investigated the TJ proteins claudin-1 and occludin in ex vivo skin wound healing models and tissue samples of acute and chronic human wounds and observed major differences in localization/expression of these proteins, with chronic wounds often showing a loss of the proteins at the wound margins and/or in the regenerating epidermis. Knockdown experiments in primary human keratinocytes showed that decreased claudin-1 expression resulted in significantly impaired scratch wound healing, with delayed migration and reduced proliferation. Activation of AKT pathway was significantly attenuated after claudin-1 knockdown, and protein levels of extracellular signal-related kinase 1/2 were reduced. For occludin, down-regulation had no impact on wound healing in normal scratch assays, but after subjecting the cells to mechanical stress, which is normally present in wounds, wound healing was impaired. For both proteins we show that most of these actions are independent from the formation of barrier-forming TJ structures, thus demonstrating nonbarrier-related functions of TJ proteins in the skin. However, for claudin-1 effects on scratch wound healing were more pronounced when TJs could form. Together, our findings provide evidence for a role of claudin-1 and occludin in epidermal regeneration with potential clinical importance.
Collapse
Affiliation(s)
- Thomas Volksdorf
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Janina Heilmann
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine A Eming
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Kathrin Schawjinski
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Zorn-Kruppa
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher Ueck
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Vidal-Y-Sy
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Windhorst
- Institute of Biochemistry and Signal Transduction, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Ingrid Moll
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna M Brandner
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
15
|
Rodrigues HG, Vinolo MAR, Sato FT, Magdalon J, Kuhl CMC, Yamagata AS, Pessoa AFM, Malheiros G, dos Santos MF, Lima C, Farsky SH, Camara NOS, Williner MR, Bernal CA, Calder PC, Curi R. Oral Administration of Linoleic Acid Induces New Vessel Formation and Improves Skin Wound Healing in Diabetic Rats. PLoS One 2016; 11:e0165115. [PMID: 27764229 PMCID: PMC5072690 DOI: 10.1371/journal.pone.0165115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 10/06/2016] [Indexed: 12/28/2022] Open
Abstract
Introduction Impaired wound healing has been widely reported in diabetes. Linoleic acid (LA) accelerates the skin wound healing process in non-diabetic rats. However, LA has not been tested in diabetic animals. Objectives We investigated whether oral administration of pure LA improves wound healing in streptozotocin-induced diabetic rats. Methods Dorsal wounds were induced in streptozotocin-induced type-1 diabetic rats treated or not with LA (0.22 g/kg b.w.) for 10 days. Wound closure was daily assessed for two weeks. Wound tissues were collected at specific time-points and used to measure fatty acid composition, and contents of cytokines, growth factors and eicosanoids. Histological and qPCR analyses were employed to examine the dynamics of cell migration during the healing process. Results LA reduced the wound area 14 days after wound induction. LA also increased the concentrations of cytokine-induced neutrophil chemotaxis (CINC-2αβ), tumor necrosis factor-α (TNF-α) and leukotriene B4 (LTB4), and reduced the expression of macrophage chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1 (MIP-1). These results together with the histological analysis, which showed accumulation of leukocytes in the wound early in the healing process, indicate that LA brought forward the inflammatory phase and improved wound healing in diabetic rats. Angiogenesis was induced by LA through elevation in tissue content of key mediators of this process: vascular-endothelial growth factor (VEGF) and angiopoietin-2 (ANGPT-2). Conclusions Oral administration of LA hastened wound closure in diabetic rats by improving the inflammatory phase and angiogenesis.
Collapse
Affiliation(s)
- Hosana G. Rodrigues
- School of Applied Sciences, University of Campinas, Limeira, Brazil
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, Sao Paulo University, Sao Paulo, Brazil
- * E-mail:
| | - Marco A. R. Vinolo
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Fabio T. Sato
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Juliana Magdalon
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, Sao Paulo University, Sao Paulo, Brazil
| | | | - Ana S. Yamagata
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, Sao Paulo University, Sao Paulo, Brazil
| | - Ana Flávia M. Pessoa
- Cell and Developmental Biology Department, Institute of Biomedical Sciences, Sao Paulo University, Sao Paulo, Brazil
| | - Gabriella Malheiros
- Cell and Developmental Biology Department, Institute of Biomedical Sciences, Sao Paulo University, Sao Paulo, Brazil
| | - Marinilce F. dos Santos
- Cell and Developmental Biology Department, Institute of Biomedical Sciences, Sao Paulo University, Sao Paulo, Brazil
| | - Camila Lima
- Department of Clinical and Toxicology Analyses, School of Pharmaceutical Sciences, Sao Paulo University, Sao Paulo, Brazil
| | - Sandra H. Farsky
- Department of Clinical and Toxicology Analyses, School of Pharmaceutical Sciences, Sao Paulo University, Sao Paulo, Brazil
| | - Niels O. S. Camara
- Department of Immunology, Institute of Biomedical Sciences, Sao Paulo University, Sao Paulo, Brazil
| | - Maria R. Williner
- Food Sciences and Nutrition, School of Biochemistry and Biological Sciences, National University of Litoral, Santa Fé, Argentina
| | - Claudio A. Bernal
- Food Sciences and Nutrition, School of Biochemistry and Biological Sciences, National University of Litoral, Santa Fé, Argentina
| | - Philip C. Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, Sao Paulo University, Sao Paulo, Brazil
| |
Collapse
|
16
|
Willebrords J, Crespo Yanguas S, Maes M, Decrock E, Wang N, Leybaert L, Kwak BR, Green CR, Cogliati B, Vinken M. Connexins and their channels in inflammation. Crit Rev Biochem Mol Biol 2016; 51:413-439. [PMID: 27387655 PMCID: PMC5584657 DOI: 10.1080/10409238.2016.1204980] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inflammation may be caused by a variety of factors and is a hallmark of a plethora of acute and chronic diseases. The purpose of inflammation is to eliminate the initial cell injury trigger, to clear out dead cells from damaged tissue and to initiate tissue regeneration. Despite the wealth of knowledge regarding the involvement of cellular communication in inflammation, studies on the role of connexin-based channels in this process have only begun to emerge in the last few years. In this paper, a state-of-the-art overview of the effects of inflammation on connexin signaling is provided. Vice versa, the involvement of connexins and their channels in inflammation will be discussed by relying on studies that use a variety of experimental tools, such as genetically modified animals, small interfering RNA and connexin-based channel blockers. A better understanding of the importance of connexin signaling in inflammation may open up towards clinical perspectives.
Collapse
Affiliation(s)
- Joost Willebrords
- Department of In Vitro Toxicology and
Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels,
Belgium; Joost Willebrords: + Tel: 32 2 477 45 87, Michaël Maes: Tel: +32 2
477 45 87, Sara Crespo Yanguas: Tel: +32 2 477 45 87
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and
Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels,
Belgium; Joost Willebrords: + Tel: 32 2 477 45 87, Michaël Maes: Tel: +32 2
477 45 87, Sara Crespo Yanguas: Tel: +32 2 477 45 87
| | - Michaël Maes
- Department of In Vitro Toxicology and
Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels,
Belgium; Joost Willebrords: + Tel: 32 2 477 45 87, Michaël Maes: Tel: +32 2
477 45 87, Sara Crespo Yanguas: Tel: +32 2 477 45 87
| | - Elke Decrock
- Department of Basic Medical Sciences, Physiology Group, Ghent
University, De Pintelaan 185, 9000 Ghent, Belgium; Elke Decrock: Tel: +32 9 332 39
73, Nan Wang: Tel: +32 9 332 39 38, Luc Leybaert: Tel: +32 9 332 33 66
| | - Nan Wang
- Department of Basic Medical Sciences, Physiology Group, Ghent
University, De Pintelaan 185, 9000 Ghent, Belgium; Elke Decrock: Tel: +32 9 332 39
73, Nan Wang: Tel: +32 9 332 39 38, Luc Leybaert: Tel: +32 9 332 33 66
| | - Luc Leybaert
- Department of Basic Medical Sciences, Physiology Group, Ghent
University, De Pintelaan 185, 9000 Ghent, Belgium; Elke Decrock: Tel: +32 9 332 39
73, Nan Wang: Tel: +32 9 332 39 38, Luc Leybaert: Tel: +32 9 332 33 66
| | - Brenda R. Kwak
- Department of Pathology and Immunology and Division of Cardiology,
University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland; Brenda R.
Kwak: Tel: +41 22 379 57 37
| | - Colin R. Green
- Department of Ophthalmology and New Zealand National Eye Centre,
University of Auckland, New Zealand; Colin R. Green: Tel: +64 9 923 61 35
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal
Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87,
05508-270 São Paulo, Brazil; Bruno Cogliati: Tel: +55 11 30 91 12 00
| | - Mathieu Vinken
- Department of In Vitro Toxicology and
Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels,
Belgium; Joost Willebrords: + Tel: 32 2 477 45 87, Michaël Maes: Tel: +32 2
477 45 87, Sara Crespo Yanguas: Tel: +32 2 477 45 87
| |
Collapse
|
17
|
Guenther CA, Wang Z, Li E, Tran MC, Logan CY, Nusse R, Pantalena-Filho L, Yang GP, Kingsley DM. A distinct regulatory region of the Bmp5 locus activates gene expression following adult bone fracture or soft tissue injury. Bone 2015; 77:31-41. [PMID: 25886903 PMCID: PMC4447581 DOI: 10.1016/j.bone.2015.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/02/2015] [Accepted: 04/04/2015] [Indexed: 12/25/2022]
Abstract
Bone morphogenetic proteins (BMPs) are key signaling molecules required for normal development of bones and other tissues. Previous studies have shown that null mutations in the mouse Bmp5 gene alter the size, shape and number of multiple bone and cartilage structures during development. Bmp5 mutations also delay healing of rib fractures in adult mutants, suggesting that the same signals used to pattern embryonic bone and cartilage are also reused during skeletal regeneration and repair. Despite intense interest in BMPs as agents for stimulating bone formation in clinical applications, little is known about the regulatory elements that control developmental or injury-induced BMP expression. To compare the DNA sequences that activate gene expression during embryonic bone formation and following acute injuries in adult animals, we assayed regions surrounding the Bmp5 gene for their ability to stimulate lacZ reporter gene expression in transgenic mice. Multiple genomic fragments, distributed across the Bmp5 locus, collectively coordinate expression in discrete anatomic domains during normal development, including in embryonic ribs. In contrast, a distinct regulatory region activated expression following rib fracture in adult animals. The same injury control region triggered gene expression in mesenchymal cells following tibia fracture, in migrating keratinocytes following dorsal skin wounding, and in regenerating epithelial cells following lung injury. The Bmp5 gene thus contains an "injury response" control region that is distinct from embryonic enhancers, and that is activated by multiple types of injury in adult animals.
Collapse
Affiliation(s)
- Catherine A Guenther
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhen Wang
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Emma Li
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Misha C Tran
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Catriona Y Logan
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Roel Nusse
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Luiz Pantalena-Filho
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - George P Yang
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
18
|
Wu N, Gidrol X. The wind rose of human keratinocyte cell fate. Cell Mol Life Sci 2014; 71:4697-702. [PMID: 25326028 PMCID: PMC4233109 DOI: 10.1007/s00018-014-1758-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 10/04/2014] [Accepted: 10/09/2014] [Indexed: 12/27/2022]
Abstract
Extensive efforts have been made to understand the molecular actors that control epithelial cell fate. Although pieces of information have been obtained from single-gene function investigations, the entire picture of the molecular mechanisms involved in the regulation of epithelial homeostasis is still mysterious. Growing data indicate that gene networks rather than single “master” genes dictate cell fate. In an attempt to characterize such gene networks, we have been investigating the human keratinocyte proliferation and differentiation genes that act downstream of the transcription factor p63, a major regulator of epidermal homeostasis. We identified two networks: the cell cycle network that controls cell proliferation and the keratinocyte cell fate network. Through further analysis of the existing data on epithelial tumorigenesis and induced pluripotent stem cells, we propose a wind rose model of cell fate that is based on a balance between these two different networks that ultimately control human keratinocyte fate and epidermal homeostasis.
Collapse
Affiliation(s)
- Ning Wu
- Univ. Grenoble Alpes, iRTSV-BGE, 38000, Grenoble, France,
| | | |
Collapse
|
19
|
O'Carroll SJ, Becker DL, Davidson JO, Gunn AJ, Nicholson LFB, Green CR. The use of connexin-based therapeutic approaches to target inflammatory diseases. Methods Mol Biol 2014; 1037:519-46. [PMID: 24029957 DOI: 10.1007/978-1-62703-505-7_31] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Alterations in Connexin43 (Cx43) expression levels have been shown to play a role in inflammatory processes including skin wounding and neuroinflammation. Cx43 protein levels increase following a skin wound and can inhibit wound healing. Increased Cx43 has been observed following stroke, epilepsy, ischemia, optic nerve damage, and spinal cord injury with gap junctional communication and hemichannel opening leading to increased secondary damage via the inflammatory response. Connexin43 modulation has been identified as a potential target for protection and repair in neuroinflammation and skin wound repair. This review describes the use of a Cx43 specific antisense oligonucleotide (Cx43 AsODN) and peptide mimetics of the connexin extracellular loop domain to modulate Cx43 expression and/or function in inflammatory disorders of the skin and central nervous system. An overview of the role of connexin43 in inflammatory conditions, how antisense and peptide have allowed us to elucidate the role of Cx43 in these diseases, create models of diseases to test interventions and their potential for use clinically or in current clinical trials is presented. Antisense oligonucleotides are applied topically and have been used to improve wound healing following skin injury. They have also been used to develop ex vivo models of neuroinflammatory diseases that will allow testing of intervention strategies. The connexin mimetic peptides have shown potential in a number of neuroinflammatory disorders in ex vivo models as well as in vivo when delivered directly to the injury site or when delivered systemically.
Collapse
Affiliation(s)
- Simon J O'Carroll
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
20
|
Sun D, Junger WG, Yuan C, Zhang W, Bao Y, Qin D, Wang C, Tan L, Qi B, Zhu D, Zhang X, Yu T. Shockwaves induce osteogenic differentiation of human mesenchymal stem cells through ATP release and activation of P2X7 receptors. Stem Cells 2014; 31:1170-80. [PMID: 23404811 DOI: 10.1002/stem.1356] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/13/2013] [Accepted: 01/29/2013] [Indexed: 12/11/2022]
Abstract
Shockwave treatment promotes bone healing of nonunion fractures. In this study, we investigated whether this effect could be due to adenosine 5'-triphosphate (ATP) release-induced differentiation of human mesenchymal stem cells (hMSCs) into osteoprogenitor cells. Cultured bone marrow-derived hMSCs were subjected to shockwave treatment and ATP release was assessed. Osteogenic differentiation and mineralization of hMSCs were evaluated by examining alkaline phosphatase activity, osteocalcin production, and calcium nodule formation. Expression of P2X7 receptors and c-fos and c-jun mRNA was determined with real-time reverse transcription polymerase chain reaction and Western blotting. P2X7-siRNA, apyrase, P2 receptor antagonists, and p38 MAPK inhibitors were used to evaluate the roles of ATP release, P2X7 receptors, and p38 MAPK signaling in shockwave-induced osteogenic hMSCs differentiation. Shockwave treatment released significant amounts (≈ 7 μM) of ATP from hMSCs. Shockwaves and exogenous ATP induced c-fos and c-jun mRNA transcription, p38 MAPK activation, and hMSC differentiation. Removal of ATP with apyrase, targeting of P2X7 receptors with P2X7-siRNA or selective antagonists, or blockade of p38 MAPK with SB203580 prevented osteogenic differentiation of hMSCs. Our findings indicate that shockwaves release cellular ATP that activates P2X7 receptors and downstream signaling events that caused osteogenic differentiation of hMSCs. We conclude that shockwave therapy promotes bone healing through P2X7 receptor signaling, which contributes to hMSC differentiation.
Collapse
Affiliation(s)
- Dahui Sun
- Department of Orthopedics, The First Norman Bethune Hospital of Jilin University, Changchun, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Haghdoost F, Baradaran Mahdavi MM, Zandifar A, Sanei MH, Zolfaghari B, Javanmard SH. Pistacia atlantica Resin Has a Dose-Dependent Effect on Angiogenesis and Skin Burn Wound Healing in Rat. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:893425. [PMID: 24285978 PMCID: PMC3826334 DOI: 10.1155/2013/893425] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/07/2013] [Accepted: 09/14/2013] [Indexed: 12/22/2022]
Abstract
Objectives. The aim of the present study was to evaluate the effect of Pistacia atlantica resin extract on the rat skin burn wound healing. Methods. Thirty-two Wistar rats were divided into four groups and treated by vehicle, 5%, 10%, and 20% concentration of Pistacia atlantica resin extract for 14 days (G1, G2, G3, and G4, resp.). The efficacy of treatment was assessed based on reduction of burn wound size and histological and molecular characteristics. Results. α -Pinene (46.57%) was the main content of essential oil of resin. There were no statistically significant differences between groups according to wound size analysis. The mean histological wound healing scores were not statistically different. Capillary counts of G2 and G3 were significantly higher than those of the G1 (P = 0.042 and 0.032, resp.). NO concentration in wound fluids on the 5th day of study was not significantly different between groups (P = 0.468). But bFGF concentration in G2 and G3 and PDGF concentration in G3 were significantly higher in comparison to G1 (P = 0.043, 0.017, and 0.019, resp.). Conclusion. Our results revealed that Pistacia atlantica resin extract has a concentration-dependent effect on the healing of burn wounds after 14 days of treatment by increasing the concentration of bFGF and PDGF and also through improving the angiogenesis.
Collapse
Affiliation(s)
- Faraidoon Haghdoost
- Medical Students' Research Center, Isfahan University of Medical Sciences, Isfahan 81745-319, Iran
| | | | - Alireza Zandifar
- Medical Students' Research Center, Isfahan University of Medical Sciences, Isfahan 81745-319, Iran
- Physiology Research Centre, Department of Physiology, Isfahan University of Medical Sciences, Isfahan 81745-319, Iran
| | - Mohammad Hossein Sanei
- Department of Pathology, Isfahan University of Medical Sceinces, Isfahan 81745-319, Iran
| | - Behzad Zolfaghari
- Department of Pharmacognosy and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy, Isfahan University of Medical Sciences, Hezar Jarib Avenue, Isfahan 81745-319, Iran
| | - Shaghayegh Haghjooy Javanmard
- Physiology Research Centre, Department of Physiology, Isfahan University of Medical Sciences, Isfahan 81745-319, Iran
| |
Collapse
|
22
|
Platelet-activating factor induces proliferation in differentiated keratinocytes. Mol Cell Biochem 2013; 384:83-94. [PMID: 23975504 DOI: 10.1007/s11010-013-1784-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 08/09/2013] [Indexed: 10/26/2022]
Abstract
Increased levels of platelet-activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) are found in several inflammatory dermatoses, but PAF's exact role in epidermis is uncertain. In order to better understand the physiological consequences of excess PAF production in epidermis, we examined the gene regulatory effects of PAF short-term stimulation in differentiated HaCaT keratinocytes by transcriptional profiling. Even though PAF induces COX2 expression, we found that PAF regulates only few genes associated with inflammation in differentiated keratinocytes. Rather, we show that natural PAF rapidly regulates genes involved in proliferation, (anti)-apoptosis and migration, all sub-processes of re-epithelialization and wound healing. Moreover, profiling of phosphorylated kinases, cellular wound-scratch experiments, resazurin assay and flow cytometry cell cycle phase analysis all support a role for PAF in keratinocyte proliferation and epidermal re-epithelialization. In conclusion, these results suggest that PAF acts as an activator of proliferation and may, therefore, function as a connector between inflammation and proliferation in differentiated keratinocytes.
Collapse
|
23
|
Scott CA, Tattersall D, O'Toole EA, Kelsell DP. Connexins in epidermal homeostasis and skin disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1952-61. [DOI: 10.1016/j.bbamem.2011.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/30/2011] [Accepted: 09/06/2011] [Indexed: 12/20/2022]
|
24
|
Rashmi RN, Eckes B, Glöckner G, Groth M, Neumann S, Gloy J, Sellin L, Walz G, Schneider M, Karakesisoglou I, Eichinger L, Noegel AA. The nuclear envelope protein Nesprin-2 has roles in cell proliferation and differentiation during wound healing. Nucleus 2012; 3:172-86. [PMID: 22198684 PMCID: PMC3383573 DOI: 10.4161/nucl.19090] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nesprin-2, a type II transmembrane protein of the nuclear envelope, is a component of the LINC complex that connects the nuclear lamina with the actin cytoskeleton. To elucidate its physiological role we studied wound healing in Nesprin-2 Giant deficient mice and found that a loss of the protein affected wound healing particularly at later stages during fibroblast differentiation and keratinocyte proliferation leading to delayed wound closure. We identified altered expression and localization of transcription factors as one of the underlying mechanisms. Furthermore, the actin cytoskeleton which surrounds the nucleus was altered and keratinocyte migration was slowed down and focal adhesion formation enhanced. We also uncovered a new activity of Nesprin-2. When we probed for an interaction of Nesprin-2 Giant with chromatin we observed in ChIP Seq experiments an association of the protein with heterochromatic and centromeric DNA. Through this activity Nesprin-2 can affect the nuclear landscape and gene regulation. Our findings suggest functions for Nesprin-2 at the nuclear envelope (NE) in gene regulation and in regulation of the actin cytoskeleton which impact on wound healing.
Collapse
Affiliation(s)
- R N Rashmi
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang N, Chan CWS, Sanchez-Guerrero E, Khachigian LM. Repression of PDGF-R-α after cellular injury involves TNF-α, formation of a c-Fos-YY1 complex, and negative regulation by HDAC. Am J Physiol Cell Physiol 2012; 302:C1590-8. [PMID: 22322974 DOI: 10.1152/ajpcell.00429.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wound healing is a complex dynamic process involving a variety of cell types, including fibroblasts that express and respond to cytokines and growth factors in the local microenvironment. The mechanisms controlling gene expression after injury at a transcriptional level are poorly understood. Here we show that decreased expression of a key receptor, PDGF-receptor (R)-α, after fibroblast injury is due to the release and paracrine activity of TNF-α. TNF-α inhibits PDGF-R-α expression and this involves formation of a c-Fos-Yin Yang 1 (YY1) complex and histone deacetylase (HDAC) activity. c-Fos, induced by TNF-α, negatively regulates PDGF-R-α transcription. Small interfering RNA (siRNA) targeting c-Fos or the zinc finger transcription factor YY1 inhibits TNF-α suppression of PDGF-R-α expression. Coimmunoprecipitation studies show that TNF-α stimulates the formation of a complex between c-Fos with YY1. Furthermore, chromatin immunoprecipitation (ChIP) analysis reveals the enrichment of c-Fos, YY1, and HDAC-1 at the PDGF-R-α promoter in cells exposed to TNF-α. With suberoylanilide hydroxamic acid (SAHA) and HDAC-1 siRNA, we demonstrate that HDAC mediates TNF-α repression of PDGF-R-α. These findings demonstrate that transcriptional repression of PDGF-R-α after fibroblast injury involves paracrine activity of endogenous TNF-α, the formation of a c-Fos-YY1 complex, and negative regulatory activity by HDAC.
Collapse
Affiliation(s)
- Ning Zhang
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | | | | | | |
Collapse
|
26
|
Rodrigues HG, Vinolo MAR, Magdalon J, Vitzel K, Nachbar RT, Pessoa AFM, dos Santos MF, Hatanaka E, Calder PC, Curi R. Oral Administration of Oleic or Linoleic Acid Accelerates the Inflammatory Phase of Wound Healing. J Invest Dermatol 2012; 132:208-15. [DOI: 10.1038/jid.2011.265] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Becker DL, Thrasivoulou C, Phillips ARJ. Connexins in wound healing; perspectives in diabetic patients. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:2068-75. [PMID: 22155211 DOI: 10.1016/j.bbamem.2011.11.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 11/07/2011] [Accepted: 11/18/2011] [Indexed: 11/19/2022]
Abstract
Skin lesions are common events and we have evolved to rapidly heal them in order to maintain homeostasis and prevent infection and sepsis. Most acute wounds heal without issue, but as we get older our bodies become compromised by poor blood circulation and conditions such as diabetes, leading to slower healing. This can result in stalled or hard-to-heal chronic wounds. Currently about 2% of the Western population develop a chronic wound and this figure will rise as the population ages and diabetes becomes more prevalent [1]. Patient morbidity and quality of life are profoundly altered by chronic wounds [2]. Unfortunately a significant proportion of these chronic wounds fail to respond to conventional treatment and can result in amputation of the lower limb. Life quality and expectancy following amputation is severely reduced. These hard to heal wounds also represent a growing economic burden on Western society with published estimates of costs to healthcare services in the region of $25B annually [3]. There exists a growing need for specific and effective therapeutic agents to improve healing in these wounds. In recent years the gap junction protein Cx43 has been shown to play a pivotal role early on in the acute wound healing process at a number of different levels [4-7]. Conversely, abnormal expression of Cx43 in wound edge keratinocytes was shown to underlie the poor rate of healing in diabetic rats, and targeting its expression with an antisense gel restored normal healing rates [8]. The presence of Cx43 in the wound edge keratinocytes of human chronic wounds has also been reported [9]. Abnormal Cx43 biology may underlie the poor healing of human chronic wounds and be amenable therapeutic intervention [7]. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- David L Becker
- Department of Cell and Developmental Biology, University College, London, WC1E 6BT, UK.
| | | | | |
Collapse
|
28
|
Gualdi G, Monari P, Farisoglio C, Calzavara-Pinton P. Nested graft in chronic wounds: a new solution for an old problem. Int Wound J 2011; 8:127-31. [PMID: 21288304 DOI: 10.1111/j.1742-481x.2010.00758.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
It is well shown that chronic wounds are populated by cells unable to respond to re-epithelising stimulus. Large ulcers that remain unhealed for several months are more difficult to treat probably because of the depletion of active factors. Yet in 1869 Reverdin realised that the partial coverage of an ulcer with small fragments of healthy skin was able to lead to wound healing; unfortunately, its employment was limited to granulating wounds. Recently, the importance of factors such as cytokines, chemokines and adhesion molecules in wound healing, and the involvement of all cellular types resident or transiting in the skin has been partially elucidated. In this study, we proposed to simultaneously provide a new cellular and molecular reservoir with the efficient stimulus to trigger it. We created receiving site inside the ulcer, able to contain a full-thickness graft taken from a donor site. Our aim was not to cover the entire defect, but to use the minigraft as 'fount' of functional cells and to give an acute stress through the chambers created inside the ulcer. A complete wound healing was obtained in all patients treated in a short period of time. This technique does not require special equipment and assistance in maintaining costs at very low levels.
Collapse
Affiliation(s)
- Giulio Gualdi
- Department of Dermatology, A.O. Spedali Civili, Brescia, Italy.
| | | | | | | |
Collapse
|
29
|
Castilho RM, Squarize CH, Leelahavanichkul K, Zheng Y, Bugge T, Gutkind JS. Rac1 is required for epithelial stem cell function during dermal and oral mucosal wound healing but not for tissue homeostasis in mice. PLoS One 2010; 5:e10503. [PMID: 20463891 PMCID: PMC2865533 DOI: 10.1371/journal.pone.0010503] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 04/07/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The regenerative capacity of the skin, including the continuous replacement of exfoliated cells and healing of injuries relies on the epidermal stem cells and their immediate cell descendants. The relative contribution of the hair follicle stem cells and the interfollicular stem cells to dermal wound healing is an area of active investigation. Recent studies have revealed that the small GTPase Rac1, which regulates cell migration and nuclear gene expression, is required for hair follicle stem function but not for the normal homeostasis of the interfollicular skin. METHODOLOGY/PRINCIPAL FINDINGS Here we explored whether Rac1 contributes to wound healing in the skin and in the oral mucosa, the latter an anatomical site that presents similar architecture to that of the skin but is devoid of any hair follicle structures, and hence lacks hair follicle stem cells. Epidermal Rac1 gene excision led to the clearly delayed closure of cutaneous wounds. Remarkably, genetic ablation of Rac1 from the oral mucosa resulted in the complete inability of oral wounds to heal. We present evidence that the lack of oral mucosal re-epithelization may result from the reduced migratory capacity of cells lacking Rac1 together with altered expression of injury-induced proliferative and cellular stress-related expression programs. CONCLUSIONS/SIGNIFICANCE Together, these observations support that while the normal development and homeostasis of the interfollicular skin and oral mucosa do not require Rac1 function, the interfollicular and oral epithelial stem cells may require a Rac1-dependent program to orchestrate the tissue response to injury and ultimate for wound closure. Ultimately, these findings may enable the molecular characterization of the acute tissue regenerative response of these stem cell populations, thus facilitating the identification of novel molecular-targeted strategies aimed at accelerating wound closure.
Collapse
Affiliation(s)
- Rogerio M. Castilho
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cristiane H. Squarize
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kantima Leelahavanichkul
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yi Zheng
- Division of Experimental Hematology, Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Thomas Bugge
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - J. Silvio Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
30
|
Chavanas S, Adoue V, Méchin MC, Ying S, Dong S, Duplan H, Charveron M, Takahara H, Serre G, Simon M. Long-range enhancer associated with chromatin looping allows AP-1 regulation of the peptidylarginine deiminase 3 gene in differentiated keratinocyte. PLoS One 2008; 3:e3408. [PMID: 18923650 PMCID: PMC2566589 DOI: 10.1371/journal.pone.0003408] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 09/04/2008] [Indexed: 11/19/2022] Open
Abstract
Transcription control at a distance is a critical mechanism, particularly for contiguous genes. The peptidylarginine deiminases (PADs) catalyse the conversion of protein-bound arginine into citrulline (deimination), a critical reaction in the pathophysiology of multiple sclerosis, Alzheimer's disease and rheumatoid arthritis, and in the metabolism of the major epidermal barrier protein filaggrin, a strong predisposing factor for atopic dermatitis. PADs are encoded by 5 clustered PADI genes (1p35-6). Unclear are the mechanisms controlling the expression of the gene PADI3 encoding the PAD3 isoform, a strong candidate for the deimination of filaggrin in the terminally differentiating epidermal keratinocyte. We describe the first PAD Intergenic Enhancer (PIE), an evolutionary conserved non coding segment located 86-kb from the PADI3 promoter. PIE is a strong enhancer of the PADI3 promoter in Ca2+-differentiated epidermal keratinocytes, and requires bound AP-1 factors, namely c-Jun and c-Fos. As compared to proliferative keratinocytes, calcium stimulation specifically associates with increased local DNase I hypersensitivity around PIE, and increased physical proximity of PIE and PADI3 as assessed by Chromosome Conformation Capture. The specific AP-1 inhibitor nordihydroguaiaretic acid suppresses the calcium-induced increase of PADI3 mRNA levels in keratinocytes. Our findings pave the way to the exploration of deimination control during tumorigenesis and wound healing, two conditions for which AP-1 factors are critical, and disclose that long-range transcription control has a role in the regulation of the gene PADI3. Since invalidation of distant regulators causes a variety of human diseases, PIE results to be a plausible candidate in association studies on deimination-related disorders or atopic disease.
Collapse
Affiliation(s)
- Stéphane Chavanas
- UMR 5165, CNRS-Toulouse III University, CHU Purpan, Toulouse, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
A murine living skin equivalent amenable to live-cell imaging: analysis of the roles of connexins in the epidermis. J Invest Dermatol 2007; 128:1039-49. [PMID: 17960178 DOI: 10.1038/sj.jid.5701125] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Three-dimensional (3D) organotypic models are increasingly used to study the aspects of epidermal organisation and cutaneous wound-healing events. However, these are largely dependent on laborious histological analysis and immunohistochemical approaches. Despite the large resource of transgenic and knockout mice harboring mutations relevant to skin disorders, few organotypic mouse skin models are available. We have developed a versatile in vitro 3D organotypic mouse skin equivalent that reflects epidermal organisation in vivo. The system is optically transparent and ideally suited to real-time analysis using a variety of integrated in situ imaging techniques. As a paradigm for coordination of cellular events, the epidermal gap junction network was investigated and the model displayed predominant connexin 43 (Cx43) expression in basal proliferating cells and Cx26 and Cx30 expression in differentiated keratinocytes. We show that attenuation of Cx43-mediated communication by a Cx mimetic peptide enhanced wound closure rates in keratinocyte monocultures and in the living skin equivalent system, emphasising the utility of the model to systematically unravel the molecular mechanisms underlying epidermal morphogenesis, assess promising therapeutic strategies, and reduce animal experimentation. Furthermore, we visualise epidermal regeneration following injury in real time, thereby facilitating avenues to explore distinctive modes of wound re-epithelialisation in a non-invasive manner.
Collapse
|