1
|
Boi R, Bergwall L, Ebefors K, Bergö MO, Nyström J, Buvall L. Podocyte Geranylgeranyl Transferase Type-I Is Essential for Maintenance of the Glomerular Filtration Barrier. J Am Soc Nephrol 2023; 34:641-655. [PMID: 36735952 PMCID: PMC10103324 DOI: 10.1681/asn.0000000000000062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/25/2022] [Indexed: 01/22/2023] Open
Abstract
SIGNIFICANCE STATEMENT A tightly regulated actin cytoskeleton attained through balanced activity of RhoGTPases is crucial to maintaining podocyte function. However, how RhoGTPases are regulated by geranylgeranylation, a post-translational modification, has been unexplored. The authors found that loss of the geranylgeranylation enzyme geranylgeranyl transferase type-I (GGTase-I) in podocytes led to progressive albuminuria and foot process effacement in podocyte-specific GGTase-I knockout mice. In cultured podocytes, the absence of geranylgeranylation resulted in altered activity of its downstream substrates Rac1, RhoA, Cdc42, and Rap1, leading to alterations of β1-integrins and actin cytoskeleton structural changes. These findings highlight the importance of geranylgeranylation in the dynamic management of RhoGTPases and Rap1 to control podocyte function, providing new knowledge about podocyte biology and glomerular filtration barrier function. BACKGROUND Impairment of the glomerular filtration barrier is in part attributed to podocyte foot process effacement (FPE), entailing disruption of the actin cytoskeleton and the slit diaphragm. Maintenance of the actin cytoskeleton, which contains a complex signaling network through its connections to slit diaphragm and focal adhesion proteins, is thus considered crucial to preserving podocyte structure and function. A dynamic yet tightly regulated cytoskeleton is attained through balanced activity of RhoGTPases. Most RhoGTPases are post-translationally modified by the enzyme geranylgeranyl transferase type-I (GGTase-I). Although geranylgeranylation has been shown to regulate activities of RhoGTPases and RasGTPase Rap1, its significance in podocytes is unknown. METHODS We used immunofluorescence to localize GGTase-I, which was expressed mainly by podocytes in the glomeruli. To define geranylgeranylation's role in podocytes, we generated podocyte-specific GGTase-I knockout mice. We used transmission electron microscopy to evaluate FPE and measurements of urinary albumin excretion to analyze filtration barrier function. Geranylgeranylation's effects on RhoGTPases and Rap1 function were studied in vitro by knockdown or inhibition of GGTase-I. We used immunocytochemistry to study structural modifications of the actin cytoskeleton and β1 integrins. RESULTS Depletion of GGTase-I in podocytes in vivo resulted in FPE and concomitant early-onset progressive albuminuria. A reduction of GGTase-I activity in cultured podocytes disrupted RhoGTPase balance by markedly increasing activity of RhoA, Rac1, and Cdc42 together with Rap1, resulting in dysregulation of the actin cytoskeleton and altered distribution of β1 integrins. CONCLUSIONS These findings indicate that geranylgeranylation is of crucial importance for the maintenance of the delicate equilibrium of RhoGTPases and Rap1 in podocytes and consequently for the maintenance of glomerular integrity and function.
Collapse
Affiliation(s)
- Roberto Boi
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lovisa Bergwall
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kerstin Ebefors
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martin O. Bergö
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Biosciences and Nutrition, Karolinska Institute, Solna, Sweden
| | - Jenny Nyström
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lisa Buvall
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
2
|
Kwon J, Yeh YS, Kawarasaki S, Minamino H, Fujita Y, Okamatsu-Ogura Y, Takahashi H, Nomura W, Matsumura S, Yu R, Kimura K, Saito M, Inagaki N, Inoue K, Kawada T, Goto T. Mevalonate biosynthesis pathway regulates the development and survival of brown adipocytes. iScience 2023; 26:106161. [PMID: 36895651 PMCID: PMC9988578 DOI: 10.1016/j.isci.2023.106161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/08/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
The high thermogenic activity of brown adipose tissue (BAT) has received considerable attention. Here, we demonstrated the role of the mevalonate (MVA) biosynthesis pathway in the regulation of brown adipocyte development and survival. The inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the rate-limiting enzyme in the MVA pathway and the molecular target of statins, suppressed brown adipocyte differentiation by suppressing protein geranylgeranylation-mediated mitotic clonal expansion. The development of BAT in neonatal mice exposed to statins during the fetal period was severely impaired. Moreover, statin-induced geranylgeranyl pyrophosphate (GGPP) deficiency led to the apoptosis of mature brown adipocytes. Brown adipocyte-specific Hmgcr knockout induced BAT atrophy and disrupted thermogenesis. Importantly, both genetic and pharmacological inhibition of HMGCR in adult mice induced morphological changes in BAT accompanied by an increase in apoptosis, and statin-treated diabetic mice showed worsened hyperglycemia. These findings revealed that MVA pathway-generated GGPP is indispensable for BAT development and survival.
Collapse
Affiliation(s)
- Jungin Kwon
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan
| | - Yu-Sheng Yeh
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan
| | - Satoko Kawarasaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan
| | - Hiroto Minamino
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshihito Fujita
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yuko Okamatsu-Ogura
- Departments of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Haruya Takahashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan
| | - Wataru Nomura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan.,Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| | - Shigenobu Matsumura
- Division of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka 583-0872, Japan
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Kazuhiro Kimura
- Departments of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Masayuki Saito
- Departments of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan.,Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| | - Teruo Kawada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan.,Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan.,Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Kilian LS, Voran J, Frank D, Rangrez AY. RhoA: a dubious molecule in cardiac pathophysiology. J Biomed Sci 2021; 28:33. [PMID: 33906663 PMCID: PMC8080415 DOI: 10.1186/s12929-021-00730-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/23/2021] [Indexed: 02/08/2023] Open
Abstract
The Ras homolog gene family member A (RhoA) is the founding member of Rho GTPase superfamily originally studied in cancer cells where it was found to stimulate cell cycle progression and migration. RhoA acts as a master switch control of actin dynamics essential for maintaining cytoarchitecture of a cell. In the last two decades, however, RhoA has been coined and increasingly investigated as an essential molecule involved in signal transduction and regulation of gene transcription thereby affecting physiological functions such as cell division, survival, proliferation and migration. RhoA has been shown to play an important role in cardiac remodeling and cardiomyopathies; underlying mechanisms are however still poorly understood since the results derived from in vitro and in vivo experiments are still inconclusive. Interestingly its role in the development of cardiomyopathies or heart failure remains largely unclear due to anomalies in the current data available that indicate both cardioprotective and deleterious effects. In this review, we aimed to outline the molecular mechanisms of RhoA activation, to give an overview of its regulators, and the probable mechanisms of signal transduction leading to RhoA activation and induction of downstream effector pathways and corresponding cellular responses in cardiac (patho)physiology. Furthermore, we discuss the existing studies assessing the presented results and shedding light on the often-ambiguous data. Overall, we provide an update of the molecular, physiological and pathological functions of RhoA in the heart and its potential in cardiac therapeutics.
Collapse
Affiliation(s)
- Lucia Sophie Kilian
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany
| | - Jakob Voran
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany
| | - Derk Frank
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany. .,Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Young Bone-Marrow Sca-1 + Stem Cells Rejuvenate the Aged Heart and Improve Function after Injury through PDGFRβ-Akt pathway. Sci Rep 2017; 7:41756. [PMID: 28139736 PMCID: PMC5282531 DOI: 10.1038/srep41756] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022] Open
Abstract
Bone marrow (BM) reconstitution with young BM cells in aged recipients restores the functionality of cardiac resident BM-derived progenitors. This study investigated the cell type primarily responsible for this effect. We reconstituted old mice with BM cells from young or old mice and found that the number of stem cell antigen 1 (Sca-1) cells homing to the heart was significantly greater in young than old chimeras. We then reconstituted old mice with young BM Sca-1+ or Sca-1− cells. We found that Sca-1 cells repopulated the recipient BM and homed to the heart. The number of BM-derived cells in the aged myocardium co-expressing PDGFRβ was 3 times greater in Sca-1+ than Sca-1− chimeric mice. Sca-1+ chimeras had more active cell proliferation in the infarcted heart and improved ventricular function after MI. The improved regeneration involved activation of the PDGFRβ/Akt/p27Kip1 pathway. Sca-1+ stem cells rejuvenated cardiac tissue in aged mice. Restoration of the Sca-1+ subset of stem cells by BM reconstitution improved cardiac tissue regeneration after injury in aged mice.
Collapse
|
5
|
miR-34a regulates mesangial cell proliferation via the PDGFR-β/Ras-MAPK signaling pathway. Cell Mol Life Sci 2014; 71:4027-42. [PMID: 24638095 PMCID: PMC4175047 DOI: 10.1007/s00018-014-1599-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/13/2014] [Accepted: 02/28/2014] [Indexed: 02/03/2023]
Abstract
The main pathological characteristic of glomerulonephritis is diffuse mesangial cell proliferation. MiR-34a is associated with the proliferation of various organs and cancer cells. However, the role of miR-34a in renal proliferation diseases is not clear. Therefore, this study aimed to elucidate the mechanism of miR-34a in the regulation of renal mesangial cell proliferation. The miR-34a expression level at different time points in an anti-Thy1 mesangial proliferative nephritis rat model was determined by qRT-PCR. The cell proliferation rate and cell cycle changes were measured in the in vitro cultured rat mesangial cells (RMCs). Our results suggested that miR-34a expression was negatively correlated with the degree of cell proliferation in the anti-Thy1 nephritis model. MiR-34a could extend the G0/G1 phase and block cell proliferation in RMCs. Dual-luciferase assay results showed that there were binding sites of miR-34a at 3′-UTR of platelet-derived growth factor receptor-β (PDGFR-β). MiR-34a can inhibit PDGFR-β protein expression at a post-transcriptional level, suppress Ras/MAPK signaling pathways, and down-regulate expression of cell cycle proteins at the G0/G1 phase, such as cyclin D1, CDK4/CDK6. In addition, miR-34a may also inhibit RMC proliferation by directly targeting cyclin E and CDK2. MiR-34a inhibits exogenous stimuli-induced proliferation of mesangial cells. Expression levels of phospho-PDGFR-β and phospho-MEK1 (an important downstream molecule in PDGFR-β-induced signaling pathway) were significantly increased in the anti-Thy-1 nephritis rat model. These results suggest that miR-34a may regulate RMC proliferation by directly inhibiting expressions of PDGFR-β, MEK1, and cell cycle proteins, cyclin E and CDK2.
Collapse
|
6
|
Amin E, Dubey BN, Zhang SC, Gremer L, Dvorsky R, Moll JM, Taha MS, Nagel-Steger L, Piekorz RP, Somlyo AV, Ahmadian MR. Rho-kinase: regulation, (dys)function, and inhibition. Biol Chem 2014; 394:1399-410. [PMID: 23950574 DOI: 10.1515/hsz-2013-0181] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/09/2013] [Indexed: 01/08/2023]
Abstract
In a variety of normal and pathological cell types, Rho-kinases I and II (ROCKI/II) play a pivotal role in the organization of the nonmuscle and smooth muscle cytoskeleton and adhesion plaques as well as in the regulation of transcription factors. Thus, ROCKI/II activity regulates cellular contraction, motility, morphology, polarity, cell division, and gene expression. Emerging evidence suggests that dysregulation of the Rho-ROCK pathways at different stages is linked to cardiovascular, metabolic, and neurodegenerative diseases as well as cancer. This review focuses on the current status of understanding the multiple functions of Rho-ROCK signaling pathways and various modes of regulation of Rho-ROCK activity, thereby orchestrating a concerted functional response.
Collapse
|
7
|
Zhou X, Qian J, Hua L, Shi Q, Liu Z, Xu Y, Sang B, Mo J, Yu R. Geranylgeranyltransferase I promotes human glioma cell growth through Rac1 membrane association and activation. J Mol Neurosci 2012; 49:130-9. [PMID: 23073905 DOI: 10.1007/s12031-012-9905-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 10/08/2012] [Indexed: 11/30/2022]
Abstract
Geranylgeranyltransferase I (GGTase-I) is responsible for the posttranslational lipidation of several signaling proteins such as RhoA, Rac1, and Cdc42, which contribute to tumor development and metastasis. However, the role of GGTase-I in the progression of human glioma is largely unknown. Here, we provide the evidence that Rac1 mediates the effects of GGTase-I on the proliferation and apoptosis in human glioma cells. We found that GGTase-I was abundantly expressed in human primary glioma tissues. Inhibition or downregulation of GGTase-I markedly decreased the proliferation of glioma cells and induced their apoptosis, while overexpression of GGTase-I promoted cell growth in vitro. Inactivation of GGTase-I eliminated geranylgeranylation of RhoA and Rac1, prevented them from targeting to the plasma membrane, and inhibited Rac1 activity. Furthermore, overexpressing wild type or constitutively active Rac1 stimulated glioma cell growth, similar to the effect of GGTase-I overexpression. Importantly, overexpressing dominant-negative Rac1 or Rac1 with the prenylation site deleted or mutated abrogated GGTase-I-induced proliferation in glioma cells. These results confirm the view that geranylgeranylation is essential to the activity and localization of Rho family proteins and suggest that Rac1 is required for GGTase-I-mediated glioma growth.
Collapse
Affiliation(s)
- Xiuping Zhou
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, 99 West Huai-hai Road, Xuzhou, Jiangsu 221002, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ludwig K, Parsons SJ. The Tumor Suppressor, p190RhoGAP, Differentially Initiates Apoptosis and Confers Docetaxel Sensitivity to Breast Cancer Cells. Genes Cancer 2011; 2:20-30. [PMID: 21779478 DOI: 10.1177/1947601911402680] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 02/03/2011] [Accepted: 02/11/2011] [Indexed: 12/22/2022] Open
Abstract
p190RhoGAP (p190) is a negative regulator of RhoGTPases and a putative tumor suppressor, whose mechanism of tumor suppression is poorly defined. Ectopic expression of p190 induces various morphological phenotypes, including multinucleation, dendrite-like formation, and chromatin condensation, suggesting an involvement in apoptosis. We examined the possibility that p190 can function as a tumor suppressor by regulating induction of apoptosis. We show that the predominant phenotype of p190 overexpression in a variety of cell lines is apoptosis, which is mediated through p190's regulation of Rho and caspases. The secondary phenotypes, multinucleation and dendrite-like formation, are determined by transformation status, not cell lineage, and appear to be intermediate phenotypes in the p190-induced apoptotic pathway. Finally, we show that p190 levels can regulate the apoptotic response of breast cancer cell lines to docetaxel through its regulation of Rho. Together, these findings suggest that one mechanism by which p190 can mediate its tumor-suppressive function is through regulation of Rho-activated cell death pathways and that this function can be exploited to optimize the action of cytoskeletal-based chemotherapeutics, such as the taxanes.
Collapse
Affiliation(s)
- Kirsten Ludwig
- Department of Microbiology and Cancer Center, University of Virginia Health System, Charlottesville, VA, USA
| | | |
Collapse
|
9
|
Edwards DC, McKinnon KM, Fenizia C, Jung KJ, Brady JN, Pise-Masison CA. Inhibition of geranylgeranyl transferase-I decreases cell viability of HTLV-1-transformed cells. Viruses 2011; 3:1815-35. [PMID: 22069517 PMCID: PMC3205383 DOI: 10.3390/v3101815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 09/26/2011] [Indexed: 12/14/2022] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) is the etiological agent of adult T-cell leukemia (ATL), an aggressive and highly chemoresistant malignancy. Rho family GTPases regulate multiple signaling pathways in tumorigenesis: cytoskeletal organization, transcription, cell cycle progression, and cell proliferation. Geranylgeranylation of Rho family GTPases is essential for cell membrane localization and activation of these proteins. It is currently unknown whether HTLV-1-transformed cells are preferentially sensitive to geranylgeranylation inhibitors, such as GGTI-298. In this report, we demonstrate that GGTI-298 decreased cell viability and induced G2/M phase accumulation of HTLV-1-transformed cells, independent of p53 reactivation. HTLV-1-LTR transcriptional activity was inhibited and Tax protein levels decreased following treatment with GGTI-298. Furthermore, GGTI-298 decreased activation of NF-κB, a downstream target of Rho family GTPases. These studies suggest that protein geranylgeranylation contributes to dysregulation of cell survival pathways in HTLV-1-transformed cells.
Collapse
Affiliation(s)
- Dustin C. Edwards
- Virus Tumor Biology Section, Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; E-Mails: (D.C.E.); (K.-J.J.)
| | - Katherine M. McKinnon
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; E-Mails: (K.M.M.); (C.F.)
| | - Claudio Fenizia
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; E-Mails: (K.M.M.); (C.F.)
| | - Kyung-Jin Jung
- Virus Tumor Biology Section, Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; E-Mails: (D.C.E.); (K.-J.J.)
| | - John N. Brady
- Virus Tumor Biology Section, Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; E-Mails: (D.C.E.); (K.-J.J.)
| | - Cynthia A. Pise-Masison
- Virus Tumor Biology Section, Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; E-Mails: (D.C.E.); (K.-J.J.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-301-435-2499; Fax: +1-301-496-4951
| |
Collapse
|
10
|
Procino G, Barbieri C, Carmosino M, Tamma G, Milano S, De Benedictis L, Mola MG, Lazo-Fernandez Y, Valenti G, Svelto M. Fluvastatin modulates renal water reabsorption in vivo through increased AQP2 availability at the apical plasma membrane of collecting duct cells. Pflugers Arch 2011; 462:753-66. [PMID: 21858457 DOI: 10.1007/s00424-011-1007-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 07/28/2011] [Accepted: 08/01/2011] [Indexed: 01/20/2023]
Abstract
X-linked nephrogenic diabetes insipidus (XNDI), a severe pathological condition characterized by greatly impaired urine-concentrating ability of the kidney, is caused by inactivating mutations in the V2 vasopressin receptor (V2R) gene. The lack of functional V2Rs prevents vasopressin-induced shuttling of aquaporin-2 (AQP2) water channels to the apical plasma membrane of kidney collecting duct principal cells, thus promoting water reabsorption from urine to the interstitium. At present, no specific pharmacological therapy exists for the treatment of XNDI. We have previously reported that the cholesterol-lowering drug lovastatin increases AQP2 membrane expression in renal cells in vitro. Here we report the novel finding that fluvastatin, another member of the statins family, greatly increases kidney water reabsorption in vivo in mice in a vasopressin-independent fashion. Consistent with this observation, fluvastatin is able to increase AQP2 membrane expression in the collecting duct of treated mice. Additional in vivo and in vitro experiments indicate that these effects of fluvastatin are most likely caused by fluvastatin-dependent changes in the prenylation status of key proteins regulating AQP2 trafficking in collecting duct cells. We identified members of the Rho and Rab families of proteins as possible candidates whose reduced prenylation might result in the accumulation of AQP2 at the plasma membrane. In conclusion, these results strongly suggest that fluvastatin, or other drugs of the statin family, may prove useful in the therapy of XNDI.
Collapse
Affiliation(s)
- Giuseppe Procino
- Department of General and Environmental Physiology, University of Bari, Bari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Inhibition of Rho-ROCK signaling induces apoptotic and non-apoptotic PS exposure in cardiomyocytes via inhibition of flippase. J Mol Cell Cardiol 2010; 49:781-90. [PMID: 20691698 DOI: 10.1016/j.yjmcc.2010.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 07/12/2010] [Accepted: 07/28/2010] [Indexed: 02/06/2023]
Abstract
Subsequent to myocardial infarction, cardiomyocytes within the infarcted areas and border zones expose phosphatidylserine (PS) in the outer plasma membrane leaflet (flip-flop). We showed earlier that in addition to apoptosis, this flip-flop can be reversible in cardiomyocytes. We now investigated a possible role for Rho and downstream effector Rho-associated kinase (ROCK) in the process of (reversible) PS exposure and apoptosis in cardiomyocytes. In rat cardiomyoblasts (H9c2 cells) and isolated adult ventricular rat cardiomyocytes Clostridium difficile Toxin B (TcdB), a Rho GTPase family inhibitor, C3 transferase (C3), a Rho(A,B,C) inhibitor and the ROCK inhibitors Y27632 and H1152 were used to inhibit Rho-ROCK signaling. PS exposure was assessed via flow cytometry and fluorescent digital imaging microscopy using annexin V. Akt expression and phosphorylation were analyzed via Western blot, and Akt activity was inhibited by wortmannin. The cellular concentration activated caspase 3 was determined as a measure of apoptosis, and flippase activity was assessed via flow cytometry using NBD-labeled PS. TcdB, C3, Y27632 and H1152 all significantly increased PS exposure. TcdB, Y27632 and H1152 all significantly inhibited phosphorylation of the anti-apoptotic protein Akt and Akt inhibition by wortmannin lead to increased PS exposure. However, only TcdB and C3, but not ROCK- or Akt inhibition led to caspase 3 activation and thus apoptosis. Notably, pancaspase inhibitor zVAD only partially inhibited TcdB-induced PS exposure indicating the existence of apoptotic and non-apoptotic PS exposure. The induced PS exposure coincided with decreased flippase activity as measured with NBD-labeled PS flip-flop. In this study, we show a regulatory role for a novel signaling route, Rho-ROCK-flippase signaling, in maintaining asymmetrical membrane phospholipid distribution in cardiomyocytes.
Collapse
|
13
|
Hwang JC, Chang LC, Lin YF, Shui HA, Chen JS. Effects of fungal statins on high-glucose-induced mouse mesangial cell hypocontractility may involve filamentous actin, t-complex polypeptide 1 subunit beta, and glucose regulated protein 78. Transl Res 2010; 156:80-90. [PMID: 20627192 DOI: 10.1016/j.trsl.2010.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/04/2010] [Accepted: 05/23/2010] [Indexed: 10/19/2022]
Abstract
Glomerular hyperfiltration is associated with mesangial cell hypocontractility. How 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) influence mesangial cell contraction is unclear. We investigated the effect of statins on mesangial cell hypocontractility and identified candidate proteins and filamentous/globular (F/G)-actin involved in this process. A high-glucose-induced mouse mesangial cell hypocontractility model was treated with fungal statins, simvastatin (Sim), lovastatin (Lov), and pravastatin (Pra). The optimum statin dose was determined by an 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay and then applied to a cell model. A 2-dimensional gel/matrix-assisted laser desorption/ionization time-of-flight mass spectrometer analysis was used to evaluate protein expression cells incubated in the presence of a normal level of glucose (N), a high level of glucose (H), and a high level of glucose plus Sim (H + S). Candidate proteins were analyzed. Finally, the ratio of F/G actin in groups N, H, and H+S was evaluated. The MTT assay showed that Sim and Lov exerted dose- and time-related inhibition of proliferation of mesangial cells at N, but Pra had no effect. The optimum doses selected for Sim was 1 microM and for Lov was 3 microM, which were 1 increment before significant proliferation inhibition. Both doses reversed cell hypocontractility significantly, but Sim was chosen for further proteomic and F/G actin analyses. Proteomic analysis of groups N, H, and H + S showed that 18 proteins were involved in hypocontractility. These proteins were grouped and analyzed based on their known functions. Two selected proteins, TCP-1beta and GRP78, that were upregulated and downregulated, respectively, were confirmed by Western blot and immunohistochemistry. In regard to the F/G actin, group H had a significantly lower ratio than that of group N, and group H + S returned to a level similar to that of group N. In conclusion, Sim and Lov both seem to reverse mesangial cell hypocontractility. The process of Sim reversal of mesangial cell hypocontractility may involve F-actin, TCP-1beta, and GRP78.
Collapse
Affiliation(s)
- Jyh-Chang Hwang
- Division of Nephrology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
14
|
Atorvastatin attenuates murine anti-glomerular basement membrane glomerulonephritis. Kidney Int 2010; 77:428-35. [DOI: 10.1038/ki.2009.478] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Phoon RKS, Kitching AR, Jones LK, Holdsworth SR. Atorvastatin enhances humoral immune responses but does not alter renal injury in experimental crescentic glomerulonephritis. Nephrology (Carlton) 2009; 14:650-7. [PMID: 19796023 DOI: 10.1111/j.1440-1797.2009.01141.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM Statins are widely used for their cholesterol-lowering effects and for prevention of cardiovascular disease. Evidence indicates that these drugs also have immunomodulatory and other non-lipid lowering effects, with studies suggesting benefit in some animal models of immune (particularly T helper (Th)1)-mediated inflammatory disease and their corresponding human disease counterparts. We sought to evaluate the immunomodulatory effects and therapeutic potential of atorvastatin in experimental crescentic glomerulonephritis, a Th1-predominant animal model of glomerulonephritis. METHODS Autologous phase, anti-glomerular basement membrane glomerulonephritis was induced in C57BL/6 mice by intravenous injection of sheep anti-mouse glomerular basement membrane globulin. Mice were administered atorvastatin (10 or 100 mg/kg) or control (phosphate-buffered saline) daily by oral gavage. Immune responses and renal injury were assessed after 21 days. RESULTS Compared with control-treated mice, treatment with atorvastatin did not alter renal injury (serum creatinine, proteinuria, glomerular crescent formation) or glomerular leukocytic infiltration (CD4(+) T cells or macrophages). Atorvastatin resulted in a dose-related increase in circulating serum antibody to the disease-inducing antigen but no differences in antigen-stimulated splenocyte production of Th1/Th2 cytokines. At the higher dose, atorvastatin also led to a significant reduction in apoptosis of splenic CD4(+) T lymphocytes. CONCLUSION This study demonstrates that statins modulate humoral responses and alter splenic CD4(+) T cell apoptosis. However, atorvastatin does not lead to significant changes in T helper cell polarization or renal injury in experimental crescentic glomerulonephritis.
Collapse
Affiliation(s)
- Richard K S Phoon
- Centre for Inflammatory Diseases, Monash University, Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia.
| | | | | | | |
Collapse
|
16
|
Bruner-Tran KL, Osteen KG, Duleba AJ. Simvastatin protects against the development of endometriosis in a nude mouse model. J Clin Endocrinol Metab 2009; 94:2489-94. [PMID: 19366846 PMCID: PMC2708947 DOI: 10.1210/jc.2008-2802] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONTEXT Endometriosis is a common condition associated with infertility and pelvic pain in women. Recent in vitro studies have shown that statins decrease proliferation of endometrial stroma (ES) and inhibit angiogenesis. OBJECTIVE The aim was to evaluate effects of simvastatin on development of endometriosis in a nude mouse model. METHODS Proliferative phase human endometrial biopsies were obtained from healthy donors and established as organ cultures or used to isolate ES cells. To establish endometriosis in the nude mouse, endometrial tissues were maintained in 1 nm estradiol (E) for 24 h and subsequently injected into ovariectomized nude mice. Mice (n = 37) were treated with E (8 mg, SILASTIC capsule implants; made in author laboratory) alone or with E plus simvastatin (5 or 25 mg/kg x d) for 10 d beginning 1 d after tissue injection (from three donors). Mice were killed and examined for disease. Effects of simvastatin on matrix metalloproteinase-3 (MMP-3) were evaluated in cultures of ES cells. PRIMARY OUTCOME The number and size of endometriotic implants were measured. RESULTS Simvastatin induced a dose-dependent decrease of the number and size of endometrial implants in mice. At the highest dose of simvastatin, the number of endometrial implants decreased by 87%, and the volume by 98%. Simvastatin also induced a concentration-dependent decrease in MMP-3 in the absence and presence of inflammatory challenge (using IL-1alpha). CONCLUSIONS Simvastatin exerted a potent inhibitory effect on the development of endometriosis in the nude mouse. Mechanisms of action of simvastatin may include inhibition of MMP-3. The present findings may lead to the development of novel treatments of endometriosis involving statins.
Collapse
Affiliation(s)
- Kaylon L Bruner-Tran
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
17
|
Kassimatis TI, Konstantinopoulos PA. The role of statins in chronic kidney disease (CKD): Friend or foe? Pharmacol Ther 2009; 122:312-23. [DOI: 10.1016/j.pharmthera.2009.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 03/20/2009] [Indexed: 01/11/2023]
|
18
|
Fluvastatin attenuates IGF-1-induced ERK1/2 activation and cell proliferation by mevalonic acid depletion in human mesangial cells. Life Sci 2009; 84:725-31. [DOI: 10.1016/j.lfs.2009.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/22/2009] [Accepted: 02/16/2009] [Indexed: 11/22/2022]
|
19
|
Harmon B, Ratner L. Induction of the Galpha(q) signaling cascade by the human immunodeficiency virus envelope is required for virus entry. J Virol 2008; 82:9191-205. [PMID: 18632858 PMCID: PMC2546909 DOI: 10.1128/jvi.00424-08] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 07/08/2008] [Indexed: 12/13/2022] Open
Abstract
Binding of human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) with the primary receptor CD4 and one of two coreceptors, CXCR4 or CCR5, activates a signaling cascade resulting in Rac-1 GTPase activation and stimulation of actin cytoskeletal reorganizations critical for HIV-1-mediated membrane fusion. The mechanism by which HIV-1 Env induces Rac-1 activation and subsequent actin cytoskeleton rearrangement is unknown. In this study, we show that Env-mediated Rac-1 activation is dependent on the activation of Galpha(q) and its downstream targets. Fusion and Rac-1 activation are mediated by Galpha(q) and phospholipase C (PLC), as shown by attenuation of fusion and Rac-1 activation in cells either expressing small interfering RNA (siRNA) targeting Galpha(q) or treated with the PLC inhibitor U73122. Rac-1 activation and fusion were also blocked by multiple protein kinase C inhibitors, by inhibitors of intracellular Ca2+ release, by Pyk2-targeted siRNA, and by the Ras inhibitor S-trans,trans-farnesylthiosalicylic acid (FTS). Fusion was blocked without altering cell viability or cell surface localization of CD4 and CCR5. Similar results were obtained when cell fusion was induced by Env expressed on viral and cellular membranes and when cell lines or primary cells were the target. Treatment with inhibitors and siRNA specific for Galpha(i) or Galpha(s) signaling mediators had no effect on Env-mediated Rac-1 activation or cell fusion, indicating that the Galpha(q) pathway alone is responsible. These results could provide a new focus for therapeutic intervention with drugs targeting host signaling mediators rather than viral molecules, a strategy which is less likely to result in resistance.
Collapse
Affiliation(s)
- Brooke Harmon
- Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
20
|
Peng F, Zhang B, Wu D, Ingram AJ, Gao B, Krepinsky JC. TGFbeta-induced RhoA activation and fibronectin production in mesangial cells require caveolae. Am J Physiol Renal Physiol 2008; 295:F153-64. [PMID: 18434385 DOI: 10.1152/ajprenal.00419.2007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glomerular sclerosis of diverse etiologies is characterized by mesangial matrix accumulation, with transforming growth factor-beta (TGFbeta) an important pathogenic factor. The GTPase RhoA mediates TGFbeta-induced matrix accumulation in some settings. Here we study the role of the membrane microdomain caveolae in TGFbeta-induced RhoA activation and fibronectin upregulation in mesangial cells (MC). In primary rat MC, TGFbeta1 time dependently increased RhoA and downstream Rho kinase activation. Rho pathway inhibition blocked TGFbeta1-induced upregulation of fibronectin transcript and protein. TGFbeta1-induced RhoA activation was prevented by disrupting caveolae with cholesterol depletion and rescued by cholesterol repletion. Compared with wild types, RhoA/Rho kinase activation was absent in MC lacking caveolae. Reexpression of caveolin-1 (and caveolae) restored these responses. Phosphorylation of caveolin-1 on Y14, effected by Src kinases, has been implicated in signaling responses. Overexpression of nonphosphorylatable caveolin-1 Y14A prevented TGFbeta1-induced RhoA activation. TGFbeta1 also activated Src, and its inhibition blocked RhoA activation. Furthermore, TGFbeta1 led to association of RhoA and caveolin-1. This was prevented by Src or TGFbeta receptor I inhibition, and by caveolin-1 Y14A overexpression. Last, fibronectin upregulation by TGFbeta1 was blocked by Src inhibition, not seen in caveolin-1 knockout MC, and restored by caveolin-1 reexpression in the latter. TGFbeta1-induced collagen I accumulation also required caveolae. TGFbeta1-mediated Smad2/3 activation, however, did not require caveolae. We conclude that RhoA/Rho kinase mediates TGFbeta-induced fibronectin upregulation. This requires caveolae and caveolin-1 interaction with RhoA. Interference with caveolin/caveolae or RhoA signaling thus represents a potential target for the treatment of fibrotic renal disease.
Collapse
Affiliation(s)
- Fangfang Peng
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Balakumar P, Kaur T, Singh M. Potential target sites to modulate vascular endothelial dysfunction: Current perspectives and future directions. Toxicology 2008; 245:49-64. [DOI: 10.1016/j.tox.2007.12.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 12/13/2007] [Accepted: 12/13/2007] [Indexed: 12/26/2022]
|
22
|
Lin CL, Cheng H, Tung CW, Huang WJ, Chang PJ, Yang JT, Wang JY. Simvastatin reverses high glucose-induced apoptosis of mesangial cells via modulation of Wnt signaling pathway. Am J Nephrol 2007; 28:290-7. [PMID: 18004065 DOI: 10.1159/000111142] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 09/18/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Disruption of Wnt/beta-catenin signaling in mesangial cells is a pathogenic consequence of diabetic nephropathy. We examined the role of simvastatin (SIM) in modulation of Wnt/beta-catenin signaling in the apoptosis of high glucose (HG)-stressed mesangial cells in vitro and in vivo. METHODS For in vitro studies, we cultured mesangial cells, with or without SIM pretreatment, in 35 mM glucose and then assayed Wnt activity and apoptosis. For in vivo studies, we administered SIM to streptozocin-induced diabetic rats for 28 days and then dissected renal tissues for immunohistological assessment of Wnt signal expression and apoptosis of glomerular cells. RESULTS SIM reduced the promotional effect of HG on caspase-3 expression, PARP activation, and cell apoptosis. HG significantly reduced Wnt4 and Wnt5a mRNA expression and SIM restored Wnt4 and Wnt5a mRNA expression to the level of controls. SIM also suppressed HG-mediated activation of GSK-3b and restored nuclear beta-catenin levels and phospho-Akt expression. This suggests that SIM alters the stability of beta-catenin, a critical element of mesangial cell survival. Exogenous SIM treatment blocked DNA fragmentation, increased the Wnt/beta-catenin immunoreactivities of cells adjacent to renal glomeruli, and attenuated urinary protein secretion in diabetic rats. CONCLUSIONS SIM reduces the detrimental effects of HG on diabetic renal glomeruli in vitro and in vivo. SIM prevents HG-induced downregulation of Wnt/beta-catenin signaling and thereby blocks mesangial cell apoptosis.
Collapse
Affiliation(s)
- Chun-Liang Lin
- Division of Nephrology, Chiayi Chang Gung Memorial Hospital and Graduate Institute of Clinical Medicine, Chang Gung University, Chiayi, Taiwan.
| | | | | | | | | | | | | |
Collapse
|