1
|
Zhao JY, Yuan XK, Luo RZ, Wang LX, Gu W, Yamane D, Feng H. Phospholipase A and acyltransferase 4/retinoic acid receptor responder 3 at the intersection of tumor suppression and pathogen restriction. Front Immunol 2023; 14:1107239. [PMID: 37063830 PMCID: PMC10102619 DOI: 10.3389/fimmu.2023.1107239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Phospholipase A and acyltransferase (PLAAT) 4 is a class II tumor suppressor with phospholipid metabolizing abilities. It was characterized in late 2000s, and has since been referred to as 'tazarotene-induced gene 3' (TIG3) or 'retinoic acid receptor responder 3' (RARRES3) as a key downstream effector of retinoic acid signaling. Two decades of research have revealed the complexity of its function and regulatory roles in suppressing tumorigenesis. However, more recent findings have also identified PLAAT4 as a key anti-microbial effector enzyme acting downstream of interferon regulatory factor 1 (IRF1) and interferons (IFNs), favoring protection from virus and parasite infections. Unveiling the molecular mechanisms underlying its action may thus open new therapeutic avenues for the treatment of both cancer and infectious diseases. Herein, we aim to summarize a brief history of PLAAT4 discovery, its transcriptional regulation, and the potential mechanisms in tumor prevention and anti-pathogen defense, and discuss potential future directions of PLAAT4 research toward the development of therapeutic approaches targeting this enzyme with pleiotropic functions.
Collapse
Affiliation(s)
- Jian-Yong Zhao
- Hospital of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, Hebei, China
| | - Xiang-Kun Yuan
- Hospital of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, Hebei, China
| | - Rui-Zhen Luo
- Hospital of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, Hebei, China
| | - Li-Xin Wang
- Hospital of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, Hebei, China
| | - Wei Gu
- School of Medicine, Chongqing University, Chongqing, China
| | - Daisuke Yamane
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hui Feng
- School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
2
|
Chatterjee S, Zhou J, Dasgupta R, Cramer-Blok A, Timmer M, van der Stelt M, Ubbink M. Protein Dynamics Influence the Enzymatic Activity of Phospholipase A/Acyltransferases 3 and 4. Biochemistry 2021; 60:1178-1190. [PMID: 33749246 PMCID: PMC8154263 DOI: 10.1021/acs.biochem.0c00974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/04/2021] [Indexed: 11/29/2022]
Abstract
Phospholipase A/acyltransferase 3 (PLAAT3) and PLAAT4 are enzymes involved in the synthesis of bioactive lipids. Despite sequential and structural similarities, the two enzymes differ in activity and specificity. The relation between the activity and dynamics of the N-terminal domains of PLAAT3 and PLAAT4 was studied. PLAAT3 has a much higher melting temperature and exhibits less nanosecond and millisecond dynamics in the active site, in particular in loop L2(B6), as shown by NMR spectroscopy and molecular dynamics calculations. Swapping the L2(B6) loops between the two PLAAT enzymes results in strongly increased phospholipase activity in PLAAT3 but no reduction in PLAAT4 activity, indicating that this loop contributes to the low activity of PLAAT3. The results show that, despite structural similarity, protein dynamics differ substantially between the PLAAT variants, which can help to explain the activity and specificity differences.
Collapse
Affiliation(s)
- Soumya
Deep Chatterjee
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Juan Zhou
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Rubin Dasgupta
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Anneloes Cramer-Blok
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Monika Timmer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Mario van der Stelt
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| |
Collapse
|
3
|
Wei X, Gu X, Ma M, Lou C. Long noncoding RNA HCP5 suppresses skin cutaneous melanoma development by regulating RARRES3 gene expression via sponging miR-12. Onco Targets Ther 2019; 12:6323-6335. [PMID: 31496735 PMCID: PMC6698080 DOI: 10.2147/ott.s195796] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/01/2019] [Indexed: 12/26/2022] Open
Abstract
Objective This research aimed to investigate the role and mechanism of long noncoding RNA (lncRNA) HCP5 in skin cutaneous melanoma (SKCM). Materials and methods Survival analysis was performed using The Cancer Genome Atlas (TCGA)-SKCM data and SKCM patients’ clinical data. Primary SKCM cells were derived from patients’ pathologic tissue specimens. HCP5 overexpression was achieved by lentiviral transduction. Malignancy of SKCM cells was evaluated in vitro by cell proliferation, colony formation, apoptosis and transwell invasion assays. RARRES3 knockdown was achieved by siRNA transfection. DIANA microT-CDS algorithm was used to predict miRNAs that might interact with HCP5 and 3ʹ untranslated region of RARRES3 mRNA. microRNA target luciferase reporter assay and AGO2-RNA immunoprecipitation were used to verify the interaction between HCP5, 3ʹ UTR of RARRES3 mRNA and miR-1286. Results HCP5 level was decreased in SKCM tissue specimens compared to noncancerous counterparts. Low expression of HCP5 was associated with SKCM patients’ poor overall survival and disease progression. HCP5 overexpression significantly reduced the malignancy of primary SKCM cells in vitro. RARRES3 was found as a HCP5-co-expressing gene in SKCM cells. HCP5 overexpression significantly increased RARRES3 expression in SKCM cells. RARRES3 knockdown partially abolished the anti-SKCM effect of HCP5 overexpression. MiR-1286 was found interacting with both HCP5 and 3ʹ UTR of RARRES3 mRNA. Conclusion HCP5 is a cancer-suppressive lncRNA in SKCM. HCP5 overexpression decreased SKCM cell malignancy in vitro by upregulating RARRES3, possibly via sponging miR-1286.
Collapse
Affiliation(s)
| | | | | | - Chunxiang Lou
- Department of Gynecology and Obstetrics, the Third Hospital of Ji'nan, Jinan, Shandong 250132, People's Republic of China
| |
Collapse
|
4
|
Imai Y, Hirano M, Kobayashi M, Futami M, Tojo A. HDAC Inhibitors Exert Anti-Myeloma Effects through Multiple Modes of Action. Cancers (Basel) 2019; 11:cancers11040475. [PMID: 30987296 PMCID: PMC6520917 DOI: 10.3390/cancers11040475] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 11/29/2022] Open
Abstract
HDACs are critical regulators of gene expression that function through histone modification. Non-histone proteins and histones are targeted by these proteins and the inhibition of HDACs results in various biological effects. Moreover, the aberrant expression and function of these proteins is thought to be related to the pathogenesis of multiple myeloma (MM) and several inhibitors have been introduced or clinically tested. Panobinostat, a pan-HDAC inhibitor, in combination with a proteasome inhibitor and dexamethasone has improved survival in relapsing/refractory MM patients. We revealed that panobinostat inhibits MM cell growth by degrading the protein PPP3CA, a catalytic subunit of calcineurin. This degradation was suggested to be mediated by suppression of the chaperone function of HSP90 due to HDAC6 inhibition. Cytotoxicity due to the epigenetic regulation of tumor-associated genes by HDAC inhibitors has also been reported. In addition, HDAC6 inhibition enhances tumor immunity and has been suggested to strengthen the cytotoxic effects of therapeutic antibodies against myeloma. Furthermore, therapeutic strategies to enhance the anti-myeloma effects of HDAC inhibitors through the addition of other agents has been intensely evaluated. Thus, the treatment of patients with MM using HDAC inhibitors is promising as these drugs exert their effects through multiple modes of action.
Collapse
Affiliation(s)
- Yoichi Imai
- Department of Hematology/Oncology, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Mitsuhito Hirano
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Masayuki Kobayashi
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Muneyoshi Futami
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Arinobu Tojo
- Department of Hematology/Oncology, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
5
|
Transcriptomic profiles of tumor-associated neutrophils reveal prominent roles in enhancing angiogenesis in liver tumorigenesis in zebrafish. Sci Rep 2019; 9:1509. [PMID: 30728369 PMCID: PMC6365535 DOI: 10.1038/s41598-018-36605-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 10/31/2018] [Indexed: 12/12/2022] Open
Abstract
We have previously demonstrated the pro-tumoral role of neutrophils using a kras-induced zebrafish hepatocarcinogenesis model. To further illustrate the molecular basis of the pro-tumoral role, Tumor-associated neutrophils (TANs) were isolated by fluorescence-activated cell sorting (FACS) and transcriptomic analyses were carried out by RNA-Seq. Differentially expressed gene profiles of TANs from larvae, male and female livers indicate great variations during liver tumorigenesis, but the common responsive canonical pathways included an immune pathway (Acute Phase Response Signaling), a liver metabolism-related pathway (LXR/RXR Activation) and Thrombin Signaling. Consistent with the pro-tumoral role of TANs, gene module analysis identified a consistent down-regulation of Cytotoxicity module, which may allow continued proliferation of malignant cells. Gene Set Enrichment Analysis indicated up-regulation of several genes promoting angiogenesis. Consistent with this, we found decreased density of blood vessels accompanied with decreased oncogenic liver sizes in neutrophil-depleted larvae. Collectively, our study has indicated some molecular mechanisms of the pro-tumoral roles of TANs in hepatocarcinogenesis, including weakened immune clearance against tumor cells and enhanced function in angiogenesis.
Collapse
|
6
|
Huebner H, Hartner A, Rascher W, Strick RR, Kehl S, Heindl F, Wachter DL, Beckmann Md MW, Fahlbusch FB, Ruebner M. Expression and Regulation of Retinoic Acid Receptor Responders in the Human Placenta. Reprod Sci 2017; 25:1357-1370. [PMID: 29246089 DOI: 10.1177/1933719117746761] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Retinoic acid (RA) signaling through its receptors (RARA, RARB, RARG, and the retinoic X receptor RXRA) is essential for healthy placental and fetal development. An important group of genes regulated by RA are the RA receptor responders (RARRES1, 2, and 3). We set out to analyze their expression and regulation in healthy and pathologically altered placentas of preeclampsia (PE) and intrauterine growth restriction (IUGR) as well as in trophoblast cell lines. METHODS We performed immunohistochemical staining on placental sections and analyzed gene expression by real-time polymerase chain reaction. Additionally, we performed cell culture experiments and stimulated Swan71 and Jeg-3 cells with different RA derivates and 2'-deoxy-5-azacytidine (AZA) to induce DNA demethylation. RESULTS RARRES1, 2, and 3 and RARA, RARB, RARG, and RXRA are expressed in the extravillous part of the placenta. RARRES1, RARA, RARG, and RXRA were additionally detected in villous cytotrophoblasts. RARRES gene expression was induced via activation of RARA, RARB, and RARG in trophoblast cells. RARRES1 was overexpressed in villous trophoblasts and the syncytiotrophoblast from PE placentas, but not in IUGR without PE. Promoter methylation was detectable for RARRES1 and RARB based on their sensitivity toward AZA treatment of trophoblast cell lines. DISCUSSION RARRES1, 2 and 3 are expressed in the functional compartments of the human placenta and can be regulated by RA. We hypothesize that the epigenetic suppression of trophoblast RARRES1 and RARB expression and the upregulation of RARRES1 in PE trophoblast cells suggest an involvement of environmental factors (eg, maternal vitamin A intake) in the pathogenesis of this pregnancy complication.
Collapse
Affiliation(s)
- Hanna Huebner
- 1 Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Andrea Hartner
- 2 Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Wolfgang Rascher
- 2 Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Reiner R Strick
- 1 Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Sven Kehl
- 1 Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Felix Heindl
- 1 Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - David L Wachter
- 3 Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany * The authors are contributed equally
| | - Matthias W Beckmann Md
- 1 Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Fabian B Fahlbusch
- 2 Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias Ruebner
- 1 Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
7
|
VS-5584 mediates potent anti-myeloma activity via the upregulation of a class II tumor suppressor gene, RARRES3 and the activation of Bim. Oncotarget 2017; 8:101847-101864. [PMID: 29254208 PMCID: PMC5731918 DOI: 10.18632/oncotarget.21988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/22/2017] [Indexed: 11/25/2022] Open
Abstract
The PI3K/mTOR/AKT pathway is an integral regulator of survival and drug resistance in multiple myeloma (MM). VS-5584 was synthesized with dual-specific and equipotent activity against mTORC1/2 and all four Class I PI3K isoforms so as to durably inhibit this pathway. We show that VS-5584 is highly efficacious against MM cell lines even in the presence of IL-6 and IGF-1 and that this growth inhibition is partially dependent on Bim. Importantly, VS-5584 triggers apoptosis in patient cells with a favorable therapeutic index. Gene expression profiling revealed a VS-5584-induced upregulation of RARRES3, a class II tumor suppressor gene. MM patient databases, UAMS and APEX, show that RARRES3 is under-expressed in 11q13 subsets which correlates with the reduced effectiveness of VS-5584 in 11q13 cell lines. Silencing RARRES3 expression significantly rescues VS-5584-induced cell death and increases cyclin D2 expression but not cyclin D1 or other cyclins implying a role for RARRES3 in cell cycle arrest. In vivo, VS-5584 significantly reduces the tumor burden of MM mouse xenografts. We further identified that VS-5584 synergised with Dexamethasone, Velcade, and exceptionally so with HDAC inhibitor, Panobinostat. Interestingly, this was consistently observed in several patient samples, proposing a promising novel clinical strategy for combination treatment especially in relapsed/refractory patients.
Collapse
|
8
|
Wang H, Xu H, Xu T, Tan C, Jiang M, Chen Y, Hu X, Zhou J, Shen J, Qin R, Hu D, Huang Q, Wang M, Wang L, Duan D, Yan Y, Chen J. High expression of TIG3 predicts poor survival in patients with primary glioblastoma. Tumour Biol 2017. [PMID: 28639915 DOI: 10.1177/1010428317712135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
TIG3 (tazarotene-induced gene 3) has been reported to suppress the progression of several malignancies, where this gene is universally downregulated. However, the expression of TIG3 in primary glioblastoma and its relevance to patient's prognosis have not been elaborated. Thus, this study was aimed to evaluate TIG3 expression level in primary glioblastoma and investigate the prognostic value of TIG3 for patients. The Cancer Genome Atlas database was first utilized to analyze the expression and prognostic potential of TIG3 in 528 glioblastoma cases. Compared with control group, glioblastoma showed significantly elevated TIG3 expression (p < 0.001). Log-rank analysis revealed that higher expression of TIG3 was associated with shorter overall survival (358vs 383 days, p = 0.039). Furthermore, TIG3 protein expression detected by immunohistochemistry confirmed positive correlation of TIG3 expression and glioma grade and upregulation of TIG3 in our cohort of 101 primary glioblastoma patients compared to 16 normal brains. Finally, Kaplan-Meier analysis and Cox regression analysis identified high TIG3 expression as an independent risk factor for overall survival of primary glioblastoma patients (overall survival, 10 vs 13 months, p = 0.033; hazard ratio = 1.542, p = 0.046). Together, this study indicated that increased expression of TIG3 in primary glioblastoma is a novel biomarker for predicting poor outcome of patients. We then hypothesize that TIG3 may function in a different pattern in glioblastoma.
Collapse
Affiliation(s)
- Hongxiang Wang
- 1 Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hanchong Xu
- 1 Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tao Xu
- 1 Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Cong Tan
- 2 Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Mei Jiang
- 3 Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Yihong Chen
- 4 Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xinyu Hu
- 3 Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Jinxu Zhou
- 1 Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China.,5 Department of Neurosurgery, The 101th Hospital of PLA, Wuxi, China
| | - Junyan Shen
- 3 Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Rong Qin
- 1 Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China.,6 Department of Neurosurgery, The 184th Hospital of PLA, Yingtan, China
| | - Daiyu Hu
- 3 Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Qilin Huang
- 1 Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Min Wang
- 3 Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Lian Wang
- 3 Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Dongxia Duan
- 3 Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Yong Yan
- 1 Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Juxiang Chen
- 1 Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
9
|
Mardian EB, Bradley RM, Duncan RE. The HRASLS (PLA/AT) subfamily of enzymes. J Biomed Sci 2015; 22:99. [PMID: 26503625 PMCID: PMC4624172 DOI: 10.1186/s12929-015-0210-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/16/2015] [Indexed: 12/11/2022] Open
Abstract
The H-RAS-like suppressor (HRASLS) subfamily consists of five enzymes (1–5) in humans and three (1, 3, and 5) in mice and rats that share sequence homology with lecithin:retinol acyltransferase (LRAT). All HRASLS family members possess in vitro phospholipid metabolizing abilities including phospholipase A1/2 (PLA1/2) activities and O-acyltransferase activities for the remodeling of glycerophospholipid acyl chains, as well as N-acyltransferase activities for the production of N-acylphosphatidylethanolamines. The in vivo biological activities of the HRASLS enzymes have not yet been fully investigated. Research to date indicates involvement of this subfamily in a wide array of biological processes and, as a consequence, these five enzymes have undergone extensive rediscovery and renaming within different fields of research. This review briefly describes the discovery of each of the HRASLS enzymes and their role in cancer, and discusses the biochemical function of each enzyme, as well as the biological role, if known. Gaps in current understanding are highlighted and suggestions for future research directions are discussed.
Collapse
Affiliation(s)
- Emily B Mardian
- Department of Kinesiology, University of Waterloo, BMH 2415, Waterloo, ON, N2L 3G1, Canada.
| | - Ryan M Bradley
- Department of Kinesiology, University of Waterloo, BMH 2415, Waterloo, ON, N2L 3G1, Canada.
| | - Robin E Duncan
- Department of Kinesiology, University of Waterloo, BMH 1110, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
10
|
Wang L, Yu W, Ren X, Lin J, Jin C, Xia B. 1H, 13C, and 15N resonance assignments of the N-terminal domain of human TIG3. BIOMOLECULAR NMR ASSIGNMENTS 2012; 6:201-203. [PMID: 22290676 DOI: 10.1007/s12104-012-9357-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 01/17/2012] [Indexed: 05/31/2023]
Abstract
Human TIG3 protein is a member of H-REV107 protein family which belongs to the type II tumor suppressor family. TIG3 can induce apoptosis in cancer cells, and it also possesses Ca(2+)-independent phospholipase A(1/2) activity. The NMR assignments of the N-terminal domain of TIG3 are essential for its solution structure determination.
Collapse
Affiliation(s)
- Lei Wang
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, People’s Republic of China
| | | | | | | | | | | |
Collapse
|
11
|
Wu CC, Shyu RY, Wang CH, Tsai TC, Wang LK, Chen ML, Jiang SY, Tsai FM. Involvement of the prostaglandin D2 signal pathway in retinoid-inducible gene 1 (RIG1)-mediated suppression of cell invasion in testis cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2227-36. [PMID: 22960220 DOI: 10.1016/j.bbamcr.2012.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/06/2012] [Accepted: 08/21/2012] [Indexed: 12/12/2022]
Abstract
Retinoid-inducible gene 1 (RIG1), also called tazarotene-induced gene 3, belongs to the HREV107 gene family, which contains five members in humans. RIG1 is expressed in high levels in well-differentiated tissues, but its expression is decreased in cancer tissues and cancer cell lines. We found RIG1 to be highly expressed in testicular cells. When RIG1 was expressed in NT2/D1 testicular cancer cells, neither cell death nor cell viability was affected. However, RIG1 significantly inhibited cell migration and invasion in NT2/D1 cells. We found that prostaglandin D2 synthase (PTGDS) interacted with RIG1 using yeast two-hybrid screens. Further, we found PTGDS to be co-localized with RIG1 in NT2/D1 testis cells. In RIG1-expressing cells, elevated levels of prostaglandin D2 (PGD2), cAMP, and SRY-related high-mobility group box 9 (SOX9) were observed. This indicated that RIG1 can enhance PTGDS activity. Silencing of PTGDS expression significantly decreased RIG1-mediated cAMP and PGD2 production. Furthermore, silencing of PTGDS or SOX9 alleviated RIG1-mediated suppression of migration and invasion. These results suggest that RIG1 will suppress cell migration/invasion through the PGD2 signaling pathway. In conclusion, RIG1 can interact with PTGDS to enhance its function and to further suppress NT2/D1 cell migration and invasion. Our study suggests that RIG1-PGD2 signaling might play an important role in cancer cell suppression in the testis.
Collapse
Affiliation(s)
- Chang-Chieh Wu
- Department of Surgery, Tri-Service General Hospital, Taipei 114, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hsu TH, Chu CC, Jiang SY, Hung MW, Ni WC, Lin HE, Chang TC. Expression of the class II tumor suppressor gene RIG1 is directly regulated by p53 tumor suppressor in cancer cell lines. FEBS Lett 2012; 586:1287-93. [PMID: 22616991 DOI: 10.1016/j.febslet.2012.03.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 02/05/2023]
Abstract
Recent studies indicated that the RIG1 (RARRES3/TIG3) plays an important role in cell proliferation, differentiation, and apoptosis. However, the regulatory mechanism of RIG1 gene expression has not been clearly elucidated. In this study, we identified a functional p53 response element (p53RE) in the RIG1 gene promoter. Transfection studies revealed that the RIG1 promoter activity was greatly enhanced by wild type but not mutated p53 protein. Sequence specific mutation of the p53RE abolished p53-mediated transactivation. Specific binding of p53 protein to the rig-p53RE was demonstrated using electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay. Further studies confirmed that the expression of RIG1 mRNA and protein is enhanced through increased p53 protein in HepG2 or in H24-H1299 cells. In conclusion, our results indicated that RIG1 gene is a downstream target of p53 in cancer cell lines.
Collapse
Affiliation(s)
- Tzu-Hui Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
13
|
Tsai FM, Shyu RY, Lin SC, Wu CC, Jiang SY. Induction of apoptosis by the retinoid inducible growth regulator RIG1 depends on the NC motif in HtTA cervical cancer cells. BMC Cell Biol 2009; 10:15. [PMID: 19245694 PMCID: PMC2656461 DOI: 10.1186/1471-2121-10-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 02/26/2009] [Indexed: 02/06/2023] Open
Abstract
Background Retinoid-inducible gene 1 (RIG1), also known as tazarotene-induced gene 3 or retinoic-acid receptor responder 3, is a growth regulator, which induces apoptosis and differentiation. RIG1 is classified into the NC protein family. This study investigated functional domains and critical amino acids associated with RIG1-mediated cell death and apoptosis. Results Using enhanced green fluorescence protein (EGFP)-tagged RIG1 variants, RIG1 proteins with deletion at the NC domain significantly decreased cell death induced by RIG1, and fusion variants containing only the NC domain significantly induced apoptosis of HtTA cervical cancer cells. The EGFP-RIG1-induced apoptosis was significantly decreased in cells expressing N112C113 motif double- (NC→FG) or triple- (NCR→FGE) mutated RIG1 variants. Using dodecapeptides, nuclear localization and profound cell death was observed in HtTA cells expressing wild type RIG1111–123 or Leu121-mutated RIG1111–123:L→ C peptide, but peptides double- or triple-mutated at the NC motif alone, RIG1111–123:NC→FG or RIG1111–123:NCR→FGE, were cytoplasmically localized and did not induce apoptosis. The RIG1111–123 also induced apoptosis of A2058 melanoma cells but not normal human fibroblasts. Conclusion The NC domain, especially the NC motif, plays the major role in RIG1-mediated pro-apoptotic activity. The RIG1111–123 dodecapeptide exhibited strong pro-apoptotic activity and has potential as an anticancer drug.
Collapse
Affiliation(s)
- Fu-Ming Tsai
- Department of Research, Buddhist Tzu Chi General Hospital Taipei Branch, Taipei county 231, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
14
|
Tsai FM, Shyu RY, Jiang SY. RIG1 suppresses Ras activation and induces cellular apoptosis at the Golgi apparatus. Cell Signal 2006; 19:989-99. [PMID: 17196792 DOI: 10.1016/j.cellsig.2006.11.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 11/16/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
Retinoid-inducible gene 1 encodes RIG1 is a growth regulator, which inhibits the pathways of the RAS/mitogen-activated protein kinases by suppressing the activation of RAS. Confocal microscopic analysis demonstrated that RIG1 is localized in the endoplasmic reticulum (ER) and Golgi apparatus in HtTA cervical cancer cells. Carboxyterminal-deleted RIG1 targeted to the Golgi or ER was constructed and validated. The activation of HRAS was inhibited by 25.1% or 81.4% in cells cotransfected with wild-type or Golgi-targeted RIG1, respectively. Expression of wild-type or Golgi-targeted RIG1 for 24 h induced cellular apoptosis in HtTA cells, as assessed by MTT assay, the release of lactate dehydrogenase, and chromatin condensation. In contrast, ER-targeted RIG1 and carboxyterminal-deleted RIG1 (RIG1DeltaC) exhibited no activity. Caspase-2, -3, and -9 were activated following the expression of wild-type and Golgi-targeted RIG1. Although the caspase-3 inhibitor Z-DEVD-FMK partially or completely reversed the cell death induced by wild-type or Golgi-targeted RIG1, it did not prevent the anti-RAS effect of RIG1. In conclusion, the proapoptotic and anti-RAS activities of RIG1 are primarily associated with the Golgi localization of the protein. The proapoptotic activities of RIG1 are mediated through the activation of caspase-2 and -3 and are independent of its effect on RAS.
Collapse
Affiliation(s)
- Fu-Ming Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, and Department of Medical Education and Research, Buddhist Tzu Chi General Hospital, 289 Jianguo Road, Xindian City, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
15
|
Redondo-Muñoz J, Escobar-Díaz E, Samaniego R, Terol MJ, García-Marco JA, García-Pardo A. MMP-9 in B-cell chronic lymphocytic leukemia is up-regulated by alpha4beta1 integrin or CXCR4 engagement via distinct signaling pathways, localizes to podosomes, and is involved in cell invasion and migration. Blood 2006; 108:3143-51. [PMID: 16840734 DOI: 10.1182/blood-2006-03-007294] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) progression is determined by malignant cell extravasation and lymphoid tissue infiltration. We have studied the role and regulation of matrix metalloproteinase-9 (MMP-9) in B-CLL cell migration and invasion. Adhesion of B-CLL cells to the fibronectin fragment FN-H89, VCAM-1, or TNF-alpha-activated human umbilical vein endothelial cells (HUVECs) up-regulated MMP-9 production, measured by gelatin zymography. This effect was mediated by alpha4beta1 integrin and required PI3-K/Akt signaling. The chemokine CXCL12 also up-regulated MMP-9, independently of alpha4beta1 and involving ERK1/2 but not Akt activity. Accordingly, alpha4beta1 engagement activated the PI3-K/Akt/NF-kappaB pathway, while CXCL12/CXCR4 interaction activated ERK1/2/c-Fos signaling. Anti-MMP-9 antibodies, the MMP-9 inhibitor TIMP-1, or transfection with 3 different MMP-9 siRNAs significantly blocked migration through Matrigel or HUVECs. Cell-associated MMP-9 was mainly at the membrane and contained the proactive and mature forms. Moreover, B-CLL cells formed podosomes upon adhesion to FN-H89, VCAM-1, or fibronectin; MMP-9 localized to podosomes in a PI3-K-dependent manner and degraded a fibronectin/gelatin matrix. Our results are the first to show that MMP-9 is physiologically regulated by alpha4beta1 integrin and CXCL12 and plays a key role in cell invasion and transendothelial migration, thus contributing to B-CLL progression. MMP-9 could therefore constitute a target for treatment of this malignancy.
Collapse
Affiliation(s)
- Javier Redondo-Muñoz
- Departamento de Inmunología, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Tsai FM, Shyu RY, Jiang SY. RIG1 inhibits the Ras/mitogen-activated protein kinase pathway by suppressing the activation of Ras. Cell Signal 2006; 18:349-58. [PMID: 16005186 DOI: 10.1016/j.cellsig.2005.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 05/06/2005] [Indexed: 01/17/2023]
Abstract
The retinoid-inducible gene 1 (RIG1) protein is a retinoid-inducible growth regulator. Previous studies have shown that the RIG1 protein inhibits the signaling pathways of Ras/mitogen-activated protein kinases. However, neither the mode of action nor the site of inhibition of RIG1 is known. This study investigated the effects of RIG1, and the mechanisms responsible for these effects, on the activation of Ras proteins in HtTA cervical cancer cells. RIG1 reduced the levels of activated Ras (Ras-GTP) and total Ras protein in cells transfected with mutated H-, N-, or K-Ras(G12V), or in cells transfected with the wild type H- or N-Ras followed by stimulation with epidermal growth factor. The half-life of Ras protein decreased from more than 36 h in control cells to 18 h in RIG1-transfected cells. RIG1 immunoprecipitated with the Ras protein in co-transfected cellular lysates. In contrast to the predominant plasma membrane localization in control cells, the H-Ras fusion protein EGFP-H-Ras was localized within a discrete cytoplasmic compartment where it co-localized with RIG1. RIG1 inhibited more than 93% of the Elk- and CHOP-mediated transactivation induced by H- or K-Ras(G12V). However, RIG1 did not inhibit the transactivation induced by MEK1 or MEK3, and failed to suppress the phosphorylation of extracellular signal-regulated kinases 1 and 2 induced by the constitutively activated B-Raf(V599E). The RIG1 with carboxyl terminal truncation (RIG1DeltaC) did not immunoprecipitate with Ras and had no effect on Ras activation or transactivation of the downstream signal pathways. These data indicate that RIG1 exerts its inhibitory effect at the level of Ras activation, which is independent of Ras subtype but dependent on the membrane localization of the RIG1 protein. This inhibition of Ras activation may be mediated through downregulation of Ras levels and alteration of Ras subcellular distribution.
Collapse
Affiliation(s)
- Fu-Ming Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | | | | |
Collapse
|
17
|
Wu CC, Shyu RY, Chou JM, Jao SW, Chao PC, Kang JC, Wu ST, Huang SL, Jiang SY. RARRES1 expression is significantly related to tumour differentiation and staging in colorectal adenocarcinoma. Eur J Cancer 2006; 42:557-65. [PMID: 16426842 DOI: 10.1016/j.ejca.2005.11.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 11/16/2005] [Accepted: 11/22/2005] [Indexed: 10/25/2022]
Abstract
Retinoic acid receptor responder 1 (RARRES1) is a retinoid regulated gene. Its expression is frequently down-regulated through DNA hypermethylation in several types of malignant tissues. This study investigated the clinical significance of RARRES1 protein and its association with RARRES3 protein expression in 161 (26 adenoma, 13 distal normal mucosa and 122 primary colorectal adenocarcinoma) paraffin-embedded colorectal tissues by immunohistochemistry. RARRES1 protein was detected at the highest levels in terminally differentiated cells of normal mucosal tissues and all 26 adenoma tissues. Among 122 colorectal adenocarcinomas, the poorly differentiated adenocarcinomas and Dukes' stage D tumours showed a significant decrease in RARRES1 expression (P < 0.001 and P < 0.01, respectively). RARRES1 expression was significantly (P < 0.001) correlated with RARRES3 expression, which was positively associated with tumour differentiation (P < 0.001). Difference in expression of RARRES1 among 119 patients had no apparent effect on patient survival. Our results suggest the role of RARRES1 in colorectal epithelial differentiation, and the down-regulation of RARRES1 is related to stage D progression.
Collapse
Affiliation(s)
- Chang-Chieh Wu
- Graduate Institutes of Medical Sciences, National Defense Medical Center, 161 Minchuan East Road, Sec. 6, Taipei 114, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nam SW, Park JY, Ramasamy A, Shevade S, Islam A, Long PM, Park CK, Park SE, Kim SY, Lee SH, Park WS, Yoo NJ, Liu ET, Miller LD, Lee JY. Molecular changes from dysplastic nodule to hepatocellular carcinoma through gene expression profiling. Hepatology 2005; 42:809-18. [PMID: 16175600 DOI: 10.1002/hep.20878] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Progression of hepatocellular carcinoma (HCC) is a stepwise process that proceeds from pre-neoplastic lesions--including low-grade dysplastic nodules (LGDNs) and high-grade dysplastic nodules (HGDNs)--to advanced HCC. The molecular changes associated with this progression are unclear, however, and the morphological cues thought to distinguish pre-neoplastic lesions from well-differentiated HCC are not universally accepted. To understand the multistep process of hepato-carcinogenesis at the molecular level, we used oligo-nucleotide microarrays to investigate the transcription profiles of 50 hepatocellular nodular lesions ranging from LGDNs to primary HCC (Edmondson grades 1-3). We demonstrated that gene expression profiles can discriminate not only between dysplastic nodules and overt carcinoma but also between different histological grades of HCC via unsupervised hierarchical clustering with 10,376 genes. We identified 3,084 grade-associated genes, correlated with tumor progression, using one-way ANOVA and a one-versus-all unpooled t test. Functional assignment of these genes revealed discrete expression clusters representing grade-dependent biological properties of HCC. Using both diagonal linear discriminant analysis and support vector machines, we identified 240 genes that could accurately classify tumors according to histological grade, especially when attempting to discriminate LGDNs, HGDNs, and grade 1 HCC. In conclusion, a clear molecular demarcation between dysplastic nodules and overt HCC exists. The progression from grade 1 through grade 3 HCC is associated with changes in gene expression consistent with plausible functional consequences.
Collapse
Affiliation(s)
- Suk Woo Nam
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jiang SY, Wu MS, Chen LM, Hung MW, Lin HE, Chang GG, Chang TC. Identification and characterization of the retinoic acid response elements in the human RIG1 gene promoter. Biochem Biophys Res Commun 2005; 331:630-9. [PMID: 15850806 DOI: 10.1016/j.bbrc.2005.03.214] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Indexed: 12/11/2022]
Abstract
The expression of retinoic acid-induced gene 1 (RIG1), a class II tumor suppressor gene, is induced in cells treated with retinoids. RIG1 has been shown to express ubiquitously and the increased expression of this gene appears to suppress cell proliferation. Recent studies also demonstrated that this gene may play an important role in cell differentiation and the progression of cancer. In spite of the remarkable regulatory role of this protein, the molecular mechanism of RIG1 expression induced by retinoids remains to be clarified. The present study was designed to study the molecular mechanism underlying the all-trans retinoic acid (atRA)-mediated induction of RIG1 gene expression. Polymerase chain reaction was used to generate a total of 10 luciferase constructs that contain various fragments of the RIG1 5'-genomic region. These constructs were then transfected into human gastric cancer SC-M1 and breast cancer T47D cells for transactivation analysis. atRA exhibited a significant induction in luciferase activity only through the -4910/-5509 fragment of the 5'-genomic region of RIG1 gene relative to the translation initiation site. Further analysis of this promoter fragment indicated that the primary atRA response region is located in between -5048 and -5403 of the RIG1 gene. Within this region, a direct repeat sequence with five nucleotide spacing, 5'-TGACCTctattTGCCCT-3' (DR5, -5243/-5259), and an inverted repeat sequence with six nucleotide spacing, 5'-AGGCCAtggtaaTGGCCT-3' (IR6, -5323/-5340), were identified. Deletion and mutation of the DR5, but not the IR6 element, abolished the atRA-mediated activity. Electrophoretic mobility shift assays with nuclear extract from atRA-treated cells indicated the binding of retinoic acid receptor (RAR) and retinoid X receptor (RXR) heterodimers specifically to this response element. In addition to the functional DR5, the region contains many other potential sequence elements that are required to maximize the atRA-mediated induction. Taken together, we have identified and characterized the functional atRA response element that is responsible for the atRA-mediated induction of RIG1 gene.
Collapse
Affiliation(s)
- Shun-Yuan Jiang
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
20
|
Zirn B, Samans B, Spangenberg C, Graf N, Eilers M, Gessler M. All-trans retinoic acid treatment of Wilms tumor cells reverses expression of genes associated with high risk and relapse in vivo. Oncogene 2005; 24:5246-51. [PMID: 15897880 DOI: 10.1038/sj.onc.1208725] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Wilms tumor is one of the most frequent neoplasias in children. Our previous microarray screening in a large series of Wilms tumors revealed several candidate genes that are deregulated in advanced tumors and are part of the retinoic acid signaling pathway. To investigate whether retinoic acid could be employed as a novel therapeutic agent in these tumors, we treated cultured Wilms tumor cells with different concentrations of all-trans retinoic acid (ATRA) and assessed gene expression changes by real-time RT-PCR as well as microarray analysis. Several genes like RARRES1, RARRES3, CTGF, CKS2, CCNA2, IGFBP3, UBE2C, CCL2 or ITM2B that were previously found to be deregulated in advanced tumors exhibited opposite expression changes after ATRA treatment. In addition to enhanced retinoid signaling, the transforming growth factor-beta (TGFbeta) pathway was strongly activated by ATRA treatment of Wilms tumor cells. Both the retinoic acid and the TGFbeta pathway mediate inhibition of cell growth. These findings represent the first molecular evidence of a potential benefit from ATRA treatment in Wilms tumors.
Collapse
Affiliation(s)
- Birgit Zirn
- Physiological Chemistry I, Theodor-Boveri-Institute, Biocenter of the University of Wuerzburg, Wuerzburg 97074, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Lotz K, Kellner T, Heitmann M, Nazarenko I, Noske A, Malek A, Gontarewicz A, Schäfer R, Sers C. Suppression of theTIG3 tumor suppressor gene in human ovarian carcinomas is mediatedvia mitogen-activated kinase-dependent and -independent mechanisms. Int J Cancer 2005; 116:894-902. [PMID: 15856468 DOI: 10.1002/ijc.21127] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The TIG3 gene is a retinoic acid inducible class II tumor suppressor gene downregulated in several human tumors and malignant cell lines. Diminished TIG3 expression correlates with decreased differentiation whereas forced expression of TIG3 suppresses oncogenic signaling pathways and subsequently induces differentiation or apoptosis in tumor cells. Analysis of TIG3 mRNA expression in a large set of cDNA pools derived from matched tumor and normal human tissues showed a significant downregulation of TIG3 in 29% of the cDNA samples obtained from ovarian carcinomas. Using in situ hybridization, we demonstrated expression of TIG3 in the epithelial lining of 7 normal ovaries but loss of TIG3 expression in 15/19 of human ovarian carcinoma tissues. In SKOV-3, CAOV-3 and ES-2 ovarian carcinoma cell lines, downregulation of TIG3 mRNA was reversible and dependent on an activated MEK-ERK signaling pathway. Re-expression of TIG3 mRNA in these cells upon specific interference with the MEK-pathway was correlated with growth inhibition of the cells. In OVCAR-3 and A27/80 ovarian carcinoma cells, TIG3 suppression is MEK-ERK independent, but expression could be reconstituted upon interferon gamma (IFNgamma) induction. Overexpression of TIG3 in A27/80 ovarian carcinoma cells significantly impaired cell growth and despite increased mRNA levels, TIG3 protein was hardly detectable. These results suggest that TIG3 is negatively regulated by an activated MEK-ERK signaling pathway. Further mechanisms must interfere with TIG3 expression that are independent of MEK and partially include interferon-responsive components.
Collapse
Affiliation(s)
- Kristina Lotz
- Institute of Pathology, University Hospital Charité, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Higuchi E, Chandraratna RAS, Hong WK, Lotan R. Induction of TIG3, a putative class II tumor suppressor gene, by retinoic acid in head and neck and lung carcinoma cells and its association with suppression of the transformed phenotype. Oncogene 2003; 22:4627-35. [PMID: 12879006 DOI: 10.1038/sj.onc.1206235] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Retinoids can regulate the proliferation and differentiation of various tumor cells. It is thought that nuclear retinoid receptors mediate these effects by regulating gene transcription. The identity of specific retinoid target genes is only beginning to be unraveled. One candidate for mediating retinoid-induced growth suppression is the novel class II tumor suppressor gene tazarotene-induced gene 3 (TIG3). We examined the constitutive and all-trans retinoic acid (ATRA)-inducible expression of TIG3 mRNA in five head and neck squamous cell carcinoma (HNSCC) and five nonsmall cell lung carcinoma (NSCLC) cell lines to determine whether it is associated with their responsiveness to ATRA. The expression patterns of retinoic acid receptor beta (RARbeta), another putative retinoid-inducible tumor suppressor gene, were also examined. The constitutive TIG3 expression was high in one HNSCC cell line and two NSCLC cell lines, and moderate to very low in the other cells. Some RARbeta-expressing cells had either low or undetectable TIG3 levels and vice versa. ATRA (1 microM; 48 h) increased TIG3 mRNA in 4/5 HNSCCs and 3/5 NSCLCs and RARbeta mRNA in some of the same cell lines, but also in cells that did not show TIG3 induction. TIG3 mRNA was induced by ATRA between 6 and 12 h in most of the responsive cells. ATRA concentrations required for TIG3 induction ranged from 1 to 500 nM depending on the cell line. The pan-RAR antagonists AGN193109 and the RARalpha antagonist Ro 41-5253 blocked TIG3 induction by ATRA. ATRA suppressed anchorage-independent colony formation in most cells that had a high or moderate constitutive or induced TIG3 expression level. In contrast, RARbeta mRNA expression pattern was not correlated with sensitivity to ATRA. These results suggest that TIG3 is regulated by ATRA via retinoid receptors in certain aerodigestive tract cancer cells, and its induction by ATRA is associated with the suppression of anchorage-independent growth.
Collapse
Affiliation(s)
- Eisaku Higuchi
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
23
|
Shyu RY, Jiang SY, Chou JM, Shih YL, Lee MS, Yu JC, Chao PC, Hsu YJ, Jao SW. RARRES3 expression positively correlated to tumour differentiation in tissues of colorectal adenocarcinoma. Br J Cancer 2003; 89:146-51. [PMID: 12838316 PMCID: PMC2394219 DOI: 10.1038/sj.bjc.6601049] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
RARRES3 is a retinoid-inducible class II tumour-suppressor gene. This study analysed the expression of RARRES3 protein in normal, adenoma and carcinoma tissues of the colorectum and its correlation with tumour differentiation. The expression of RARRES3 protein in 151 paraffin-embedded colorectal tissues (11 distal normal mucosa, 20 adenoma and 120 colorectal adenocarcinoma) was determined by immunohistochemistry. RARRES3 protein was expressed in all 11 distal normal, 120 adjacent normal and 20 adenoma tissues. In distal normal tissues, RARRES3 protein was expressed at the highest levels in differentiated mucosal epithelial cells. Among 120 carcinoma tissues, RARRES3 protein was detected in 97.6% (40 out of 41), 79.4% (54 out of 68) and 17.3% (three out of 11) of well-, moderately and poorly differentiated tumours, respectively. The expression of RARRES3 protein was positively correlated to tumour differentiation (test for trend, P<0.0001). Also, levels of RARRES3 protein were found to be higher in the normal tissues adjacent to 14.6% (six out of 41), 51.5% (35 out of 68), and 90.1% (10 out of 11) of well-, moderately and poorly differentiated tumours, respectively. The decreases in tumour differentiation and RARRES3 expression were significantly correlated compared to the adjacent normal tissues (test for trend, P<0.0001). The prognostic implication of RARRES3 protein expression was studied in 107 tumour, and no statistical difference in survival was observed. The expression of RARRES3 protein was positively correlated to cellular differentiation of normal and adenocarcinoma tissues of the colorectum, which supports the role of RARRES3 in normal and malignant epithelial differentiation of colorectum. RARRES3 expression was decreased only in carcinoma tissue, which suggests that altered RARRES3 expression occurs late in colorectal carcinogenesis.
Collapse
Affiliation(s)
- R-Y Shyu
- Department of Internal Medicine, Tri-Service General Hospital, 325 Chengung Rd, Sec. 2, Taipei, Taiwan 114, Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Garcia-Pardo A. Reply to Auer. Leukemia 2002. [DOI: 10.1038/sj.leu.2402508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Garcia-Pardo A. Response to Auer: the class II tumor-suppressor gene RARRES3 is expressed in B-CLL and down-regulated with disease progression. Leukemia 2002. [DOI: 10.1038/sj.leu.2402506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Auer RL, Bertoni F, Jones C, Cotter FE. The class II tumour suppressor gene RARRES3 maps to 11q12, not 11q23. Leukemia 2002; 16:1396; author reply 1396-7. [PMID: 12094268 DOI: 10.1038/sj.leu.2402505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2001] [Accepted: 01/15/2002] [Indexed: 11/09/2022]
|
27
|
Response to Garcia-Pardo. Leukemia 2002. [DOI: 10.1038/sj.leu.2402507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|