1
|
Wu X, Song W, Cheng C, Liu Z, Li X, Cui Y, Gao Y, Li D. Small molecular inhibitors for KRAS-mutant cancers. Front Immunol 2023; 14:1223433. [PMID: 37662925 PMCID: PMC10470052 DOI: 10.3389/fimmu.2023.1223433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Three rat sarcoma (RAS) gene isoforms, KRAS, NRAS, and HRAS, constitute the most mutated family of small GTPases in cancer. While the development of targeted immunotherapies has led to a substantial improvement in the overall survival of patients with non-KRAS-mutant cancer, patients with RAS-mutant cancers have an overall poorer prognosis owing to the high aggressiveness of RAS-mutant tumors. KRAS mutations are strongly implicated in lung, pancreatic, and colorectal cancers. However, RAS mutations exhibit diverse patterns of isoforms, substitutions, and positions in different types of cancers. Despite being considered "undruggable", recent advances in the use of allele-specific covalent inhibitors against the most common mutant form of RAS in non-small-cell lung cancer have led to the development of effective pharmacological interventions against RAS-mutant cancer. Sotorasib (AMG510) has been approved by the FDA as a second-line treatment for patients with KRAS-G12C mutant NSCLC who have received at least one prior systemic therapy. Other KRAS inhibitors are on the way to block KRAS-mutant cancers. In this review, we summarize the progress and promise of small-molecule inhibitors in clinical trials, including direct inhibitors of KRAS, pan-RAS inhibitors, inhibitors of RAS effector signaling, and immune checkpoint inhibitors or combinations with RAS inhibitors, to improve the prognosis of tumors with RAS mutations.
Collapse
Affiliation(s)
- Xuan Wu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Wenping Song
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Henan Engineering Research Center for Tumor Precision Medicine and Comprehensive Evaluation, Henan Cancer Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Anticancer Drug Research, Henan Cancer Hospital, Zhengzhou, China
| | - Cheng Cheng
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Ziyang Liu
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Xiang Li
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yu Cui
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yao Gao
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Ding Li
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Henan Engineering Research Center for Tumor Precision Medicine and Comprehensive Evaluation, Henan Cancer Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Anticancer Drug Research, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
2
|
Shen D, Liu L, Xu X, Song H, Zhang J, Xu W, Zhao F, Liang J, Liao C, Wang Y, Xia T, Wang C, Lou F, Cao S, Qin J, Tang Y. Spectrum and clinical features of gene mutations in Chinese pediatric acute lymphoblastic leukemia. BMC Pediatr 2023; 23:62. [PMID: 36739388 PMCID: PMC9898934 DOI: 10.1186/s12887-023-03856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/19/2023] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The 5-year survival rate of children with acute lymphoblastic leukemia (ALL) is 85-90%, with a 10-15% rate of treatment failure. Next-generation sequencing (NGS) identified recurrent mutated genes in ALL that might alter the diagnosis, classification, prognostic stratification, treatment, and response to ALL. Few studies on gene mutations in Chinese pediatric ALL have been identified. Thus, an in-depth understanding of the biological characteristics of these patients is essential. The present study aimed to characterize the spectrum and clinical features of recurrent driver gene mutations in a single-center cohort of Chinese pediatric ALL. METHODS We enrolled 219 patients with pediatric ALL in our single center. Targeted sequencing based on NGS was used to detect gene mutations in patients. The correlation was analyzed between gene mutation and clinical features, including patient characteristics, cytogenetics, genetic subtypes, risk stratification and treatment outcomes using χ2-square test or Fisher's exact test for categorical variables. RESULTS A total of 381 gene mutations were identified in 66 different genes in 152/219 patients. PIK3R1 mutation was more common in infants (P = 0.021). KRAS and FLT3 mutations were both more enriched in patients with hyperdiploidy (both P < 0.001). NRAS, PTPN11, FLT3, and KMT2D mutations were more common in patients who did not carry the fusion genes (all P < 0.050). PTEN mutation was significantly associated with high-risk ALL patients (P = 0.011), while NOTCH1 mutation was common in middle-risk ALL patients (P = 0.039). Patients with ETV6 or PHF6 mutations were less sensitive to steroid treatment (P = 0.033, P = 0.048, respectively). CONCLUSION This study depicted the specific genomic landscape of Chinese pediatric ALL and revealed the relevance between mutational spectrum and clinical features of Chinese pediatric ALL, which highlights the need for molecular classification, risk stratification, and prognosis evaluation.
Collapse
Affiliation(s)
- Diying Shen
- grid.13402.340000 0004 1759 700XPediatric Hematology-Oncology Center, Zhejiang Provincial Center for Childhood Leukemia Diagnosis and Treatment, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lixia Liu
- Acornmed Biotechnology Co., Ltd, Tianjin, China
| | - Xiaojun Xu
- grid.13402.340000 0004 1759 700XPediatric Hematology-Oncology Center, Zhejiang Provincial Center for Childhood Leukemia Diagnosis and Treatment, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hua Song
- grid.13402.340000 0004 1759 700XPediatric Hematology-Oncology Center, Zhejiang Provincial Center for Childhood Leukemia Diagnosis and Treatment, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jingying Zhang
- grid.13402.340000 0004 1759 700XPediatric Hematology-Oncology Center, Zhejiang Provincial Center for Childhood Leukemia Diagnosis and Treatment, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Weiqun Xu
- grid.13402.340000 0004 1759 700XPediatric Hematology-Oncology Center, Zhejiang Provincial Center for Childhood Leukemia Diagnosis and Treatment, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Fenying Zhao
- grid.13402.340000 0004 1759 700XPediatric Hematology-Oncology Center, Zhejiang Provincial Center for Childhood Leukemia Diagnosis and Treatment, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Juan Liang
- grid.13402.340000 0004 1759 700XPediatric Hematology-Oncology Center, Zhejiang Provincial Center for Childhood Leukemia Diagnosis and Treatment, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chan Liao
- grid.13402.340000 0004 1759 700XPediatric Hematology-Oncology Center, Zhejiang Provincial Center for Childhood Leukemia Diagnosis and Treatment, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Wang
- grid.13402.340000 0004 1759 700XPediatric Hematology-Oncology Center, Zhejiang Provincial Center for Childhood Leukemia Diagnosis and Treatment, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Tian Xia
- grid.13402.340000 0004 1759 700XPediatric Hematology-Oncology Center, Zhejiang Provincial Center for Childhood Leukemia Diagnosis and Treatment, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | | | - Feng Lou
- Acornmed Biotechnology Co., Ltd, Tianjin, China
| | - Shanbo Cao
- Acornmed Biotechnology Co., Ltd, Tianjin, China
| | - Jiayue Qin
- Acornmed Biotechnology Co., Ltd, Tianjin, China
| | - Yongmin Tang
- Pediatric Hematology-Oncology Center, Zhejiang Provincial Center for Childhood Leukemia Diagnosis and Treatment, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
3
|
Toribio ML, González-García S. Notch Partners in the Long Journey of T-ALL Pathogenesis. Int J Mol Sci 2023; 24:1383. [PMID: 36674902 PMCID: PMC9866461 DOI: 10.3390/ijms24021383] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological disease that arises from the oncogenic transformation of developing T cells during T-lymphopoiesis. Although T-ALL prognosis has improved markedly in recent years, relapsing and refractory patients with dismal outcomes still represent a major clinical issue. Consequently, understanding the pathological mechanisms that lead to the appearance of this malignancy and developing novel and more effective targeted therapies is an urgent need. Since the discovery in 2004 that a major proportion of T-ALL patients carry activating mutations that turn NOTCH1 into an oncogene, great efforts have been made to decipher the mechanisms underlying constitutive NOTCH1 activation, with the aim of understanding how NOTCH1 dysregulation converts the physiological NOTCH1-dependent T-cell developmental program into a pathological T-cell transformation process. Several molecular players have so far been shown to cooperate with NOTCH1 in this oncogenic process, and different therapeutic strategies have been developed to specifically target NOTCH1-dependent T-ALLs. Here, we comprehensively analyze the molecular bases of the cross-talk between NOTCH1 and cooperating partners critically involved in the generation and/or maintenance and progression of T-ALL and discuss novel opportunities and therapeutic approaches that current knowledge may open for future treatment of T-ALL patients.
Collapse
Affiliation(s)
- María Luisa Toribio
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | | |
Collapse
|
4
|
Pillai PM, Mallory N, Pierro J, Saliba J, Newman D, Hu J, Bhatla T, Raetz E, Carroll WL, Evensen NA. Activation of the mitogen-activated protein kinase-extracellular signal-regulated kinase pathway in childhood B-cell acute lymphoblastic leukemia. Pediatr Blood Cancer 2022; 69:e29771. [PMID: 35593589 DOI: 10.1002/pbc.29771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/04/2022] [Accepted: 04/22/2022] [Indexed: 11/09/2022]
Abstract
RAS mutations are frequently observed in childhood B-cell acute lymphoblastic leukemia (B-ALL) and previous studies have yielded conflicting results as to whether they are associated with a poor outcome. We and others have demonstrated that the mitogen-activated protein kinase-extracellular signal-regulated kinase (MAPK) pathway can be activated through epigenetic mechanisms in the absence of RAS pathway mutations. Herein, we examined whether MAPK activation, as determined by measuring phosphorylated extracellular signal-regulated kinase (pERK) levels in 80 diagnostic patient samples using phosphoflow cytometry, could be used as a prognostic biomarker for pediatric B-ALL. The mean fluorescence intensity of pERK (MFI) was measured at baseline and after exogenous stimulation with or without pretreatment with the mitogen-activated protein kinase kinase (MEK) inhibitor trametinib. Activation levels (MFI stimulated/MFI baseline) ranged from 0.76 to 4.40 (median = 1.26), and inhibition indexes (MFI stimulated/MFI trametinib stimulated) ranged from 0.439 to 5.640 (median = 1.30), with no significant difference between patients with wildtype versus mutant RAS for either. Logistic regression demonstrated that neither MAPK activation levels nor RAS mutation status at diagnosis alone or in combination was prognostic of outcome. However, 35% of RAS wildtype samples showed MAPK inhibition indexes greater than the median, thus raising the possibility that therapeutic strategies to inhibit MAPK activation may not be restricted to patients whose blasts display Ras pathway defects.
Collapse
Affiliation(s)
- Pallavi M Pillai
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Mount Sinai Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nicole Mallory
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Joanna Pierro
- Northwell Health, Staten Island University Hospital, Staten Island, New York, USA
| | - Jason Saliba
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Daniel Newman
- Penn Medicine, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Jiyuan Hu
- Department of Population Health, Division of Biostatistics, NYU Grossman School of Medicine, New York, New York, USA
| | - Teena Bhatla
- Department of Pediatrics, Children's Hospital of New Jersey at NBI, RWJBarnabas Health, Newark, New Jersey, USA
| | - Elizabeth Raetz
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA.,Department of Pediatrics, Division of Pediatric Hematology/Oncology, NYU Grossman School of Medicine, New York, New York, USA
| | - William L Carroll
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA.,Department of Pediatrics, Division of Pediatric Hematology/Oncology, NYU Grossman School of Medicine, New York, New York, USA
| | - Nikki A Evensen
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| |
Collapse
|
5
|
Validation of a small molecule inhibitor of PDE6D-RAS interaction with favorable anti-leukemic effects. Blood Cancer J 2022; 12:64. [PMID: 35422065 PMCID: PMC9010429 DOI: 10.1038/s41408-022-00663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
RAS mutations prevalent in high-risk leukemia have been linked to relapse and chemotherapy resistance. Efforts to directly target RAS proteins have been largely unsuccessful. However, since RAS-mediated transformation is dependent on signaling through the RAS-related C3 botulinum toxin substrate (RAC) small GTPase, we hypothesized that targeting RAC may be an effective therapeutic approach in RAS mutated tumors. Here we describe multiple small molecules capable of inhibiting RAC activation in acute lymphoblastic leukemia cell lines. One of these, DW0254, also demonstrates promising anti-leukemic activity in RAS-mutated cells. Using chemical proteomics and biophysical methods, we identified the hydrophobic pocket of phosphodiester 6 subunit delta (PDE6D), a known RAS chaperone, as a target for this compound. Inhibition of RAS localization to the plasma membrane upon DW0254 treatment is associated with RAC inhibition through a phosphatidylinositol-3-kinase/AKT-dependent mechanism. Our findings provide new insights into the importance of PDE6D-mediated transport for RAS-dependent RAC activation and leukemic cell survival.
Collapse
|
6
|
姚 燕, 王 西, 赵 雪, 李 帅, 周 玉, 徐 一. Detection of RAS gene mutation and its clinical significance in children with acute lymphoblastic leukemia. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:309-313. [PMID: 35351263 PMCID: PMC8974658 DOI: 10.7499/j.issn.1008-8830.2109141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVES To investigate the mutation rate of the RAS gene and its clinical significance in children with acute lymphoblastic leukemia. METHODS A retrospective analysis was performed on the medical data of 120 children with newly diagnosed acute lymphoblastic leukemia, who were admitted to the Third Affiliated Hospital of Zhengzhou University from January 2015 to January 2020 and underwent next-generation sequencing. The clinical and molecular features were analyzed. The impact of RAS gene mutation on the overall survival rate was evaluated in these children. RESULTS Among the 120 children, 35 (29.2%) had RAS gene mutation, 30 (25.0%) had KRAS gene mutation, and 5 (4.2%) had both NRAS and KRAS gene mutations. All NRAS mutations and 71% (25/35) of KRAS mutations were located at the 12th and 13th codons. RAS gene mutation was detected in 35 (33.3%) out of 105 children with B-lineage acute lymphoblastic leukemia, but it was not detected in those with acute T lymphocyte leukemia. Of all the children, 11 (9.2%) were lost to follow-up, and among the 109 children followed up, 16 (14.7%) died. The children with RAS gene mutation had a significantly lower 2-year overall survival rate than those without RAS gene mutation (P<0.05). The prognosis of children with RAS gene mutation combined with WT1 overexpression and WBC>50×109/L at diagnosis was worse (P<0.05). CONCLUSIONS RAS gene mutation is commonly observed in children with B-lineage acute lymphoblastic leukemia and may have an adverse effect on prognosis.
Collapse
|
7
|
Yeung DTO, Osborn MP, White DL. B-cell acute lymphoblastic leukaemia: recent discoveries in molecular pathology, their prognostic significance, and a review of the current classification. Br J Haematol 2021; 197:13-27. [PMID: 34747016 DOI: 10.1111/bjh.17879] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acute lymphoblastic leukaemia (ALL) remains a leading cause of non-traumatic death in children, and the majority of adults diagnosed will succumb to the disease. Recent advances in molecular biology and bioinformatics have enabled more detailed genomic analysis and a better understanding of the molecular biology of ALL. A number of recurrent genomic drivers have recently been described, which not only aid in diagnosis and prognostication, but also may offer opportunities for specific therapeutic targeting. The present review summarises B-ALL genomic pathology at diagnosis, including lesions detectable using traditional cytogenetic methods as well as those detected only through advanced molecular techniques.
Collapse
Affiliation(s)
- David T O Yeung
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.,Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia.,Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Michael P Osborn
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia.,Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Deborah L White
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.,Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
8
|
Cai X, Wang J, Lu J, Jia Z, Chen M, Liu J, Lu X, Chao H. Adult Acute Myeloid Leukemia with the KMT2A-Mixed Lineage Leukemia T10 Fusion: An Analysis of 10 Cases Showed Common Features and Frequent Mutations in the RAS Signaling Pathway. Acta Haematol 2021; 145:144-151. [PMID: 34551411 DOI: 10.1159/000518920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/05/2021] [Indexed: 11/19/2022]
Abstract
Mixed lineage leukemia (MLL) T10 is a relatively rare partner for the KMT2A lysine (K)-specific methyltransferase 2A gene. The common features and coexisting mutations of acute myeloid leukemia (AML) patients with KMT2A-MLLT10 remain unknown. In this study, 10 adult AML patients with KMT2A-MLLT10 fusions were picked up from 496 AML patients by using RT-polymerase chain reaction (PCR) and/or fluorescence in situ hybridization, and then screened for mutations in the 49 genes panel with next-generation sequencing and PCR, followed by direct Sanger sequencing. Of the 10 unique individuals identified, 6 were male and 4 were female (M:F ratio, 1.5:1) with ages ranging from 19 to 52 years (median 39.5 years). Most (90%, 9/10) patients with KMT2A-MLLT10 were accompanied by additional mutations. Twelve mutated genes were detected, averaging 2.1 mutations per patient (range, 0-4). The most frequently mutated gene was NRAS (n = 5). Clinical and laboratory data pointed to common features: French American British-M5 subtype (n = 7), a high rate of relapse, and biomarkers CD33 (n = 10), CD117 (n = 9), CD13 (n = 8), and CD64 (n = 8). Overall, most patients harbored at least one mutation. A high incidence of mutations affecting the RAS signaling pathway or RAS regulating components was found in 50% (5/10) patients. The overall survival is about 12.0 months. Allogeneic-hematopoietic stem cell transplantation trends to improve survival in selected patients.
Collapse
Affiliation(s)
- Xiaohui Cai
- Department of Hematology, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, China,
| | - Jinfei Wang
- Department of Hemopurification Center, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, China
| | - Jingtao Lu
- Department of Hematology, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, China
| | - Zhuxia Jia
- Department of Hematology, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, China
| | - Meiyu Chen
- Department of Hematology, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, China
| | - Jianfang Liu
- Department of Hematology, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, China
| | - Xuzhang Lu
- Department of Hematology, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, China
| | - Hongying Chao
- Department of Hematology, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, China
| |
Collapse
|
9
|
Genetic and Epigenetic Characterization of a Discordant KMT2A/AFF1-Rearranged Infant Monozygotic Twin Pair. Int J Mol Sci 2021; 22:ijms22189740. [PMID: 34575904 PMCID: PMC8466096 DOI: 10.3390/ijms22189740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 11/26/2022] Open
Abstract
The KMT2A/AFF1 rearrangement is associated with an unfavorable prognosis in infant acute lymphocytic leukemia (ALL). Discordant ALL in monozygotic twins is uncommon and represents an attractive resource to evaluate intrauterine environment–genetic interplay in ALL. Mutational and epigenetic profiles were characterized for a discordant KMT2A/AFF1-rearranged infant monozygotic twin pair and their parents, and they were compared to three independent KMT2A/AFF1-positive ALL infants, in which the DNA methylation and gene expression profiles were investigated. A de novo Q61H NRAS mutation was detected in the affected twin at diagnosis and backtracked in both twins at birth. The KMT2A/AFF1 rearrangement was absent at birth in both twins. Genetic analyses conducted at birth gave more insights into the timing of the mutation hit. We identified correlations between DNA methylation and gene expression changes for 32 genes in the three independent affected versus remitted patients. The strongest correlations were observed for the RAB32, PDK4, CXCL3, RANBP17, and MACROD2 genes. This epigenetic signature could be a putative target for the development of novel epigenetic-based therapies and could help in explaining the molecular mechanisms characterizing ALL infants with KMT2A/AFF1 fusions.
Collapse
|
10
|
Van Thillo Q, De Bie J, Seneviratne JA, Demeyer S, Omari S, Balachandran A, Zhai V, Tam WL, Sweron B, Geerdens E, Gielen O, Provost S, Segers H, Boeckx N, Marshall GM, Cheung BB, Isobe K, Kato I, Takita J, Amos TG, Deveson IW, McCalmont H, Lock RB, Oxley EP, Garwood MM, Dickins RA, Uyttebroeck A, Carter DR, Cools J, de Bock CE. Oncogenic cooperation between TCF7-SPI1 and NRAS(G12D) requires β-catenin activity to drive T-cell acute lymphoblastic leukemia. Nat Commun 2021; 12:4164. [PMID: 34230493 PMCID: PMC8260768 DOI: 10.1038/s41467-021-24442-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Spi-1 Proto-Oncogene (SPI1) fusion genes are recurrently found in T-cell acute lymphoblastic leukemia (T-ALL) cases but are insufficient to drive leukemogenesis. Here we show that SPI1 fusions in combination with activating NRAS mutations drive an immature T-ALL in vivo using a conditional bone marrow transplant mouse model. Addition of the oncogenic fusion to the NRAS mutation also results in a higher leukemic stem cell frequency. Mechanistically, genetic deletion of the β-catenin binding domain within Transcription factor 7 (TCF7)-SPI1 or use of a TCF/β-catenin interaction antagonist abolishes the oncogenic activity of the fusion. Targeting the TCF7-SPI1 fusion in vivo with a doxycycline-inducible knockdown results in increased differentiation. Moreover, both pharmacological and genetic inhibition lead to down-regulation of SPI1 targets. Together, our results reveal an example where TCF7-SPI1 leukemia is vulnerable to pharmacological targeting of the TCF/β-catenin interaction.
Collapse
Affiliation(s)
- Quentin Van Thillo
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
| | - Jolien De Bie
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Center for Human Genetics, UZ Leuven, Leuven, Belgium
| | - Janith A Seneviratne
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Sofie Demeyer
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
| | - Sofia Omari
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Anushree Balachandran
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Vicki Zhai
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Wai L Tam
- Technology Innovation Lab, VIB, Gent, Belgium
| | - Bram Sweron
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Ellen Geerdens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
| | - Olga Gielen
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Sarah Provost
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Heidi Segers
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Pediatric Hemato-Oncology, UZ Leuven, Leuven, Belgium
| | - Nancy Boeckx
- Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, UZ Leuven, Leuven, Belgium
| | - Glenn M Marshall
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Belamy B Cheung
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Kiyotaka Isobe
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Itaru Kato
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Timothy G Amos
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Ira W Deveson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Hannah McCalmont
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Richard B Lock
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Ethan P Oxley
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Maximilian M Garwood
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Ross A Dickins
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Anne Uyttebroeck
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Pediatric Hemato-Oncology, UZ Leuven, Leuven, Belgium
| | - Daniel R Carter
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Engineering, University of Technology, Sydney, NSW, Australia
| | - Jan Cools
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Center for Cancer Biology, VIB, Leuven, Belgium.
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium.
| | - Charles E de Bock
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia.
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
11
|
T-cell lymphoblastic lymphoma and leukemia: different diseases from a common premalignant progenitor? Blood Adv 2021; 4:3466-3473. [PMID: 32722786 DOI: 10.1182/bloodadvances.2020001822] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/18/2020] [Indexed: 01/03/2023] Open
Abstract
T-cell lymphoblastic lymphoma (T-LBL) and lymphoblastic leukemia (T-ALL) represent malignancies that arise from the transformation of immature precursor T cells. Similarities in T-LBL and T-ALL have raised the question whether these entities represent 1 disease or reflect 2 different diseases. The genetic profiles of T-ALL have been thoroughly investigated over the last 2 decades, whereas fairly little is known about genetic driver mutations in T-LBL. Nevertheless, the comparison of clinical, immunophenotypic, and molecular observations from independent T-LBL and T-ALL studies lent strength to the theory that T-LBL and T-ALL reflect different presentations of the same disease. Alternatively, T-LBL and T-ALL may simultaneously evolve from a common malignant precursor cell, each having their own specific pathogenic requirements or cellular dependencies that differ among stroma-embedded blasts in lymphoid tissues compared with solitary leukemia cells. This review aims to cluster recent findings with regard to clinical presentation, genetic predisposition, and the acquisition of additional mutations that may give rise to differences in gene expression signatures among T-LBL and T-ALL patients. Improved insight in T-LBL in relation to T-ALL may further help to apply confirmed T-ALL therapies to T-LBL patients.
Collapse
|
12
|
Lin X, Qiao N, Shen Y, Fang H, Xue Q, Cui B, Chen L, Zhu H, Zhang S, Chen Y, Jiang L, Wang S, Li J, Wang B, Chen B, Chen Z, Chen S. Integration of Genomic and Transcriptomic Markers Improves the Prognosis Prediction of Acute Promyelocytic Leukemia. Clin Cancer Res 2021; 27:3683-3694. [PMID: 33893160 DOI: 10.1158/1078-0432.ccr-20-4375] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/20/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE The current stratification system for acute promyelocytic leukemia (APL) is based on the white blood cell (WBC) and the platelet counts (i.e., Sanz score) over the past two decades. However, the borderlines among different risk groups are sometimes ambiguous, and for some patients, early death and relapse remained challenges. Besides, with the evolving of the treatment strategy from all-trans-retinoic acid (ATRA) and chemotherapy to ATRA-arsenic trioxide-based synergistic targeted therapy, the precise risk stratification with molecular markers is needed. EXPERIMENTAL DESIGN This study performed a systematic analysis of APL genomics and transcriptomics to identify genetic abnormalities in 348 patients mainly from the APL2012 trial (NCT01987297) to illustrate the potential molecular background of Sanz score and further optimize it. The least absolute shrinkage and selection operator algorithm was used to analyze the gene expression in 323 cases to establish a scoring system (i.e., APL9 score). RESULTS Through combining NRAS mutations, APL9 score, and WBC, 321 cases can be stratified into two groups with significantly different outcomes. The estimated 5-year overall (P = 0.00031), event-free (P < 0.0001), and disease-free (P = 0.001) survival rates in the revised standard-risk group (95.6%, 93.8%, and 98.1%, respectively) were significantly better than those in the revised high-risk group (82.9%, 77.4%, and 88.4%, respectively), which could be validated using The Cancer Genome Atlas dataset. CONCLUSIONS We have proposed a two-category system for improving prognosis in patients with APL. Molecular markers identified in this study may also provide genomic insights into the disease mechanism for improved therapy.
Collapse
Affiliation(s)
- Xiaojing Lin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Niu Qiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Shen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Xue
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Cui
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongming Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Sujiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shengyue Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Bingshun Wang
- Department of Biostatistics and Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
13
|
Huang YJ, Liu HC, Jaing TH, Wu KH, Wang SC, Yen HJ, Hsiao CC, Chen SH, Lin PC, Yeh TC, Sheen JM, Chen YC, Chang TK, Huang FL, Chao YH, Hou JY, Yang CP, Lin TH, Shih LY. RAS pathway mutation is an added-value biomarker in pediatric Philadelphia-negative B-cell acute lymphoblastic leukemia with IKZF1 deletions. Pediatr Blood Cancer 2021; 68:e28899. [PMID: 33522704 DOI: 10.1002/pbc.28899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/26/2020] [Indexed: 11/12/2022]
Abstract
BACKGROUND IKZF1deletion is an unfavorable factor in Philadelphia negative (Ph -) B-cell acute lymphoblastic leukemia. However, the effects of IKZF1 deletions co-existing genetic alterations in Ph (-) ALL have not been extensively studied. METHODS Bone marrow samples from 368 children with Ph (-) ALL were analyzed by using multiplex ligation-dependent probe amplification kit for detection of gene deletions and Sanger sequencing for mutational analysis of RAS pathway genes. The outcome was analyzed on 215 patients treated with Taiwan Pediatric Oncology Group-ALL-2002 protocol. RESULTS IKZF1 deletions were present in 12.8% and IKZF1plus in 6.3% of patients. Mutations of RAS pathway genes were detected in 25.0% of IKZF1-deleted patients. The 10-year event-free survival (EFS) of IKZF1-undeleted patients was significantly better compared with IKZF1-deleted patients (80.0% vs. 47.8%, p = 0.001). Compared with outcome of patients harboring IKZF1 deletion alone, no difference in EFS was observed in patients with IKZF1plus , whereas three patients carried both IKZF1 and ERG deletions had a superior 10-year EFS (100%). The 10-year EFS of patients with any gene mutation of RAS pathway was worse than that of patients with wild-type genes (79.1% vs. 61.6%, p = 0.033). In multivariate analysis, RAS pathway mutations and IKZF1 deletion were independent predictors of inferior EFS. Co-existence of IKZF1 deletion with RAS pathway mutations had a worst 10-year EFS (11.1 ± 10.5%) and 10-year OS (53.3 ± 17.6%). CONCLUSIONS Our results showed that RAS pathway mutation is an added-value biomarker in pediatric IKZF1-deleted Ph (-) ALL patients.
Collapse
Affiliation(s)
- Ying-Jung Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsi-Che Liu
- Department of Hematology-Oncology, Mackay Children's Hospital and Mackay Medical College, Taipei, Taiwan
| | - Tang-Her Jaing
- Department of Hematology-Oncology, Chang Gung Children's Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kang-Hsi Wu
- Division of Pediatric Hematology and Oncology, China Medical University Children's Hospital, Taichung, Taiwan
| | - Shih-Chung Wang
- Division of Pediatric Hematology-Oncology, Changhua Christian Children's Hospital, Changhua, Taiwan
| | - Hsiu-Ju Yen
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Cheng Hsiao
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Pediatrics, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan
| | - Shih-Hsiang Chen
- Department of Hematology-Oncology, Chang Gung Children's Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Chin Lin
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ting-Chi Yeh
- Department of Hematology-Oncology, Mackay Children's Hospital and Mackay Medical College, Taipei, Taiwan
| | - Jiunn-Ming Sheen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Pediatrics, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan.,Department of Pediatrics, Chang Gung Memorial Hospital at Chiayi, Chiayi, Taiwan
| | - Yu-Chieh Chen
- Department of Pediatrics, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan
| | - Te-Kau Chang
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Fang-Liang Huang
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu-Hua Chao
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jen-Yin Hou
- Department of Hematology-Oncology, Mackay Children's Hospital and Mackay Medical College, Taipei, Taiwan
| | - Chao-Ping Yang
- Department of Hematology-Oncology, Chang Gung Children's Hospital at Linkou, Taoyuan, Taiwan
| | - Tung-Huei Lin
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
14
|
Rodrigues GOL, Cramer SD, Winer HY, Hixon JA, Li W, Yunes JA, Durum SK. Mutations that collaborate with IL-7Ra signaling pathways to drive ALL. Adv Biol Regul 2021; 80:100788. [PMID: 33578108 DOI: 10.1016/j.jbior.2021.100788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/11/2021] [Indexed: 12/30/2022]
Abstract
The IL-7 pathway is required for normal T cell development and survival. In recent years the pathway has been shown to be a major driver of acute lymphoblastic leukemia (ALL), the most common cancer in children. Gain-of-function mutations in the alpha chain of the IL-7 receptor found in ALL patients clearly demonstrated that this pathway was a driver. However mutant IL-7R alone was insufficient to transform primary T cell progenitors, indicating that cooperating mutations were required. Here we review evidence for additional oncogenic mutations in the IL-7 pathway. We discuss several oncogenes, loss of tumor suppressor genes and epigenetic effects that can cooperate with mutant IL-7 receptor. These include NRas, HOXA, TLX3, Notch 1, Arf, PHF6, WT1, PRC, PTPN2 and CK2. As new therapeutics targeting the IL-7 pathway are developed, combination with agents directed to cooperating pathways offer hope for novel therapies for ALL.
Collapse
Affiliation(s)
- Gisele O L Rodrigues
- Cytokines and Immunity Section, Laboratory of Cancer Immunometabolism, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD, USA; Molecular Biology Laboratory, Boldrini Children's Center, Campinas, Brazil; Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Sarah D Cramer
- Cytokines and Immunity Section, Laboratory of Cancer Immunometabolism, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD, USA; Comparative Biomedical Scientist Training Program, NIH, Bethesda, MD, USA; Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Hila Y Winer
- Cytokines and Immunity Section, Laboratory of Cancer Immunometabolism, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD, USA
| | - Julie A Hixon
- Cytokines and Immunity Section, Laboratory of Cancer Immunometabolism, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD, USA
| | - WenQing Li
- Cytokines and Immunity Section, Laboratory of Cancer Immunometabolism, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD, USA
| | - José Andres Yunes
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Scott K Durum
- Cytokines and Immunity Section, Laboratory of Cancer Immunometabolism, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD, USA.
| |
Collapse
|
15
|
Zarubina KI, Parovichnikova EN, Surin VL, Pshenichnikova OS, Gavrilina OA, Isinova GA, Troitskaia VV, Sokolov AN, Gal'tseva IV, Kapranov NM, Davydova IO, Obukhova TN, Sudarikov AB, Savchenko VG. [Detection of activating mutations in RAS/RAF/MEK/ERK and JAK/STAT signaling pathways]. TERAPEVT ARKH 2020; 92:31-42. [PMID: 33346443 DOI: 10.26442/00403660.2020.07.000772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 11/22/2022]
Abstract
ISSUE The study of activating mutations (NRAS,KRAS,FLT3,JAK2,CRLF2genes) of RAS/RAF/MEK/ERK and JAK/STAT signaling pathways in B-cell acute lymphoblastic leukemia (B-ALL) in adult patients which are included in Russian multicenter clinical trials. MATERIALS AND METHODS Within the multicenter study there were 119 adult patients included withde novoB-ALL. The study was considered as prospective and retrospective. The group withBCR-ABL1-negative B-ALL consisted of up to 93 patients (45 male and 48 female, at the age of 17 to 59, the median age 31), they were treated according to the protocols ALL-2009, ALL-2016. The median follow-up lasted for 19 months (1119). The group withBCR-ABL1-positive B-ALL with up to 26 patients (10 male and 16 female, at the age of 23 to 78, the median age 34 years) was included in the study as well. The treatment was carried out according to the protocols ALL-2009 and ALL-2012 in combination with tyrosine kinase inhibitors. The median follow-up lasted for 23 months (4120). The molecular analysis of activating mutations inNRAS,KRASgenes (RAS/RAF/MEK/ERK signaling pathway) andJAK2,CRLF2genes (JAK/STAT signaling cascade) was performed via Sanger sequencing. The internal tandem duplications (ITDs) inFLT3gene were studied by fragment analysis. The evaluation of CRLF2 expression was fulfilled via flow cytometry. RESULTS Activating mutations inNRAS,KRAS,FLT3genes were found in 22 (23.6%) patients withBCR-ABL1-negative B-ALL. In total, 23 mutations were revealed in theNRAS(n=9),KRAS(n=12), andFLT3(n=2) genes, according to statistics that was significantly more frequent than withBCR-ABL1-positive B-ALL, these genes mutations were not identified in patients (p=0.007). The frequency of mutations detection inKRASandNRASgenes in patients withBCR-ABL1-negative B-ALL was comparable as 12.9% (12 of 93) to 9.7% (9 of 93), respectively (p=0.488). One patient was simultaneously revealed 2 mutations in theKRASgene (in codons 13 and 61).FLT3-ITD mutations were detected in 3.5% (2 of 57) cases ofBCR-ABL1-negative B-ALL. In patients withBCR-ABL1-positive B-ALLFLT3-ITD mutations were not assessed. Violations in the JAK/STAT signaling cascade were detected in 4 (4.3%) patients withBCR-ABL1-negative B-ALL. They were represented by the missense mutations ofJAK2gene (n=3) and the overexpression of CRLF2 (n=2); in one patient were detected the overexpression of CRLF2 and a mutation inJAK2gene simultaneously. No mutations were found inCRLF2gene. In patients withBCR-ABL1-positive B-ALL noJAK2mutations were detected. As long as analyzing demographic and clinical laboratory parameters between groups of patients with and without mutations, there were no statistically significant differences obtained. In the analyzed groups of patients, long-term therapy results did not differentiate according to the mutations presence inNRAS,KRAS,FLT3,JAK2genes. Also, substantive differences were not shown in the rate of the negative status achievement of the minimum residual disease between patients with and without activating mutations in the control points of the protocol (on the 70th, 133rd and 190th days). CONCLUSION NRAS,KRAS,FLT3,JAK2activating mutations do not affect the long-term results of the therapy and the rate of the negative status achievement of the minimum residual disease in patients withBCR-ABL1-negative B-ALL treated by the Russian multicenter clinical trials.
Collapse
Affiliation(s)
| | | | - V L Surin
- National Research Center for Hematology
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Goyal H, Chachoua I, Pecquet C, Vainchenker W, Constantinescu SN. A p53-JAK-STAT connection involved in myeloproliferative neoplasm pathogenesis and progression to secondary acute myeloid leukemia. Blood Rev 2020; 42:100712. [PMID: 32660739 DOI: 10.1016/j.blre.2020.100712] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/25/2020] [Accepted: 05/27/2020] [Indexed: 01/14/2023]
Abstract
Since the discovery of JAK2 V617F as a highly prevalent somatic acquired mutation in the majority of myeloproliferative neoplasms (MPNs), it has become clear that these diseases are driven by pathologic activation of JAK2 and eventually of STAT5 and other members of the STAT family. The concept was strengthened by the discovery of the other activating driver mutations in MPL (thrombopoietin receptor, TpoR) and in calreticulin gene, which all lead to persistent activation of wild type JAK2. Although with a rare frequency, MPNs can evolve to secondary acute myeloid leukemia (sAML), a condition that is resistant to treatment. Here we focus on the role of p53 in this transition. In sAML mutations in TP53 or amplification in genes coding for negative regulators of p53 are much more frequent than in de novo AML. We review studies that explore a signaling and biochemical interaction between activated STATs and p53 in MPNs and other cancers. With the development of advanced sequencing efforts, strong evidence has been presented for dominant negative effects of mutated p53 in leukemia. In other studies, gain of function effects have been described that might be cell type specific. A more profound understanding of the potential interaction between p53 and activated STATs is necessary in order to take full advantage of novel p53-targeted therapies.
Collapse
Affiliation(s)
- Harsh Goyal
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium; Université catholique de Louvain and de Duve Institute, Brussels, Belgium; WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium
| | - Ilyas Chachoua
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium; Université catholique de Louvain and de Duve Institute, Brussels, Belgium; Karolinska Institutet, Department of Oncology-Pathology, Stockholm, Sweden
| | - Christian Pecquet
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium; Université catholique de Louvain and de Duve Institute, Brussels, Belgium; WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium
| | - William Vainchenker
- INSERM, Unité Mixte de Recherche 1170, Institut Gustave Roussy, Villejuif, France; Paris-Saclay, Unité Mixte de Recherche 1170, Institut Gustave Roussy, Villejuif, France; Gustave Roussy, Unité Mixte de Recherche 1170, Villejuif, France
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium; Université catholique de Louvain and de Duve Institute, Brussels, Belgium; WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium.
| |
Collapse
|
17
|
Movafagh A, Naji P, Sheikhpour M. Gene mutation of childhood B-acute lymphoblastic leukemia: A systematic review. CLINICAL CANCER INVESTIGATION JOURNAL 2020. [DOI: 10.4103/ccij.ccij_48_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
18
|
Vega-García N, Perez-Jaume S, Esperanza-Cebollada E, Vicente-Garcés C, Torrebadell M, Jiménez-Velasco A, Ortega M, Llop M, Abad L, Vagace JM, Minguela A, Pratcorona M, Sánchez-Garcia J, García-Calderón CB, Gómez-Casares MT, Martín-Clavero E, Escudero A, Riñón Martinez-Gallo M, Muñoz L, Velasco MR, García-Morin M, Català A, Pascual A, Velasco P, Fernández JM, Lassaletta A, Fuster JL, Badell I, Molinos-Quintana Á, Molinés A, Guerra-García P, Pérez-Martínez A, García-Abós M, Robles Ortiz R, Pisa S, Adán R, Díaz de Heredia C, Dapena JL, Rives S, Ramírez-Orellana M, Camós M. Measurable Residual Disease Assessed by Flow-Cytometry Is a Stable Prognostic Factor for Pediatric T-Cell Acute Lymphoblastic Leukemia in Consecutive SEHOP Protocols Whereas the Impact of Oncogenetics Depends on Treatment. Front Pediatr 2020; 8:614521. [PMID: 33614543 PMCID: PMC7892614 DOI: 10.3389/fped.2020.614521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
Robust and applicable risk-stratifying genetic factors at diagnosis in pediatric T-cell acute lymphoblastic leukemia (T-ALL) are still lacking, and most protocols rely on measurable residual disease (MRD) assessment. In our study, we aimed to analyze the impact of NOTCH1, FBXW7, PTEN, and RAS mutations, the measurable residual disease (MRD) levels assessed by flow cytometry (FCM-MRD) and other reported risk factors in a Spanish cohort of pediatric T-ALL patients. We included 199 patients treated with SEHOP and PETHEMA consecutive protocols from 1998 to 2019. We observed a better outcome of patients included in the newest SEHOP-PETHEMA-2013 protocol compared to the previous SHOP-2005 cohort. FCM-MRD significantly predicted outcome in both protocols, but the impact at early and late time points differed between protocols. The impact of FCM-MRD at late time points was more evident in SEHOP-PETHEMA 2013, whereas in SHOP-2005 FCM-MRD was predictive of outcome at early time points. Genetics impact was different in SHOP-2005 and SEHOP-PETHEMA-2013 cohorts: NOTCH1 mutations impacted on overall survival only in the SEHOP-PETHEMA-2013 cohort, whereas homozygous deletions of CDKN2A/B had a significantly higher CIR in SHOP-2005 patients. We applied the clinical classification combining oncogenetics, WBC count and MRD levels at the end of induction as previously reported by the FRALLE group. Using this score, we identified different subgroups of patients with statistically different outcome in both Spanish cohorts. In SHOP-2005, the FRALLE classifier identified a subgroup of high-risk patients with poorer survival. In the newest protocol SEHOP-PETHEMA-2013, a very low-risk group of patients with excellent outcome and no relapses was detected, with borderline significance. Overall, FCM-MRD, WBC count and oncogenetics may refine the risk-stratification, helping to design tailored approaches for pediatric T-ALL patients.
Collapse
Affiliation(s)
- Nerea Vega-García
- Haematology Laboratory, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain.,Developmental Tumor Biology Group, Leukemia and Other Pediatric Hemopathies, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Sara Perez-Jaume
- Developmental Tumour Biology Laboratory, Institut de Recerca Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Elena Esperanza-Cebollada
- Haematology Laboratory, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain.,Developmental Tumor Biology Group, Leukemia and Other Pediatric Hemopathies, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Clara Vicente-Garcés
- Haematology Laboratory, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain.,Developmental Tumor Biology Group, Leukemia and Other Pediatric Hemopathies, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Montserrat Torrebadell
- Haematology Laboratory, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain.,Developmental Tumor Biology Group, Leukemia and Other Pediatric Hemopathies, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Margarita Ortega
- Cytogenetics Unit, Hematology Department, Hospital Vall d'Hebron, Barcelona, Spain
| | - Marta Llop
- Molecular Biology Unit, Clinical Analysis Service, La Fe University and Polytechnic Hospital, Valencia, Spain.,Centro de Investigación Biomédica en Red - Cáncer (CIBERONC CB16/12/00284), Madrid, Spain
| | - Lorea Abad
- Paediatric Hemato-Oncology Laboratory, Hospital Niño Jesús, Madrid, Spain
| | | | - Alfredo Minguela
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca (HCUVA) and Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Marta Pratcorona
- Haematology Laboratory, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Clara B García-Calderón
- Instituto de Biomedicina de Sevilla (IBIS/Consejo Superior de Investigaciones Científicas (CSIC)/Centro de Investigación Biomédica en Red - Cáncer (CIBERONC)), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain
| | - María Teresa Gómez-Casares
- Biology and Molecular Haematology and Hemotherapy Service, Hospital Universitario de Gran Canaria Doctor Negrín, Las Palmas de Gran Canarias, Spain
| | - Estela Martín-Clavero
- Haematology-Cytology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Adela Escudero
- Translational Research in Pediatric Oncology Hematopoietic Transplantation and Cell Therapy, Institute of Medical and Molecular Genetics (INGEMM), Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | | | - Luz Muñoz
- Haematology Laboratory, Hospital Parc Taulí, Sabadell, Spain
| | | | - Marina García-Morin
- Paediatric Hematology Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Albert Català
- Developmental Tumor Biology Group, Leukemia and Other Pediatric Hemopathies, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Paediatric Hematology and Oncology Departments, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | | | - Pablo Velasco
- Pediatric Hematology and Oncology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - José Mª Fernández
- Haematology and Oncology Department, Hospital de La Fe, Valencia, Spain
| | - Alvaro Lassaletta
- Haematology and Oncology Department, Hospital Niño Jesús, Madrid, Spain
| | - José Luis Fuster
- Paediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca (HCUVA) and Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Isabel Badell
- Paediatric Hematology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Águeda Molinos-Quintana
- Instituto de Biomedicina de Sevilla (IBIS/Consejo Superior de Investigaciones Científicas (CSIC)/Centro de Investigación Biomédica en Red - Cáncer (CIBERONC)), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain
| | - Antonio Molinés
- Unit of Hematology and Hemotherapy, H.U. Materno Infantil de Canarias, Canarias, Spain
| | - Pilar Guerra-García
- Paediatric Hemato-Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, La Paz University Hospital, Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research in Pediatric Oncology Hematopoietic Transplantation and Cell Therapy, Institute of Medical and Molecular Genetics (INGEMM), Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain.,Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, La Paz University Hospital, Madrid, Spain
| | - Miriam García-Abós
- Pediatric Onco-Hematology Department, Hospital Universitario Donostia, Donostia, Spain
| | - Reyes Robles Ortiz
- Pediatric Onco-Hematology Department, Complejo Hospitalario de Navarra, Navarra, Spain
| | - Sandra Pisa
- Paediatric Hematology Department, Hospital Parc Taulí, Sabadell, Spain
| | - Rosa Adán
- Haematology and Oncology Department, Hospital de Cruces, Bilbao, Spain
| | - Cristina Díaz de Heredia
- Pediatric Hematology and Oncology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - José Luis Dapena
- Developmental Tumor Biology Group, Leukemia and Other Pediatric Hemopathies, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Paediatric Hematology and Oncology Departments, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Susana Rives
- Developmental Tumor Biology Group, Leukemia and Other Pediatric Hemopathies, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Paediatric Hematology and Oncology Departments, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | | | - Mireia Camós
- Haematology Laboratory, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain.,Developmental Tumor Biology Group, Leukemia and Other Pediatric Hemopathies, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
19
|
Anti-leukemic effects of simvastatin on NRASG12D mutant acute myeloid leukemia cells. Mol Biol Rep 2019; 46:5859-5866. [DOI: 10.1007/s11033-019-05019-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 08/01/2019] [Indexed: 11/27/2022]
|
20
|
Watanabe A, Inukai T, Kagami K, Abe M, Takagi M, Fukushima T, Fukushima H, Nanmoku T, Terui K, Ito T, Toki T, Ito E, Fujimura J, Goto H, Endo M, Look T, Kamps M, Minegishi M, Takita J, Inaba T, Takahashi H, Ohara A, Harama D, Shinohara T, Somazu S, Oshiro H, Akahane K, Goi K, Sugita K. Resistance of t(17;19)-acute lymphoblastic leukemia cell lines to multiagents in induction therapy. Cancer Med 2019; 8:5274-5288. [PMID: 31305009 PMCID: PMC6718581 DOI: 10.1002/cam4.2356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/08/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
t(17;19)(q21‐q22;p13), responsible for TCF3‐HLF fusion, is a rare translocation in childhood B‐cell precursor acute lymphoblastic leukemia(BCP‐ALL). t(1;19)(q23;p13), producing TCF3‐PBX1 fusion, is a common translocation in childhood BCP‐ALL. Prognosis of t(17;19)‐ALL is extremely poor, while that of t(1;19)‐ALL has recently improved dramatically in intensified chemotherapy. In this study, TCF3‐HLF mRNA was detectable at a high level during induction therapy in a newly diagnosed t(17;19)‐ALL case, while TCF3‐PBX1 mRNA was undetectable at the end of induction therapy in most newly diagnosed t(1;19)‐ALL cases. Using 4 t(17;19)‐ALL and 16 t(1;19)‐ALL cell lines, drug response profiling was analyzed. t(17;19)‐ALL cell lines were found to be significantly more resistant to vincristine (VCR), daunorubicin (DNR), and prednisolone (Pred) than t(1;19)‐ALL cell lines. Sensitivities to three (Pred, VCR, and l‐asparaginase [l‐Asp]), four (Pred, VCR, l‐Asp, and DNR) and five (Pred, VCR, l‐Asp, DNR, and cyclophosphamide) agents, widely used in induction therapy, were significantly poorer for t(17;19)‐ALL cell lines than for t(1;19)‐ALL cell lines. Consistent with poor responses to VCR and DNR, gene and protein expression levels of P‐glycoprotein (P‐gp) were higher in t(17;19)‐ALL cell lines than in t(1;19)‐ALL cell lines. Inhibitors for P‐gp sensitized P‐gp‐positive t(17;19)‐ALL cell lines to VCR and DNR. Knockout of P‐gp by CRISPRCas9 overcame resistance to VCR and DNR in the P‐gp‐positive t(17;19)‐ALL cell line. A combination of cyclosporine A with DNR prolonged survival of NSG mice inoculated with P‐gp‐positive t(17;19)‐ALL cell line. These findings indicate involvement of P‐gp in resistance to VCR and DNR in Pgp positive t(17;19)‐ALL cell lines. In all four t(17;19)‐ALL cell lines, RAS pathway mutation was detected. Furthermore, among 16 t(1;19)‐ALL cell lines, multiagent resistance was usually observed in the cell lines with RAS pathway mutation in comparison to those without it, suggesting at least a partial involvement of RAS pathway mutation in multiagent resistance of t(17;19)‐ALL.
Collapse
Affiliation(s)
- Atsushi Watanabe
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Keiko Kagami
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Masako Abe
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Fukushima
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Fukushima
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Toru Nanmoku
- Department of Clinical Laboratory, University of Tsukuba Hospital, Tsukuba, Japan
| | - Kiminori Terui
- Department of Pediatrics, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Tatsuya Ito
- Department of Pediatrics, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Tsutomu Toki
- Department of Pediatrics, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Junya Fujimura
- Department of Pediatrics and Adolescent Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroaki Goto
- Hematology/Oncology & Regenerative Medicine, Kanagawa Children's Medical Center
| | - Mikiya Endo
- Department of Pediatrics, Iwate Medical University School of Medicine, Morioka, Japan
| | - Thomas Look
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mark Kamps
- Department of Pathology, University of California School of Medicine, La Jolla, California
| | | | - Junko Takita
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshiya Inaba
- Department of Molecular Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | | | - Akira Ohara
- Tokyo Children's Cancer Study Group, Tokyo, Japan
| | - Daisuke Harama
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Tamao Shinohara
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Shinpei Somazu
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Hiroko Oshiro
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Kumiko Goi
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Kanji Sugita
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| |
Collapse
|
21
|
Synthetic modeling reveals HOXB genes are critical for the initiation and maintenance of human leukemia. Nat Commun 2019; 10:2913. [PMID: 31266935 PMCID: PMC6606637 DOI: 10.1038/s41467-019-10510-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 05/15/2019] [Indexed: 12/23/2022] Open
Abstract
Mechanistic studies in human cancer have relied heavily on cell lines and mouse models, but are limited by in vitro adaptation and species context issues, respectively. More recent efforts have utilized patient-derived xenografts; however, these are hampered by variable genetic background, inability to study early events, and practical issues with availability/reproducibility. We report here an efficient, reproducible model of T-cell leukemia in which lentiviral transduction of normal human cord blood yields aggressive leukemia that appears indistinguishable from natural disease. We utilize this synthetic model to uncover a role for oncogene-induced HOXB activation which is operative in leukemia cells-of-origin and persists in established tumors where it defines a novel subset of patients distinct from other known genetic subtypes and with poor clinical outcome. We show further that anterior HOXB genes are specifically activated in human T-ALL by an epigenetic mechanism and confer growth advantage in both pre-leukemia cells and established clones.
Collapse
|
22
|
Zaliova M, Stuchly J, Winkowska L, Musilova A, Fiser K, Slamova M, Starkova J, Vaskova M, Hrusak O, Sramkova L, Stary J, Zuna J, Trka J. Genomic landscape of pediatric B-other acute lymphoblastic leukemia in a consecutive European cohort. Haematologica 2019; 104:1396-1406. [PMID: 30630978 PMCID: PMC6601078 DOI: 10.3324/haematol.2018.204974] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/20/2018] [Indexed: 01/21/2023] Open
Abstract
Novel biological subtypes and clinically important genetic aberrations (druggable lesions, prognostic factors) have been described in B-other acute lymphoblastic leukemia (ALL) during the last decade; however, due to a lack of studies on unselected cohorts, their population frequency and mutual associations still have to be established. We studied 110 consecutively diagnosed and uniformly treated childhood B-other patients using single nucleotide polymorphism arrays and whole exome/transcriptome sequencing. The frequency of DUX4-rearranged, BCR-ABL1-like, ZNF384-rearranged, ETV6-RUNX1-like, iAMP21 and MEF2D-rearranged subtypes was 27%, 15%, 5%, 5%, 4%, and 2%, respectively; 43% of cases were not classified into any of these subtypes (B-rest). We found worse early response to treatment in DUX4-rearranged leukemia and a strong association of ZNF384-rearranged leukemia with B-myeloid immunophenotype. Of the druggable lesions, JAK/STAT-class and RAS/RAF/MAPK-class aberrations were found in 21% and 43% of patients, respectively; an ABL-class aberration was found in one patient. A recently described negative prognostic factor, IKZF1plus, was found in 14% of patients and was enriched in (but not exclusive for) BCR-ABL1-like subtype. PAX5 fusions (including 4 novel), intragenic amplifications and P80R mutations were mutually exclusive and only occurred in the B-rest subset, altogether accounting for 20% of the B-other group. PAX5 P80R was associated with a specific gene expression signature, potentially defining a novel leukemia subtype. Our study shows unbiased European population-based frequencies of novel ALL subtypes, recurrent (cyto)genetic aberrations and their mutual associations. This study also strengthens and widens the current knowledge of B-other ALL and provides an objective basis for optimization of current genetic diagnostics.
Collapse
Affiliation(s)
- Marketa Zaliova
- CLIP - Childhood Leukaemia Investigation Prague .,Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University.,University Hospital Motol, Prague, Czech Republic
| | - Jan Stuchly
- CLIP - Childhood Leukaemia Investigation Prague.,Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University
| | - Lucie Winkowska
- CLIP - Childhood Leukaemia Investigation Prague.,Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University
| | - Alena Musilova
- CLIP - Childhood Leukaemia Investigation Prague.,Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University
| | - Karel Fiser
- CLIP - Childhood Leukaemia Investigation Prague.,Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University
| | - Martina Slamova
- CLIP - Childhood Leukaemia Investigation Prague.,Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University
| | - Julia Starkova
- CLIP - Childhood Leukaemia Investigation Prague.,Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University
| | - Martina Vaskova
- CLIP - Childhood Leukaemia Investigation Prague.,Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University
| | - Ondrej Hrusak
- CLIP - Childhood Leukaemia Investigation Prague.,Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University.,University Hospital Motol, Prague, Czech Republic
| | - Lucie Sramkova
- CLIP - Childhood Leukaemia Investigation Prague.,Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University.,University Hospital Motol, Prague, Czech Republic
| | - Jan Stary
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University.,University Hospital Motol, Prague, Czech Republic
| | - Jan Zuna
- CLIP - Childhood Leukaemia Investigation Prague.,Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University.,University Hospital Motol, Prague, Czech Republic
| | - Jan Trka
- CLIP - Childhood Leukaemia Investigation Prague .,Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University.,University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
23
|
Yeh TC, Liang DC, Liu HC, Jaing TH, Chen SH, Hou JY, Yang CP, Huang YJ, Yao HW, Huang TY, Lin TH, Shih LY. Clinical and biological relevance of genetic alterations in pediatric T-cell acute lymphoblastic leukemia in Taiwan. Pediatr Blood Cancer 2019; 66:e27496. [PMID: 30280491 DOI: 10.1002/pbc.27496] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/23/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND The leukemogenesis of T-cell acute lymphoblastic leukemia (T-ALL) involves multistep processes of genetic alterations. We aimed to determine the genetic alterations including common fusion transcripts, overexpression of T-cell transcription factor oncogenes, and deletion or mutation of targeted genes in pediatric T-ALL in Taiwan as well as their impact on outcomes in those treated with the Taiwan Pediatric Oncology Group-ALL-2002 protocol. PROCEDURE Between 1995 and 2015, bone marrow samples obtained from 102 children aged <18 years consecutively diagnosed with T-ALL were examined. Thirty-two genetic alterations were examined by reverse transcription polymerase chain reaction (PCR) assays-PCR-based assays-followed by direct sequencing, real time quantitative PCR with TaqMan assays, or multiplex ligase probe amplification. RESULTS TAL1 overexpression, CDKN2A/2B deletions, and NOTCH1 mutation were the most frequent aberrations while none had NF1, SUZ12 deletion, JAK1 or JAK2 mutations, or NUP214-ABL1 fusion in our cohort. The most frequent cooperating occurrence of genetic alterations included CDKN2A/2B and MTAP, MTAP and CDKN2B, LEF1 and PTPN2, and HOX11L2 and PHF6 mutation/deletion. NOTCH1 mutations conferred a favorable overall survival, whereas SIL-TAL1 fusion, TAL overexpression, LEF1 deletion, and PHF6 deletion/mutation were associated with an inferior outcome. By multivariate analysis, PHF6 mutation/deletion was the only independent predictor for inferior overall survival. CONCLUSIONS The present study showed that the frequencies of genetic alterations in Taiwanese children with T-ALL differed considerably from those reported in Western countries. PHF6 mutation/deletion was an independently adverse predictor.
Collapse
Affiliation(s)
- Ting-Chi Yeh
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Der-Cherng Liang
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Hsi-Che Liu
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Tang-Her Jaing
- Division of Hematology-Oncology, Department of Pediatrics, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Hsiang Chen
- Division of Hematology-Oncology, Department of Pediatrics, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jen-Yin Hou
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Chao-Ping Yang
- Division of Hematology-Oncology, Department of Pediatrics, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Ying-Jung Huang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Hsien-Wen Yao
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Ting-Yu Huang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Tung-Huei Lin
- Division of Hematology-Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Lee-Yung Shih
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Hematology-Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| |
Collapse
|
24
|
Therapeutic Targeting of mTOR in T-Cell Acute Lymphoblastic Leukemia: An Update. Int J Mol Sci 2018; 19:ijms19071878. [PMID: 29949919 PMCID: PMC6073309 DOI: 10.3390/ijms19071878] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/22/2018] [Accepted: 06/24/2018] [Indexed: 12/14/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive blood malignancy that arises from the clonal expansion of transformed T-cell precursors. Although T-ALL prognosis has significantly improved due to the development of intensive chemotherapeutic protocols, primary drug-resistant and relapsed patients still display a dismal outcome. In addition, lifelong irreversible late effects from conventional therapy are a growing problem for leukemia survivors. Therefore, novel targeted therapies are required to improve the prognosis of high-risk patients. The mechanistic target of rapamycin (mTOR) is the kinase subunit of two structurally and functionally distinct multiprotein complexes, which are referred to as mTOR complex 1 (mTORC1) and mTORC2. These two complexes regulate a variety of physiological cellular processes including protein, lipid, and nucleotide synthesis, as well as autophagy in response to external cues. However, mTOR activity is frequently deregulated in cancer, where it plays a key oncogenetic role driving tumor cell proliferation, survival, metabolic transformation, and metastatic potential. Promising preclinical studies using mTOR inhibitors have demonstrated efficacy in many human cancer types, including T-ALL. Here, we highlight our current knowledge of mTOR signaling and inhibitors in T-ALL, with an emphasis on emerging evidence of the superior efficacy of combinations consisting of mTOR inhibitors and either traditional or targeted therapeutics.
Collapse
|
25
|
Animal models of T-cell acute lymphoblastic leukemia: mimicking the human disease. JOURNAL OF BIO-X RESEARCH 2018. [DOI: 10.1097/jbr.0000000000000001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
26
|
Montaño A, Forero-Castro M, Marchena-Mendoza D, Benito R, Hernández-Rivas JM. New Challenges in Targeting Signaling Pathways in Acute Lymphoblastic Leukemia by NGS Approaches: An Update. Cancers (Basel) 2018; 10:cancers10040110. [PMID: 29642462 PMCID: PMC5923365 DOI: 10.3390/cancers10040110] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/18/2022] Open
Abstract
The identification and study of genetic alterations involved in various signaling pathways associated with the pathogenesis of acute lymphoblastic leukemia (ALL) and the application of recent next-generation sequencing (NGS) in the identification of these lesions not only broaden our understanding of the involvement of various genetic alterations in the pathogenesis of the disease but also identify new therapeutic targets for future clinical trials. The present review describes the main deletions, amplifications, sequence mutations, epigenetic lesions, and new structural DNA rearrangements detected by NGS in B-ALL and T-ALL and their clinical importance for therapeutic procedures. We reviewed the molecular basis of pathways including transcriptional regulation, lymphoid differentiation and development, TP53 and the cell cycle, RAS signaling, JAK/STAT, NOTCH, PI3K/AKT/mTOR, Wnt/β-catenin signaling, chromatin structure modifiers, and epigenetic regulators. The implementation of NGS strategies has enabled important mutated genes in each pathway, their associations with the genetic subtypes of ALL, and their outcomes, which will be described further. We also discuss classic and new cryptic DNA rearrangements in ALL identified by mRNA-seq strategies. Novel cooperative abnormalities in ALL could be key prognostic and/or predictive biomarkers for selecting the best frontline treatment and for developing therapies after the first relapse or refractory disease.
Collapse
Affiliation(s)
- Adrián Montaño
- IBSAL, IBMCC, Universidad de Salamanca-CSIC, Cancer Research Center, 37007 Salamanca, Spain.
| | - Maribel Forero-Castro
- Escuela de Ciencias Biológicas, Grupo de investigación en Ciencias Biomédicas (GICBUPTC), Universidad Pedagógica y Tecnológica de Colombia, Tunja 150001, Colombia.
| | - Darnel Marchena-Mendoza
- IBSAL, IBMCC, Universidad de Salamanca-CSIC, Cancer Research Center, 37007 Salamanca, Spain.
- Escuela de Ciencias Biológicas, Grupo de investigación en Ciencias Biomédicas (GICBUPTC), Universidad Pedagógica y Tecnológica de Colombia, Tunja 150001, Colombia.
| | - Rocío Benito
- IBSAL, IBMCC, Universidad de Salamanca-CSIC, Cancer Research Center, 37007 Salamanca, Spain.
| | | |
Collapse
|
27
|
Liang DC, Chen SH, Liu HC, Yang CP, Yeh TC, Jaing TH, Hung IJ, Hou JY, Lin TH, Lin CH, Shih LY. Mutational status of NRAS, KRAS, and PTPN11 genes is associated with genetic/cytogenetic features in children with B-precursor acute lymphoblastic leukemia. Pediatr Blood Cancer 2018; 65. [PMID: 28853218 DOI: 10.1002/pbc.26786] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND We aimed to investigate the frequencies and the association with genetic/cytogenetic abnormalities as well as prognostic relevance of RAS pathway mutations in Taiwanese children with B-precursor acute lymphoblastic leukemia (ALL), the largest cohort in Asians. PROCEDURE Between 1995 and 2012, marrow samples at diagnosis from 535 children were studied for NRAS, KRAS, and PTPN11 mutations. The mutational status of each gene was correlated with the clinico-hematological features, recurrent genetic abnormalities, and outcomes for those treated with TPOG-ALL-2002 protocol (n = 346). RESULTS The frequencies of NRAS, KRAS, and PTPN11 mutations were 10.8% (57/530), 10.2% (54/530), and 3.0% (16/526), respectively. NRAS mutations were associated with a higher frequency of hyperdiploidy (P = 0.01) and lower frequency of ETV6-RUNX1 (P < 0.01), whereas KRAS mutations were associated with younger age (P < 0.01), a higher frequency of KMT2A rearranged (P < 0.01) but no significant difference if infants with ALL were excluded, and inferior event-free survival (66.6% vs. 80.5%, P = 0.04). None of patients with TCF3-PBX1 had KRAS mutation (P = 0.02). CONCLUSIONS Our study showed that the frequency of KRAS mutations in Taiwan was significantly higher than that reported in Caucasians. The occurrence of RAS pathway mutations was associated with recurrent genetic/cytogenetic abnormalities in pediatric B-precursor ALL.
Collapse
Affiliation(s)
- Der-Cherng Liang
- Division of Pediatric Hematology-Oncology, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Shih-Hsiang Chen
- Division of Hematology-Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsi-Che Liu
- Division of Pediatric Hematology-Oncology, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Chao-Ping Yang
- Division of Hematology-Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Chi Yeh
- Division of Pediatric Hematology-Oncology, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Tang-Her Jaing
- Division of Hematology-Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Iou-Jih Hung
- Division of Hematology-Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jen-Yin Hou
- Division of Pediatric Hematology-Oncology, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Tung-Huei Lin
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Hui Lin
- Division of Pediatric Hematology-Oncology, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
28
|
Zheng S, Leclerc GM, Li B, Swords RT, Barredo JC. Inhibition of the NEDD8 conjugation pathway induces calcium-dependent compensatory activation of the pro-survival MEK/ERK pathway in acute lymphoblastic leukemia. Oncotarget 2017; 9:5529-5544. [PMID: 29464016 PMCID: PMC5814156 DOI: 10.18632/oncotarget.23797] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/22/2017] [Indexed: 01/22/2023] Open
Abstract
De novo and acquired drug resistance and subsequent relapse remain major challenges in acute lymphoblastic leukemia (ALL). We previously identified that pevonedistat (TAK-924, MLN4924), a first-in-class inhibitor of NEDD8 activating enzyme (NAE), elicits ER stress and has potent in vitro and in vivo efficacy against ALL. However, in pevonedistat-treated ALL cell lines, we found consistent activation of the pro-survival MEK/ERK pathway, which has been associated with relapse and poor outcome in ALL. We uncovered that inhibition of the MEK/ERK pathway in vitro and in vivo sensitized ALL cells to pevonedistat. The observed synergistic apoptotic effect appears to be mediated by inhibition of the MEK/ERK pro-survival cascade leading to de-repression of the pro-apoptotic BIM protein. Mechanistically, Ca2+ influx via the Ca2+-release-activated Ca2+ (CRAC) channel induced protein kinase C β2 (PKC-β2) was responsible for activation of the MEK/ERK pathway in pevonedistat-treated ALL cells. Sequestration of Ca2+ using BAPTA-AM or blockage of store-operated Ca2+ entry (SOCE) using BTP-2 both attenuated the compensatory activation of MEK/ERK signaling in pevonedistat-treated ALL cells. Pevonedistat significantly altered the expression of Orai1 and stromal interaction molecule 1 (STIM1), resulting in significantly decreased STIM1 protein levels relative to Orai1. Further, we identified eIF2α as an important post-transcriptional regulator of STIM1, suggesting that pevonedistat-induced eIF2α de-phosphorylation selectively down-regulates translation of STIM1 mRNA. Consequently, our data suggest that pevonedistat potentially activates SOCE and promotes Ca2+ influx leading to activation of the MEK/ERK pathway by altering the stoichiometric Orai1:STIM1 ratio and inducing ER stress in ALL cells.
Collapse
Affiliation(s)
- Shuhua Zheng
- The Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gilles M Leclerc
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bin Li
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ronan T Swords
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Julio C Barredo
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
29
|
Messina M, Chiaretti S, Wang J, Fedullo AL, Peragine N, Gianfelici V, Piciocchi A, Brugnoletti F, Di Giacomo F, Pauselli S, Holmes AB, Puzzolo MC, Ceglie G, Apicella V, Mancini M, Te Kronnie G, Testi AM, Vitale A, Vignetti M, Guarini A, Rabadan R, Foà R. Prognostic and therapeutic role of targetable lesions in B-lineage acute lymphoblastic leukemia without recurrent fusion genes. Oncotarget 2017; 7:13886-901. [PMID: 26883104 PMCID: PMC4924686 DOI: 10.18632/oncotarget.7356] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/28/2016] [Indexed: 12/03/2022] Open
Abstract
To shed light into the molecular bases of B-lineage acute lymphoblastic leukemia lacking known fusion transcripts, i.e. BCR-ABL1, ETV6-RUNX1, E2A-PBX1, and MLL rearrangements (B-NEG ALL) and the differences between children, adolescents/young adults (AYA) and adults, we analyzed 168 B-NEG ALLs by genome-wide technologies. This approach showed that B-NEG cases carry 10.5 mutations and 9.1 copy-number aberrations/sample. The most frequently mutated druggable pathways were those pertaining to RAS/RTK (26.8%) and JAK/STAT (12.5%) signaling. In particular, FLT3 and JAK/STAT mutations were detected mainly in AYA and adults, while KRAS and NRAS mutations were more frequent in children. RAS/RTK mutations negatively affected the outcome of AYA and adults, but not that of children. Furthermore, adult B-NEG ALL carrying JAK/STAT mutations had a shorter survival. In vitro experiments showed that FLT3 inhibitors reduced significantly the proliferation of FLT3-mutated primary B-NEG ALL cells. Likewise, PI3K/mTOR inhibitors reduced the proliferation of primary cells harboring RAS and IL7R mutations. These results refine the genetic landscape of B-NEG ALL and suggest that the different distribution of lesions and their prognostic impact might sustain the diverse outcome between children, adults and partly AYA - whose genomic scenario is similar to adults - and open the way to targeted therapeutic strategies.
Collapse
Affiliation(s)
- Monica Messina
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - Sabina Chiaretti
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - Jiguang Wang
- Department of Systems Biology, Biomedical Informatics and Center for Computational Biology and Bioinformatics, Columbia University, New York, NY, USA
| | - Anna Lucia Fedullo
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - Nadia Peragine
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - Valentina Gianfelici
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | | | - Fulvia Brugnoletti
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - Filomena Di Giacomo
- Department of Molecular Biotechnology and Health Science, and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy
| | - Simona Pauselli
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - Antony B Holmes
- Institute for Cancer Genetics and The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Maria Cristina Puzzolo
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - Giulia Ceglie
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - Valerio Apicella
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - Marco Mancini
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - Geertruy Te Kronnie
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Anna Maria Testi
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - Antonella Vitale
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | | | - Anna Guarini
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - Raul Rabadan
- Department of Systems Biology, Biomedical Informatics and Center for Computational Biology and Bioinformatics, Columbia University, New York, NY, USA
| | - Robin Foà
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| |
Collapse
|
30
|
Constitutive Ras signaling and Ink4a/Arf inactivation cooperate during the development of B-ALL in mice. Blood Adv 2017; 1:2361-2374. [PMID: 29296886 DOI: 10.1182/bloodadvances.2017012211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/24/2017] [Indexed: 11/20/2022] Open
Abstract
Despite recent advances in treatment, human precursor B-cell acute lymphoblastic leukemia (B-ALL) remains a challenging clinical entity. Recent genome-wide studies have uncovered frequent genetic alterations involving RAS pathway mutations and loss of the INK4A/ARF locus, suggesting their important role in the pathogenesis, relapse, and chemotherapy resistance of B-ALL. To better understand the oncogenic mechanisms by which these alterations might promote B-ALL and to develop an in vivo preclinical model of relapsed B-ALL, we engineered mouse strains with induced somatic KrasG12D pathway activation and/or loss of Ink4a/Arf during early stages of B-cell development. Although constitutive activation of KrasG12D in B cells induced prominent transcriptional changes that resulted in enhanced proliferation, it was not sufficient by itself to induce development of a high-grade leukemia/lymphoma. Instead, in 40% of mice, these engineered mutations promoted development of a clonal low-grade lymphoproliferative disorder resembling human extranodal marginal-zone lymphoma of mucosa-associated lymphoid tissue or lymphoplasmacytic lymphoma. Interestingly, loss of the Ink4a/Arf locus, apart from reducing the number of apoptotic B cells broadly attenuated KrasG12D-induced transcriptional signatures. However, combined Kras activation and Ink4a/Arf inactivation cooperated functionally to induce a fully penetrant, highly aggressive B-ALL phenotype resembling high-risk subtypes of human B-ALL such as BCR-ABL and CRFL2-rearranged. Ninety percent of examined murine B-ALL tumors showed loss of the wild-type Ink4a/Arf locus without acquisition of highly recurrent cooperating events, underscoring the role of Ink4a/Arf in restraining Kras-driven oncogenesis in the lymphoid compartment. These data highlight the importance of functional cooperation between mutated Kras and Ink4a/Arf loss on B-ALL.
Collapse
|
31
|
Jerchel IS, Hoogkamer AQ, Ariës IM, Steeghs EMP, Boer JM, Besselink NJM, Boeree A, van de Ven C, de Groot-Kruseman HA, de Haas V, Horstmann MA, Escherich G, Zwaan CM, Cuppen E, Koudijs MJ, Pieters R, den Boer ML. RAS pathway mutations as a predictive biomarker for treatment adaptation in pediatric B-cell precursor acute lymphoblastic leukemia. Leukemia 2017; 32:931-940. [PMID: 28972594 PMCID: PMC5886052 DOI: 10.1038/leu.2017.303] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 08/31/2017] [Accepted: 09/20/2017] [Indexed: 12/16/2022]
Abstract
RAS pathway mutations have been linked to relapse and chemotherapy resistance in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, comprehensive data on the frequency and prognostic value of subclonal mutations in well-defined subgroups using highly sensitive and quantitative methods are lacking. Targeted deep sequencing of 13 RAS pathway genes was performed in 461 pediatric BCP-ALL cases at initial diagnosis and in 19 diagnosis-relapse pairs. Mutations were present in 44.2% of patients, with 24.1% carrying a clonal mutation. Mutation frequencies were highest in high hyperdiploid, infant t(4;11)-rearranged, BCR-ABL1-like and B-other cases (50-70%), whereas mutations were less frequent in ETV6-RUNX1-rearranged, and rare in TCF3-PBX1- and BCR-ABL1-rearranged cases (27-4%). RAS pathway-mutated cells were more resistant to prednisolone and vincristine ex vivo. Clonal, but not subclonal, mutations were linked to unfavorable outcome in standard- and high-risk-treated patients. At relapse, most RAS pathway mutations were clonal (9 of 10). RAS mutant cells were sensitive to the MEK inhibitor trametinib ex vivo, and trametinib sensitized resistant cells to prednisolone. We conclude that RAS pathway mutations are frequent, and that clonal, but not subclonal, mutations are associated with unfavorable risk parameters in newly diagnosed pediatric BCP-ALL. These mutations may designate patients eligible for MEK inhibitor treatment.
Collapse
Affiliation(s)
- I S Jerchel
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - A Q Hoogkamer
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - I M Ariës
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - E M P Steeghs
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - J M Boer
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - N J M Besselink
- Center for Personalized Cancer Treatment (CPCT), University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A Boeree
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - C van de Ven
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | - V de Haas
- DCOG, The Hague, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - M A Horstmann
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,On behalf of the COALL
| | - G Escherich
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,On behalf of the COALL
| | - C M Zwaan
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - E Cuppen
- Center for Personalized Cancer Treatment (CPCT), University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M J Koudijs
- Center for Personalized Cancer Treatment (CPCT), University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - R Pieters
- DCOG, The Hague, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - M L den Boer
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands.,DCOG, The Hague, The Netherlands
| |
Collapse
|
32
|
Bongiovanni D, Saccomani V, Piovan E. Aberrant Signaling Pathways in T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2017; 18:ijms18091904. [PMID: 28872614 PMCID: PMC5618553 DOI: 10.3390/ijms18091904] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease caused by the malignant transformation of immature progenitors primed towards T-cell development. Clinically, T-ALL patients present with diffuse infiltration of the bone marrow by immature T-cell blasts high blood cell counts, mediastinal involvement, and diffusion to the central nervous system. In the past decade, the genomic landscape of T-ALL has been the target of intense research. The identification of specific genomic alterations has contributed to identify strong oncogenic drivers and signaling pathways regulating leukemia growth. Notwithstanding, T-ALL patients are still treated with high-dose multiagent chemotherapy, potentially exposing these patients to considerable acute and long-term side effects. This review summarizes recent advances in our understanding of the signaling pathways relevant for the pathogenesis of T-ALL and the opportunities offered for targeted therapy.
Collapse
Affiliation(s)
- Deborah Bongiovanni
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita' di Padova, Padova 35128, Italy.
| | - Valentina Saccomani
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita' di Padova, Padova 35128, Italy.
| | - Erich Piovan
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita' di Padova, Padova 35128, Italy.
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV-IRCCS, Padova 35128, Italy.
| |
Collapse
|
33
|
Kaur M, de Smith AJ, Selvin S, Zhang L, Cunningham M, Kang MW, Hansen HM, Cooper RM, McKean-Cowdin R, Wiemels JL, Metayer C. Tobacco Smoke and Ras Mutations Among Latino and Non-Latino Children with Acute Lymphoblastic Leukemia. Arch Med Res 2016; 47:677-683. [PMID: 28476195 PMCID: PMC5424620 DOI: 10.1016/j.arcmed.2016.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/23/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND AIMS Childhood acute lymphoblastic leukemia (ALL) is a biologically heterogeneous disease, and mutations in the KRAS and NRAS oncogenes are present at diagnosis in about one-fifth of cases. Ras mutations were previously associated with environmental exposures in leukemias as well as in many other cancer types. This study examined whether Ras mutation could define a unique etiologic group of childhood ALL associated with tobacco smoke, a well-established mutagen and carcinogen. METHODS We included 670 children with ALL enrolled in a case-control study in California (1995-2013), including 50.6% Latinos. Parental and child exposure to tobacco smoke was obtained from interviews. Sanger sequencing was used to detect the common KRAS and NRAS hotspot mutations in diagnostic bone marrow DNA. ALL cases were also characterized for common chromosome abnormalities. In case-case analyses, logistic regression analyses were used to estimate odds ratios to describe the association between tobacco smoke exposure and childhood ALL with Ras mutations. RESULTS KRAS or NRAS mutations were detected in ∼18% of children diagnosed with ALL. Ras mutations were more common among Latino cases compared with non-Latino whites and in high-hyperdiploid ALL. No associations were observed between parental smoking or child's passive exposure to smoke and Ras positive ALL. CONCLUSIONS The apparent lack of association between tobacco smoke and Ras mutation in childhood ALL suggests that Ras mutations do not specifically define a tobacco-related etiologic pathway. Reasons for racial and ethnic differences in ALL are not well understood and could reflect differences in etiology that warrant further examination.
Collapse
Affiliation(s)
- Maneet Kaur
- Division of Epidemiology, School of Public Health, University of California Berkeley, Berkeley, California
| | - Adam J de Smith
- Department of Epidemiology and Biostatistics, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Steve Selvin
- Divison of Biostatistics, School of Public Health, University of California Berkeley, Berkeley, California
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California
| | - Marc Cunningham
- Department of Epidemiology and Biostatistics, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Michelle W Kang
- Department of Epidemiology and Biostatistics, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Helen M Hansen
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Robert M Cooper
- Department of Pediatric Hematology/Oncology, Kaiser Permanente Los Angeles Medical Center, Los Angeles, California
| | - Roberta McKean-Cowdin
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Joseph L Wiemels
- Department of Epidemiology and Biostatistics, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California; Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Catherine Metayer
- Division of Epidemiology, School of Public Health, University of California Berkeley, Berkeley, California.
| |
Collapse
|
34
|
High selective pressure for Notch1 mutations that induce Myc in T-cell acute lymphoblastic leukemia. Blood 2016; 128:2229-2240. [PMID: 27670423 DOI: 10.1182/blood-2016-01-692855] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 09/08/2016] [Indexed: 12/20/2022] Open
Abstract
Activating NOTCH1 mutations are frequent in human T-cell acute lymphoblastic leukemia (T-ALL) and Notch inhibitors (γ-secretase inhibitors [GSIs]) have produced responses in patients with relapsed, refractory disease. However, sustained responses, although reported, are uncommon, suggesting that other pathways can substitute for Notch in T-ALL. To address this possibility, we first generated KrasG12D transgenic mice with T-cell-specific expression of the pan-Notch inhibitor, dominant-negative Mastermind (DNMAML). These mice developed leukemia, but instead of accessing alternative oncogenic pathways, the tumor cells acquired Notch1 mutations and subsequently deleted DNMAML, reinforcing the notion that activated Notch1 is particularly transforming within the context of T-cell progenitors. We next took a candidate approach to identify oncogenic pathways downstream of Notch, focusing on Myc and Akt, which are Notch targets in T-cell progenitors. KrasG12D mice transduced with Myc developed T-ALLs that were GSI-insensitive and lacked Notch1 mutations. In contrast, KrasG12D mice transduced with myristoylated AKT developed GSI-sensitive T-ALLs that acquired Notch1 mutations. Thus, Myc can substitute for Notch1 in leukemogenesis, whereas Akt cannot. These findings in primary tumors extend recent work using human T-ALL cell lines and xenografts and suggest that the Notch/Myc signaling axis is of predominant importance in understanding both the selective pressure for Notch mutations in T-ALL and response and resistance of T-ALL to Notch pathway inhibitors.
Collapse
|
35
|
Gusscott S, Jenkins CE, Lam SH, Giambra V, Pollak M, Weng AP. IGF1R Derived PI3K/AKT Signaling Maintains Growth in a Subset of Human T-Cell Acute Lymphoblastic Leukemias. PLoS One 2016; 11:e0161158. [PMID: 27532210 PMCID: PMC4988785 DOI: 10.1371/journal.pone.0161158] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 08/01/2016] [Indexed: 11/19/2022] Open
Abstract
Insulin-like growth factor 1 receptor (IGF1R) is a prevalent signaling pathway in human cancer that supports cell growth/survival and thus contributes to aggressive biological behavior. Much work has gone into development of IGF1R inhibitors; however, candidate agents including small molecule tyrosine kinase inhibitors and blocking antibodies have yet to fulfill their promise clinically. Understanding cellular features that define sensitivity versus resistance are important for effective patient selection and anticipation of outgrowth of a resistant clone. We previously identified an important role for IGF signaling in T-cell acute lymphoblastic leukemia (T-ALL) relying primarily upon genetically defined mouse models. We present here an assessment of IGF1R dependence in human T-ALL using a broad panel of 27 established cell lines that capture a spectrum of the genetic variation that might be encountered in clinical practice. We observed that a subset of cell lines are sensitive to IGF1R inhibition and are characterized by high levels of surface IGF1R expression and PTEN positivity. Interestingly, lentiviral expression or knock-down of PTEN in PTEN-negative/positive cell lines, respectively, had limited effects on their response to IGF1R inhibition, suggesting that PTEN contributes to, but does not define IGF dependence. Additionally, we characterize downstream PI3K/AKT signaling as dominant over RAS/RAF/MEK/ERK in mediating growth and/or survival in this context. Finally, we demonstrate that IGF and interleukin-7 (IL-7) fulfill non-overlapping roles in supporting T-ALL growth. These findings are significant in that they reveal cellular features and downstream mechanisms that may determine the response of an individual patient’s tumor to IGF1R inhibitor therapy.
Collapse
Affiliation(s)
- Samuel Gusscott
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada
| | | | - Sonya H. Lam
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada
| | - Vincenzo Giambra
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada
| | - Michael Pollak
- Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Andrew P. Weng
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada
- * E-mail:
| |
Collapse
|
36
|
Korfi K, Smith M, Swan J, Somervaille TCP, Dhomen N, Marais R. BIM mediates synergistic killing of B-cell acute lymphoblastic leukemia cells by BCL-2 and MEK inhibitors. Cell Death Dis 2016; 7:e2177. [PMID: 27054332 PMCID: PMC4855656 DOI: 10.1038/cddis.2016.70] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/22/2016] [Accepted: 02/29/2016] [Indexed: 01/06/2023]
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is an aggressive hematological disease that kills ~50% of adult patients. With the exception of some BCR-ABL1(+) patients who benefit from tyrosine kinase inhibitors, there are no effective targeted therapies for adult B-ALL patients and chemotherapy remains first-line therapy despite adverse side effects and poor efficacy. We show that, although the MEK/ERK pathway is activated in B-ALL cells driven by different oncogenes, MEK inhibition does not suppress B-ALL cell growth. However, MEK inhibition synergized with BCL-2/BCL-XL family inhibitors to suppress proliferation and induce apoptosis in B-ALL cells. We show that this synergism is mediated by the pro-apoptotic factor BIM, which is dephosphorylated as a result of MEK inhibition, allowing it to bind to and neutralize MCL-1, thereby enhancing BCL-2/BCL-XL inhibitor-induced cell death. This cooperative effect is observed in B-ALL cells driven by a range of genetic abnormalities and therefore has significant therapeutic potential.
Collapse
Affiliation(s)
- K Korfi
- Molecular Oncology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - M Smith
- Molecular Oncology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - J Swan
- Core Research Facilities, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - T C P Somervaille
- Leukemia Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - N Dhomen
- Molecular Oncology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - R Marais
- Molecular Oncology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| |
Collapse
|
37
|
Burkhardt B, Mueller S, Khanam T, Perkins SL. Current status and future directions of T-lymphoblastic lymphoma in children and adolescents. Br J Haematol 2016; 173:545-59. [DOI: 10.1111/bjh.14017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Birgit Burkhardt
- Paediatric Haematology and Oncology; University Hospital Muenster; Germany
| | - Stephanie Mueller
- Paediatric Haematology and Oncology; University Hospital Muenster; Germany
| | - Tasneem Khanam
- Paediatric Haematology and Oncology; University Hospital Muenster; Germany
| | - Sherrie L. Perkins
- Department of Pathology; University of Utah Health Sciences Center, ARUP Institute for Clinical and Experimental Pathology; Salt Lake City Utah
| |
Collapse
|
38
|
Miles RR, Shah RK, Frazer JK. Molecular genetics of childhood, adolescent and young adult non-Hodgkin lymphoma. Br J Haematol 2016; 173:582-96. [PMID: 26969846 DOI: 10.1111/bjh.14011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecular genetic abnormalities are ubiquitous in non-Hodgkin lymphoma (NHL), but genetic changes are not yet used to define specific lymphoma subtypes. Certain recurrent molecular genetic abnormalities in NHL underlie molecular pathogenesis and/or are associated with prognosis or represent potential therapeutic targets. Most molecular genetic studies of B- and T-NHL have been performed on adult patient samples, and the relevance of many of these findings for childhood, adolescent and young adult NHL remains to be demonstrated. In this review, we focus on NHL subtypes that are most common in young patients and emphasize features actually studied in younger NHL patients. This approach highlights what is known about NHL genetics in young patients but also points to gaps that remain, which will require cooperative efforts to collect and share biological specimens for genomic and genetic analyses in order to help predict outcomes and guide therapy in the future.
Collapse
Affiliation(s)
- Rodney R Miles
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT, USA
| | - Rikin K Shah
- Jimmy Everest Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - J Kimble Frazer
- E.L. and Thelma Gaylord Chair in Pediatric Oncology, Jimmy Everest Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
39
|
Jenkins RW, Sullivan RJ. NRAS mutant melanoma: an overview for the clinician for melanoma management. Melanoma Manag 2016; 3:47-59. [PMID: 30190872 PMCID: PMC6097550 DOI: 10.2217/mmt.15.40] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/06/2015] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer and the incidence continues to rise in the United States and worldwide. Activating mutations in RAS oncogenes are found in roughly a third of all human cancers. Mutations in NRAS occur in approximately a fifth of cutaneous melanomas and are associated with aggressive clinical behavior. Cells harboring oncogenic NRAS mutations exhibit activation of multiple signaling cascades, including PI3K/Akt, MEK-ERK and RAL, which collectively stimulate cancer growth. While strategies to target N-Ras itself have proven ineffective, targeting one or more N-Ras effector pathways has shown promise in preclinical models. Despite promising preclinical data, current therapies for NRAS mutant melanoma remain limited. Immune checkpoint inhibitors and targeted therapies for BRAF mutant melanoma are transforming the treatment of metastatic melanoma, but the ideal treatment for NRAS mutant melanoma remains unknown. Improved understanding of NRAS mutant melanoma and relevant N-Ras effector signaling modules will be essential to develop new treatment strategies.
Collapse
Affiliation(s)
| | - Ryan J Sullivan
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| |
Collapse
|
40
|
Choi J, Polcher A, Joas A. Systematic literature review on Parkinson's disease and Childhood Leukaemia and mode of actions for pesticides. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Jenkinson S, Kirkwood AA, Goulden N, Vora A, Linch DC, Gale RE. Impact of PTEN abnormalities on outcome in pediatric patients with T-cell acute lymphoblastic leukemia treated on the MRC UKALL2003 trial. Leukemia 2016; 30:39-47. [PMID: 26220040 PMCID: PMC4705426 DOI: 10.1038/leu.2015.206] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/29/2015] [Accepted: 07/22/2015] [Indexed: 12/21/2022]
Abstract
PTEN gene inactivation by mutation or deletion is common in pediatric T-cell acute lymphoblastic leukemia (T-ALL), but the impact on outcome is unclear, particularly in patients with NOTCH1/FBXW7 mutations. We screened samples from 145 patients treated on the MRC UKALL2003 trial for PTEN mutations using heteroduplex analysis and gene deletions using single nucleotide polymorphism arrays, and related genotype to response to therapy and long-term outcome. PTEN loss-of-function mutations/gene deletions were detected in 22% (PTEN(ABN)). Quantification of mutant level indicated that 67% of mutated cases harbored more than one mutant, with up to four mutants detected, consistent with the presence of multiple leukemic sub-clones. Overall, 41% of PTEN(ABN) cases were considered to have biallelic abnormalities (mutation and/or deletion) with complete loss of PTEN in a proportion of cells. In addition, 9% of cases had N- or K-RAS mutations. Neither PTEN nor RAS genotype significantly impacted on response to therapy or long-term outcome, irrespective of mutant level, and there was no evidence that they changed the highly favorable outcome of patients with double NOTCH1/FBXW7 mutations. These results indicate that, for pediatric patients treated according to current protocols, routine screening for PTEN or RAS abnormalities at diagnosis is not warranted to further refine risk stratification.
Collapse
Affiliation(s)
- S Jenkinson
- Department of Haematology, UCL Cancer Institute, London, UK
| | - A A Kirkwood
- Cancer Research UK & UCL Cancer Trials Centre, London, UK
| | - N Goulden
- Department of Haematology, Great Ormond Street Hospital, London, UK
| | - A Vora
- Department of Haematology, Sheffield Children's Hospital, Sheffield, UK
| | - D C Linch
- Department of Haematology, UCL Cancer Institute, London, UK
| | - R E Gale
- Department of Haematology, UCL Cancer Institute, London, UK
| |
Collapse
|
42
|
Al-Kzayer LFY, Sakashita K, Al-Jadiry MF, Al-Hadad SA, Ghali HH, Uyen LTN, Liu T, Matsuda K, Abdulkadhim JMH, Al-Shujairi TA, Matti ZIIK, Sughayer MA, Rihani R, Madanat FF, Inoshita T, Kamata M, Koike K. Analysis of KRAS and NRAS Gene Mutations in Arab Asian Children With Acute Leukemia: High Frequency of RAS Mutations in Acute Lymphoblastic Leukemia. Pediatr Blood Cancer 2015. [PMID: 26222068 DOI: 10.1002/pbc.25683] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND KRAS and NRAS gene mutations are frequently observed in childhood leukemia. The objective of this study was to determine the frequency of RAS mutations and the association between RAS mutations and other genetic aberrations in Arab Asian children with acute lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML). METHODS Diagnostic samples of 485 patients (<18 years) with acute leukemia from Iraq and Jordan were obtained, using Flinders Technology Associates filter papers. Polymerase chain reaction and direct sequencing were performed in Japan. RESULTS RAS mutations were detected in 86/318 (27%) of ALL cases and 35/167 (21%) of AML cases. The frequency of NRAS mutation was similar to that of KRAS mutation in ALL. Two RAS mutations were detected in nine patients. Among 264 Iraqi patients with ALL, RAS mutation was significantly associated with lower initial white blood cell count. Of 57 patients with chimeric transcripts, only two patients with either TEL-AML1 or E2A-PBX1 had KRAS mutation. The frequency of NRAS mutation was four times higher than that of KRAS mutation in AML. FAB-M4 and M5 subsets were associated with RAS mutation. Among 134 Iraqi patients with AML, 18 patients had RAS mutations and other genetic aberrations. In particular, 9 of 25 (36%) with MLL-rearrangement had RAS mutations. CONCLUSION The prevalence of oncogenic RAS mutations was higher among Arab Asian children than in other countries. RAS mutations in AML were found to coexist with other genetic aberrations, particularly MLL rearrangement.
Collapse
Affiliation(s)
| | - Kazuo Sakashita
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Mazin Faisal Al-Jadiry
- Department of Pediatrics, College of Medicine, Baghdad University, Baghdad Medical City, Baghdad, Iraq.,Department of Pediatric Oncology, Children's Welfare Teaching Hospital, Baghdad Medical City, Baghdad, Iraq
| | - Salma Abbas Al-Hadad
- Department of Pediatrics, College of Medicine, Baghdad University, Baghdad Medical City, Baghdad, Iraq.,Department of Pediatric Oncology, Children's Welfare Teaching Hospital, Baghdad Medical City, Baghdad, Iraq
| | - Hasanein Habeeb Ghali
- Department of Pediatrics, College of Medicine, Baghdad University, Baghdad Medical City, Baghdad, Iraq.,Department of Pediatric Oncology, Children's Welfare Teaching Hospital, Baghdad Medical City, Baghdad, Iraq
| | - Le T N Uyen
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Tingting Liu
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Kazuyuki Matsuda
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Nagano, Japan
| | | | | | - Zead Ismael I K Matti
- Department of Pediatric Oncology, Central Teaching Hospital for Children, Baghdad, Iraq
| | - Maher A Sughayer
- Department of Pathology, King Hussein Cancer Center, Amman, Jordan
| | - Rawad Rihani
- Department of Pediatrics, King Hussein Cancer Center, Amman, Jordan
| | - Faris F Madanat
- Department of Pediatrics, King Hussein Cancer Center, Amman, Jordan
| | | | - Minoru Kamata
- Japan Chernobyl Foundation, Matsumoto, Nagano, Japan
| | - Kenichi Koike
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| |
Collapse
|
43
|
Genetic mutational profiling analysis of T cell acute lymphoblastic leukemia reveal mutant FBXW7 as a prognostic indicator for inferior survival. Ann Hematol 2015; 94:1817-28. [PMID: 26341754 DOI: 10.1007/s00277-015-2474-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive neoplasm for which there are currently no adequate biomarkers for developing risk-adapted therapeutic regimens to improve the treatment outcome. In this prospective study of 83 Chinese patients (54 children and 29 adults) with de novo T-ALL, we analyzed mutations in 11 T-ALL genes: NOTCH1, FBXW7, PHF6, PTEN, N-RAS, K-RAS, WT1, IL7R, PIK3CA, PIK3RA, and AKT1. NOTCH1 mutations were identified in 51.9 and 37.9 % of pediatric and adult patients, respectively, and these patients showed improved overall survival (OS) and event-free survival (EFS). The FBXW7 mutant was present in 25.9 and 6.9 % of pediatric and adult patients, respectively, and was associated with inferior OS and EFS in pediatric T-ALL. Multivariate analysis revealed that mutant FBXW7 was an independent prognostic indicator for inferior EFS (hazard ratio [HR] 4.38; 95 % confidence interval [CI] 1.15-16.71; p = 0.03) and tended to be associated with reduced OS (HR 2.81; 95 % CI 0.91-8.69; p = 0.074) in pediatric T-ALL. Mutant PHF6 was present in 13 and 20.7 % of our childhood and adult cohorts, respectively, while PTEN mutations were noted in 11.1 % of the pediatric patients. PTEN and NOTCH1 mutations were almost mutually exclusive, while IL7R and WT1 mutations were rare in pediatric T-ALL and PTPN11 and AKT1 mutations were infrequent in adult T-ALL. This study revealed differences in the mutational profiles of pediatric and adult T-ALL and suggests mutant FBXW7 as an independent prognostic indicator for inferior survival in pediatric T-ALL.
Collapse
|
44
|
Ductal activation of oncogenic KRAS alone induces sarcomatoid phenotype. Sci Rep 2015; 5:13347. [PMID: 26289340 PMCID: PMC4642517 DOI: 10.1038/srep13347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/22/2015] [Indexed: 01/01/2023] Open
Abstract
Salivary duct carcinoma (SDC) is an uncommon, but aggressive malignant tumor with a high mortality rate. Herein, we reported the detection of somatic KRAS A146T and Q61H mutations in 2 out of 4 (50%) sarcomatoid SDC variants. Transgenic mice carrying the human oncogenic KRASG12V, which spatiotemporal activation by tamoxifen (TAM)-inducible Cre recombinase Ela-CreERT in the submandibular gland (SMG) ductal cells, was established and characterized. Visible carcinoma was detected as early as day-15 following oncogenic KRASG12V induction alone, and these tumors proliferate rapidly with a median survival of 28-days accompanied with histological reminiscences to human sarcomatoid SDC variants. Moreover, these tumors were resistant to cetuximab treatment despite augmented EGFR signaling, attesting its malignancy. Our findings suggest that LGL-KRasG12V;Ela-CreERT transgenic mice could serve as a useful preclinical model for investigating underlying mechanisms and developing potential therapies.
Collapse
|
45
|
Eswaran J, Sinclair P, Heidenreich O, Irving J, Russell LJ, Hall A, Calado DP, Harrison CJ, Vormoor J. The pre-B-cell receptor checkpoint in acute lymphoblastic leukaemia. Leukemia 2015; 29:1623-31. [PMID: 25943180 DOI: 10.1038/leu.2015.113] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 02/06/2023]
Abstract
The B-cell receptor (BCR) and its immature form, the precursor-BCR (pre-BCR), have a central role in the control of B-cell development, which is dependent on a sequence of cell-fate decisions at specific antigen-independent checkpoints. Pre-BCR expression provides the first checkpoint, which controls differentiation of pre-B to immature B-cells in normal haemopoiesis. Pre-BCR signalling regulates and co-ordinates diverse processes within the pre-B cell, including clonal selection, proliferation and subsequent maturation. In B-cell precursor acute lymphoblastic leukaemia (BCP-ALL), B-cell development is arrested at this checkpoint. Moreover, malignant blasts avoid clonal extinction by hijacking pre-BCR signalling in favour of the development of BCP-ALL. Here, we discuss three mechanisms that occur in different subtypes of BCP-ALL: (i) blocking pre-BCR expression; (ii) activating pre-BCR-mediated pro-survival and pro-proliferative signalling, while inhibiting cell cycle arrest and maturation; and (iii) bypassing the pre-BCR checkpoint and activating pro-survival signalling through pre-BCR independent alternative mechanisms. A complete understanding of the BCP-ALL-specific signalling networks will highlight their application in BCP-ALL therapy.
Collapse
Affiliation(s)
- J Eswaran
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - P Sinclair
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - O Heidenreich
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - J Irving
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - L J Russell
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - A Hall
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - D P Calado
- 1] Cancer Research UK, London Research Institute, London, UK [2] Peter Gorer Department of Immunobiology, Kings College London, London, UK
| | - C J Harrison
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - J Vormoor
- 1] Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK [2] Great North Children's Hospital, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
46
|
Balbach ST, Makarova O, Bonn BR, Zimmermann M, Rohde M, Oschlies I, Klapper W, Rössig C, Burkhardt B. Proposal of a genetic classifier for risk group stratification in pediatric T-cell lymphoblastic lymphoma reveals differences from adult T-cell lymphoblastic leukemia. Leukemia 2015. [PMID: 26216196 DOI: 10.1038/leu.2015.203] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- S T Balbach
- Pediatric Hematology and Oncology, University Children's Hospital, Münster, Germany
| | - O Makarova
- Pediatric Hematology and Oncology, University Children's Hospital, Münster, Germany
| | - B R Bonn
- Pediatric Hematology and Oncology, University Children's Hospital, Münster, Germany
| | - M Zimmermann
- Pediatric Hematology and Oncology, Medical School Hannover, Hannover, Germany
| | - M Rohde
- Pediatric Hematology and Oncology, Justus Liebig University, Giessen, Germany
| | - I Oschlies
- Pathology, Hematopathology Section and Lymph Node Registry, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - W Klapper
- Pathology, Hematopathology Section and Lymph Node Registry, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - C Rössig
- Pediatric Hematology and Oncology, University Children's Hospital, Münster, Germany
| | - B Burkhardt
- Pediatric Hematology and Oncology, University Children's Hospital, Münster, Germany
| |
Collapse
|
47
|
The genomic landscape of high hyperdiploid childhood acute lymphoblastic leukemia. Nat Genet 2015; 47:672-6. [PMID: 25961940 DOI: 10.1038/ng.3301] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/16/2015] [Indexed: 12/16/2022]
Abstract
High hyperdiploid (51-67 chromosomes) acute lymphoblastic leukemia (ALL) is one of the most common childhood malignancies, comprising 30% of all pediatric B cell-precursor ALL. Its characteristic genetic feature is the nonrandom gain of chromosomes X, 4, 6, 10, 14, 17, 18 and 21, with individual trisomies or tetrasomies being seen in over 75% of cases, but the pathogenesis remains poorly understood. We performed whole-genome sequencing (WGS) (n = 16) and/or whole-exome sequencing (WES) (n = 39) of diagnostic and remission samples from 51 cases of high hyperdiploid ALL to further define the genomic landscape of this malignancy. The majority of cases showed involvement of the RTK-RAS pathway and of histone modifiers. No recurrent fusion gene-forming rearrangement was found, and an analysis of mutations on trisomic chromosomes indicated that the chromosomal gains were early events, strengthening the notion that the high hyperdiploid pattern is the main driver event in this common pediatric malignancy.
Collapse
|
48
|
|
49
|
Ras pathway mutations are prevalent in relapsed childhood acute lymphoblastic leukemia and confer sensitivity to MEK inhibition. Blood 2014; 124:3420-30. [PMID: 25253770 DOI: 10.1182/blood-2014-04-531871] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
For most children who relapse with acute lymphoblastic leukemia (ALL), the prognosis is poor, and there is a need for novel therapies to improve outcome. We screened samples from children with B-lineage ALL entered into the ALL-REZ BFM 2002 clinical trial (www.clinicaltrials.gov, #NCT00114348) for somatic mutations activating the Ras pathway (KRAS, NRAS, FLT3, and PTPN11) and showed mutation to be highly prevalent (76 from 206). Clinically, they were associated with high-risk features including early relapse, central nervous system (CNS) involvement, and specifically for NRAS/KRAS mutations, chemoresistance. KRAS mutations were associated with a reduced overall survival. Mutation screening of the matched diagnostic samples found many to be wild type (WT); however, by using more sensitive allelic-specific assays, low-level mutated subpopulations were found in many cases, suggesting that they survived up-front therapy and subsequently emerged at relapse. Preclinical evaluation of the mitogen-activated protein kinase kinase 1/2 inhibitor selumetinib (AZD6244, ARRY-142886) showed significant differential sensitivity in Ras pathway-mutated ALL compared with WT cells both in vitro and in an orthotopic xenograft model engrafted with primary ALL; in the latter, reduced RAS-mutated CNS leukemia. Given these data, clinical evaluation of selumetinib may be warranted for Ras pathway-mutated relapsed ALL.
Collapse
|
50
|
Knight T, Irving JAE. Ras/Raf/MEK/ERK Pathway Activation in Childhood Acute Lymphoblastic Leukemia and Its Therapeutic Targeting. Front Oncol 2014; 4:160. [PMID: 25009801 PMCID: PMC4067595 DOI: 10.3389/fonc.2014.00160] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/06/2014] [Indexed: 01/11/2023] Open
Abstract
Deregulation of the Ras/Raf/MEK/extracellular signal-regulated kinase pathway is a common event in childhood acute lymphoblastic leukemia and is caused by point mutation, gene deletion, and chromosomal translocation of a vast array of gene types, highlighting its importance in leukemia biology. Pathway activation can be therapeutically exploited and may guide new therapies needed for relapsed acute lymphoblastic leukemia and other high risk subgroups.
Collapse
Affiliation(s)
- Thomas Knight
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Julie Anne Elizabeth Irving
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|