1
|
Zou X, Lei Q, Luo X, Yin J, Chen S, Hao C, Shiyu L, Ma D. Advances in biological functions and applications of apoptotic vesicles. Cell Commun Signal 2023; 21:260. [PMID: 37749626 PMCID: PMC10519056 DOI: 10.1186/s12964-023-01251-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/31/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Apoptotic vesicles are extracellular vesicles generated by apoptotic cells that were previously regarded as containing waste or harmful substances but are now thought to play an important role in signal transduction and homeostasis regulation. METHODS In the present review, we reviewed many articles published over the past decades on the subtypes and formation of apoptotic vesicles and the existing applications of these vesicles. RESULTS Apoptotic bodies were once regarded as vesicles released by apoptotic cells, however, apoptotic vesicles are now regarded to include apoptotic bodies, apoptotic microvesicles and apoptotic exosomes, which exhibit variation in terms of biogenesis, sizes and properties. Applications of apoptotic vesicles were first reported long ago, but such reports have been rarer than those of other extracellular vesicles. At present, apoptotic vesicles have been utilized mainly in four aspects, including in direct therapeutic applications, in their engineering as carriers, in their construction as vaccines and in their utilization in diagnosis. CONCLUSION Building on a deeper understanding of their composition and characteristics, some studies have utilized apoptotic vesicles to treat diseases in more novel ways. However, their limitations for clinical translation, such as heterogeneity, have also emerged. In general, apoptotic vesicles have great application potential, but there are still many barriers to overcome in their investigation. Video Abstract.
Collapse
Affiliation(s)
- Xianghui Zou
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province, 510280, China
| | - Qian Lei
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province, 510280, China
| | - Xinghong Luo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province, 510280, China
| | - Jingyao Yin
- Department of Stomatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, Guangdong Province, China
| | - Shuoling Chen
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province, 510280, China
| | - Chunbo Hao
- Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, China
| | - Liu Shiyu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi Province, 710032, China.
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province, 510280, China.
| |
Collapse
|
2
|
Zhang G, Tang T, Chen Y, Huang X, Liang T. mRNA vaccines in disease prevention and treatment. Signal Transduct Target Ther 2023; 8:365. [PMID: 37726283 PMCID: PMC10509165 DOI: 10.1038/s41392-023-01579-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/01/2023] [Accepted: 07/30/2023] [Indexed: 09/21/2023] Open
Abstract
mRNA vaccines have emerged as highly effective strategies in the prophylaxis and treatment of diseases, thanks largely although not totally to their extraordinary performance in recent years against the worldwide plague COVID-19. The huge superiority of mRNA vaccines regarding their efficacy, safety, and large-scale manufacture encourages pharmaceutical industries and biotechnology companies to expand their application to a diverse array of diseases, despite the nonnegligible problems in design, fabrication, and mode of administration. This review delves into the technical underpinnings of mRNA vaccines, covering mRNA design, synthesis, delivery, and adjuvant technologies. Moreover, this review presents a systematic retrospective analysis in a logical and well-organized manner, shedding light on representative mRNA vaccines employed in various diseases. The scope extends across infectious diseases, cancers, immunological diseases, tissue damages, and rare diseases, showcasing the versatility and potential of mRNA vaccines in diverse therapeutic areas. Furthermore, this review engages in a prospective discussion regarding the current challenge and potential direction for the advancement and utilization of mRNA vaccines. Overall, this comprehensive review serves as a valuable resource for researchers, clinicians, and industry professionals, providing a comprehensive understanding of the technical aspects, historical context, and future prospects of mRNA vaccines in the fight against various diseases.
Collapse
Affiliation(s)
- Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yinfeng Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Wen J, Creaven D, Luan X, Wang J. Comparison of immunotherapy mediated by apoptotic bodies, microvesicles and exosomes: apoptotic bodies' unique anti-inflammatory potential. J Transl Med 2023; 21:478. [PMID: 37461033 DOI: 10.1186/s12967-023-04342-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Immunotherapy, including immunostimulation and immunosuppression, has seen significant development in the last 10 years. Immunostimulation has been verified as effective in anti-cancer treatment, while immunosuppression is used in the treatment of autoimmune disease and inflammation. Currently, with the update of newly-invented simplified isolation methods and the findings of potent triggered immune responses, extracellular vesicle-based immunotherapy is very eye-catching. However, the research on three main types of extracellular vesicles, exosomes, microvesicles and apoptotic bodies, needs to be more balanced. These three subtypes share a certain level of similarity, and at the same time, they have their own properties caused by the different methods of biogensis. Herein, we summarized respectively the status of immunotherapy based on each kind of vesicle and discuss the possible involved mechanisms. In conclusion, we highlighted that the effect of the apoptotic body is clear and strong. Apoptotic bodies have an excellent potential in immunosuppressive and anti-inflammatory therapies .
Collapse
Affiliation(s)
- Jing Wen
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China
| | - Dale Creaven
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Xiangshu Luan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jiemin Wang
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland.
| |
Collapse
|
4
|
Yu L, Zhu G, Zhang Z, Yu Y, Zeng L, Xu Z, Weng J, Xia J, Li J, Pathak JL. Apoptotic bodies: bioactive treasure left behind by the dying cells with robust diagnostic and therapeutic application potentials. J Nanobiotechnology 2023; 21:218. [PMID: 37434199 DOI: 10.1186/s12951-023-01969-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Apoptosis, a form of programmed cell death, is essential for growth and tissue homeostasis. Apoptotic bodies (ApoBDs) are a form of extracellular vesicles (EVs) released by dying cells in the last stage of apoptosis and were previously regarded as debris of dead cells. Recent studies unraveled that ApoBDs are not cell debris but the bioactive treasure left behind by the dying cells with an important role in intercellular communications related to human health and various diseases. Defective clearance of ApoBDs and infected-cells-derived ApoBDs are possible etiology of some diseases. Therefore, it is necessary to explore the function and mechanism of the action of ApoBDs in different physiological and pathological conditions. Recent advances in ApoBDs have elucidated the immunomodulatory, virus removal, vascular protection, tissue regenerative, and disease diagnostic potential of ApoBDs. Moreover, ApoBDs can be used as drug carriers enhancing drug stability, cellular uptake, and targeted therapy efficacy. These reports from the literature indicate that ApoBDs hold promising potential for diagnosis, prognosis, and treatment of various diseases, including cancer, systemic inflammatory diseases, cardiovascular diseases, and tissue regeneration. This review summarizes the recent advances in ApoBDs-related research and discusses the role of ApoBDs in health and diseases as well as the challenges and prospects of ApoBDs-based diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Lina Yu
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China.
| | - Guanxiong Zhu
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Zeyu Zhang
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Yang Yu
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, China
| | - Liting Zeng
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Zidan Xu
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Jinlong Weng
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Junyi Xia
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Jiang Li
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China.
| | - Janak L Pathak
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Sweeney EE, Sekhri P, Telaraja D, Chen J, Chin SJ, Chiappinelli KB, Sanchez CE, Bollard CM, Cruz CRY, Fernandes R. Engineered tumor-specific T cells using immunostimulatory photothermal nanoparticles. Cytotherapy 2023; 25:S1465-3249(23)00094-4. [PMID: 37278683 DOI: 10.1016/j.jcyt.2023.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Adoptive T cell therapy (ATCT) has been successful in treating hematological malignancies and is currently under investigation for solid-tumor therapy. In contrast to existing chimeric antigen receptor (CAR) T cell and/or antigen-specific T cell approaches, which require known targets, and responsive to the need for targeting a broad repertoire of antigens in solid tumors, we describe the first use of immunostimulatory photothermal nanoparticles to generate tumor-specific T cells. METHODS Specifically, we subject whole tumor cells to Prussian blue nanoparticle-based photothermal therapy (PBNP-PTT) before culturing with dendritic cells (DCs), and subsequent stimulation of T cells. This strategy differs from previous approaches using tumor cell lysates because we use nanoparticles to mediate thermal and immunogenic cell death in tumor cells, rendering them enhanced antigen sources. RESULTS In proof-of-concept studies using two glioblastoma (GBM) tumor cell lines, we first demonstrated that when PBNP-PTT was administered at a "thermal dose" targeted to induce the immunogenicity of U87 GBM cells, we effectively expanded U87-specific T cells. Further, we found that DCs cultured ex vivo with PBNP-PTT-treated U87 cells enabled 9- to 30-fold expansion of CD4+ and CD8+ T cells. Upon co-culture with target U87 cells, these T cells secreted interferon-ɣ in a tumor-specific and dose-dependent manner (up to 647-fold over controls). Furthermore, T cells manufactured using PBNP-PTT ex vivo expansion elicited specific cytolytic activity against target U87 cells (donor-dependent 32-93% killing at an effector to target cell (E:T) ratio of 20:1) while sparing normal human astrocytes and peripheral blood mononuclear cells from the same donors. In contrast, T cells generated using U87 cell lysates expanded only 6- to 24-fold and killed 2- to 3-fold less U87 target cells at matched E:T ratios compared with T cell products expanded using the PBNP-PTT approach. These results were reproducible even when a different GBM cell line (SNB19) was used, wherein the PBNP-PTT-mediated approach resulted in a 7- to 39-fold expansion of T cells, which elicited 25-66% killing of the SNB19 cells at an E:T ratio of 20:1, depending on the donor. CONCLUSIONS These findings provide proof-of-concept data supporting the use of PBNP-PTT to stimulate and expand tumor-specific T cells ex vivo for potential use as an adoptive T cell therapy approach for the treatment of patients with solid tumors.
Collapse
Affiliation(s)
- Elizabeth E Sweeney
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA.
| | - Palak Sekhri
- George Washington Cancer Center, Department of Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Deepti Telaraja
- George Washington Cancer Center, Department of Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Jie Chen
- George Washington Cancer Center, Department of Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Samantha J Chin
- The Institute for Biomedical Sciences, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Katherine B Chiappinelli
- George Washington Cancer Center, Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Carlos E Sanchez
- George Washington Cancer Center, Department of Neurosurgery, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - C Russell Y Cruz
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA.
| | - Rohan Fernandes
- George Washington Cancer Center, Department of Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA; The Institute for Biomedical Sciences, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA.
| |
Collapse
|
6
|
Singh R, Gupta U, Srivastava P, Paladhi A, Sk UH, Hira SK, Manna PP. γc cytokine-aided crosstalk between dendritic cells and natural killer cells together with doxorubicin induces a healer response in experimental lymphoma by downregulating FOXP3 and programmed cell death protein 1. Cytotherapy 2022; 24:1232-1244. [PMID: 36057496 DOI: 10.1016/j.jcyt.2022.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/01/2022] [Accepted: 07/31/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND AIMS The stimulatory natural killer-dendritic cell axis in the tumor microenvironment could play a critical role in stimulating cytotoxic T cells and driving immune responses against cancer. METHODS We established a novel treatment protocol by adroitly combining chemotherapy with doxorubicin and immunotherapy with dendritic cells and natural killer cells against a highly aggressive and malignant lymphoma called Dalton's lymphoma. RESULTS Our data suggest that binary application of adoptive cell therapy and chemotherapy nearly cures (95%) early-stage experimental lymphoma. In the case of mid-stage cancer, the success rate was significantly lower but still impressive (75%). Our results demonstrated that the application of combination therapy in early-stage cancer significantly reduced the tumor volume and extended the lifespan of the experimental animal in addition to reinvigorating the immune system, including restoring the effector functions of dendritic cells and natural killer cells. The novel protocol limits the metastasis of tumor cells in vascularized organs and rearms the adaptive immune response mediated by dendritic cells and CD4+ and CD8+ T cells. CONCLUSIONS Combination therapy in the early stage alters the cytokine profile, increases interferon-γ and tumor necrosis factor-α in the serum of treated animals and downregulates programmed cell death protein 1 expression in CD8+ T cells. Thus, cooperative and cognitive interactions between dendritic cells and natural killer cells in addition to therapy with doxorubicin promote the immune response and tumoricidal activities against lymphoma.
Collapse
Affiliation(s)
- Ranjeet Singh
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Uttam Gupta
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prateek Srivastava
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ankush Paladhi
- Cellular Immunology Laboratory, Department of Zoology, The University of Burdwan, PurbaBardhhaman, India
| | | | - Sumit Kumar Hira
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India; Cellular Immunology Laboratory, Department of Zoology, The University of Burdwan, PurbaBardhhaman, India.
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
7
|
Zhang Z, Ji W, Huang J, Zhang Y, Zhou Y, Zhang J, Dong Y, Yuan T, Yang Q, Ding X, Tang L, Li H, Yin J, Wang Y, Ji T, Fei J, Zhang B, Chen P, Hu H. Characterization of the tumour microenvironment phenotypes in malignant tissues and pleural effusion from advanced osteoblastic osteosarcoma patients. Clin Transl Med 2022; 12:e1072. [PMID: 36305631 PMCID: PMC9615475 DOI: 10.1002/ctm2.1072] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 01/28/2023] Open
Abstract
PURPOSE Malignant pleural effusion (MPE) is an adverse prognostic factor in patients with osteoblastic osteosarcoma; however, the cellular contexts of MPE are largely unknown. EXPERIMENTAL DESIGN We performed single-cell RNA-sequencing (scRNA-seq) on 27 260 cells from seven MPE samples and 91 186 cells from eight osteosarcoma tissues, including one recurrent, one lung metastasis and six primary tumour (PT) samples, to characterize their tumour microenvironment. RESULTS Thirteen main cell groups were identified in osteosarcoma tumour and MPE samples. Immune cells dominate the cellular contexts in MPE with more T/NK cells and less osteoclasts compared to PT samples. Of T/NK cells, CD8+ GNLY+ , CD8+ KLRC2+ T cells and FCGR3A+ NK cells were enriched in MPE but CD4+ FOXP3+ Tregs were enriched in PT samples. Naïve IGHD+ B and immune regulatory IGHA1+ B cells were largely identified in MPE, whereas bone metabolism-related CLEC11A+ B cells were significantly enriched in osteosarcoma PT. M2-type TAMs, including CLEC11A_TAM, C1QC_TAM and Prolif_TAMs, among myeloid cells were enriched in PT, which may suppress cytotoxicity activities of T cells through multiple ligand-receptor interactions. Mature LAMP3+ DCs were transformed from CD1C+ DC and CLEC9A+ DC sub-clusters when exposure to tumour alloantigens, which may improve T cell cytotoxicity activities on tumour cells under anti-PD-L1 treatments. In further, immune cells from MPE usually present up-regulated glycolysis and down-regulated oxidative phosphorylation and riboflavin metabolism activities compared to those in PT samples. CONCLUSIONS Our study provided a novel cellular atlas of MPE and PT in patients with advanced osteosarcoma, which may provide potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Zhichang Zhang
- Orthopedic Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina,Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai
China
| | - Weiping Ji
- Orthopedic Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Jin Huang
- Pathology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yawen Zhang
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yan Zhou
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Jianjun Zhang
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yang Dong
- Orthopedic Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Ting Yuan
- Orthopedic Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Qingcheng Yang
- Orthopedic Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xiaomin Ding
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Lina Tang
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Hongtao Li
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Junyi Yin
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yonggang Wang
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Tong Ji
- Department of Orthopaedics, Shanghai Ninth People's Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jia Fei
- Department of Biochemistry and Molecular BiologyMedical College of Jinan UniversityGuangzhouChina
| | - Bing Zhang
- Orthopaedic Department of the Affiliated Hospital of Jiangxi University of Traditional Chinese MedicineNanchangChina
| | - Peizhan Chen
- Clinical Research Center, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haiyan Hu
- Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai
China,Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| |
Collapse
|
8
|
Sutherland SIM, Ju X, Horvath LG, Clark GJ. Moving on From Sipuleucel-T: New Dendritic Cell Vaccine Strategies for Prostate Cancer. Front Immunol 2021; 12:641307. [PMID: 33854509 PMCID: PMC8039370 DOI: 10.3389/fimmu.2021.641307] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Tumors evade the immune system though a myriad of mechanisms. Using checkpoint inhibitors to help reprime T cells to recognize tumor has had great success in malignancies including melanoma, lung, and renal cell carcinoma. Many tumors including prostate cancer are resistant to such treatment. However, Sipuleucel-T, a dendritic cell (DC) based immunotherapy, improved overall survival (OS) in prostate cancer. Despite this initial success, further DC vaccines have failed to progress and there has been limited uptake of Sipuleucel-T in the clinic. We know in prostate cancer (PCa) that both the adaptive and the innate arms of the immune system contribute to the immunosuppressive environment. This is at least in part due to dysfunction of DC that play a crucial role in the initiation of an immune response. We also know that there is a paucity of DC in PCa, and that those there are immature, creating a tolerogenic environment. These attributes make PCa a good candidate for a DC based immunotherapy. Ultimately, the knowledge gained by much research into antigen processing and presentation needs to translate from bench to bedside. In this review we will analyze why newer vaccine strategies using monocyte derived DC (MoDC) have failed to deliver clinical benefit, particularly in PCa, and highlight the emerging antigen loading and presentation technologies such as nanoparticles, antibody-antigen conjugates and virus co-delivery systems that can be used to improve efficacy. Lastly, we will assess combination strategies that can help overcome the immunosuppressive microenvironment of PCa.
Collapse
Affiliation(s)
- Sarah I. M. Sutherland
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Concord Repatriation General Hospital, Concord, NSW, Australia
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
| | - Xinsheng Ju
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - L. G. Horvath
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Georgina J. Clark
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Motais B, Charvátová S, Hrdinka M, Šimíček M, Jelínek T, Ševčíková T, Kořístek Z, Hájek R, Bagó JR. A Bird's-Eye View of Cell Sources for Cell-Based Therapies in Blood Cancers. Cancers (Basel) 2020; 12:E1333. [PMID: 32456165 PMCID: PMC7281611 DOI: 10.3390/cancers12051333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 12/25/2022] Open
Abstract
: Hematological malignancies comprise over a hundred different types of cancers and account for around 6.5% of all cancers. Despite the significant improvements in diagnosis and treatment, many of those cancers remain incurable. In recent years, cancer cell-based therapy has become a promising approach to treat those incurable hematological malignancies with striking results in different clinical trials. The most investigated, and the one that has advanced the most, is the cell-based therapy with T lymphocytes modified with chimeric antigen receptors. Those promising initial results prepared the ground to explore other cell-based therapies to treat patients with blood cancer. In this review, we want to provide an overview of the different types of cell-based therapies in blood cancer, describing them according to the cell source.
Collapse
Affiliation(s)
- Benjamin Motais
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
| | - Sandra Charvátová
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
| | - Matouš Hrdinka
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
| | - Michal Šimíček
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
| | - Tomáš Jelínek
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
| | - Tereza Ševčíková
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
| | - Zdeněk Kořístek
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
| | - Roman Hájek
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
| | - Juli R. Bagó
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
| |
Collapse
|
10
|
Evaluation of cell surface reactive immuno-adjuvant in combination with immunogenic cell death inducing drug for in situ chemo-immunotherapy. J Control Release 2020; 322:519-529. [PMID: 32243973 PMCID: PMC7262586 DOI: 10.1016/j.jconrel.2020.03.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/21/2020] [Accepted: 03/20/2020] [Indexed: 12/27/2022]
Abstract
Apoptotic cells and cell fragments, especially those produced as a result of immunogenic cell death (ICD), are known to be a potential source of cancer vaccine immunogen. However, due to variation between tumours and between individuals, methods to generate such preparations may require extensive ex vivo personalisation. To address this, we have utilised the concept of in situ vaccination whereby an ICD inducing drug is injected locally to generate immunogenic apoptotic fragments/cells. These fragments are then adjuvanted by a co-administered cell reactive CpG adjuvant. We first evaluate means of labelling tumour cells with CpG adjuvant, we then go on to demonstrate in vitro that labelling is preserved following apoptosis and, furthermore, that the apoptotic body-adjuvant complexes are readily transferred to macrophages. In in vivo studies we observe synergistic tumour growth delays and elevated levels of CD4+ and CD8+ cells in tumours receiving adjuvant drug combination. CD4+/CD8+ cells are likewise elevated in the tumour draining lymph node and activated to a greater extent than individual treatments. This study represents the first steps toward the evaluation of rationally formulated drug-adjuvant combinations for in situ chemo-immunotherapy.
Collapse
|
11
|
Palm Tocotrienol-Adjuvanted Dendritic Cells Decrease Expression of the SATB1 Gene in Murine Breast Cancer Cells and Tissues. Vaccines (Basel) 2019; 7:vaccines7040198. [PMID: 31783698 PMCID: PMC6963955 DOI: 10.3390/vaccines7040198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022] Open
Abstract
The aim of this study was to evaluate the effectiveness of immunotherapy using dendritic cells (DC) pulsed with tumor lysate (a DC vaccine) in combination with daily supplementation of tocotrienol-rich fraction (TRF) to potentiate anti-tumor immune responses. We had previously reported that DC-vaccine immunotherapy together with TRF supplementation induced protective immunity to tumor challenge. Breast cancer was induced in female BALB/c mice. The mice were randomly assigned into the treatment groups. At autopsy, peripheral blood was collected in heparinized tube and the expression of cell surface molecules (CD40, CD80, CD83, and CD86) that are crucial for T-cell activation and survival were analyzed by flow cytometry. Tumor was excised from each animal and snap-frozen. Total RNA was extracted from each tumor tissue for microarray and gene expression analysis. Total protein was extracted from tumor tissue for protein expression studies using Western blotting. The results show that systemic administration of 1 mg TRF daily in combination with DC-vaccine immunotherapy (DC + TL + TRF) caused a marked reduction (p < 0.05) of tumor size and increased (p < 0.05) the survival rates of the tumor-inoculated mice. The expression of CD40, CD80, CD83, and CD86 were upregulated in peripheral blood from the DC + TL + TRF group compared to other groups. In addition, there was higher expression of FasL in tumor-excised mice from the DC + TL + TRF group compared to other groups. FasL plays an important role in maintaining immune privilege and is required for cytotoxic T-lymphocyte (CTL) activity. Microarray analysis identified several genes involved in the regulation of cancer. In this study, we focused on the special AT rich binding protein 1 (SATB1) gene, which was reported to have dual functions, one of which was to induce aggressive growth in breast cancer cells. Tumors from DC + TL + TRF mice showed lower (p < 0.05) expression of SATB1 gene. Further study will be conducted to investigate the molecular functions of and the role of SATB1 in 4T1 mammary cancer cells and DC. In conclusion, TRF supplementation can potentiate the effectiveness of DC-vaccine immunotherapy.
Collapse
|
12
|
Fu C, Zhou N, Zhao Y, Duan J, Xu H, Wang Y. Dendritic cells loaded with CD44 + CT-26 colon cell lysate evoke potent antitumor immune responses. Oncol Lett 2019; 18:5897-5904. [PMID: 31788063 PMCID: PMC6865088 DOI: 10.3892/ol.2019.10952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence supports the concept that cancer stem cells (CSCs) are responsible for cancer progression and metastasis, therapy resistance and relapse. In addition to conventional therapies for colon cancer, the development of immunotherapies targeting cancer stem cells appears to be a promising strategy to suppress tumor recurrence and metastasis. In the present study, dendritic cells (DCs) were pulsed with whole-tumor cell lysates or total RNA of CD44+ colon cancer stem cells (CCSCs) isolated from mouse colon adenocarcinoma CT-26 cell cultures and investigated for their antitumor immunity against CCSCs in vivo and in vitro. In a model of colon adenocarcinoma using BALB/c mice, a sequential reduction in tumor volume and weight was associated with an extended survival in tumor-bearing mice vaccinated with DCs pulsed with RNA or CCSC lysate. In addition, a lactate dehydrogenase assay indicated that cytotoxic T-cells derived from the treated mice exhibited strong cytotoxic activity. Additionally, an enzyme-linked immunosorbent assay revealed that the cytotoxic T-cells of the treated mice released higher levels of interferon-γ against CCSCs compared with those of the control group. In all experiments, the antitumor efficacy of the lysate-pulsed DC-treated and RNA-pulsed DC-treated groups were significantly higher compared with that of the DC-treated and control groups. The results of the present study indicated the potential use of DCs pulsed with cancer stem cell lysates as a potent therapeutic antigen to target CSCs in colon cancer. Additionally, the results provided a rationale for using lysate-pulsed DCs in vivo to eliminate residual tumor deposits in post-operative patients.
Collapse
Affiliation(s)
- Changhao Fu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ning Zhou
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuanyuan Zhao
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jinyue Duan
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hao Xu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
13
|
Sprooten J, Ceusters J, Coosemans A, Agostinis P, De Vleeschouwer S, Zitvogel L, Kroemer G, Galluzzi L, Garg AD. Trial watch: dendritic cell vaccination for cancer immunotherapy. Oncoimmunology 2019; 8:e1638212. [PMID: 31646087 PMCID: PMC6791419 DOI: 10.1080/2162402x.2019.1638212] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Dendritic- cells (DCs) have received considerable attention as potential targets for the development of anticancer vaccines. DC-based anticancer vaccination relies on patient-derived DCs pulsed with a source of tumor-associated antigens (TAAs) in the context of standardized maturation-cocktails, followed by their reinfusion. Extensive evidence has confirmed that DC-based vaccines can generate TAA-specific, cytotoxic T cells. Nonetheless, clinical efficacy of DC-based vaccines remains suboptimal, reflecting the widespread immunosuppression within tumors. Thus, clinical interest is being refocused on DC-based vaccines as combinatorial partners for T cell-targeting immunotherapies. Here, we summarize the most recent preclinical/clinical development of anticancer DC vaccination and discuss future perspectives for DC-based vaccines in immuno-oncology.
Collapse
Affiliation(s)
- Jenny Sprooten
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jolien Ceusters
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
- Department of Gynecology and Obstetrics, UZ Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
- Center for Cancer Biology (CCB), VIB, Leuven, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, UZ Leuven, Leuven, Belgium
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
- Université de Paris Descartes, Paris, France
| | - Abhishek D. Garg
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Palma M, Hansson L, Mulder TA, Adamson L, Näsman-Glaser B, Eriksson I, Heimersson K, Ryblom H, Mozaffari F, Svensson A, Gentilcore G, Österborg A, Mellstedt H. Lenalidomide as immune adjuvant to a dendritic cell vaccine in chronic lymphocytic leukemia patients. Eur J Haematol 2018; 101:68-77. [PMID: 29569742 DOI: 10.1111/ejh.13065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES We previously showed that immunization with ex vivo- generated autologous dendritic cells loaded with apoptotic tumor cells (Apo-DC) potentiated tumor-specific immunity in chronic lymphocytic leukemia (CLL) patients. Here, we evaluated safety and immunogenicity of Apo-DC in combination with lenalidomide, granulocyte-macrophage colony-stimulating factor (GM-CSF), and low-dose cyclophosphamide (CTX). METHODS Ten previously untreated patients with slowly progressing CLL received 5 Apo-DC vaccinations and lenalidomide orally for 24 weeks either alone (cohort I, n = 5) or together with subcutaneous GM-CSF and intravenous CTX (cohort II, n = 5). Tumor-specific T-cell responses were measured by proliferation and IFN-γ ELISPOT assays. Immune monitoring was performed by flow cytometry. RESULTS Dose-limiting toxicity was observed in 3/10 patients, 2 in cohort I and one in cohort II. One patient developed autoimmune hemolytic anemia and another grade 4 thrombocytopenia. Vaccine-induced immune responses were seen in 5/5 and 4/5 patients in cohort I and II, respectively. The expression of immune checkpoints on T cells did not change significantly. CONCLUSIONS Lenalidomide alone or in combination with GM-CSF and low-dose CTX as immune adjuvant to the Apo-DC vaccine elicited tumor-specific T-cell responses in CLL patients. However, unexpected toxicity was observed and caution is suggested in further exploring this drug as immune adjuvant in CLL.
Collapse
Affiliation(s)
- Marzia Palma
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lotta Hansson
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Tom A Mulder
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Adamson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Ingrid Eriksson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kia Heimersson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Harriet Ryblom
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Fariba Mozaffari
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ann Svensson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Giusy Gentilcore
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Anders Österborg
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Mellstedt
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Muhsin-Sharafaldine MR, McLellan AD. Tumor-Derived Apoptotic Vesicles: With Death They Do Part. Front Immunol 2018; 9:957. [PMID: 29780392 PMCID: PMC5952256 DOI: 10.3389/fimmu.2018.00957] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022] Open
Abstract
Tumor cells release lipid particles known as extracellular vesicles (EV) that contribute to cancer metastasis, to the immune response, and to thrombosis. When tumors are exposed to radiation or chemotherapy, apoptotic vesicles (ApoVs) are released in abundance as the plasma membrane delaminates from the cytoskeleton. Recent studies have suggested that ApoVs are distinct from the EVs released from living cells, such as exosomes or microvesicles. Depending on their treatment conditions, tumor-released ApoV have been suggested to either enhance or suppress anti-cancer immunity. In addition, tumor-derived ApoV possess procoagulant activity that could increase the thrombotic state in cancer patients undergoing chemotherapy or radiotherapy. Since ApoVs are one of the least appreciated type of EVs, we focus in this review on the distinctive characterization of tumor ApoVs and their proposed mechanistic effects on cancer immunity, coagulation, and metastasis.
Collapse
Affiliation(s)
| | - Alexander D McLellan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
Kokhaei P, Hojjat-Farsangi M, Mozaffari F, Moshfegh A, Pak F, Rashidy-Pour A, Palma M, Hansson L, Österborg A, Mellstedt H. Autologous T cells expressing the oncogenic transcription factor KLF6-SV1 prevent apoptosis of chronic lymphocytic leukemia cells. PLoS One 2018; 13:e0192839. [PMID: 29432497 PMCID: PMC5809069 DOI: 10.1371/journal.pone.0192839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/31/2018] [Indexed: 12/31/2022] Open
Abstract
Crosstalk between leukemic cells and the tumor microenvironment is of importance in chronic lymphocytic leukemia (CLL). T cells seem to sustain the survival of CLL cells by various mechanisms. The Krüppel-like family of transcription factors (KLFs) are identified as regulators of proliferation and cell death. In the present study, we analyzed the expression of the wild type (WT) gene KLF6 and the oncogenic splice variant 1 (KLF6-SV1) at the mRNA level in subsets of T cells from CLL patients (n = 29), multiple myeloma patients (n = 6) and normal donors (n = 10). RNA Silencing was used for wtKLF6 and KLF6-SV1. Tumor cell apoptosis was measured. A significant overexpression of wtKLF6 and KLF6-SV1 in T cells of CLL patients compared to normal donors and myeloma patients was noted (p<0.002). Western blot showed that both wtKLF6 and KLF6-SV1 were expressed in purified T cells from CLL patients. KLF6-SV1 siRNA transfection induced a significant down-regulation of KLF6-SV1 in CLL T cells, which lost the capability to sustain the growth of leukemic cells. However, no such a significant effect was seen after wtKLF6 transfection of the autologous T cells. The results suggest that KLF6-SV1 may play a role in the regulation of survival CLL cells.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Apoptosis/genetics
- Female
- Gene Expression
- Humans
- Kruppel-Like Factor 6/antagonists & inhibitors
- Kruppel-Like Factor 6/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Middle Aged
- Multiple Myeloma/genetics
- Multiple Myeloma/pathology
- Oncogenes
- Protein Isoforms/antagonists & inhibitors
- Protein Isoforms/genetics
- RNA Interference
- RNA, Messenger/genetics
- RNA, Neoplasm/genetics
- RNA, Small Interfering/genetics
- T-Lymphocytes/metabolism
- Transfection
- Tumor Microenvironment/genetics
Collapse
Affiliation(s)
- Parviz Kokhaei
- Immune and Gene Therapy Laboratory, Cancer Centre Karolinska, Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammad Hojjat-Farsangi
- Immune and Gene Therapy Laboratory, Cancer Centre Karolinska, Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
- The Persian Gulf Marine Biotechnology Medicine Research Center and Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Fariba Mozaffari
- Immune and Gene Therapy Laboratory, Cancer Centre Karolinska, Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - Ali Moshfegh
- Immune and Gene Therapy Laboratory, Cancer Centre Karolinska, Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - Fatemeh Pak
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Physiology Research Center and Department of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Marzia Palma
- Immune and Gene Therapy Laboratory, Cancer Centre Karolinska, Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Lotta Hansson
- Immune and Gene Therapy Laboratory, Cancer Centre Karolinska, Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Anders Österborg
- Immune and Gene Therapy Laboratory, Cancer Centre Karolinska, Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Håkan Mellstedt
- Immune and Gene Therapy Laboratory, Cancer Centre Karolinska, Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
17
|
Galati D, Zanotta S. Hematologic neoplasms: Dendritic cells vaccines in motion. Clin Immunol 2017; 183:181-190. [PMID: 28870867 DOI: 10.1016/j.clim.2017.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/28/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022]
Abstract
Dendritic cells (DCs) are bone-marrow-derived immune cells accounted for a key role in cancer vaccination as potent antigen-presenting cells within the immune system. Cancer microenvironment can modulate DCs maturation resulting in their accumulation into functional states associated with a reduced antitumor immune response. In this regard, a successful cancer vaccine needs to mount a potent antitumor immune response able to overcome the immunosuppressive tumor milieu. As a consequence, DCs-based approaches are a safe and promising strategy for improving the therapeutic efficacy in hematological malignancies, particularly in combinations with additional treatments. This review summarizes the most significant evidence about the immunotherapeutic strategies performed to target hematologic neoplasms including the tumoral associated antigens (TAA) pulsed on DCs, whole tumor cell vaccines or leukemia-derived DCs.
Collapse
Affiliation(s)
- Domenico Galati
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Hematology, National Cancer Institute, Fondazione 'G. Pascale', IRCCS, Via Mariano Semmola 49, 80131 Naples, Italy.
| | - Serena Zanotta
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Hematology, National Cancer Institute, Fondazione 'G. Pascale', IRCCS, Via Mariano Semmola 49, 80131 Naples, Italy
| |
Collapse
|
18
|
Ex Vivo Induction of Multiple Myeloma-specific Immune Responses by Monocyte-derived Dendritic Cells Following Stimulation by Whole-tumor Antigen of Autologous Myeloma Cells. J Immunother 2017; 40:253-264. [DOI: 10.1097/cji.0000000000000182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Hoffmann JM, Schmitt M, Ni M, Schmitt A. Next-generation dendritic cell-based vaccines for leukemia patients. Immunotherapy 2017; 9:173-181. [PMID: 28128712 DOI: 10.2217/imt-2016-0116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Up to today treatment of leukemia patients remains challenging and different therapies have been developed, among them the generation of dendritic cell (DC) vaccines. DCs, highly specific for immunogenic cancer antigens, are generated either ex vivo or in vivo and boost the immune response against leukemic cells. Nevertheless, response rates are still heterogeneous and DC vaccines need improvement. New methods for generating DC vaccines have been summed up under the term 'next-generation DC vaccines'. They range from the analysis of human leukocyte antigen-ligandomes to immunogenic cell death inducers, from the production of viral vectors to mRNA transfection and finally from delivering peptides to DCs in vivo through either antibodies or cell-penetrating peptides. This review gives an overview of the latest developments in this still evolving field.
Collapse
Affiliation(s)
- Jean-Marc Hoffmann
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, University Hospital of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Michael Schmitt
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, University Hospital of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Ming Ni
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, University Hospital of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Anita Schmitt
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, University Hospital of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Zhang C, Oberoi P, Oelsner S, Waldmann A, Lindner A, Tonn T, Wels WS. Chimeric Antigen Receptor-Engineered NK-92 Cells: An Off-the-Shelf Cellular Therapeutic for Targeted Elimination of Cancer Cells and Induction of Protective Antitumor Immunity. Front Immunol 2017; 8:533. [PMID: 28572802 PMCID: PMC5435757 DOI: 10.3389/fimmu.2017.00533] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/21/2017] [Indexed: 12/27/2022] Open
Abstract
Significant progress has been made in recent years toward realizing the potential of natural killer (NK) cells for cancer immunotherapy. NK cells can respond rapidly to transformed and stressed cells and have the intrinsic potential to extravasate and reach their targets in almost all body tissues. In addition to donor-derived primary NK cells, also the established NK cell line NK-92 is being developed for adoptive immunotherapy, and general safety of infusion of irradiated NK-92 cells has been established in phase I clinical trials with clinical responses observed in some of the cancer patients treated. To enhance their therapeutic utility, NK-92 cells have been modified to express chimeric antigen receptors (CARs) composed of a tumor-specific single chain fragment variable antibody fragment fused via hinge and transmembrane regions to intracellular signaling moieties such as CD3ζ or composite signaling domains containing a costimulatory protein together with CD3ζ. CAR-mediated activation of NK cells then bypasses inhibitory signals and overcomes NK resistance of tumor cells. In contrast to primary NK cells, CAR-engineered NK-92 cell lines suitable for clinical development can be established from molecularly and functionally well-characterized single cell clones following good manufacturing practice-compliant procedures. In preclinical in vitro and in vivo models, potent antitumor activity of NK-92 variants targeted to differentiation antigens expressed by hematologic malignancies, and overexpressed or mutated self-antigens associated with solid tumors has been found, encouraging further development of CAR-engineered NK-92 cells. Importantly, in syngeneic mouse tumor models, induction of endogenous antitumor immunity after treatment with CAR-expressing NK-92 cells has been demonstrated, resulting in cures and long-lasting immunological memory protecting against tumor rechallenge at distant sites. Here, we summarize the current status and future prospects of CAR-engineered NK-92 cells as off-the-shelf cellular therapeutics, with special emphasis on ErbB2 (HER2)-specific NK-92 cells that are approaching clinical application.
Collapse
Affiliation(s)
- Congcong Zhang
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pranav Oberoi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Sarah Oelsner
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Anja Waldmann
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Aline Lindner
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Torsten Tonn
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany.,Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
21
|
Garg AD, Vara Perez M, Schaaf M, Agostinis P, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Dendritic cell-based anticancer immunotherapy. Oncoimmunology 2017; 6:e1328341. [PMID: 28811970 DOI: 10.1080/2162402x.2017.1328341] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/11/2022] Open
Abstract
Dendritic cell (DC)-based vaccines against cancer have been extensively developed over the past two decades. Typically DC-based cancer immunotherapy entails loading patient-derived DCs with an appropriate source of tumor-associated antigens (TAAs) and efficient DC stimulation through a so-called "maturation cocktail" (typically a combination of pro-inflammatory cytokines and Toll-like receptor agonists), followed by DC reintroduction into patients. DC vaccines have been documented to (re)activate tumor-specific T cells in both preclinical and clinical settings. There is considerable clinical interest in combining DC-based anticancer vaccines with T cell-targeting immunotherapies. This reflects the established capacity of DC-based vaccines to generate a pool of TAA-specific effector T cells and facilitate their infiltration into the tumor bed. In this Trial Watch, we survey the latest trends in the preclinical and clinical development of DC-based anticancer therapeutics. We also highlight how the emergence of immune checkpoint blockers and adoptive T-cell transfer-based approaches has modified the clinical niche for DC-based vaccines within the wide cancer immunotherapy landscape.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Monica Vara Perez
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Marco Schaaf
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, U1015, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
22
|
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells that constitute a major component of the immune system’s role in the recognition, elimination, and tolerance of cancer. The unique immunologic capabilities of DCs have recently been harnessed for therapeutic use with the creation of DC-based anti-tumor vaccines, several of which have moved into testing in clinical trials for hematologic malignancies. This review summarizes how treatment strategies using DC-based anti-tumor vaccines are advancing immunotherapeutic options for these diseases.
Collapse
|
23
|
Yannelli JR, Wouda R, Masterson TJ, Avdiushko MG, Cohen DA. Development of an autologous canine cancer vaccine system for resectable malignant tumors in dogs. Vet Immunol Immunopathol 2016; 182:95-100. [PMID: 27863558 DOI: 10.1016/j.vetimm.2016.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 12/12/2022]
Abstract
While conventional therapies exist for canine cancer, immunotherapies need to be further explored and applied to the canine setting. We have developed an autologous cancer vaccine (K9-ACV), which is available for all dogs with resectable disease. K9-ACV was evaluated for safety and immunogenicity for a variety of cancer types in a cohort of companion dogs under veterinary care. The autologous vaccine was prepared by enzymatic digestion of solid tumor biopsies. The resultant single cell suspensions were then UV-irradiated resulting in immunogenic cell death of the tumor cells. Following sterility and endotoxin testing, the tumor cells were admixed with CpG ODN adjuvant and shipped to the participating veterinary clinics. The treating veterinarians then vaccinated each patient with three intradermal injections (10 million cells per dose) at 30-day intervals (one prime and two boost injections). In a cohort of 20 dogs completing the study, 17 dogs (85%) developed an augmented IgG response to autologous tumor antigens as demonstrated using western blot analysis of pre- and post-peripheral blood samples. We also report several dogs have lived beyond expected survival time based on previously published data. In summary, K9-ACV is an additional option to be considered for the treatment of dogs with resectable cancer.
Collapse
Affiliation(s)
- J R Yannelli
- University of Kentucky, College of Medicine, Dept. of Microbiology, Immunology and Molecular Genetics, Lexington, KY 40536, United States.
| | - R Wouda
- Kansas State University, College of Veterinary Medicine, Dept of Clinical Sciences, Manhattan, KS 66506, United States
| | - T J Masterson
- Medivet Biologics, LLC, Nicholasville, KY 40356, United States
| | - M G Avdiushko
- University of Kentucky, College of Medicine, Dept. of Microbiology, Immunology and Molecular Genetics, Lexington, KY 40536, United States
| | - D A Cohen
- University of Kentucky, College of Medicine, Dept. of Microbiology, Immunology and Molecular Genetics, Lexington, KY 40536, United States
| |
Collapse
|
24
|
Nahas MR, Avigan D. Challenges in vaccine therapy in hematological malignancies and strategies to overcome them. Expert Opin Biol Ther 2016; 16:1093-104. [DOI: 10.1080/14712598.2016.1190828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Constantino J, Gomes C, Falcão A, Cruz MT, Neves BM. Antitumor dendritic cell-based vaccines: lessons from 20 years of clinical trials and future perspectives. Transl Res 2016; 168:74-95. [PMID: 26297944 DOI: 10.1016/j.trsl.2015.07.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/25/2015] [Accepted: 07/28/2015] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are versatile elements of the immune system and are best known for their unparalleled ability to initiate and modulate adaptive immune responses. During the past few decades, DCs have been the subject of numerous studies seeking new immunotherapeutic strategies against cancer. Despite the initial enthusiasm, disappointing results from early studies raised some doubts regarding the true clinical value of these approaches. However, our expanding knowledge of DC immunobiology and the definition of the optimal characteristics for antitumor immune responses have allowed a more rational development of DC-based immunotherapies in recent years. Here, after a brief overview of DC immunobiology, we sought to systematize the knowledge provided by 20 years of clinical trials, with a special emphasis on the diversity of approaches used to manipulate DCs and their consequent impact on vaccine effectiveness. We also address how new therapeutic concepts, namely the combination of DC vaccines with other anticancer therapies, are being implemented and are leveraging clinical outcomes. Finally, optimization strategies, new insights, and future perspectives on the field are also highlighted.
Collapse
Affiliation(s)
- João Constantino
- Faculty of Pharmacy and Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Célia Gomes
- Faculty of Medicine, Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI) and Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy and Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Maria T Cruz
- Faculty of Pharmacy and Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Bruno M Neves
- Faculty of Pharmacy and Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal; Department of Chemistry and QOPNA, Mass Spectrometry Centre, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
26
|
Horrevorts SK, Garcia-Vallejo JJ, van Vliet SJ, van de Loosdrecht AA, van Kooyk Y, de Gruijl TD. Apoptotic vesicles as tumor vaccine. Immunotherapy 2015; 8:5-8. [PMID: 26641072 DOI: 10.2217/imt.15.96] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Sophie K Horrevorts
- Department of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Yvette van Kooyk
- Department of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Bloy N, Pol J, Aranda F, Eggermont A, Cremer I, Fridman WH, Fučíková J, Galon J, Tartour E, Spisek R, Dhodapkar MV, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Dendritic cell-based anticancer therapy. Oncoimmunology 2014; 3:e963424. [PMID: 25941593 DOI: 10.4161/21624011.2014.963424] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 02/06/2023] Open
Abstract
The use of patient-derived dendritic cells (DCs) as a means to elicit therapeutically relevant immune responses in cancer patients has been extensively investigated throughout the past decade. In this context, DCs are generally expanded, exposed to autologous tumor cell lysates or loaded with specific tumor-associated antigens (TAAs), and then reintroduced into patients, often in combination with one or more immunostimulatory agents. As an alternative, TAAs are targeted to DCs in vivo by means of monoclonal antibodies, carbohydrate moieties or viral vectors specific for DC receptors. All these approaches have been shown to (re)activate tumor-specific immune responses in mice, often mediating robust therapeutic effects. In 2010, the first DC-based preparation (sipuleucel-T, also known as Provenge®) has been approved by the US Food and Drug Administration (FDA) for use in humans. Reflecting the central position occupied by DCs in the regulation of immunological tolerance and adaptive immunity, the interest in harnessing them for the development of novel immunotherapeutic anticancer regimens remains high. Here, we summarize recent advances in the preclinical and clinical development of DC-based anticancer therapeutics.
Collapse
Key Words
- DC, dendritic cell
- DC-based vaccination
- FDA, Food and Drug Administration
- IFN, interferon
- MRC1, mannose receptor, C type 1
- MUC1, mucin 1
- TAA, tumor-associated antigen
- TLR, Toll-like receptor
- Toll-like receptor agonists
- Treg, regulatory T cell
- WT1, Wilms tumor 1
- antigen cross-presentation
- autophagy
- iDC, immature DC
- immunogenic cell death
- mDC, mature DC
- pDC, plasmacytoid DC
- regulatory T cells
Collapse
Affiliation(s)
- Norma Bloy
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France ; Université Paris-Sud/Paris XI ; Orsay, France
| | - Jonathan Pol
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France
| | - Fernando Aranda
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France
| | | | - Isabelle Cremer
- INSERM , U1138; Paris France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris France ; Université Pierre et Marie Curie/Paris VI ; Paris France
| | - Wolf Hervé Fridman
- INSERM , U1138; Paris France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris France ; Université Pierre et Marie Curie/Paris VI ; Paris France
| | - Jitka Fučíková
- Department of Immunology; 2nd Medical School Charles University and University Hospital Motol ; Prague, Czech Republic ; Sotio a.s. ; Prague, Czech Republic
| | - Jérôme Galon
- INSERM , U1138; Paris France ; Université Pierre et Marie Curie/Paris VI ; Paris France ; Laboratory of Integrative Cancer Immunology; Centre de Recherche des Cordeliers ; Paris France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France ; INSERM , U970; Paris France ; Pôle de Biologie; Hôpital Européen Georges Pompidou, AP-HP ; Paris France
| | - Radek Spisek
- Department of Immunology; 2nd Medical School Charles University and University Hospital Motol ; Prague, Czech Republic ; Sotio a.s. ; Prague, Czech Republic
| | - Madhav V Dhodapkar
- Department of Medicine; Immunobiology and Yale Cancer Center; Yale University ; New Haven, CT USA
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1015, CICBT507 ; Villejuif, France
| | - Guido Kroemer
- INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France ; Pôle de Biologie; Hôpital Européen Georges Pompidou, AP-HP ; Paris France ; Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus ; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France
| |
Collapse
|
28
|
Langers I, Renoux V, Reschner A, Touzé A, Coursaget P, Boniver J, Koch J, Delvenne P, Jacobs N. Natural killer and dendritic cells collaborate in the immune response induced by the vaccine against uterine cervical cancer. Eur J Immunol 2014; 44:3585-95. [PMID: 25229656 DOI: 10.1002/eji.201444594] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 08/14/2014] [Accepted: 09/11/2014] [Indexed: 11/09/2022]
Abstract
Virus-like particles (VLPs) of human papillomavirus (HPV) are used as a vaccine against HPV-induced cancer, and recently we have shown that these VLPs are able to activate natural killer (NK) cells. Since NK cells collaborate with dendritic cells (DCs) to induce an immune response against viral infections and tumors, we studied the impact of this crosstalk in the context of HPV vaccination. NK cells in the presence of HPV-VLPs enhanced DC-maturation as shown by an upregulation of CD86 and HLA-DR and an increased production of IL-12p70, but not of the immunosuppressive cytokine IL-10. This activation was bidirectional. Indeed, in the presence of HPV-VLPs, DCs further activated NK cells by inducing the upregulation of cell surface activation markers (CD69 and HLA-DR). The function of NK cells was also improved as shown by an increase in IFN-γ secretion and cytotoxic activity against an HPV(+) cell line. This crosstalk between NK cells and DCs needed CD40 interaction and IL-12p70 secretion, whereas NKG2D was not implicated. Our results provide insight into how VLPs interact with innate immune cells and how NK cells and DCs play a role in the immune response induced by this vaccine agent.
Collapse
Affiliation(s)
- Inge Langers
- Cellular and Molecular Immunology, GIGA-Research, University of Liège, Liège, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Brusic A, Hainz U, Wadleigh M, Neuberg D, Su M, Canning CM, Deangelo DJ, Stone RM, Lee JS, Mulligan RC, Ritz J, Dranoff G, Sasada T, Wu CJ. Detecting T-cell reactivity to whole cell vaccines: Proof of concept analysis of T-cell response to K562 cell antigens in CML patients. Oncoimmunology 2014; 1:1095-1103. [PMID: 23170257 PMCID: PMC3494623 DOI: 10.4161/onci.20954] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BCR-ABL+ K562 cells hold clinical promise as a component of cancer vaccines, either as bystander cells genetically modified to express immunostimulatory molecules, or as a source of leukemia antigens. To develop a method for detecting T-cell reactivity against K562 cell-derived antigens in patients, we exploited the dendritic cell (DC)-mediated cross-presentation of proteins generated from apoptotic cells. We used UVB irradiation to consistently induce apoptosis of K562 cells, which were then fed to autologous DCs. These DCs were used to both stimulate and detect antigen-specific CD8+ T-cell reactivity. As proof-of-concept, we used cross-presented apoptotic influenza matrix protein-expressing K562 cells to elicit reactivity from matrix protein-reactive T cells. Likewise, we used this assay to detect increased anti-CML antigen T-cell reactivity in CML patients that attained long-lasting clinical remissions following immunotherapy (donor lymphocyte infusion), as well as in 2 of 3 CML patients vaccinated with lethally irradiated K562 cells that were modified to secrete high levels of granulocyte macrophage colony-stimulating factor (GM-CSF). This methodology can be readily adapted to examine the effects of other whole tumor cell-based vaccines, a scenario in which the precise tumor antigens that stimulate immune responses are unknown.
Collapse
Affiliation(s)
- Ana Brusic
- Cancer Vaccine Center; Dana-Farber Cancer Institute; Boston, MA USA ; Monash University; Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Galluzzi L, Senovilla L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2014; 1:1111-1134. [PMID: 23170259 PMCID: PMC3494625 DOI: 10.4161/onci.21494] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) occupy a central position in the immune system, orchestrating a wide repertoire of responses that span from the development of self-tolerance to the elicitation of potent cellular and humoral immunity. Accordingly, DCs are involved in the etiology of conditions as diverse as infectious diseases, allergic and autoimmune disorders, graft rejection and cancer. During the last decade, several methods have been developed to load DCs with tumor-associated antigens, ex vivo or in vivo, in the attempt to use them as therapeutic anticancer vaccines that would elicit clinically relevant immune responses. While this has not always been the case, several clinical studies have demonstrated that DC-based anticancer vaccines are capable of activating tumor-specific immune responses that increase overall survival, at least in a subset of patients. In 2010, this branch of clinical research has culminated with the approval by FDA of a DC-based therapeutic vaccine (sipuleucel-T, Provenge®) for use in patients with asymptomatic or minimally symptomatic metastatic hormone-refractory prostate cancer. Intense research efforts are currently dedicated to the identification of the immunological features of patients that best respond to DC-based anticancer vaccines. This knowledge may indeed lead to personalized combination strategies that would extend the benefit of DC-based immunotherapy to a larger patient population. In addition, widespread enthusiasm has been generated by the results of the first clinical trials based on in vivo DC targeting, an approach that holds great promises for the future of DC-based immunotherapy. In this Trial Watch, we will summarize the results of recently completed clinical trials and discuss the progress of ongoing studies that have evaluated/are evaluating DC-based interventions for cancer therapy.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Institut Gustave Roussy; Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hagn M, Blackwell SE, Beyer T, Ebel V, Fabricius D, Lindner S, Stilgenbauer S, Simmet T, Tam C, Neeson P, Trapani JA, Schrezenmeier H, Weiner GJ, Jahrsdörfer B. B-CLL cells acquire APC- and CTL-like phenotypic characteristics after stimulation with CpG ODN and IL-21. Int Immunol 2014; 26:383-95. [PMID: 24497611 PMCID: PMC4133571 DOI: 10.1093/intimm/dxu001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/05/2014] [Indexed: 12/25/2022] Open
Abstract
CpG oligodeoxynucleotides (CpG) and IL-21 are two promising agents for the treatment of B-cell chronic lymphocytic leukemia (B-CLL). Recently, we reported that the combination of CpG and IL-21 (CpG/IL-21) can induce granzyme B (GrB)-dependent apoptosis in B-CLL cells. Here, we demonstrate that treatment of B-CLL cells with CpG and IL-21 results in the development of antigen-presenting cell (APC)-like cells with cytotoxic features. These properties eventually give rise to B-CLL cell apoptosis, independently of their cytogenetic phenotype, whereas normal B-cell survival is not negatively affected by CpG/IL-21. APC- and CTL-typical molecules found to be up-regulated in CpG/IL-21-stimulated B-CLL cells include GrB, perforin, T-bet, monokine-induced by IFN-γ and IFN-γ-inducible protein 10 (IP-10), as well as molecules important for cell adhesion, antigen cross-presentation and costimulation. Also induced are molecules involved in GrB induction, trafficking and processing, whereas the GrB inhibitor Serpin B9 [formerly proteinase inhibitor-9 (PI-9)] is down-modulated by CpG/IL-21. In conclusion, CpG/IL-21-stimulated B-CLL cells acquire features that are reminiscent of killer dendritic cells, and which result in enhanced immunogenicity, cytotoxicity and apoptosis. Our results provide novel insights into the aberrant immune state of B-CLL cells and may establish a basis for the development of an innovative cellular vaccination approach in B-CLL.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antigen-Presenting Cells/drug effects
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/pathology
- Apoptosis/drug effects
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Chemokine CXCL10/genetics
- Chemokine CXCL10/immunology
- Cytotoxicity, Immunologic/drug effects
- Female
- Gene Expression Regulation, Leukemic
- Granzymes/genetics
- Granzymes/immunology
- Humans
- Immunophenotyping
- Interleukins/pharmacology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocyte Activation/drug effects
- Male
- Middle Aged
- Oligodeoxyribonucleotides/pharmacology
- Perforin/genetics
- Perforin/immunology
- Primary Cell Culture
- Recombinant Proteins/pharmacology
- Signal Transduction
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/immunology
Collapse
Affiliation(s)
- Magdalena Hagn
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3002, Australia
| | - Sue E Blackwell
- Department of Internal Medicine, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Thamara Beyer
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen and Institute of Transfusion Medicine
| | - Verena Ebel
- Institute of Pharmacology of Natural Products and Clinical Pharmacology
| | | | - Stefanie Lindner
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen and Institute of Transfusion Medicine
| | | | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology
| | - Constantine Tam
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3002, Australia
| | - Paul Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3002, Australia
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3002, Australia
| | - Hubert Schrezenmeier
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen and Institute of Transfusion Medicine
| | - George J Weiner
- Department of Internal Medicine, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Bernd Jahrsdörfer
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen and Institute of Transfusion Medicine,
| |
Collapse
|
32
|
Tesfatsion DA. Dendritic cell vaccine against leukemia: advances and perspectives. Immunotherapy 2014; 6:485-96. [PMID: 24815786 DOI: 10.2217/imt.14.12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As with many other types of malignancies, sustainable eradication of leukemia has been a challenge. This is related to the inevitable failure of conventional chemotherapeutic agents and radiation therapy to target the relatively quiescent leukemia stem cells, which are believed to have multidrug resistance, antiapoptotic capacity and enhanced DNA repair mechanisms allowing them to evade the immune system. Considering other therapeutic options that are minimally toxic to normal cells and effectively target not only the majority and more differentiated cancer cells, but also the rare residual leukemia cells, is of paramount importance. A number of immunotherapeutic options have been proposed to counter this challenge. One of the remarkable achievements in the field of immunotherapy has been the successful use of antigen presenting cells as vehicles of tumor/pathogenic antigens to the T-cell compartments. This review will focus on advances and perspectives of this arm of immunotherapy against leukemia.
Collapse
|
33
|
Pyzer AR, Avigan DE, Rosenblatt J. Clinical trials of dendritic cell-based cancer vaccines in hematologic malignancies. Hum Vaccin Immunother 2014; 10:3125-31. [PMID: 25625926 PMCID: PMC4514037 DOI: 10.4161/21645515.2014.982993] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/17/2014] [Accepted: 10/05/2014] [Indexed: 11/19/2022] Open
Abstract
The potential for the immune system to target hematological malignancies is demonstrated in the allogeneic transplant setting, where durable responses can be achieved. However, allogeneic transplantation is associated with significant morbidity and mortality related to graft versus host disease. Cancer immunotherapy has the capacity to direct a specific cytotoxic immune response against cancer cells, particularly residual cancer cells, in order to reduce the likelihood of disease relapse in a more targeted and tolerated manner. Ex vivo dendritic cells can be primed in various ways to present tumor associated antigen to the immune system, in the context of co-stimulatory molecules, eliciting a tumor specific cytotoxic response in patients. Several approaches to prime dendritic cells and overcome the immunosuppressive microenvironment have been evaluated in pre-clinical and early clinical trials with promising results. In this review, we summarize the clinical data evaluating dendritic cell based vaccines for the treatment of hematological malignancies.
Collapse
Key Words
- AML, Acute Myeloid Leukemia
- ASCT, Autologous Stem Cell Transplant
- Apo-DC, Apoptotic body loaded- dendritic cells
- CML, Chronic Myeloid Leukemia
- CR, Complete response
- CTLA-4, Cytotoxic T-Lymphocyte Antigen 4
- DC/AML, Dendritic cell Acute Myeloid Leukemia fusion vaccine
- DC/MM, Dendritic cell Multiple Myeloma fusion vaccine
- DNA Deoxyribonucleic acid
- FLT-ITD, Fms-like Tyrosine Kinase with Internal Tandem Duplication
- GMCSF, Granulocyte macrophage colony-stimulating factor
- GVHD, Graft vs Host Disease
- HLA-A*2402, Human Leukocyte antigen A*2402
- IFN, Interferon
- IFNg, Interferon gamma
- IL, Interleukin
- Id, Idiotype
- KLH, Keyhole limpet hemocyanin
- MDS, Myelodysplastic syndrome
- MHC, Major histocompatibility complex
- OS, Overall Survival
- PD-1, Programmed death 1
- PD-L1, Programmed death-ligand 1
- PR, Partial response
- PRR, Pathogen recognition receptor
- RNA, Ribonucleic acid
- SCT, Stem cell transplant
- TGFB, Transforming growth factor β
- TNFα, Tumor necrosis factor α
- VEGF, Vascular endothelial growth factor
- VGPR, Very good partial response
- WT-1, Wilm's tumor suppressor gene 1
- cancer
- dendritic cell
- immunotherapy
- leukemia
- mRNA, mRNA
- myeloma
- pDCs, Plasmacytoid Dendritic cell
- trial
- vaccine
Collapse
Affiliation(s)
- Athalia R Pyzer
- Beth Israel Deaconess Medical Center; Harvard Medical School; Boston, MA USA
| | - David E Avigan
- Beth Israel Deaconess Medical Center; Harvard Medical School; Boston, MA USA
| | - Jacalyn Rosenblatt
- Beth Israel Deaconess Medical Center; Harvard Medical School; Boston, MA USA
| |
Collapse
|
34
|
Immune adjuvants as critical guides directing immunity triggered by therapeutic cancer vaccines. Cytotherapy 2013; 16:427-39. [PMID: 24280238 DOI: 10.1016/j.jcyt.2013.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/16/2013] [Accepted: 09/30/2013] [Indexed: 02/06/2023]
Abstract
Tumor growth is controlled by natural antitumor immune responses alone or by augmented immune reactivity resulting from different forms of immunotherapy, which has demonstrated clinical benefit in numerous studies, although the overall percentage of patients with durable clinical responses remains limited. This is attributed to the heterogeneity of the disease, the inclusion of late-stage patients with no other treatment options and advanced tumor-associated immunosuppression, which may be consolidated by certain types of chemotherapy. Despite variable responsiveness to distinct types of immunotherapy, therapeutic cancer vaccination has shown meaningful efficacy for a variety of cancers. A key step during cancer vaccination involves the appropriate modeling of the functional state of dendritic cells (DCs) capable of co-delivering four critical signals for proper instruction of tumor antigen-specific T cells. However, the education of DCs, either directly in situ, or ex vivo by various complex procedures, lacks standardization. Also, it is questioned whether ex vivo-prepared DC vaccines are superior to in situ-administered adjuvant-guided vaccines, although both approaches have shown success. Evaluation of these variables is further complicated by a lack of consensus in evaluating vaccination clinical study end points. We discuss the role of signals needed for the preparation of classic in situ and modern ex vivo DC vaccines capable of proper reprogramming of antitumor immune responses in patients with cancer.
Collapse
|
35
|
Vacchelli E, Vitale I, Eggermont A, Fridman WH, Fučíková J, Cremer I, Galon J, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2013; 2:e25771. [PMID: 24286020 PMCID: PMC3841205 DOI: 10.4161/onci.25771] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 12/26/2022] Open
Abstract
Dendritic cells (DCs) occupy a privileged position at the interface between innate and adaptive immunity, orchestrating a large panel of responses to both physiological and pathological cues. In particular, whereas the presentation of antigens by immature DCs generally results in the development of immunological tolerance, mature DCs are capable of priming robust, and hence therapeutically relevant, adaptive immune responses. In line with this notion, functional defects in the DC compartment have been shown to etiologically contribute to pathological conditions including (but perhaps not limited to) infectious diseases, allergic and autoimmune disorders, graft rejection and cancer. Thus, the possibility of harnessing the elevated immunological potential of DCs for anticancer therapy has attracted considerable interest from both researchers and clinicians over the last decade. Alongside, several methods have been developed not only to isolate DCs from cancer patients, expand them, load them with tumor-associated antigens and hence generate highly immunogenic clinical grade infusion products, but also to directly target DCs in vivo. This intense experimental effort has culminated in 2010 with the approval by the US FDA of a DC-based preparation (sipuleucel-T, Provenge®) for the treatment of asymptomatic or minimally symptomatic metastatic castration-refractory prostate cancer. As an update to the latest Trial Watch dealing with this exciting field of research (October 2012), here we summarize recent advances in DC-based anticancer regimens, covering both high-impact studies that have been published during the last 13 mo and clinical trials that have been launched in the same period to assess the antineoplastic potential of this variant of cellular immunotherapy.
Collapse
Affiliation(s)
- Erika Vacchelli
- Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France ; INSERM, U848; Villejuif, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Moe KT, Naylynn TM, Yin NO, Khairunnisa K, Allen JC, Wong MC, Chin-Dusting J, Wong P. Tumor necrosis factor-α induces aortic intima-media thickening via perivascular adipose tissue inflammation. J Vasc Res 2013; 50:228-37. [PMID: 23711955 DOI: 10.1159/000350542] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 03/06/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/AIMS Neointimal thickening results from inflammation in association with vascular smooth muscle cell (VSMC) proliferation. We studied the role of perivascular adipose tissue (PVAT) on VSMC proliferation and intima-media thickening (IMT) in a rodent model of chronic inflammation. METHODS The abdominal aorta and surrounding PVAT of tumour necrosis factor (TNF)-α-injected mice were examined 28 days after administration. Plasma and PVAT cytokines were measured with Milliplex™ assays. Inflammatory cells were examined with immunofluorescence. Expression of transforming growth factor (TGF)-β1, matrix metalloproteinase (MMP)-2, MMP-9 and MMP-12 was examined with immunohistochemistry, immunoblotting and zymography. IMT was determined. Cell proliferation and TGF-β1 mRNA levels were examined after treating VSMC with PVAT homogenates ± MMP-2 inhibitors (batimastat, ARP 100 or TIMP-2) and SB-431542, a selective inhibitor of the TGF-β-type 1 receptor. RESULTS Significant increases in CD3, CD68, neutrophils, vascular cell adhesion molecule-1 and MMP-2 in PVAT, and TGF-β1 and IMT of the aorta of TNF-α-injected mice were observed. PVAT of TNF-α-injected mice significantly up-regulated TGF-β1 and increased cell proliferation in a dose-dependent manner and was attenuated by SB-431542, batimastat, ARP 100 and TIMP-2. CONCLUSIONS Our study shows that chronic PVAT inflammation leads to MMP-mediated increase in TGF-β1 and hence VSMC proliferation.
Collapse
Affiliation(s)
- Kyaw Thu Moe
- Research and Development Unit, National Heart Centre Singapore, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Palma M, Hansson L, Choudhury A, Näsman-Glaser B, Eriksson I, Adamson L, Rossmann E, Widén K, Horváth R, Kokhaei P, Vertuani S, Mellstedt H, Österborg A. Vaccination with dendritic cells loaded with tumor apoptotic bodies (Apo-DC) in patients with chronic lymphocytic leukemia: effects of various adjuvants and definition of immune response criteria. Cancer Immunol Immunother 2012; 61:865-79. [PMID: 22086161 PMCID: PMC11029556 DOI: 10.1007/s00262-011-1149-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 10/28/2011] [Indexed: 01/18/2023]
Abstract
We previously demonstrated that autologous dendritic cells that have endocytosed apoptotic bodies of chronic lymphocytic leukemia (CLL) cells (Apo-DC) can stimulate antileukemic T cell responses in vitro. In this phase I study, we vaccinated 15 asymptomatic CLL patients at five time points with Apo-DC administered intradermally either alone (cohort I), or in combination with subcutaneous granulocyte-macrophage-colony-stimulating-factor (GM-CSF) (cohort II) or with GM-CSF and intravenous low-dose cyclophosphamide (cohort III). Aim of the study was to evaluate the safety and immunogenicity of Apo-DC alone or in combination with GM-CSF and low-dose cyclophosphamide in CLL patients. All patients completed the vaccination schedule without dose-limiting toxicity. No objective clinical responses were seen. Vaccine-induced leukemia-specific immune responses were evaluated by IFN-γ ELISpot and proliferation assays over a 52 weeks observation period and immune response criteria were defined. According to these criteria, 10/15 patients were defined as immune responders. The frequency of immune-responding patients was higher in cohorts II (3/5) and III (5/5) than in cohort I (2/5). In order to further characterize the induced immune response, estimation of secreted cytokines and CD107-degranulation assay were performed. Clustering of T and CLL cells was observed in CD107-degranulation assay and visualized by confocal microscopy. Additionally, assessment of regulatory T cells (T(regs)) revealed their significantly lower frequencies in immune responders versus non-responders (P < 0.0001). Cyclophosphamide did not reduce T(regs) frequency. In conclusion, vaccination with Apo-DC + GM-CSF and cyclophosphamide was safe and elicited anti-CLL immune responses that correlated inversely with T(regs) levels. Lack of clinical responses highlights the necessity to develop more potent vaccine strategies in B cell malignancies.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Adult
- Aged
- Apoptosis/immunology
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Cell-Derived Microparticles/immunology
- Cyclophosphamide/immunology
- Cyclophosphamide/pharmacology
- Dendritic Cells/immunology
- Female
- Granulocyte-Macrophage Colony-Stimulating Factor/immunology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Male
- Middle Aged
- Vaccination
Collapse
Affiliation(s)
- Marzia Palma
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Lotta Hansson
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Aniruddha Choudhury
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
- Centre for Immune and Targeted Therapy, University of Queensland, Brisbane, Australia
| | - Barbro Näsman-Glaser
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Eriksson
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Lars Adamson
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Eva Rossmann
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Karin Widén
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Rudolf Horváth
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
- Institute of Immunology, Charles University, 2nd Medical School, Prague, Czech Republic
| | - Parviz Kokhaei
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology, Semnan Medical University, Semnan, Iran
| | - Simona Vertuani
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Mellstedt
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Cancer Centre Karolinska, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - Anders Österborg
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
38
|
Gustafsson K, Junevik K, Werlenius O, Holmgren S, Karlsson-Parra A, Andersson PO. Tumour-loaded α-type 1-polarized dendritic cells from patients with chronic lymphocytic leukaemia produce a superior NK-, NKT- and CD8+ T cell-attracting chemokine profile. Scand J Immunol 2011; 74:318-326. [PMID: 21595737 DOI: 10.1111/j.1365-3083.2011.02580.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tumour-loaded dendritic cells (DCs) from patients with chronic lymphocytic leukaemia (CLL) matured using an α-type 1-polarized DC cocktail (IL-1β/TNF-α/IFN-α/IFN-γ/poly-I:C;αDC1) were recently shown to induce more functional CD8(+) T cells against autologous tumour cells in vitro than DCs matured with the 'standard' cocktail (IL-1β/TNF-α/IL-6/PGE(2) ;PGE(2) DCs). However, the ability of vaccine DCs to induce a type 1-polarized immune response in vivo probably relies on additional features, including their ability to induce a CXCR3-dependent recruitment of NK cells into vaccine-draining lymph nodes. Moreover, their guiding of rare tumour-specific CD8(+) T cells to sites of DC-CD4(+) T cell interactions by secretion of CCL3 and CCL4 is needed. We therefore analysed the chemokine profile and the lymphocyte-attracting ability in vitro of monocyte-derived PGE(2) DCs and αDC1s from patients with CLL. αDC1s produced much higher levels of CXCR3 ligands (CXCL9/CXCL10/CXCL11) than PGE(2) DCs. Functional studies further demonstrated that αDC1s were superior recruiters of both NK and NKT cells. Moreover, αDC1s produced higher levels of CCL3/CCL4 upon CD40 ligation. These findings suggest that functional αDC1s, derived from patients with CLL, produce a desirable NK-, NKT- and CD8(+) T cell-attracting chemokine profile which may favour a guided and Th1-deviated priming of CD8(+) T cells, supporting the idea that αDC1-based vaccines have a higher immunotherapeutic potential than PGE(2) DCs.
Collapse
Affiliation(s)
- Karin Gustafsson
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SwedenDepartment of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SwedenSection of Haematology and Coagulation, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SwedenDepartment of Microbiology and Immunology all at Sahlgrenska University Hospital, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SwedenDepartment of Clinical Immunology, Akademiska University Hospital, Uppsala University, Sweden
| | - Katarina Junevik
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SwedenDepartment of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SwedenSection of Haematology and Coagulation, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SwedenDepartment of Microbiology and Immunology all at Sahlgrenska University Hospital, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SwedenDepartment of Clinical Immunology, Akademiska University Hospital, Uppsala University, Sweden
| | - Olle Werlenius
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SwedenDepartment of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SwedenSection of Haematology and Coagulation, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SwedenDepartment of Microbiology and Immunology all at Sahlgrenska University Hospital, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SwedenDepartment of Clinical Immunology, Akademiska University Hospital, Uppsala University, Sweden
| | - Sandra Holmgren
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SwedenDepartment of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SwedenSection of Haematology and Coagulation, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SwedenDepartment of Microbiology and Immunology all at Sahlgrenska University Hospital, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SwedenDepartment of Clinical Immunology, Akademiska University Hospital, Uppsala University, Sweden
| | - Alex Karlsson-Parra
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SwedenDepartment of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SwedenSection of Haematology and Coagulation, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SwedenDepartment of Microbiology and Immunology all at Sahlgrenska University Hospital, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SwedenDepartment of Clinical Immunology, Akademiska University Hospital, Uppsala University, Sweden
| | - Per-Ola Andersson
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SwedenDepartment of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SwedenSection of Haematology and Coagulation, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SwedenDepartment of Microbiology and Immunology all at Sahlgrenska University Hospital, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SwedenDepartment of Clinical Immunology, Akademiska University Hospital, Uppsala University, Sweden
| |
Collapse
|
39
|
Kitawaki T, Kadowaki N, Fukunaga K, Kasai Y, Maekawa T, Ohmori K, Itoh T, Shimizu A, Kuzushima K, Kondo T, Ishikawa T, Uchiyama T. Cross-priming of CD8+ T cells in vivo by dendritic cells pulsed with autologous apoptotic leukemic cells in immunotherapy for elderly patients with acute myeloid leukemia. Exp Hematol 2011; 39:424-433.e2. [DOI: 10.1016/j.exphem.2011.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 12/28/2010] [Accepted: 01/01/2011] [Indexed: 10/18/2022]
|
40
|
Kronik N, Kogan Y, Elishmereni M, Halevi-Tobias K, Vuk-Pavlović S, Agur Z. Predicting outcomes of prostate cancer immunotherapy by personalized mathematical models. PLoS One 2010; 5:e15482. [PMID: 21151630 PMCID: PMC2999571 DOI: 10.1371/journal.pone.0015482] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 09/23/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Therapeutic vaccination against disseminated prostate cancer (PCa) is partially effective in some PCa patients. We hypothesized that the efficacy of treatment will be enhanced by individualized vaccination regimens tailored by simple mathematical models. METHODOLOGY/PRINCIPAL FINDINGS We developed a general mathematical model encompassing the basic interactions of a vaccine, immune system and PCa cells, and validated it by the results of a clinical trial testing an allogeneic PCa whole-cell vaccine. For model validation in the absence of any other pertinent marker, we used the clinically measured changes in prostate-specific antigen (PSA) levels as a correlate of tumor burden. Up to 26 PSA levels measured per patient were divided into each patient's training set and his validation set. The training set, used for model personalization, contained the patient's initial sequence of PSA levels; the validation set contained his subsequent PSA data points. Personalized models were simulated to predict changes in tumor burden and PSA levels and predictions were compared to the validation set. The model accurately predicted PSA levels over the entire measured period in 12 of the 15 vaccination-responsive patients (the coefficient of determination between the predicted and observed PSA values was R(2) = 0.972). The model could not account for the inconsistent changes in PSA levels in 3 of the 15 responsive patients at the end of treatment. Each validated personalized model was simulated under many hypothetical immunotherapy protocols to suggest alternative vaccination regimens. Personalized regimens predicted to enhance the effects of therapy differed among the patients. CONCLUSIONS/SIGNIFICANCE Using a few initial measurements, we constructed robust patient-specific models of PCa immunotherapy, which were retrospectively validated by clinical trial results. Our results emphasize the potential value and feasibility of individualized model-suggested immunotherapy protocols.
Collapse
Affiliation(s)
- Natalie Kronik
- Institute for Medical BioMathematics, Bene Ataroth, Israel
| | - Yuri Kogan
- Institute for Medical BioMathematics, Bene Ataroth, Israel
| | | | | | | | - Zvia Agur
- Institute for Medical BioMathematics, Bene Ataroth, Israel
| |
Collapse
|
41
|
Adamson L, Palma M, Choudhury A, Eriksson I, Näsman-Glaser B, Hansson M, Hansson L, Kokhaei P, Österborg A, Mellstedt H. Generation of a Dendritic Cell-based Vaccine in Chronic Lymphocytic Leukaemia Using CliniMACS Platform for Large-scale Production. Scand J Immunol 2009; 69:529-36. [DOI: 10.1111/j.1365-3083.2009.02249.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
SCID mice model in vivo evaluation of autologous and allogeneic dendritic cells activity on B-cell chronic lymphocytic leukemia. Folia Histochem Cytobiol 2009; 47:563-70. [PMID: 20430721 DOI: 10.2478/v10042-008-0101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present study we investigated in vivo therapeutic potential of DCs vaccines in B-cell chronic lymphocytic leukemia (B-CLL). On the day 0 the SCID mice were intraperitoneally inoculated with peripheral blood mononuclear cells (PBMC) of B-CLL patients at a dose of 10-30 x 10(6) and left untreated (controls) or i.p. injected on the day 7 with 0.2 - 14.0 x 10(6) dendritic cells. DCs were generated in vitro from peripheral blood monocytes of B-CLL donors (autologous DCs) or healthy donors (allogeneic cells) and pulsed with B-CLL antigens. On the day 14, the effect of implanted cells interactions was evaluated by a counting of CD19+CD5+ human leukemic cells and human T cells in the peritoneal fluid of mice. We found, that mean numbers of CD19+CD5+ leukemic cells as well as human T cells were lowered in peritoneal fluid of mice treated with allogeneic APCs. However, we did not observe similar effects with autologous DCs.
Collapse
|
43
|
Palma M, Adamson L, Hansson L, Kokhaei P, Rezvany R, Mellstedt H, Österborg A, Choudhury A. Development of a dendritic cell-based vaccine for chronic lymphocytic leukemia. Cancer Immunol Immunother 2008; 57:1705-10. [PMID: 18663443 PMCID: PMC11030973 DOI: 10.1007/s00262-008-0561-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 07/09/2008] [Indexed: 01/20/2023]
Abstract
Evidence for the existence of CLL-specific antigens recognized by the immune system can be gathered from the observation that many patients display monoclonal or oligoclonal expansions and skewed repertoire of T cells. In vitro functional studies have shown that tumor-specific T-cells are able to lyse the leukemic cells. Antileukemic cellular immunity may be boosted in vivo using dendritic cell-based immunotherapy. Our preclinical studies provide evidence that DC that had endocytosed apoptotic CLL cells (Apo-DC) were superior to fusion hybrids, tumor lysate or RNA in eliciting antileukemic T-cell responses in vitro. We have validated a method for enriching the small number of monocyte precursors present in the peripheral blood of CLL patients and utilize them for generating individualized, Apo-DC cellular vaccines. In most cases, a minimum of 50 x 10(6) Apo-DC could be generated, beginning with immunomagnetically enriched monocytes from a single leukapheresis product containing at least 1% CD14+ cells. Cryopreservation and thawing did not affect the phenotype or the T cell stimulatory function of Apo-DC. A phase I/II, open label clinical trial examining the feasibility, safety and immunogenicity of Apo-DC vaccination has been initiated. CLL patients receive 10(7) Apo-DC for at least five immunizations and monitored clinically and immunologically for 52 weeks. Three cohorts are accrued stepwise. Cohort I receives Apo-DC alone; Cohort II: Apo-DC+ repeated doses of low-dose GM-CSF; Cohort III: low-dose cyclophosphamide followed by Apo-DC + GM-CSF.
Collapse
Affiliation(s)
- M. Palma
- Departments of Oncology and Hematology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - L. Adamson
- Departments of Oncology and Hematology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - L. Hansson
- Departments of Oncology and Hematology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - P. Kokhaei
- Departments of Oncology and Hematology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - R. Rezvany
- Departments of Oncology and Hematology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - H. Mellstedt
- Department of Oncology (Radiumhemmet), Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - A. Österborg
- Departments of Oncology and Hematology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - A. Choudhury
- Departments of Oncology and Hematology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
44
|
Sloand EM, Rezvani K. The Role of the Immune System in Myelodysplasia: Implications for Therapy. Semin Hematol 2008; 45:39-48. [DOI: 10.1053/j.seminhematol.2007.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
45
|
Enhanced interferon-γ secretion and antitumor activity of T-lymphocytes activated by dendritic cells loaded with glycoengineered myeloma antigens. Chin Med J (Engl) 2007. [DOI: 10.1097/00029330-200710010-00007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
46
|
Abstract
Although chemotherapy can induce complete responses in patients with chronic lymphocytic leukemia (CLL), it is not considered curative. Treated patients generally develop recurrent disease requiring additional therapy, which can cause worsening immune dysfunction, myelosuppression, and selection for chemotherapy-resistant leukemia-cell subclones. Cellular immune therapy promises to mitigate these complications and potentially provide for curative treatment. Most experience with this is in the use of allogeneic hematopoietic stem-cell transplantation (allo-HSCT), in which graft-versus-leukemia (GVL) effects can be observed and shown responsible for long-term disease-free survival. However, use of allo-HSCT for CLL is limited because of the lack of suitable donors and the treatment-related morbidity/mortality for elderly patients, who constitute the majority at risk for developing this disease. The GVL effect, however, suggests there are specific CLL-associated antigens that could be targeted in autologous cellular immune therapy. Effective strategies for this will have to overcome the disease-related acquired immune deficiency and the capacity of the leukemia-cell to induce T-cell tolerance, thereby compromising the activity of even conventional vaccines in patients with this disease. We will discuss the different strategies being developed to overcome these limitations that might provide for effective cellular immune therapy of CLL.
Collapse
Affiliation(s)
- Arnon P Kater
- Department of Hematology, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
47
|
Kokhaei P, Palma M, Hansson L, Osterborg A, Mellstedt H, Choudhury A. Telomerase (hTERT 611–626) serves as a tumor antigen in B-cell chronic lymphocytic leukemia and generates spontaneously antileukemic, cytotoxic T cells. Exp Hematol 2007; 35:297-304. [PMID: 17258078 DOI: 10.1016/j.exphem.2006.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 07/31/2006] [Accepted: 10/10/2006] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Human telomerase reverse transcriptase (hTERT) is the catalytic subunit of telomerase. In B-cell chronic lymphocytic leukemia (B-CLL), telomerase activity is increased in about 75% of patients. The aim of this study was to analyze whether B-CLL patients with telomerase-positive leukemic cells had naturally occurring, telomerase-specific T cells that might be utilized for immune-mediated lysis of autologous tumor cells. METHODS Spontaneous T-cell immunity and cytotoxicity against hTERT was explored in B-CLL. Nineteen of 25 B-CLL patients (76%) expressed hTERT (reverse transcriptase polymerase chain reaction) and 10 were selected for specific T-cell analysis against hTERT. RESULTS The stimulation index (SI) of T cells from seven telomerase-positive patients stimulated with a 16aa hTERT peptide (611-626) loaded onto dendritic cells (DC) was 33.9 +/- 15.4 (mean SI +/- standard error of mean) and 13.2 +/- 5.6 against a Ras control peptide (p = 0.05), whereas the corresponding SI values for three telomerase-negative patients were 5.3 +/- 5.3 against the hTERT 611-626 peptide and 10.3 +/- 6.5 against the Ras peptide, respectively; and for three healthy controls, 5.4 +/- 0.9 against the hTERT 611-626 peptide and 4.5 +/- 1.0 against the Ras peptide (both not significant). Blocking experiments revealed that the specific responses were major histocompatibility complex (MHC) class I and MHC class II restricted. DC pulsed with the hTERT-peptide generated MHC class I-restricted, hTERT-specific cytotoxic T lymphocytes in six of seven telomerase-positive patients; mean cytotoxicity of hTERT-stimulated T cells was 49.8% +/- 9.3% vs 13.1 +/- 2.9% for Ras-stimulated T cells (p < 0.05). In three of three telomerase-negative patients, no hTERT-specific cytotoxic T lymphocytes could be expanded. CONCLUSION Telomerase-positive B-CLL patients have spontaneously occurring cytotoxic hTERT-specific T cells. This antigen might be explored as a therapeutic vaccine in B-CLL.
Collapse
Affiliation(s)
- Parviz Kokhaei
- Immune and Gene Therapy Lab, Cancer Centre Karolinska, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
48
|
Giannopoulos K, Schmitt M. Targets and strategies for T-cell based vaccines in patients with B-cell chronic lymphocytic leukemia. Leuk Lymphoma 2007; 47:2028-36. [PMID: 17071473 DOI: 10.1080/10428190600709721] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
T-cell based immunotherapies might be a novel option for the treatment of B-cell chronic lymphocytic leukemia (B-CLL), a disease characterized by a prolonged natural course. Different strategies of active immunotherapy have been tested in vitro to enhance a specific T-cell response against tumor cells and an anti-leukemic effect has been observed in B-CLL patients after allogenic stem cell transplantation. Several antigens have been characterized as tumor/leukemia associated antigens (T/LAAs) in B-CLL with the potential to elicit specific anti-tumor response encompassing idiotype immunoglobulin, oncofetal antigen-immature laminin receptor protein (OFAiLRP), survivin, as well as fibromodulin, the receptor for hyaluronic acid mediated motility (RHAMM/CD168) and the murine double-minute 2 oncoprotein (MDM2). This study presents an overview of possible targets and genetherapeutical maneuvers for future immunotherapies of B-CLL patients and summarizes recent clinical vaccination trials with dendritic cells (DCs) for B-CLL.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/metabolism
- Cancer Vaccines
- Dendritic Cells/cytology
- Humans
- Immunotherapy/methods
- Killer Cells, Natural/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/prevention & control
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Models, Biological
- Monocytes/metabolism
- T-Lymphocytes/metabolism
Collapse
|
49
|
Palma M, Kokhaei P, Lundin J, Choudhury A, Mellstedt H, Osterborg A. The biology and treatment of chronic lymphocytic leukemia. Ann Oncol 2006; 17 Suppl 10:x144-54. [PMID: 17018715 DOI: 10.1093/annonc/mdl252] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- M Palma
- Department of Hematology, Cancer Centre Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
50
|
Mous R, Savage P, Remmerswaal EBM, van Lier RAW, Eldering E, van Oers MHJ. Redirection of CMV-specific CTL towards B-CLL via CD20-targeted HLA/CMV complexes. Leukemia 2006; 20:1096-102. [PMID: 16557240 DOI: 10.1038/sj.leu.2404185] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
B-cell chronic lymphocytic leukaemia (B-CLL) is a slowly progressing malignancy of CD5(+) B cells, for which at present no curative treatment is available. In our current study, we apply a novel bridging reagent to redirect cytomegalovirus (CMV)-specific cytotoxic T lymphocytes (CTL) to target B-CLL. A streptavidin-fused anti-CD20 single-chain variable fragment (scFv) is used in combination with biotinylated MHC class I molecules containing CMV pp65 peptide (HLA/CMV). We demonstrate that B-CLL cells coated with this CD20-HLA/CMV complex can be lysed by autologous CMV-specific CTL with similar efficiency as B-CLL cells directly loaded with CMV peptide. Killing is HLA restricted and occurs at scFv CD20 concentrations of >/=100 ng ml(-1) and HLA/CMV concentrations of >/=20 ng ml(-1). Furthermore, complex-coated B-CLL cells induce both proliferation and cytokine production (interferon gamma, tumour necrosis factor alpha and macrophage inflammatory protein-1 beta) in CMV-specific CD8(+) T cells. Hereby, a necessary step towards possible application of CD20-HLA/CMV complexes for immunotherapy of B-cell malignancies is constituted.
Collapse
MESH Headings
- Antigens, CD20/biosynthesis
- Antigens, CD20/immunology
- Cell Proliferation
- Cytokines/biosynthesis
- Cytomegalovirus/immunology
- Cytotoxicity Tests, Immunologic
- HLA Antigens/immunology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Multiprotein Complexes/immunology
- Peptides/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- R Mous
- Department of Hematology, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|