1
|
Xu N, Dao FT, Shi ZY, Sun K, Qin YZ. WT1 together with RUNX1::RUNX1T1 targets DUSP6 to dampen ERK activity in acute myeloid leukaemia. Br J Haematol 2024. [PMID: 39191510 DOI: 10.1111/bjh.19721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
Wilms' tumour 1 (WT1) can function as an oncogene or a tumour suppressor. Our previous clinical cohort studies showed that low WT1 expression at diagnosis independently predicted poor outcomes in acute myeloid leukaemia (AML) with RUNX1::RUNX1T1, whereas it had an opposite role in AML with non-favourable cytogenetic risk (RUNX1::RUNX1T1-deficient). The molecular mechanism by which RUNX1::RUNX1T1 affects the prognostic significance of WT1 in AML remains unknown. In the present study, first we validated the prognostic significance of WT1 expression in AML. Then by using the established transfected cell lines and xenograft tumour model, we found that WT1 suppresses proliferation and enhances effect of cytarabine in RUNX1::RUNX1T1(+) AML but has opposite functions in AML cells without RUNX1::RUNX1T1. Furthermore, as a transcription factor, WT1 physically interacts with RUNX1::RUNX1T1 and acts as a co-factor together with RUNX1::RUNX1T1 to activate the expression of its target gene DUSP6 to dampen extracellular signal-regulated kinase (ERK) activity. When RUNX1::RUNX1T1-deficient, WT1 can activate the mitogen-activated extracellular signal-regulated kinase/ERK axis but not through targeting DUSP6. These results provide a mechanism by which WT1 together with RUNX1::RUNX1T1 suppresses cell proliferation through WT1/DUSP6/ERK axis in AML. The current study provides an explanation for the controversial prognostic significance of WT1 expression in AML patients.
Collapse
Affiliation(s)
- Nan Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Feng-Ting Dao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Zong-Yan Shi
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Kai Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| |
Collapse
|
2
|
Rahman T, Das A, Abir MH, Nafiz IH, Mahmud AR, Sarker MR, Emran TB, Hassan MM. Cytokines and their role as immunotherapeutics and vaccine Adjuvants: The emerging concepts. Cytokine 2023; 169:156268. [PMID: 37320965 DOI: 10.1016/j.cyto.2023.156268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Cytokines are a protein family comprising interleukins, lymphokines, chemokines, monokines and interferons. They are significant constituents of the immune system, and they act in accordance with specific cytokine inhibiting compounds and receptors for the regulation of immune responses. Cytokine studies have resulted in the establishment of newer therapies which are being utilized for the treatment of several malignant diseases. The advancement of these therapies has occurred from two distinct strategies. The first strategy involves administrating the recombinant and purified cytokines, and the second strategy involves administrating the therapeutics which inhibits harmful effects of endogenous and overexpressed cytokines. Colony stimulating factors and interferons are two exemplary therapeutics of cytokines. An important effect of cytokine receptor antagonist is that they can serve as anti-inflammatory agents by altering the treatments of inflammation disorder, therefore inhibiting the effects of tumour necrosis factor. In this article, we have highlighted the research behind the establishment of cytokines as therapeutics and vaccine adjuvants, their role of immunotolerance, and their limitations.
Collapse
Affiliation(s)
- Tanjilur Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Ayan Das
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Mehedy Hasan Abir
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Iqbal Hossain Nafiz
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md Rifat Sarker
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chattogram 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohammad Mahmudul Hassan
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Queensland 4343, Australia.
| |
Collapse
|
3
|
Molvi Z, O'Reilly RJ. Allogeneic Tumor Antigen-Specific T Cells for Broadly Applicable Adoptive Cell Therapy of Cancer. Cancer Treat Res 2022; 183:131-159. [PMID: 35551658 DOI: 10.1007/978-3-030-96376-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
T cells specific for major histocompatibility complex (MHC)-presented tumor antigens are capable of inducing durable remissions when adoptively transferred to patients with refractory cancers presenting such antigens. When such T cells are derived from healthy donors, they can be banked for off-the-shelf administration in appropriately tissue matched patients. Therefore, tumor antigen-specific, donor-derived T cells are expected to be a mainstay in the cancer immunotherapy armamentarium. In this chapter, we analyze clinical evidence that tumor antigen-specific donor-derived T cells can induce tumor regressions when administered to appropriately matched patients whose tumors are refractory to standard therapy. We also delineate the landscape of MHC-presented and unconventional tumor antigens recognized by T cells in healthy individuals that have been targeted for adoptive T cell therapy, as well as emerging antigens for which mounting evidence suggests their utility as targets for adoptive T cell therapy. We discuss the growing technological advancements that have facilitated sequence identification of such antigens and their cognate T cells, and applicability of such technologies in the pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Zaki Molvi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Richard J O'Reilly
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
4
|
Kyi C, Doubrovina E, Zhou Q, Kravetz S, Iasonos A, Aghajanian C, Sabbatini P, Spriggs D, O'Reilly RJ, O'Cearbhaill RE. Phase I dose escalation safety and feasibility study of autologous WT1-sensitized T cells for the treatment of patients with recurrent ovarian cancer. J Immunother Cancer 2021; 9:jitc-2021-002752. [PMID: 34433633 PMCID: PMC8388302 DOI: 10.1136/jitc-2021-002752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
Background This phase I dose escalation trial evaluated the feasibility of production, safety, maximum tolerated dose, and preliminary efficacy of autologous T cells sensitized with peptides encoding Wilms’ tumor protein 1 (WT1) administered alone or following lymphodepleting chemotherapy, in the treatment of patients with recurrent WT1+ ovarian, primary peritoneal, or fallopian tube carcinomas. Methods A 3+3 dose escalation design was used to determine dose-limiting toxicity (DLT). In cohort I, patients received WT1-sensitized T cells dosed at 5×106/m2 (level I) without cyclophosphamide lymphodepletion. In cohorts II–IV, patients received lymphodepleting chemotherapy (a single intravenous dose of cyclophosphamide 750 mg/m2), 2 days prior to the first intravenous infusion of WT1-sensitized T cells administered at escalating doses (2×107/m2 (level II), 5×107/m2 (level III), and 1×108/m2 (level IV)). Results Twelve patients aged 23–72 years, with a median of 7 prior therapies (range 4–14), were treated on the study. No DLT was observed, even at the highest dose level of 1×108/m2 WT1-sensitized T cells tested. Common adverse events reported were grade 1–2 fatigue, fever, nausea, and headache. Median progression-free survival (PFS) was 1.8 months (95% CI, 0.8 to 2.6); 1 year PFS rate 8.3% (95% CI, 0.5 to 31.1). Median overall survival (OS) was 11.0 months (95% CI, 1.1 to 22.6); OS at 1 year was 41.7% (95% CI, 15.2% to 66.5%). Best response was stable disease in one patient (n=1) and progressive disease in the others (n=11). We observed a transient increase in the frequencies of WT1-specific cytotoxic T lymphocyte precursors (CTLp) in the peripheral blood of 9 of the 12 patients following WT1-sensitized T-cell infusion. Conclusion We demonstrated the safety of administration of WT1-sensitized T cells and the short-term increase in the WT1 CTLp. However, at the low doses evaluated we did not observe therapeutic activity in recurrent ovarian cancer. In this heavily pretreated population, we encountered challenges in generating sufficient numbers of WT1-reactive cytotoxic T cells. Future studies employing WT1-specific T cells generated from lymphocytes are warranted but should be done earlier in the disease course and prior to intensive myelosuppressive therapy. Trial registration number NCT00562640. One-sentence summary The authors describe the first human application of autologous WT1-sensitized T cells in the treatment of patients with recurrent ovarian, primary peritoneal, and fallopian tube carcinomas.
Collapse
Affiliation(s)
- Chrisann Kyi
- Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Medicine, Weill Cornell Medical College, New York, New York, USA
| | | | - Qin Zhou
- Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sara Kravetz
- Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexia Iasonos
- Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carol Aghajanian
- Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Paul Sabbatini
- Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Medicine, Weill Cornell Medical College, New York, New York, USA
| | | | | | - Roisin E O'Cearbhaill
- Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA .,Medicine, Weill Cornell Medical College, New York, New York, USA.,National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
5
|
Kan S, Bito T, Shimabuku M, Taguchi J, Ohkusa T, Shimodaira S, Sugiyama H, Koido S. Impact of mature dendritic cells pulsed with a novel WT1 helper peptide on the induction of HLA‑A2‑restricted WT1‑reactive CD8+ T cells. Int J Oncol 2020; 57:1047-1056. [PMID: 32945369 DOI: 10.3892/ijo.2020.5110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/31/2020] [Indexed: 11/06/2022] Open
Abstract
The proliferation and activation of CD4+ T helper 1 (Th1) cells and CD8+ cytotoxic T lymphocytes (CTLs) that produce interferon‑γ (IFN‑γ) is an essential action of effective cancer vaccines. Recently, a novel Wilms' tumor 1 (WT1) helper peptide (WT1 HP34‑51; amino acid sequence, WAPVLDFAPPGASAYGSL) applicable for various human leukocyte antigen (HLA) subtypes (HLA‑DR, HLA‑DP and HLA‑DQ) was reported to increase peptide immunogenicity; however, the function of WT1 HP34‑51 remains unclear. In the present study, mature dendritic cells (mDCs) pulsed with WT1 HP34‑51 (mDC/WT1 HP34‑51) activated not only WT1‑specific CD4+ T cells but also CD8+ T cells that produced IFN‑γ following stimulation with immature dendritic cells (imDCs) pulsed with WT1 killer peptide (imDC/WT1 KP37‑45) in an HLA‑A*02:01‑ or HLA‑A*02:06‑restricted manner. Furthermore, the activated WT1‑reactive CD4+ Th1 cells were predominantly effector memory (EM) T cells. In 5 of 12 (41.7%) patients with cancer carrying the HLA‑A*02:01 or HLA‑A*02:06 allele, WT1‑reactive CD8+ T cells stimulated with mDC/WT1 HP34‑51 enhanced their levels of WT1 KP37‑45‑specific IFN‑γ production, with an increase >10%. Simultaneous activation of CD4+ and CD8+ T cells occurred more often when stimulation with mDC/WT1 HP34‑51 was combined with imDC/WT1 KP37‑45 restimulation. These results indicated that the novel mDC/WT1 HP34‑51 combination induced responses by WT1‑specific EM CD4+ Th1 cells and HLA‑A*02:01‑ or HLA‑A*02:06‑restricted CD8+ CTLs, suggesting its potential as a WT1‑targeting cancer vaccine.
Collapse
Affiliation(s)
- Shin Kan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277‑8567, Japan
| | - Tsuuse Bito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277‑8567, Japan
| | - Masamori Shimabuku
- Tokyo Midtown Center for Advanced Medical Science and Technology, Tokyo 107‑6206, Japan
| | - Junichi Taguchi
- Tokyo Midtown Center for Advanced Medical Science and Technology, Tokyo 107‑6206, Japan
| | - Toshifumi Ohkusa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277‑8567, Japan
| | - Shigetaka Shimodaira
- Department of Regenerative Medicine, Kanazawa Medical University, Ishikawa 920‑0293, Japan
| | - Haruo Sugiyama
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka 565‑0871, Japan
| | - Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277‑8567, Japan
| |
Collapse
|
6
|
Shen Y, Li YM, Zhou JJ, Zhou Z, Xu YC, Zhao WB, Chen SQ. The Antitumor Activity of TCR-Mimic Antibody-Drug Conjugates (TCRm-ADCs) Targeting the Intracellular Wilms Tumor 1 (WT1) Oncoprotein. Int J Mol Sci 2019; 20:ijms20163912. [PMID: 31408937 PMCID: PMC6720711 DOI: 10.3390/ijms20163912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 01/13/2023] Open
Abstract
Wilms tumor 1 (WT1) oncoprotein is an intracellular oncogenic transcription factor which is barely expressed in normal adult tissues but over expressed in a variety of leukemias and solid cancers. WT1-derived HLA-A*02:01 T cell epitope, RMFPNAPYL (RMF), is a validated target for T cell-based immunotherapy. We generated two T cell receptor mimic antibody-drug conjugates (TCRm-ADCs), ESK-MMAE, and Q2L-MMAE, against WT1 RMF/HLA-A*02:01 complex with distinct affinities, which mediate specific antitumor activity. Although ESK-MMAE showed higher tumor growth inhibition ratio in vivo, the efficacy of them was not so promising, which might be due to low expression of peptide/HLA targets. Therefore, we explored a bispecific TCRm-ADC that exerted more potent tumor cytotoxicity compared with TCRm-ADCs. Hence, our findings validate the feasibility of the presenting intracellular peptides as the targets of ADCs, which broadens the antigen selection range of antibody-based drugs and provides new strategies for precision medicine in tumor therapy.
Collapse
Affiliation(s)
- Ying Shen
- Laboratory of Precision Medicine and Biopharmaceutics & Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi-Ming Li
- Laboratory of Precision Medicine and Biopharmaceutics & Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing-Jing Zhou
- Laboratory of Precision Medicine and Biopharmaceutics & Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhan Zhou
- Laboratory of Precision Medicine and Biopharmaceutics & Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying-Chun Xu
- Laboratory of Precision Medicine and Biopharmaceutics & Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen-Bin Zhao
- Laboratory of Precision Medicine and Biopharmaceutics & Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Shu-Qing Chen
- Laboratory of Precision Medicine and Biopharmaceutics & Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Wu R, Liao Y, Shen W, Liu Y, Zhang J, Zheng M, Chen G, Su Y, Zhao M, Lu Q. Overexpression of Wilms' tumor 1 in skin lesions of psoriasis is associated with abnormal proliferation and apoptosis of keratinocytes. Mol Med Rep 2018; 18:3973-3982. [PMID: 30132523 DOI: 10.3892/mmr.2018.9391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/12/2018] [Indexed: 11/05/2022] Open
Abstract
Psoriasis vulgaris (PV) is a chronic inflammatory skin disease, which is characterized by the abnormal proliferation and apoptosis of keratinocytes. Previous studies have demonstrated that transcription factor Wilms' tumor 1 (WT1) is involved in a number of pathophysiological processes, including organ development, tumorigenesis and cell proliferation. However, the role of WT1 in PV remains unclear. In the present study, WT1 expression was analyzed by reverse transcription‑quantitative polymerase chain reaction and western blot analyses. WT1 was stably overexpressed or inhibited in HaCaT cells using Lipofectamine® 2000, and cell proliferation and apoptosis were determined using a Cell Counting Kit‑8 or Fluorescein Isothiocyanate Annexin V Apoptosis Detection kit II, respectively. We demonstrated that compared with normal controls, the mRNA and protein expression levels of WT1 were significantly increased in non‑lesional skins (human, P<0.0001 and P=0.0291, respectively; mouse, P=0.0020 and P=0.0150, respectively) and lesional skins (human, P<0.0001 and P=0.0060, respectively; mouse, P=0.0010 and P=0.0172, respectively) of patients with PV, in addition to the imiquimod (IMQ)‑induced psoriasis‑like mouse model. WT1 mRNA and protein expression levels in lesional skins were slightly increased compared with those in non‑lesional skins from patients with psoriasis (P=0.2510 and P=0.1690, respectively) and IMQ‑treated mice (P=0.9590 and P=0.2552, respectively), although there were no statistical differences. Knockdown of WT1 inhibited the proliferation of HaCaT cells [day (D)4, P=0.0454; D5, P=0.0021] and promoted their apoptosis (P=0.0007), while overexpressing WT1 exhibited the opposite effects (proliferation D3, P=0.0216; D4, P=0.0356; D5, P=0.0188; apoptosis, P=0.0003). Furthermore, it was identified that the inflammatory cytokines interleukin‑17A (IL‑17A), interferon‑γ and IL‑22 induced the overexpression of WT1 in HaCaT cells. The results of the present study suggested that inflammatory cytokine‑induced WT1 overexpression may promote the formation of psoriatic skin lesions via regulation of the proliferation and apoptosis of keratinocytes.
Collapse
Affiliation(s)
- Ruifang Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yuan Liao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Weiyun Shen
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yu Liu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Jianzhong Zhang
- Department of Dermatology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Min Zheng
- Department of Dermatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Genghui Chen
- Beijing Wenfeng Tianji Pharmaceuticals Ltd., Beijing 100027, P.R. China
| | - Yuwen Su
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
8
|
El-Menoufy M, Ahmed M. Wilms’ tumor gene 1 expression can predict sudden disease progression to blast crisis in patients with chronic myeloid leukemia receiving imatinib therapy. THE EGYPTIAN JOURNAL OF HAEMATOLOGY 2018. [DOI: 10.4103/ejh.ejh_5_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Jiang Y, Liu L, Wang J, Cao Z, Zhao Z. The Wilms' tumor gene-1 is a prognostic factor in myelodysplastic syndrome: a meta analysis. Oncotarget 2017; 9:16205-16212. [PMID: 29662637 PMCID: PMC5882328 DOI: 10.18632/oncotarget.23671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 12/11/2017] [Indexed: 11/25/2022] Open
Abstract
Previous studies have suggested that Wilms’ tumor gene-1 (WT1) may be related to a decrease in both relapse-free survival (RFS) and overall survival (OS) for patients with myelodysplastic syndrome (MDS). Therefore, we conducted a meta-analysis on the utility of WT1 as a prognostic indicator of MDS. Published reports were searched in the following databases: Cochrane Library, PubMed, Embase, and Web of Science. The meta-analysis was conducted using the Cochrane Collaboration RevMan 5.2 software. Six publications with 450 total patients met the inclusion criteria and were subjected to further examination. The results showed a reduction in both overall survival (OS) and leukemia-free survival (LFS) with increasing WT1 expression levels: 1-year OS (odds ratio, OR = 0.16; 95% CI = 0.08–0.34, P < 0.001), 3-year OS (OR = 0.21; 95% CI = 0.09–0.47, P < 0.001), 5-year OS (OR = 0.24; 95% CI = 0.06–0.92, P = 0.04), 1-year LFS (OR = 0.06; 95% CI = 0.02–0.18; P < 0.001), 3-year LFS (OR = 0.20; 95% CI = 0.09–0.46; P < 0.001), and 5-year LFS (OR = 0.12; 95% CI = 0.04–0.38; P < 0.001). In terms of patients receiving hematopoietic stem cell transplantation, the cumulative incidence of relapse (CIR) was higher in the WT1 over-expression group than in the low-expression group: 1-year CIR (OR = 13.69; 95% CI = 2.99–62.62; P < 0.001), 3-year CIR (OR = 6.52; 95% CI = 2.31–18.40, P < 0.001). In conclusion, WT1 over-expression is a prognostic factor for MDS.
Collapse
Affiliation(s)
- Yanan Jiang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lin Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jinhuan Wang
- Department of Oncology, Second Hospital of Tianjin Medical University, Institute of Urology, Tianjin 300060, China
| | - Zeng Cao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhigang Zhao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
10
|
Zauderer MG, Tsao AS, Dao T, Panageas K, Lai WV, Rimner A, Rusch VW, Adusumilli PS, Ginsberg MS, Gomez D, Rice D, Mehran R, Scheinberg DA, Krug LM. A Randomized Phase II Trial of Adjuvant Galinpepimut-S, WT-1 Analogue Peptide Vaccine, After Multimodality Therapy for Patients with Malignant Pleural Mesothelioma. Clin Cancer Res 2017; 23:7483-7489. [PMID: 28972039 DOI: 10.1158/1078-0432.ccr-17-2169] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/09/2017] [Accepted: 09/22/2017] [Indexed: 12/29/2022]
Abstract
Purpose: Determine the 1-year progression-free survival (PFS) rate among patients with malignant pleural mesothelioma (MPM) receiving the WT1 peptide vaccine galinpepimut-S after multimodality therapy versus those receiving control adjuvants.Experimental Design: This double-blind, controlled, two center phase II trial randomized MPM patients after surgery and another treatment modality to galinpepimut-S with GM-CSF and Montanide or GM-CSF and Montanide alone. An improvement in 1-year PFS from 50% to 70% was the predefined efficacy threshold, and 78 patients total were planned. The study was not powered for comparison between the two arms.Results: Forty-one patients were randomized. Treatment-related adverse events were mild, self-limited, and not clinically significant. On the basis of a stringent prespecified futility analysis (futility = ≥10 of 20 patients on one arm experiencing progression < 1 year), the control arm closed early. The treatment arm was subsequently closed because of the resultant unblinding. The PFS rate at 1 year from beginning study treatment was 33% and 45% in the control and vaccine arms, respectively. Median PFS was 7.4 months versus 10.1 months and median OS was 18.3 months versus 22.8 months in the control and vaccine arms, respectively.Conclusions: The favorable safety profile was confirmed. PFS and OS were greater in those who received vaccine, but the trial was neither designed nor powered for comparison between the arms. On the basis of these promising results, the investigators are planning a larger randomized trial with greater statistical power to define the optimal use and benefit of galinpepimut-S in the treatment of MPM. Clin Cancer Res; 23(24); 7483-9. ©2017 AACR.
Collapse
Affiliation(s)
- Marjorie G Zauderer
- Division of Solid Tumor Oncology, Department of Medicine, Thoracic Oncology Service Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York.
| | - Anne S Tsao
- Division of Cancer Medicine, Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tao Dao
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York
| | - Katherine Panageas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - W Victoria Lai
- Division of Solid Tumor Oncology, Department of Medicine, Thoracic Oncology Service Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Valerie W Rusch
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Prasad S Adusumilli
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michelle S Ginsberg
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel Gomez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Rice
- Department of Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Reza Mehran
- Department of Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David A Scheinberg
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York.,Deparment of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lee M Krug
- Division of Solid Tumor Oncology, Department of Medicine, Thoracic Oncology Service Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| |
Collapse
|
11
|
Eguchi T, Kadota K, Mayor M, Zauderer MG, Rimner A, Rusch VW, Travis WD, Sadelain M, Adusumilli PS. Cancer antigen profiling for malignant pleural mesothelioma immunotherapy: expression and coexpression of mesothelin, cancer antigen 125, and Wilms tumor 1. Oncotarget 2017; 8:77872-77882. [PMID: 29100432 PMCID: PMC5652821 DOI: 10.18632/oncotarget.20845] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/15/2017] [Indexed: 12/26/2022] Open
Abstract
Background To develop cancer antigen-targeted immunotherapeutic strategies for malignant pleural mesothelioma (MPM), we investigated the individual and coexpressions of the cancer-associated antigens mesothelin (MSLN), cancer antigen 125 (CA125), and Wilms tumor 1 (WT1) in both epithelioid and non-epithelioid MPM. Methods All available hematoxylin and eosin-stained slides from patients who were diagnosed with MPM (1989-2010) were reviewed. We constructed tissue microarrays from 283 patients (epithelioid = 234; non-epithelioid = 49). Intensity and distribution for each antigen were assessed by immunohistochemistry. Results Positive expression of MSLN, CA125, and WT1 were demonstrated in 93%, 75%, and 97% of epithelioid MPM cases, and 57%, 33%, and 98% of non-epithelioid MPM cases, respectively. Triple- and double-positive antigen coexpressions were demonstrated in 72% and 23% of epithelioid MPM cases and 29% and 33% of non-epithelioid MPM cases, respectively. Complete absence of expression for all three antigens was demonstrated in <2% of MPM cases. More than two-thirds of MPM cases had ≥50% distribution of MSLN-positive cells and, among the remaining third, half had ≥50% distribution of WT1-positive cells. CA125/MSLN coexpression was observed in more than two-thirds of epithelioid MPM cases and one-third of non-epithelioid MPM cases. Conclusion A limited number of cancer-associated antigens can target almost all MPM tumors for immunotherapy.
Collapse
Affiliation(s)
- Takashi Eguchi
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Division of Thoracic Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kyuichi Kadota
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Diagnostic Pathology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Marissa Mayor
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marjorie G Zauderer
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Valerie W Rusch
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William D Travis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
12
|
Dao T, Korontsvit T, Zakhaleva V, Jarvis C, Mondello P, Oh C, Scheinberg DA. An immunogenic WT1-derived peptide that induces T cell response in the context of HLA-A*02:01 and HLA-A*24:02 molecules. Oncoimmunology 2016; 6:e1252895. [PMID: 28344864 DOI: 10.1080/2162402x.2016.1252895] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 12/18/2022] Open
Abstract
The Wilms' tumor oncogene protein (WT1) is a highly validated tumor antigen for immunotherapy. WT1-targeted immunotherapy has been extensively explored in multiple human trials in various cancers. However, clinical investigations using WT1 epitopes have generally focused on two peptides, HLA-restricted to HLA-A*02:01 or HLA-A*24:02. The goal of this study was to identify new epitopes derived from WT1, to expand the potential use of WT1 as a target of immunotherapy. Using computer-based MHC-binding algorithms and in vitro validation of the T cell responses specific for the identified peptides, we found that a recently identified HLA-A*24:02-binding epitope (239-247), NQMNLGATL (NQM), was also a strong CD8+ T cell epitope for HLA-A*02:01 molecule. A peptide second position Q240L substitution (NLM) or Q240Y substitution (NYM), further enhanced the T cell responses in both HLA-A*02:01 positive and HLA-A*24:02 positive healthy donors. Importantly, T cells stimulated with the new analog peptides displayed heteroclitic cross-reactivity with the native NQM sequence and were able to kill HLA-matched WT1-positive tumor cell lines and primary leukemia blasts. In addition, longer native and heteroclitic HLA-DR.B1-binding peptides, comprising the nine amino acid NQM or NLM sequences, could induce T cell response that recognized the CD8+ epitope NQM, suggesting the processing and the presentation by HLA-A*02:01 molecules of the CD8+ T cell epitope embedded within it. Our studies suggest that the analog peptides NLM and NYM could be potential candidates for future immunotherapy targeting WT1 positive cancers in the context of HLA-A*02:01 and A*24:02 positive populations.
Collapse
Affiliation(s)
- Tao Dao
- Molecular Pharmacology Program, Sloan Kettering Institute , New York, NY, USA
| | - Tatyana Korontsvit
- Molecular Pharmacology Program, Sloan Kettering Institute , New York, NY, USA
| | - Victoria Zakhaleva
- Molecular Pharmacology Program, Sloan Kettering Institute , New York, NY, USA
| | - Casey Jarvis
- Molecular Pharmacology Program, Sloan Kettering Institute , New York, NY, USA
| | - Patrizia Mondello
- Department of Medicine, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Claire Oh
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA; Weill Cornell Medicine, New York, NY, USA
| | - David A Scheinberg
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
13
|
Cesaro E, Sodaro G, Montano G, Grosso M, Lupo A, Costanzo P. The Complex Role of the ZNF224 Transcription Factor in Cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 107:191-222. [PMID: 28215224 DOI: 10.1016/bs.apcsb.2016.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ZNF224 is a member of the Kruppel-associated box zinc finger proteins (KRAB-ZFPs) family. It was originally identified as a transcriptional repressor involved in gene-specific silencing through the recruitment of the corepressor KAP1, chromatin-modifying activities, and the arginine methyltransferase PRMT5 on the promoter of its target genes. Recent findings indicate that ZNF224 can behave both as a tumor suppressor or an oncogene in different human cancers. The transcriptional regulatory properties of ZNF224 in these systems appear to be complex and influenced by specific sets of interactors. ZNF224 can also act as a transcription cofactor for other DNA-binding proteins. A role for ZNF224 in transcriptional activation has also emerged. Here, we review the state of the literature supporting both roles of ZNF224 in cancer. We also examine the functional activity of ZNF224 as a transcription factor and the influence of protein partners on its dual behavior. Increasing information on the mechanism through which ZNF224 can operate could lead to the identification of agents capable of modulating ZNF224 function, thus potentially paving the way to new therapeutic strategies for treatment of cancer.
Collapse
Affiliation(s)
- E Cesaro
- University of Naples Federico II, Naples, Italy
| | - G Sodaro
- University of Naples Federico II, Naples, Italy
| | - G Montano
- BioMedical Center, Lund University, Lund, Sweden
| | - M Grosso
- University of Naples Federico II, Naples, Italy
| | - A Lupo
- University of Sannio, Benevento, Italy
| | - P Costanzo
- University of Naples Federico II, Naples, Italy.
| |
Collapse
|
14
|
Zhang SD, Feng SZ. [Advances in allogeneic hematopoietic stem cell transplantation for myelodysplastic syndromes]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2016; 37:432-6. [PMID: 27210885 PMCID: PMC7348315 DOI: 10.3760/cma.j.issn.0253-2727.2016.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Indexed: 11/24/2022]
Affiliation(s)
- S D Zhang
- Institute of Hematology & Blood Disease Hospital, CAMS & PUMC, Tianjin 300020, China
| | | |
Collapse
|
15
|
Ataie N, Xiang J, Cheng N, Brea EJ, Lu W, Scheinberg DA, Liu C, Ng HL. Structure of a TCR-Mimic Antibody with Target Predicts Pharmacogenetics. J Mol Biol 2016; 428:194-205. [PMID: 26688548 PMCID: PMC4738012 DOI: 10.1016/j.jmb.2015.12.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/25/2015] [Accepted: 12/03/2015] [Indexed: 11/21/2022]
Abstract
Antibody therapies currently target only extracellular antigens. A strategy to recognize intracellular antigens is to target peptides presented by immune HLA receptors. ESK1 is a human, T-cell receptor (TCR)-mimic antibody that binds with subnanomolar affinity to the RMF peptide from the intracellular Wilms tumor oncoprotein WT1 in complex with HLA-A*02:01. ESK1 is therapeutically effective in mouse models of WT1(+) human cancers. TCR-based therapies have been presumed to be restricted to one HLA subtype. The mechanism for the specificity and high affinity of ESK1 is unknown. We show in a crystal structure that ESK1 Fab binds to RMF/HLA-A*02:01 in a mode different from that of TCRs. From the structure, we predict and then experimentally confirm high-affinity binding with multiple other HLA-A*02 subtypes, broadening the potential patient pool for ESK1 therapy. Using the crystal structure, we also predict potential off-target binding that we experimentally confirm. Our results demonstrate how protein structure information can contribute to personalized immunotherapy.
Collapse
Affiliation(s)
- Niloufar Ataie
- University of Hawaii at Manoa, Department of Chemistry, 2545 McCarthy Mall, Honolulu, HI 96822-2275, USA
| | - Jingyi Xiang
- Eureka Therapeutics Inc., 5858 Horton Street, Emeryville, CA 94608, USA
| | - Neal Cheng
- Eureka Therapeutics Inc., 5858 Horton Street, Emeryville, CA 94608, USA
| | - Elliott J Brea
- Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Wenjie Lu
- University of Hawaii at Manoa, Department of Chemistry, 2545 McCarthy Mall, Honolulu, HI 96822-2275, USA
| | - David A Scheinberg
- Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA; Weill Cornell Medical College, 1305 York Avenue, New York, NY 10021, USA
| | - Cheng Liu
- Eureka Therapeutics Inc., 5858 Horton Street, Emeryville, CA 94608, USA
| | - Ho Leung Ng
- University of Hawaii at Manoa, Department of Chemistry, 2545 McCarthy Mall, Honolulu, HI 96822-2275, USA; University of Hawaii Cancer Center, 2545 McCarthy Mall, Honolulu, HI 96822-2275, USA.
| |
Collapse
|
16
|
Toogeh G, Ramzi M, Faranoush M, Amirizadeh N, Haghpanah S, Moghadam M, Cohan N. Prevalence and Prognostic Impact of Wilms' Tumor 1 (WT1) Gene, Including SNP rs16754 in Cytogenetically Normal Acute Myeloblastic Leukemia (CN-AML): An Iranian Experience. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2015; 16:e21-6. [PMID: 26725263 DOI: 10.1016/j.clml.2015.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND The aim of this study was to evaluate the effect of Wilms' tumor 1 (WT1) gene mutations in adult cytogenetically normal acute myeloblastic leukemia (CN-AML) patients on survival and clinical outcome. PATIENTS AND METHODS A total of 88 untreated Iranian adult patients with CN-AML were selected as a study group. Exons 7 (including the SNP rs16754), 8, and 9 as a WT1 gene hotspot region were evaluated by polymerase chain reaction and direct sequencing for detection of mutations. Response to treatment and clinical outcome including overall survival (OS) and disease-free survival (DFS) were evaluated according to WT1 gene mutational status. RESULTS WT1 gene mutations were found in 12.5% of patients, most of which were found in exon 7. Complete remission was lower and relapse was higher in patients with WT1 gene mutation compared with WT1 gene wild type patients. OS and DFS was significantly lower in patients with WT1 gene mutation compared with patients with WT1 gene wild type (P < .001). Also, we did not find any significant effects of SNP rs16754 in exon 7 on clinical outcome and survival in patients with CN-AML. CONCLUSION WT1 gene mutations are a predictor indicator of a poor prognosis factor in CN-AML patients. It is recommended that WT1 gene mutations be included in the molecular testing panel in order to better diagnose and confirm their prognostic significance for better management and treatment strategy.
Collapse
Affiliation(s)
- Gholamreza Toogeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran; Thrombosis Hemostasis Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mani Ramzi
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Faranoush
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Naser Amirizadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Sezaneh Haghpanah
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Moghadam
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Cohan
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| |
Collapse
|
17
|
Iranparast S, Assarehzadegan MA, Heike Y, Hossienzadeh M, Khodadadi A. Wilms' Tumor Gene (WT1) Expression Correlates with Vascular Epithelial Growth Factor (VEGF) in Newly Acute Leukemia Patients Undergoing Chemotherapy. Asian Pac J Cancer Prev 2014; 15:9217-23. [DOI: 10.7314/apjcp.2014.15.21.9217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
18
|
Israyelyan A, Goldstein L, Tsai W, Aquino L, Forman SJ, Nakamura R, Diamond DJ. Real-time assessment of relapse risk based on the WT1 marker in acute leukemia and myelodysplastic syndrome patients after hematopoietic cell transplantation. Bone Marrow Transplant 2014; 50:26-33. [PMID: 25243629 PMCID: PMC4286541 DOI: 10.1038/bmt.2014.209] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 08/07/2014] [Accepted: 08/13/2014] [Indexed: 02/04/2023]
Abstract
Relapse is the major cause of treatment failure after allogeneic hematopoietic cell transplantation (alloHCT) for acute leukemia and myelodysplastic syndrome (MDS). Wilms' tumor Ag (WT1) is overexpressed in the majority of acute leukemia and MDS patients and has been proposed as a universal diagnostic marker for detection of impending relapse. Comprehensive studies have shown that WT1 transcript levels have predictive value in acute leukemia patients in CR after chemotherapy. However, the focus of this study is the period after alloHCT for predicting relapse onset. We analyzed the accumulation of WT1 mRNA transcripts in PB of 82 leukemia and MDS patients and defined specific molecular ratios for relapse prediction. The extensively validated WT1/c-ABL ratio was used to normalize increases in WT1 transcript levels. The observed lead time of crossing or exceeding set WT1 levels is presented along with linear interpolation to estimate the calculated day the WT1 thresholds were crossed. The WT1/c-ABL transcript ratio of 50 or above yielded 100% specificity and 75% sensitivity reliably predicting future relapse with an observed average of 29.4 days (s.d.=19.8) and a calculated average of 63 days (s.d.=29.3) lead time before morphologic confirmation. A lower ratio of 20 or above gave lower specificity, but higher sensitivity (84.8% and 87.5%, respectively) identified more patients who relapsed, at earlier times, providing an earlier warning with actual average lead time of 49.1 days (s.d.=30.8) and calculated average of 78 days (s.d.=28.8). WT1 transcript levels serve as a diagnostic relapse test with greater sensitivity than the morphologic approach used in the clinic as a readout.
Collapse
Affiliation(s)
- A Israyelyan
- Division of Translational Vaccine Research, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - L Goldstein
- Division of Biostatistics, Department of Information Sciences, Duarte, CA, USA
| | - W Tsai
- Department of Hematology/Hematopoietic Cell Transplantation, Duarte, CA, USA
| | - L Aquino
- Clinical Trials Office, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - S J Forman
- Department of Hematology/Hematopoietic Cell Transplantation, Duarte, CA, USA
| | - R Nakamura
- Department of Hematology/Hematopoietic Cell Transplantation, Duarte, CA, USA
| | - D J Diamond
- Division of Translational Vaccine Research, Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
19
|
Werner H, Sarfstein R. Transcriptional and epigenetic control of IGF1R gene expression: implications in metabolism and cancer. Growth Horm IGF Res 2014; 24:112-118. [PMID: 24863809 DOI: 10.1016/j.ghir.2014.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 03/11/2014] [Accepted: 03/17/2014] [Indexed: 12/12/2022]
Abstract
IGF1R plays an important role in protection from apoptosis, regulation of cell growth, differentiation and oncogenic transformation. IGF1R aberrations lead to intrauterine and postnatal growth failure, microcephaly, mental retardation and deafness. High levels of IGF1R are detected in a diversity of human tumors. IGF1R gene transcription is controlled by complex interactions involving DNA-binding and non DNA-binding transcription factors. This review highlights selected examples of a series of tumor suppressors, including the breast cancer gene-1 (BRCA1), p53, the Wilm's tumor protein-1 (WT1) and the von Hippel-Lindau gene (VHL), whose mechanisms of action involve regulation of IGF1R gene expression. IGF1R gene transcription is also dependent on the presence of stimulatory nuclear proteins, including zinc-finger protein Sp1, EWS-WT1, E2F1, Krüppel-like factor-6 (KLF6), high-mobility group A1 (HMGA1), and others. Loss-of-function of tumor suppressor genes, usually caused by mutations, may result in non-functional proteins unable to control IGF1R promoter activity. Impaired regulation of the IGF1R gene is linked to defective cell division, chromosomal instability and increased incidence of cancer.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Rive Sarfstein
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
20
|
Cagnetta A, Adamia S, Acharya C, Patrone F, Miglino M, Nencioni A, Gobbi M, Cea M. Role of genotype-based approach in the clinical management of adult acute myeloid leukemia with normal cytogenetics. Leuk Res 2014; 38:649-59. [PMID: 24726781 DOI: 10.1016/j.leukres.2014.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/03/2014] [Accepted: 03/09/2014] [Indexed: 02/02/2023]
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia affecting adults. Although it is a complex disease driven by numerous genetic and epigenetic abnormalities, nearly 50% of patients exhibit a normal karyotype (CN-AML) with an intermediate cytogenetic risk. However, a widespread genomic analysis has recently shown the recurrence of genomic aberrations in this category (mutations of FLT3, CEBPA, NPM1, RUNX1, TET2, IDH1/2, DNMT3A, ASXL1, MLL and WT1) thus revealing its marked genomic heterogeneity. In this perspective, a global gene expression analysis of AML patients provides an independent prognostic marker to categorize each patient into clinic-pathologic subgroups based on its molecular genetic defects. Consistently such classification, taking into account the uniqueness of each AML patient, furnishes an individualized treatment approach leading a step closer to personalized medicine. Overall the genome-wide analysis of AML patients, by providing novel insights into biology of this tumor, furnishes accurate prognostic markers as well as useful tools for selecting the most appropriate treatment option. Moreover it provides novel therapeutic targets useful to enhance efficacy of the current anti-AML therapeutics. Here we describe the prognostic relevance of such new genetic data and discuss how this approach can be used to improve survival and treatment of AML patients.
Collapse
Affiliation(s)
- Antonia Cagnetta
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Hematology and Oncology, I.R.C.C.S. A.O.U. San Martino-IST, Genoa, Italy.
| | - Sophia Adamia
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Chirag Acharya
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Franco Patrone
- Department of Hematology and Oncology, I.R.C.C.S. A.O.U. San Martino-IST, Genoa, Italy
| | - Maurizio Miglino
- Department of Hematology and Oncology, I.R.C.C.S. A.O.U. San Martino-IST, Genoa, Italy
| | - Alessio Nencioni
- Department of Hematology and Oncology, I.R.C.C.S. A.O.U. San Martino-IST, Genoa, Italy
| | - Marco Gobbi
- Department of Hematology and Oncology, I.R.C.C.S. A.O.U. San Martino-IST, Genoa, Italy
| | - Michele Cea
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Hematology and Oncology, I.R.C.C.S. A.O.U. San Martino-IST, Genoa, Italy.
| |
Collapse
|
21
|
Rein LAM, Chao NJ. WT1 vaccination in acute myeloid leukemia: new methods of implementing adoptive immunotherapy. Expert Opin Investig Drugs 2014; 23:417-26. [DOI: 10.1517/13543784.2014.889114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Dao T, Yan S, Veomett N, Pankov D, Zhou L, Korontsvit T, Scott A, Whitten J, Maslak P, Casey E, Tan T, Liu H, Zakhaleva V, Curcio M, Doubrovina E, O'Reilly RJ, Liu C, Scheinberg DA. Targeting the intracellular WT1 oncogene product with a therapeutic human antibody. Sci Transl Med 2013; 5:176ra33. [PMID: 23486779 DOI: 10.1126/scitranslmed.3005661] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Wilms tumor 1 (WT1) oncoprotein is an intracellular, oncogenic transcription factor that is overexpressed in a wide range of leukemias and solid cancers. RMFPNAPYL (RMF), a WT1-derived CD8+ T cell human leukocyte antigen (HLA)-A0201 epitope, is a validated target for T cell-based immunotherapy. Using phage display technology, we discovered a fully human "T cell receptor-like" monoclonal antibody (mAb), ESK1, specific for the WT1 RMF peptide/HLA-A0201 complex. ESK1 bound to several leukemia and solid tumor cell lines and primary leukemia cells, in a WT1- and HLA-A0201-restricted manner, with high avidity [dissociation constant (Kd)=0.1 nM]. ESK1 mediated antibody-dependent human effector cell cytotoxicity in vitro. Low doses of naked ESK1 antibody cleared established, disseminated, human acute lymphocytic leukemia and Philadelphia chromosome-positive leukemia in nonobese diabetic/severe combined immunodeficient γc-/- (NSG) mouse models. At therapeutic doses, no toxicity was seen in HLA-A0201 transgenic mice. ESK1 is a potential therapeutic agent for a wide range of cancers overexpressing the WT1 oncoprotein. This finding also provides preclinical validation for the strategy of developing therapeutic mAbs targeting intracellular oncogenic proteins.
Collapse
Affiliation(s)
- Tao Dao
- Molecular Pharmacology and Chemistry Program, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
WT1 promotes cell proliferation in non-small cell lung cancer cell lines through up-regulating cyclin D1 and p-pRb in vitro and in vivo. PLoS One 2013; 8:e68837. [PMID: 23936312 PMCID: PMC3731304 DOI: 10.1371/journal.pone.0068837] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 06/04/2013] [Indexed: 12/12/2022] Open
Abstract
The Wilms’ tumor suppressor gene (WT1) has been identified as an oncogene in many malignant diseases such as leukaemia, breast cancer, mesothelioma and lung cancer. However, the role of WT1 in non-small-cell lung cancer (NSCLC) carcinogenesis remains unclear. In this study, we compared WT1 mRNA levels in NSCLC tissues with paired corresponding adjacent tissues and identified significantly higher expression in NSCLC specimens. Cell proliferation of three NSCLC cell lines positively correlated with WT1 expression; moreover, these associations were identified in both cell lines and a xenograft mouse model. Furthermore, we demonstrated that up-regulation of Cyclin D1 and the phosphorylated retinoblastoma protein (p-pRb) was mechanistically related to WT1 accelerating cells to S-phase. In conclusion, our findings demonstrated that WT1 is an oncogene and promotes NSCLC cell proliferation by up-regulating Cyclin D1 and p-pRb expression.
Collapse
|
24
|
Pinton G, Manente AG, Tavian D, Moro L, Mutti L. Therapies currently in Phase II trials for malignant pleural mesothelioma. Expert Opin Investig Drugs 2013; 22:1255-63. [DOI: 10.1517/13543784.2013.816281] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Promising role of reduced-toxicity hematopoietic stem cell transplantation (PART-I). Stem Cell Rev Rep 2013; 8:1254-64. [PMID: 22836809 DOI: 10.1007/s12015-012-9401-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) remains a potential curative option for many patients with hematological malignancies (HM). However, the high rate of transplantation-related mortality (TRM) restricted the use of standard myeloablative HSCT to a minority of young and fit patients. Over the past few years, it has become evident that the alloreactivity of the immunocompetent donor cells mediated anti-malignancy effects independent of the action of high dose chemoradiotherapy. The use of reduced intensity conditioning (RIC) regimens has allowed a graft-versus-malignancy (GvM) effect to be exploited in patients who were previously ineligible for HSCT on the grounds of age and comorbidity. Retrospective analysis showed that RIC has been associated with lower TRM but a higher relapse rate leading to similar intermediate term overall and progression-free survivals when compared to standard myeloablative HSCT. However, the long term antitumor effect of this approach is less well established. Prospective studies are ongoing to define which patients might most benefit from reduced toxicity stem cell transplant (RT-SCT) and which transplant protocols are suitable for the different types of HM. The advent of RT-SCT permits the delivery of a potentially curative GvM effect to the majority of patients with HM whose outcome with conventional chemotherapy would be dismal. Remaining challenges include development of effective strategies to reduce relapse rates by augmenting GvM effects without increasing toxicity.
Collapse
|
26
|
Mossman BT, Shukla A, Heintz NH, Verschraegen CF, Thomas A, Hassan R. New insights into understanding the mechanisms, pathogenesis, and management of malignant mesotheliomas. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1065-77. [PMID: 23395095 DOI: 10.1016/j.ajpath.2012.12.028] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 12/04/2012] [Accepted: 12/24/2012] [Indexed: 12/20/2022]
Abstract
Malignant mesothelioma (MM) is a relatively rare but devastating tumor that is increasing worldwide. Yet, because of difficulties in early diagnosis and resistance to conventional therapies, MM remains a challenge for pathologists and clinicians to treat. In recent years, much has been revealed regarding the mechanisms of interactions of pathogenic fibers with mesothelial cells, crucial signaling pathways, and genetic and epigenetic events that may occur during the pathogenesis of these unusual, pleiomorphic tumors. These observations support a scenario whereby mesothelial cells undergo a series of chronic injury, inflammation, and proliferation in the long latency period of MM development that may be perpetuated by durable fibers, the tumor microenvironment, and inflammatory stimuli. One culprit in sustained inflammation is the activated inflammasome, a component of macrophages or mesothelial cells that leads to production of chemotactic, growth-promoting, and angiogenic cytokines. This information has been vital to designing novel therapeutic approaches for patients with MM that focus on immunotherapy, targeting growth factor receptors and pathways, overcoming resistance to apoptosis, and modifying epigenetic changes.
Collapse
Affiliation(s)
- Brooke T Mossman
- Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont 05405-0068, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Montano G, Cesaro E, Fattore L, Vidovic K, Palladino C, Crescitelli R, Izzo P, Turco MC, Costanzo P. Role of WT1-ZNF224 interaction in the expression of apoptosis-regulating genes. Hum Mol Genet 2013; 22:1771-82. [PMID: 23362234 DOI: 10.1093/hmg/ddt027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The transcription factor Wilms' tumor gene 1, WT1, is implicated both in normal developmental processes and in the generation of a variety of solid tumors and hematological malignancies. Physical interactions of other cellular proteins with WT1 are known to modulate its function. We previously identified the Krüppel-like zinc-finger protein, ZNF224, as a novel human WT1-associating protein that enhances the transcriptional activation of the human vitamin D receptor promoter by WT1. Here, we have analyzed the effects of WT1-ZNF224 interaction on the expression of apoptosis-regulating genes in the chronic myelogenous leukemia (CML) K562 cell line. The results demonstrated that ZNF224 acts in fine tuning of WT1-dependent control of gene expression, acting as a co-activator of WT1 in the regulation of proapoptotic genes and suppressing WT1 mediated transactivation of antiapoptotitc genes. Moreover, the DNA damaging drug cytosine arabinoside (ara-C) induces expression of ZNF224 in K562 cells and this induction enhances cell apoptotic response to ara-C. These findings suggest that ZNF224 can be a mediator of DNA damage-induced apoptosis in leukemia cells.
Collapse
Affiliation(s)
- Giorgia Montano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pozzi S, Geroldi S, Tedone E, Luchetti S, Grasso R, Colombo N, Di Grazia C, Lamparelli T, Gualandi F, Ibatici A, Bregante S, Van Lint MT, Raiola AM, Dominietto A, Varaldo R, Signori A, Bacigalupo A. Leukaemia relapse after allogeneic transplants for acute myeloid leukaemia: predictive role ofWT1expression. Br J Haematol 2013; 160:503-9. [DOI: 10.1111/bjh.12181] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
Affiliation(s)
- Sarah Pozzi
- Divisione Ematologia e Trapianto di Midollo; IRCCS San Martino-IST; Genova; Italy
| | - Simona Geroldi
- Divisione Ematologia e Trapianto di Midollo; IRCCS San Martino-IST; Genova; Italy
| | - Elisabetta Tedone
- Divisione Ematologia e Trapianto di Midollo; IRCCS San Martino-IST; Genova; Italy
| | - Silvia Luchetti
- Divisione Ematologia e Trapianto di Midollo; IRCCS San Martino-IST; Genova; Italy
| | - Raffaella Grasso
- Divisione Ematologia e Trapianto di Midollo; IRCCS San Martino-IST; Genova; Italy
| | - Nicoletta Colombo
- Divisione Ematologia e Trapianto di Midollo; IRCCS San Martino-IST; Genova; Italy
| | - Carmen Di Grazia
- Divisione Ematologia e Trapianto di Midollo; IRCCS San Martino-IST; Genova; Italy
| | - Teresa Lamparelli
- Divisione Ematologia e Trapianto di Midollo; IRCCS San Martino-IST; Genova; Italy
| | - Francesca Gualandi
- Divisione Ematologia e Trapianto di Midollo; IRCCS San Martino-IST; Genova; Italy
| | - Adalberto Ibatici
- Divisione Ematologia e Trapianto di Midollo; IRCCS San Martino-IST; Genova; Italy
| | - Stefania Bregante
- Divisione Ematologia e Trapianto di Midollo; IRCCS San Martino-IST; Genova; Italy
| | | | - Anna Maria Raiola
- Divisione Ematologia e Trapianto di Midollo; IRCCS San Martino-IST; Genova; Italy
| | - Alida Dominietto
- Divisione Ematologia e Trapianto di Midollo; IRCCS San Martino-IST; Genova; Italy
| | - Riccardo Varaldo
- Divisione Ematologia e Trapianto di Midollo; IRCCS San Martino-IST; Genova; Italy
| | - Alessio Signori
- Department of Statistics; University of Genova; Genova; Italy
| | - Andrea Bacigalupo
- Divisione Ematologia e Trapianto di Midollo; IRCCS San Martino-IST; Genova; Italy
| |
Collapse
|
29
|
Shimada A, Taki T, Koga D, Tabuchi K, Tawa A, Hanada R, Tsuchida M, Horibe K, Tsukimoto I, Adachi S, Kojima S, Hayashi Y. High WT1 mRNA expression after induction chemotherapy and FLT3-ITD have prognostic impact in pediatric acute myeloid leukemia: a study of the Japanese Childhood AML Cooperative Study Group. Int J Hematol 2012; 96:469-76. [PMID: 22915059 DOI: 10.1007/s12185-012-1163-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 07/30/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
The prognostic value of WT1 mRNA expression in pediatric acute myeloid leukemia (AML) remains controversial. A sample of newly diagnosed (n = 158) AML patients from the Japanese Childhood AML Cooperative Treatment Protocol, AML 99, were simultaneously analyzed for WT1 expression, cytogenetic abnormalities and gene alterations (FLT3, KIT, MLL, and RAS). WT1 expression (including more than 2,500 copies/μgRNA) was detected in 122 of the 158 (77.8 %) initial diagnostic AML bone marrow samples (median 45,500 copies/μgRNA). Higher WT1 expression was detected in French American British (FAB)-M0, M3, M7 and lower expression in M4 and M5. Higher WT1 expression was detected in AML with inv(16), t(15;17) and Down syndrome and lower in AML with 11q23 abnormalities. Multivariate analyses demonstrated that FLT3-internal tandem duplication (ITD), KIT mutation, MLL-partial tandem duplication were correlated with poor prognosis; however, higher WT1 expression was not. FLT3-ITD was correlated with WT1 expression and prognosis. Furthermore, 74 WT1 expression after induction chemotherapy was analyzed. Higher WT1 expression after induction chemotherapy was significantly correlated with M1 or M2/M3 marrow, FLT3-ITD and poor prognosis. Multivariate analyses in 74 AML patients revealed that FLT3-ITD, MLL-PTD, and KIT mutations were associated with poor prognosis; however, NRAS Mutation, KRAS mutation and high WT1 expression (>10,000 copies/μgRNA) did not show poor prognosis. Our findings suggest that higher WT1 expression at diagnosis does not correlate with poor prognosis, but that WT1 expression after induction chemotherapy is considered to be a useful predictor of clinical outcome in pediatric AML.
Collapse
Affiliation(s)
- Akira Shimada
- Department of Hematology/Oncology, Gunma Children's Medical Center, 779 Shimohakoda, Hokkitsu, Shibukawa, Gunma 377-8577, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The long-term outlook for adult patients with acute myeloid leukemia (AML) remains dismal. The main reason for this state of affairs lies in the fact that the majority of AML patients will eventually relapse, even after obtaining complete remission following front-line chemotherapy. Relapses are generally attributed to the persistence of a small number of chemotherapy-resistant leukemic (stem) cells, a condition known as minimal residual disease (MRD). The eradication of MRD, with the eventual aim of reducing the risk of relapse, therefore represents a high-priority goal of modern AML therapy. It is now well established that the immune system plays a crucial role in the defense against AML. This knowledge has fuelled the development of immune-based approaches to control MRD and, ultimately, to prevent relapse. One of the promising strategies that have emerged in this regard involves the use of dendritic cells for therapeutic vaccination. This review article aims to introduce the reader into the conceptual and practical aspects of DC-based vaccination for AML. Next, we will review the first clinical results obtained with this immunotherapeutic approach in AML patients. Finally, we will briefly reflect on the potential place of DC vaccination in the future therapy of AML.
Collapse
|
31
|
Abstract
Non-small-cell lung cancer and mesothelioma are thoracic malignancies, which in their advanced stages are incurable and have poor prognosis. Advances in our understanding of immune responses to tumours, tumour immunosuppression mechanisms, and tumour-specific shared antigens enabled successful early clinical trials of several specific and non-specific immunotherapies. For non-small-cell lung cancer, phase 3 clinical trial results of Toll-like receptor agonists show little promise. However, ongoing phase 3 trials are assessing melanoma-associated antigen A3 vaccine, liposomal BLP25, belagenpumatucel-L, and talactoferrin. In mesothelioma, immunotherapies being investigated include dendritic cell-based and Listeria-based vaccines, and allogeneic tumour cell and WT1 analogue peptide vaccines. Selection of appropriate patients and disease stages for immunotherapy, measurement of tumour-specific immune responses, and understanding the association between immune and clinical responses are some of the major challenges for the development of immunotherapies for these malignancies.
Collapse
Affiliation(s)
- Anish Thomas
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
32
|
Chen X, Yang Y, Huang Y, Tan J, Chen Y, Yang J, Dou H, Zou L, Yu J, Bao L. WT1 mutations and single nucleotide polymorphism rs16754 analysis of patients with pediatric acute myeloid leukemia in a Chinese population. Leuk Lymphoma 2012; 53:2195-204. [PMID: 22506617 DOI: 10.3109/10428194.2012.685732] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Acute myeloid leukemia (AML) is relatively rare in children. Somatic mutations including the single nucleotide polymorphism (SNP) rs16754 in Wilms tumor 1 gene (WT1) and their prognostic relevance in pediatric AML have not been studied in Chinese populations. We analyzed WT1 mutations and rs16754 genotypes in a cohort of 86 patients with de novo pediatric AML in a Chinese population. We detected WT1 mutations in approximately 20% of the patients. Most of the mutations identified were deletions and insertions clustered in exons 7 and 9. No differences were observed with respect to overall survival and relapse-free survival between patients with and without WT1 mutations. The analysis of rs16754 in WT1 exon 7 revealed G as the major allele. Patients with the rs16754(GG) genotype had improved overall survival (p =0.020) and relapse-free survival (p =0.025) compared with those with either rs16754(GA) or rs16754(AA). Moreover, better overall survival (p =0.044) and relapse-free survival (p =0.068) were observed among patients with wild-type CEBPA with rs16754(GG) compared with those carrying rs16754(GA/AA).
Collapse
Affiliation(s)
- Xi Chen
- Chongqing International Science and Technology, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
For the last two decades the immunotherapy of patients with solid and hematopoietic tumors has met with variable success. We have reviewed the field of tumor vaccines to examine what has worked and what has not, why this has been the case, how the anti-tumor responses were examined, and how we can make tumor immunity successful for the majority of individuals rather than for the exceptional patients who currently show successful immune responses against their tumors.
Collapse
Affiliation(s)
- Jan Joseph Melenhorst
- Stem Cell Allogeneic Transplant Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
34
|
Lange T, Hubmann M, Burkhardt R, Franke GN, Cross M, Scholz M, Leiblein S, Al-Ali HK, Edelmann J, Thiery J, Niederwieser D. Monitoring of WT1 expression in PB and CD34(+) donor chimerism of BM predicts early relapse in AML and MDS patients after hematopoietic cell transplantation with reduced-intensity conditioning. Leukemia 2010; 25:498-505. [PMID: 21135860 DOI: 10.1038/leu.2010.283] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Relapse of malignant disease remains the major complication in patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) after hematopoietic cell transplantation (HCT) with reduced-intensity conditioning (RIC). In this study, we investigated the predictive value of disease-specific markers (DSMs), donor chimerism (DC) analysis of unsorted (UDC) or CD34(+) sorted cells and Wilms' tumor gene 1 (WT1) expression. Eighty-eight patients with AML or MDS were monitored after allogenic HCT following 2 Gy total-body irradiation with (n=84) or without (n=4) fludarabine 3 × 30 mg/m(2), followed by cyclosporin A and mycophenolate mofetil. DSMs were determined by fluorescence in situ hybridization (FISH) and WT1 expression by real-time polymerase chain reaction. Chimerism analysis was performed on unsorted or CD34(+) sorted cells, by FISH or short tandem repeat polymerase chain reaction. Twenty-one (24%) patients relapsed within 4 months after HCT. UDC, CD34(+) DC and WT1 expression were each significant predictors of relapse with sensitivities ranging from 53 to 79% and specificities of 82-91%. Relapse within 28 days was excluded almost entirely on the basis of WT1 expression combined with CD34(+) DC kinetics. Monitoring of WT1 expression and CD34(+) DC predict relapse of AML and MDS after RIC-HCT.
Collapse
Affiliation(s)
- T Lange
- Department of Hematology, Oncology and Hemostaseology, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Krug LM, Dao T, Brown AB, Maslak P, Travis W, Bekele S, Korontsvit T, Zakhaleva V, Wolchok J, Yuan J, Li H, Tyson L, Scheinberg DA. WT1 peptide vaccinations induce CD4 and CD8 T cell immune responses in patients with mesothelioma and non-small cell lung cancer. Cancer Immunol Immunother 2010; 59:1467-79. [PMID: 20532500 PMCID: PMC4004362 DOI: 10.1007/s00262-010-0871-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 05/19/2010] [Indexed: 12/29/2022]
Abstract
BACKGROUND The transcription factor, WT1, is highly overexpressed in malignant pleural mesothelioma (MPM) and immunohistochemical stains for WT1 are used routinely to aid in its diagnosis. Using computer prediction analysis we designed analog peptides derived from WT1 sequences by substituting amino acids at key HLA-A0201 binding positions. We tested the safety and immunogenicity of a WT1 vaccine comprised of four class I and class II peptides in patients with thoracic neoplasms expressing WT1. METHODS Therapy consisted of six subcutaneous vaccinations administered with Montanide adjuvant on weeks 0, 4, 6, 8, 10, and 12, with 6 additional monthly injections for responding patients. Injection sites were pre-stimulated with GM-CSF (70 mcg). Immune responses were evaluated by DTH, CD4 T-cell proliferation, CD8 T-cell interferon gamma release, intracellular cytokine staining, WT1 peptide MHC-tetramer staining, and cytotoxicity against WT1 positive tumor cells. RESULTS Nine patients with MPM and 3 with NSCLC were vaccinated, with 8 patients receiving at least 6 vaccinations; in total, 10 patients were evaluable for immune response. Six out of nine patients tested demonstrated CD4 T-cell proliferation to WT1 specific peptides, and five of the six HLA-A0201 patients tested mounted a CD8 T-cell response. Stimulated T cells were capable of cytotoxicity against WT-1 positive cells. Vaccination also induced polyfunctional CD8 T cell responses. CONCLUSIONS This multivalent WT1 peptide analog vaccine induces immune responses in a high proportion of patients with thoracic malignancies with minimal toxicity. A randomized trial testing this vaccine as adjuvant therapy in MPM is planned.
Collapse
Affiliation(s)
- Lee M Krug
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, 1275 York Ave, New York, NY, 10065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Verdeguer A. Genetic alterations in children and adolescents with acute myeloid leukaemia. Clin Transl Oncol 2010; 12:590-6. [DOI: 10.1007/s12094-010-0563-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Wilms' tumor 1 silencing decreases the viability and chemoresistance of glioblastoma cells in vitro: a potential role for IGF-1R de-repression. J Neurooncol 2010; 103:87-102. [PMID: 20820871 DOI: 10.1007/s11060-010-0374-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 08/18/2010] [Indexed: 12/27/2022]
Abstract
Wilms' tumor 1 (WT1) is a transcription factor with a multitude of downstream targets that have wide-ranging effects in non-glioma cell lines. Though its expression in glioblastomas is now well-documented, the role of WT1 in these tumors remains poorly defined. We hypothesized that WT1 functions as an oncogene to enhance glioblastoma viability and chemoresistance. WT1's role was examined by studying the effect of WT1 silencing and overexpression on DNA damage, apoptosis and cell viability. Results indicated that WT1 silencing adversely affected glioblastoma viability, at times, in synergy with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and cisplatin. To investigate other mechanisms through which WT1 could affect viability, we measured cell cycle distribution, senescence, and autophagy. WT1 silencing had no effect on these processes. Lastly, we examined WT1 regulation of IGF-1R expression. Counterintuitively, upregulation of IGF-1R was evident after WT1 silencing. In conclusion, WT1 functions as a survival factor in glioblastomas, possibly through inhibition of IGF-1R expression.
Collapse
|
38
|
Kröger N, Bacher U, Bader P, Böttcher S, Borowitz MJ, Dreger P, Khouri I, Macapinlac HA, Macapintac H, Olavarria E, Radich J, Stock W, Vose JM, Weisdorf D, Willasch A, Giralt S, Bishop MR, Wayne AS. NCI First International Workshop on the Biology, Prevention, and Treatment of Relapse after Allogeneic Hematopoietic Stem Cell Transplantation: report from the Committee on Disease-Specific Methods and Strategies for Monitoring Relapse following Allogeneic Stem Cell Transplantation. Part I: Methods, acute leukemias, and myelodysplastic syndromes. Biol Blood Marrow Transplant 2010; 16:1187-211. [PMID: 20558311 DOI: 10.1016/j.bbmt.2010.06.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 06/06/2010] [Indexed: 12/14/2022]
Abstract
Relapse has become the major cause of treatment failure after allogeneic stem cell transplantation. Outcome of patients with clinical relapse after transplantation generally remains poor, but intervention prior to florid relapse improves outcome for certain hematologic malignancies. To detect early relapse or minimal residual disease, sensitive methods such as molecular genetics, tumor-specific molecular primers, fluorescein in situ hybridization, and multiparameter flow cytometry (MFC) are commonly used after allogeneic stem cell transplantation to monitor patients, but not all of them are included in the commonly employed disease-specific response criteria. The highest sensitivity and specificity can be achieved by molecular monitoring of tumor- or patient-specific markers measured by polymerase chain reaction-based techniques, but not all diseases have such targets for monitoring. Similar high sensitivity can be achieved by determination of donor chimerism, but its specificity regarding detection of relapse is low and differs substantially among diseases. Here, we summarize the current knowledge about the utilization of such sensitive monitoring techniques based on tumor-specific markers and donor cell chimerism and how these methods might augment the standard definitions of posttransplant remission, persistence, progression, relapse, and the prediction of relapse. Critically important is the need for standardization of the different residual disease techniques and to assess the clinical relevance of minimal residual disease and chimerism surveillance in individual diseases, which in turn, must be followed by studies to assess the potential impact of specific interventional strategies.
Collapse
Affiliation(s)
- Nicolaus Kröger
- Department for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Martinstrasse 52, Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Narita M, Masuko M, Kurasaki T, Kitajima T, Takenouchi S, Saitoh A, Watanabe N, Furukawa T, Toba K, Fuse I, Aizawa Y, Kawakami M, Oka Y, Sugiyama H, Takahashi M. WT1 peptide vaccination in combination with imatinib therapy for a patient with CML in the chronic phase. Int J Med Sci 2010; 7:72-81. [PMID: 20428337 PMCID: PMC2860640 DOI: 10.7150/ijms.7.72] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Accepted: 04/09/2010] [Indexed: 01/13/2023] Open
Abstract
Although tyrosine kinase inhibitors is effective for dramatically reducing CML cells, it might be difficult to eradicate completely the CML stem cells. We aimed to clarify the safety and effects of WT1 peptide vaccination in combination with imatinib therapy for a CML patient. A 51 year-old male with CML in CP, who showed a resistance against imatinib therapy for 2.5 years, began to be treated with 9 mer modified-type WT1 peptides in combination with standard dose of imatinib. Although every 2-week-administration of WT1 peptides for 22 weeks did not show definite effects on the quantification of bcr-abl transcripts, by changing the administration from every 2 weeks to 4 weeks bcr-abl transcripts decreased remarkably. After 11 months of every 4-week-administration of the peptides and 12 months post cessation of the peptides bcr-abl transcripts achieved to the level below detection by RQ/RT-PCR (complete molecular response). WT1/MHC tetramer(+)CD8(+) CTLs, which appeared after the second administration of WT1 peptides and remained more than 15 in number among 10(6) CD8(+) T cells throughout the administration of WT1 peptides, are still present in the blood on 14th month post cessation of the peptides. An in vitro study as to the cytotoxicity of lymphocytes induced by mixed lymphocyte peptide culture demonstrated that cultured lymphocytes possessed cytotoxicity against WT1 expressing leukemia cells and the cytotoxicity was WT1-specific and MHC class I restricted. The present study showed that WT1 peptide vaccination in combination with TKI is feasible and effective in the therapy for imatinib-resistant CML.
Collapse
Affiliation(s)
- Miwako Narita
- Laboratory of Hematology and Oncology, Graduate School of Health Sciences, Niigata University, Niigata, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Vaccination with synthetic analog peptides derived from WT1 oncoprotein induces T-cell responses in patients with complete remission from acute myeloid leukemia. Blood 2010; 116:171-9. [PMID: 20400682 DOI: 10.1182/blood-2009-10-250993] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A pilot study was undertaken to assess the safety, activity, and immunogenicity of a polyvalent Wilms tumor gene 1 (WT1) peptide vaccine in patients with acute myeloid leukemia in complete remission but with molecular evidence of WT1 transcript. Patients received 6 vaccinations with 4 WT1 peptides (200 microg each) plus immune adjuvants over 12 weeks. Immune responses were evaluated by delayed-type hypersensitivity, CD4+ T-cell proliferation, CD3+ T-cell interferon-gamma release, and WT1 peptide tetramer staining. Of the 9 evaluable patients, 7 completed 6 vaccinations and WT1-specific T-cell responses were noted in 7 of 8 patients. Three patients who were HLA-A0201-positive showed significant increase in interferon-gamma-secreting cells and frequency of WT1 tetramer-positive CD8+ T cells. Three patients developed a delayed hypersensitivity reaction after vaccination. Definite related toxicities were minimal. With a mean follow-up of 30 plus or minus 8 months after diagnosis, median disease-free survival has not been reached. These preliminary data suggest that this polyvalent WT1 peptide vaccine can be administered safely to patients with a resulting immune response. Further studies are needed to establish the role of vaccination as viable postremission therapy for acute myeloid leukemia.
Collapse
|
41
|
Nurmemmedov E, Yengo RK, Ladomery MR, Thunnissen MMGM. Kinetic behaviour of WT 1's zinc finger domain in binding to the alpha-actinin-1 mRNA. Arch Biochem Biophys 2010; 497:21-7. [PMID: 20193655 DOI: 10.1016/j.abb.2010.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/23/2010] [Accepted: 02/24/2010] [Indexed: 12/13/2022]
Abstract
The zinc finger transcription factor Wilms tumour protein (WT 1) is known for its essential involvement in the development of the genitourinary system as well as of other organs and tissues. WT 1 is capable of selectively binding either DNA or mRNA targets. A KTS insertion due to alternative splicing between the zinc fingers 3 and 4 and an unconventional zinc finger 1 are the unique features that distinguish WT 1 from classical DNA-binding C(2)H(2)-type zinc finger proteins. The DNA binding characteristics of WT 1 are well studied. Due to lack of information about its native RNA targets, no extensive research has been directed at how WT 1 binds RNA. Using surface plasmon resonance, this study attempts to understand the binding behaviour of WT 1 zinc fingers with its recently reported and first putative mRNA target, ACT 34, whose stem-loop structure is believed to be critical for the interactions with WT 1. We have analysed the interactions of five WT 1 zinc finger truncations with wild-type ACT 34 and four variants. Our results indicate that WT 1 zinc fingers bind ACT 34 in a specific manner, and that this occurs as interplay of all four zinc fingers. We also report that a sensitive kinetic balance, which is equilibrated by both zinc finger 1 and KTS, regulates the interaction with ACT 34. The stem-loop and the flanking nucleotides are important elements for specific recognition by WT 1 zinc fingers.
Collapse
Affiliation(s)
- Elmar Nurmemmedov
- Molecular Biophysics, Chemical Center, Lund University, 221 00 Lund, Sweden.
| | | | | | | |
Collapse
|
42
|
Lasa A, Carricondo M, Estivill C, Bussaglia E, Gich I, Brunet S, Aventin A, Sierra J, Nomdedéu JF. WT1 monitoring in core binding factor AML: Comparison with specific chimeric products. Leuk Res 2009; 33:1643-9. [DOI: 10.1016/j.leukres.2009.03.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 03/27/2009] [Accepted: 03/30/2009] [Indexed: 11/16/2022]
|
43
|
Development of an Escherichia coli Expressing Listeriolysin-O Vaccine Against Wilms Tumor Gene 1-expressing Tumors. J Immunother 2009; 32:845-55. [DOI: 10.1097/cji.0b013e3181aee259] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
44
|
Renneville A, Boissel N, Zurawski V, Llopis L, Biggio V, Nibourel O, Philippe N, Thomas X, Dombret H, Preudhomme C. Wilms tumor 1 gene mutations are associated with a higher risk of recurrence in young adults with acute myeloid leukemia. Cancer 2009; 115:3719-27. [DOI: 10.1002/cncr.24442] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Abstract
AbstractWilms tumor 1 (WT1) mutations have recently been identified in approximately 10% of adult acute myeloid leukemia (AML) with normal cytogenetics (CN-AML) and are associated with poor outcome. Using array-based comparative genome hybridization in pediatric CN-AML samples, we detected a WT1 deletion in one sample. The other WT1 allele was mutated. This prompted us to further investigate the role of WT1 aberrations in childhood AML. Mutations were found in 35 of 298 (12%) diagnostic pediatric AML samples. In 19 of 35 (54%) samples, more than one WT1 aberration was found: 15 samples had 2 different mutations, 2 had a homozygous mutation, and 2 had a mutation plus a WT1 deletion. WT1 mutations clustered significantly in the CN-AML subgroup (22%; P < .001) and were associated with FLT3/ITD (43 vs 17%; P < .001). WT1 mutations conferred an independent poor prognostic significance (WT1 mutated vs wild-type patients: 5-year probability of overall survival [pOS] 35% vs 66%, P = .002; probability of event-free survival 22% vs 46%, P < .001; and cumulative incidence of relapse or regression 70% vs 44%, P < .001). Patients with both a WT1 mutation and a FLT3/ITD had a dismal prognosis (5-year pOS 21%). WT1 mutations occur at a significant rate in childhood AML and are a novel independent poor prognostic marker.
Collapse
|
46
|
Wilms’ tumor gene 1 (WT1) expression in subtypes of acute lymphoblastic leukemia (ALL) of adults and impact on clinical outcome. Ann Hematol 2009; 88:1199-205. [DOI: 10.1007/s00277-009-0746-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Accepted: 04/08/2009] [Indexed: 01/30/2023]
|
47
|
A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood 2009; 113:6541-8. [PMID: 19389880 DOI: 10.1182/blood-2009-02-202598] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This study investigated the immunogenicity of Wilms tumor gene product 1 (WT1)-peptide vaccination in WT1-expressing acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) patients without curative treatment option. Vaccination consisted of granulocyte-macrophage colony-stimulating factor subcutaneously days 1 to 4, and WT1.126-134 peptide and 1 mg keyhole limpet hemocyanin on day 3. The initial 9 patients received 4 vaccinations biweekly, then monthly, and the subsequent 10 patients received continual biweekly vaccination. Seventeen AML patients and 2 refractory anemia with excess blasts patients received a median of 11 vaccinations. Treatment was well tolerated. Objective responses in AML patients were 10 stable diseases (SDs) including 4 SDs with more than 50% blast reduction and 2 with hematologic improvement. An additional 4 patients had clinical benefit after initial progression, including 1 complete remission and 3 SDs. WT1 mRNA levels decreased at least 3-fold from baseline in 35% of patients. In 8 of 18 patients, WT1-tetramer(+) T cells increased in blood and in 8 of 17 patients in bone marrow, with a median frequency in bone marrow of 0.18% at baseline and 0.41% in week 18. This WT1 vaccination study provides immunologic, molecular, and preliminary evidence of potential clinical efficacy in AML patients, warranting further investigations.
Collapse
|
48
|
Bacher U, Haferlach C, Schnittger S, Kern W, Kroeger N, Zander AR, Haferlach T. Interactive diagnostics in the indication to allogeneic SCT in AML. Bone Marrow Transplant 2009; 43:745-56. [DOI: 10.1038/bmt.2009.54] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Willasch AM, Gruhn B, Coliva T, Kalinova M, Schneider G, Kreyenberg H, Steinbach D, Weber G, Hollink IHIM, Zwaan CM, Biondi A, van der Velden VHJ, Reinhardt D, Cazzaniga G, Bader P, Trka J. Standardization of WT1 mRNA quantitation for minimal residual disease monitoring in childhood AML and implications of WT1 gene mutations: a European multicenter study. Leukemia 2009; 23:1472-9. [PMID: 19322206 DOI: 10.1038/leu.2009.51] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A standardized, sensitive and universal method for minimal residual disease (MRD) detection in acute myeloid leukemia (AML) is still pending. Although hyperexpression of Wilms' tumor (WT1) gene transcript has been frequently proposed as an MRD marker in AML, wide comparability of the various methods used for evaluating WT1 expression has not been given. We established and standardized a multicenter approach for quantifying WT1 expression by quantitative reverse transcriptase PCR (qRT-PCR), on the basis of a primer/probe set combination at exons 6 and 7. In a series of quality-control rounds, we analyzed 69 childhood AML samples and 47 normal bone marrow (BM) samples from 4 participating centers. Differences in the individual WT1 expressions levels ranged within <0.5 log of the mean in 82% of the cases. In AML samples, the median WT1/1E+04 Abelson (ABL) expression was 3.5E+03 compared with that of 2.3E+01 in healthy BM samples. As 11.5% of childhood AML samples in this cohort harbored WT1 mutations in exon 7, the effect of mutations on WT1 expression has been investigated, showing that mutated cases expressed significantly higher WT1 levels than wild-type cases. Hence, our approach showed high reproducibility and applicability, even in patients with WT1 mutations; therefore, it can be widely used for the quantitation of WT1 expression in future clinical trials.
Collapse
Affiliation(s)
- A M Willasch
- Department of Pediatric Hematology, Oncology and Hemostaseology, Goethe University Frankfurt, Hospital for Children and Adolescents III, Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
GATA-1 and GATA-2 binding to 3' enhancer of WT1 gene is essential for its transcription in acute leukemia and solid tumor cell lines. Leukemia 2009; 23:1270-7. [PMID: 19212333 DOI: 10.1038/leu.2009.13] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although oncogenic functions and the clinical significance of Wilms tumor 1 (WT1) have been extensively studied in acute leukemia, the regulatory mechanism of its transcription still remains to be determined. We found a significant correlation among the amounts of WT1, GATA-1 and GATA-2 mRNAs from leukemia and solid tumor cell lines. Overexpression and small interfering RNA (siRNA) transfection experiments of GATA-1 and GATA-2 showed that these GATA transcription factors could induce WT1 expression. Promoter analysis showed that the 5' promoter did not explain the different WT1 mRNA levels between cell lines. The 3' enhancer, especially the distal sites out of six putative GATA binding sites located within the region, but not the intron 3 enhancer, were essential for the WT1 mRNA level. Electrophoretic mobility shift assay (EMSA) showed both GATA-1 and GATA-2 bound to these GATA sites. Besides acute leukemia cell lines, solid tumor cell lines including, TYK-nu-cPr also showed a high level of WT1 mRNA. We showed that GATA-2 expression is a determinant of WT1 mRNA expression in both TYK-nu-cPr cells and HL60 cells without GATA-1 expression. Taken together, these results suggest that GATA-1 and/or GATA-2 binding to a GATA site of the 3' enhancer of WT1 played an important role in WT1 gene expression.
Collapse
|