1
|
Butler CR, Popiolek M, McAllister LA, LaChapelle EA, Kramer M, Beck EM, Mente S, Brodney MA, Brown M, Gilbert A, Helal C, Ogilvie K, Starr J, Uccello D, Grimwood S, Edgerton J, Garst-Orozco J, Kozak R, Lotarski S, Rossi A, Smith D, O'Connor R, Lazzaro J, Steppan C, Steyn SJ. Design and Synthesis of Clinical Candidate PF-06852231 (CVL-231): A Brain Penetrant, Selective, Positive Allosteric Modulator of the M 4 Muscarinic Acetylcholine Receptor. J Med Chem 2024; 67:10831-10847. [PMID: 38888621 DOI: 10.1021/acs.jmedchem.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Selective activation of the M4 muscarinic acetylcholine receptor subtype offers a novel strategy for the treatment of psychosis in multiple neurological disorders. Although the development of traditional muscarinic activators has been stymied due to pan-receptor activation, muscarinic receptor subtype selectivity can be achieved through the utilization of a subtype of a unique allosteric site. A major challenge in capitalizing on this allosteric site to date has been achieving a balance of suitable potency and brain penetration. Herein, we describe the design of a brain penetrant series of M4 selective positive allosteric modulators (PAMs), ultimately culminating in the identification of 21 (PF-06852231, now CVL-231/emraclidine), which is under active clinical development as a novel mechanism and approach for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Christopher R Butler
- Medicine Design, Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Michael Popiolek
- Internal Medicine, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Laura A McAllister
- Medicine Design, Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Erik A LaChapelle
- Medicine Design, Medicinal Chemistry, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Melissa Kramer
- Medicine Design, Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Elizabeth M Beck
- Medicine Design, Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Scot Mente
- Medicine Design, Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Michael A Brodney
- Medicine Design, Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Matthew Brown
- Medicine Design, Medicinal Chemistry, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Adam Gilbert
- Medicine Design, Medicinal Chemistry, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Chris Helal
- Medicine Design, Medicinal Chemistry, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Kevin Ogilvie
- Medicine Design, Medicinal Chemistry, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Jeremy Starr
- Medicine Design, Medicinal Chemistry, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Daniel Uccello
- Medicine Design, Medicinal Chemistry, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Sarah Grimwood
- Internal Medicine, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Jeremy Edgerton
- Internal Medicine, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | | | - Rouba Kozak
- Internal Medicine, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Susan Lotarski
- Internal Medicine, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Amie Rossi
- Internal Medicine, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Deborah Smith
- Internal Medicine, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Rebecca O'Connor
- Discovery Sciences, Primary Pharmacology, Pfizer Inc., Groton, Connecticut 06340, United States
| | - John Lazzaro
- Discovery Sciences, Primary Pharmacology, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Claire Steppan
- Discovery Sciences, Primary Pharmacology, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Stefanus J Steyn
- Medicine Design, Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut 06340, United States
| |
Collapse
|
2
|
Jimenez H, Carrion J, Adrien L, Wolin A, Eun J, Cinamon E, Chang EH, Davies P, Vo A, Koppel J. The Impact of Muscarinic Antagonism on Psychosis-Relevant Behaviors and Striatal [ 11C] Raclopride Binding in Tau Mouse Models of Alzheimer's Disease. Biomedicines 2023; 11:2091. [PMID: 37626588 PMCID: PMC10452133 DOI: 10.3390/biomedicines11082091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 08/27/2023] Open
Abstract
Psychosis that occurs over the course of Alzheimer's disease (AD) is associated with increased caregiver burden and a more rapid cognitive and functional decline. To find new treatment targets, studies modeling psychotic conditions traditionally employ agents known to induce psychosis, utilizing outcomes with cross-species relevance, such as locomotive activity and sensorimotor gating, in rodents. In AD, increased burdens of tau pathology (a diagnostic hallmark of the disease) and treatment with anticholinergic medications have, separately, been reported to increase the risk of psychosis. Recent evidence suggests that muscarinic antagonists may increase extracellular tau. Preclinical studies in AD models have not previously utilized muscarinic cholinergic antagonists as psychotomimetic agents. In this report, we utilize a human-mutant-tau model (P301L/COMTKO) and an over-expressed non-mutant human tau model (htau) in order to compare the impact of antimuscarinic (scopolamine 10 mg/kg/day) treatment with dopaminergic (reboxetine 20 mg/kg/day) treatment, for 7 days, on locomotion and sensorimotor gating. Scopolamine increased spontaneous locomotion, while reboxetine reduced it; neither treatment impacted sensorimotor gating. In the P301L/COMTKO, scopolamine treatment was associated with decreased muscarinic M4 receptor expression, as quantified with RNA-seq, as well as increased dopamine receptor D2 signaling, as estimated with Micro-PET [11C] raclopride binding. Scopolamine also increased soluble tau in the striatum, an effect that partially mediated the observed increases in locomotion. Studies of muscarinic agonists in preclinical tau models are warranted to determine the impact of treatment-on both tau and behavior-that may have relevance to AD and other tauopathies.
Collapse
Affiliation(s)
- Heidy Jimenez
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Joseph Carrion
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Leslie Adrien
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Adam Wolin
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - John Eun
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Ezra Cinamon
- Department of Biochemistry, Queens College, Flushing, NY 11355, USA;
| | - Eric H. Chang
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Peter Davies
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - An Vo
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Jeremy Koppel
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| |
Collapse
|
3
|
Dopamine Dynamics and Neurobiology of Non-Response to Antipsychotics, Relevance for Treatment Resistant Schizophrenia: A Systematic Review and Critical Appraisal. Biomedicines 2023; 11:biomedicines11030895. [PMID: 36979877 PMCID: PMC10046109 DOI: 10.3390/biomedicines11030895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Treatment resistant schizophrenia (TRS) is characterized by a lack of, or suboptimal response to, antipsychotic agents. The biological underpinnings of this clinical condition are still scarcely understood. Since all antipsychotics block dopamine D2 receptors (D2R), dopamine-related mechanisms should be considered the main candidates in the neurobiology of antipsychotic non-response, although other neurotransmitter systems play a role. The aims of this review are: (i) to recapitulate and critically appraise the relevant literature on dopamine-related mechanisms of TRS; (ii) to discuss the methodological limitations of the studies so far conducted and delineate a theoretical framework on dopamine mechanisms of TRS; and (iii) to highlight future perspectives of research and unmet needs. Dopamine-related neurobiological mechanisms of TRS may be multiple and putatively subdivided into three biological points: (1) D2R-related, including increased D2R levels; increased density of D2Rs in the high-affinity state; aberrant D2R dimer or heteromer formation; imbalance between D2R short and long variants; extrastriatal D2Rs; (2) presynaptic dopamine, including low or normal dopamine synthesis and/or release compared to responder patients; and (3) exaggerated postsynaptic D2R-mediated neurotransmission. Future points to be addressed are: (i) a more neurobiologically-oriented phenotypic categorization of TRS; (ii) implementation of neurobiological studies by directly comparing treatment resistant vs. treatment responder patients; (iii) development of a reliable animal model of non-response to antipsychotics.
Collapse
|
4
|
Kawahata I, Fukunaga K. Impact of fatty acid-binding proteins and dopamine receptors on α-synucleinopathy. J Pharmacol Sci 2022; 148:248-254. [DOI: 10.1016/j.jphs.2021.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
|
5
|
Jimenez H, Adrien L, Wolin A, Eun J, Chang EH, Burstein ES, Gomar J, Davies P, Koppel J. The impact of pimavanserin on psychotic phenotypes and tau phosphorylation in the P301L/COMT- and rTg(P301L)4510 mouse models of Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12247. [PMID: 35128032 PMCID: PMC8804623 DOI: 10.1002/trc2.12247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/12/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Psychosis in Alzheimer's disease (AD) is associated with grave clinical consequences including a precipitous cognitive decline and a hastened demise. These outcomes are aggravated by use of existing antipsychotic medications, which are also associated with cognitive decline and increased mortality; preclinical models that would develop new therapeutic approaches are desperately needed. The current report evaluates the ability of the neoteric antipsychotic, pimavanserin, to normalize hyperkinesis and sensorimotor gating in the novel catechol-O-methyltransferase (COMT) deleted P301L/COMT- and rTg(P301L)4510 models of psychotic AD, and the impact of pimavanserin on tau pathology. METHODS Female P301L/COMT- mice were behaviorally characterized for abnormalities of locomotion and sensorimotor gating, and biochemically characterized for patterns of tau phosphorylation relative to relevant controls utilizing high-sensitivity tau enzyme-linked immunosorbent assay (ELISA). Female P301L/COMT- and rTg(P301L)4510 mice were randomized to pimavanserin or vehicle treatment to study the ability of pimavanserin to normalize locomotion and rescue sensorimotor gating. Additionally, high-sensitivity tau ELISA was used to investigate the impact of treatment on tau phosphorylation. RESULTS P301L/COMT- mice evidenced a hyperlocomotive phenotype and deficits of sensorimotor gating relative to wild-type mice on the same background, and increased tau phosphorylation relative to COMT-competent P301L mice. Pimavanserin normalized the hyperkinetic phenotype in both the P301L/COMT- and rTg(P301L)4510 mice but had no impact on sensorimotor gating in either model. Pimavanserin treatment had little impact on tau phosphorylation patterns. DISCUSSION These data suggest that pimavanserin ameliorates tau-driven excessive locomotion. Given the morbidity associated with aberrant motor behaviors such as pacing in AD and lack of effective treatments, future studies of the impact of pimavanserin on actigraphy in patients with this syndrome may be warranted.
Collapse
Affiliation(s)
- Heidy Jimenez
- Northwell HealthThe Feinstein Institutes for Medical ResearchManhassetNew YorkUSA
| | - Leslie Adrien
- Northwell HealthThe Feinstein Institutes for Medical ResearchManhassetNew YorkUSA
| | - Adam Wolin
- Northwell HealthThe Feinstein Institutes for Medical ResearchManhassetNew YorkUSA
| | - John Eun
- Northwell HealthThe Feinstein Institutes for Medical ResearchManhassetNew YorkUSA
| | - Eric H. Chang
- Northwell HealthThe Feinstein Institutes for Medical ResearchManhassetNew YorkUSA
| | | | - Jesus Gomar
- Northwell HealthThe Feinstein Institutes for Medical ResearchManhassetNew YorkUSA
| | - Peter Davies
- Northwell HealthThe Feinstein Institutes for Medical ResearchManhassetNew YorkUSA
| | - Jeremy Koppel
- Northwell HealthThe Feinstein Institutes for Medical ResearchManhassetNew YorkUSA
| |
Collapse
|
6
|
Dopamine D2L Receptor Deficiency Alters Neuronal Excitability and Spine Formation in Mouse Striatum. Biomedicines 2022; 10:biomedicines10010101. [PMID: 35052781 PMCID: PMC8773425 DOI: 10.3390/biomedicines10010101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/29/2022] Open
Abstract
The striatum contains several types of neurons including medium spiny projection neurons (MSNs), cholinergic interneurons (ChIs), and fast-spiking interneurons (FSIs). Modulating the activity of these neurons by the dopamine D2 receptor (D2R) can greatly impact motor control and movement disorders. D2R exists in two isoforms: D2L and D2S. Here, we assessed whether alterations in the D2L and D2S expression levels affect neuronal excitability and synaptic function in striatal neurons. We observed that quinpirole inhibited the firing rate of all three types of striatal neurons in wild-type (WT) mice. However, in D2L knockout (KO) mice, quinpirole enhanced the excitability of ChIs, lost influence on spike firing of MSNs, and remained inhibitory effect on spike firing of FSIs. Additionally, we showed mIPSC frequency (but not mIPSC amplitude) was reduced in ChIs from D2L KO mice compared with WT mice, suggesting spontaneous GABA release is reduced at GABAergic terminals onto ChIs in D2L KO mice. Furthermore, we found D2L deficiency resulted in reduced dendritic spine density in ChIs, suggesting D2L activation plays a role in the formation/maintenance of dendritic spines of ChIs. These findings suggest new molecular and cellular mechanisms for causing ChIs abnormality seen in Parkinson’s disease or drug-induced dyskinesias.
Collapse
|
7
|
Ågren R, Sahlholm K. G protein-coupled receptor kinase-2 confers isoform-specific calcium sensitivity to dopamine D 2 receptor desensitization. FASEB J 2021; 35:e22013. [PMID: 34699610 DOI: 10.1096/fj.202100704rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 11/11/2022]
Abstract
The dopamine D2 receptor (D2 R) functions as an autoreceptor on dopaminergic cell bodies and terminals and as a postsynaptic receptor on a variety of neurons in the central nervous system. As a result of alternative splicing, the D2 R is expressed as two isoforms: long (D2L R) and short (D2S R) differing by a stretch of 29 residues in the third intracellular loop, with D2S R being the predominant presynaptic isoform. Recent reports described a Ca2+ sensitivity of the desensitization time course of potassium currents elicited via D2S R, but not via D2L R, when either isoform was selectively expressed in dopaminergic neurons. Here, we aimed to study the mechanism behind this subtype-specific Ca2+ sensitivity. Thus, we measured the desensitization of potassium channel responses evoked by D2L R and D2S R using two-electrode voltage clamp in Xenopus oocytes in the absence and presence of different amounts of β-arrestin2 and G protein-coupled receptor kinase-2 (GRK2), both of which are known to play important roles in D2 R desensitization in native cells. We found that co-expression of both GRK2 and β-arrestin2 was necessary for reconstitution of the Ca2+ sensitivity of D2S R desensitization, while D2L R did not display Ca2+ sensitivity under these conditions. The effect of Ca2+ chelation by BAPTA-AM to slow the rate of D2S R desensitization was mimicked by the GRK2 inhibitor, Cmpd101, and by the kinase-inactivating GRK2 mutation, K220R, but not by the PKC inhibitor, Gö6976, nor by the calmodulin antagonist, KN-93. Thus, Ca2+ -sensitive desensitization of D2S R appears to be mediated via a GRK2 phosphorylation-dependent mechanism.
Collapse
Affiliation(s)
- Richard Ågren
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kristoffer Sahlholm
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Roles of the Functional Interaction between Brain Cholinergic and Dopaminergic Systems in the Pathogenesis and Treatment of Schizophrenia and Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22094299. [PMID: 33919025 PMCID: PMC8122651 DOI: 10.3390/ijms22094299] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Most physiologic processes in the brain and related diseases involve more than one neurotransmitter system. Thus, elucidation of the interaction between different neurotransmitter systems could allow for better therapeutic approaches to the treatments of related diseases. Dopaminergic (DAergic) and cholinergic neurotransmitter system regulate various brain functions that include cognition, movement, emotion, etc. This review focuses on the interaction between the brain DAergic and cholinergic systems with respect to the pathogenesis and treatment of schizophrenia and Parkinson’s disease (PD). We first discussed the selection of motor plans at the level of basal ganglia, the major DAergic and cholinergic pathways in the brain, and the receptor subtypes involved in the interaction between the two signaling systems. Next, the roles of each signaling system were discussed in the context of the negative symptoms of schizophrenia, with a focus on the α7 nicotinic cholinergic receptor and the dopamine D1 receptor in the prefrontal cortex. In addition, the roles of the nicotinic and dopamine receptors were discussed in the context of regulation of striatal cholinergic interneurons, which play crucial roles in the degeneration of nigrostriatal DAergic neurons and the development of L-DOPA-induced dyskinesia in PD patients. Finally, we discussed the general mechanisms of nicotine-induced protection of DAergic neurons.
Collapse
|
9
|
Waku I, Magalhães MS, Alves CO, de Oliveira AR. Haloperidol-induced catalepsy as an animal model for parkinsonism: A systematic review of experimental studies. Eur J Neurosci 2021; 53:3743-3767. [PMID: 33818841 DOI: 10.1111/ejn.15222] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/28/2022]
Abstract
Several useful animal models for parkinsonism have been developed so far. Haloperidol-induced catalepsy is often used as a rodent model for the study of motor impairments observed in Parkinson's disease and related disorders and for the screening of potential antiparkinsonian compounds. The objective of this systematic review is to identify publications that used the haloperidol-induced catalepsy model for parkinsonism and to explore the methodological characteristics and the main questions addressed in these studies. A careful systematic search of the literature was carried out by accessing articles in three different databases: Web of Science, PubMed and SCOPUS. The selection and inclusion of studies were performed based on the abstract and, subsequently, on full-text analysis. Data extraction included the objective of the study, study design and outcome of interest. Two hundred and fifty-five articles were included in the review. Publication years ranged from 1981 to 2020. Most studies used the model to explore the effects of potential treatments for parkinsonism. Although the methodological characteristics used are quite varied, most studies used Wistar rats as experimental subjects. The most frequent dose of haloperidol used was 1.0 mg/kg, and the horizontal bar test was the most used to assess catalepsy. The data presented here provide a framework for an evidence-based approach to the design of preclinical research on parkinsonism using the haloperidol-induced catalepsy model. This model has been used routinely and successfully and is likely to continue to play a critical role in the ongoing search for the next generation of therapeutic interventions for parkinsonism.
Collapse
Affiliation(s)
- Isabelle Waku
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Mylena S Magalhães
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Camila O Alves
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil.,Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, SP, Brazil
| | - Amanda R de Oliveira
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil.,Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, SP, Brazil
| |
Collapse
|
10
|
Differential roles of two isoforms of dopamine D2 receptors in l-dopa-induced abnormal involuntary movements in mice. Neuroreport 2021; 32:555-561. [PMID: 33850083 DOI: 10.1097/wnr.0000000000001623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
l-dopa and dopamine D2 receptor (D2R) agonists are commonly used to relieve the motor deficits of Parkinson's disease. However, long-term treatment with l-dopa or D2R agonists can induce adverse effects such as abnormal involuntary movements (AIMs), which are major limiting factors in achieving long-term control of parkinsonian syndromes. The pathophysiological mechanisms involved in the development of dopaminergic agonist-induced adverse effects are not well understood. Here, we examined the role of two D2R isoforms, D2S and D2L, in l-dopa-induced AIMs using dopamine D2L knockout (D2L KO) mice (expressing purely D2S) and wild-type mice (expressing predominantly D2L). We found that D2L KO mice displayed markedly enhanced AIMs in response to chronic treatment of l-dopa compared to wild-type mice. The l-dopa-induced enhancement of AIMs in D2L KO mice was significantly reduced by the D2R antagonist eticlopride. D2L KO mice also displayed markedly enhanced AIMs in response to chronic treatment with quinpirole, a preferential D2R agonist. These results suggest that D2S contributes more than D2L to dopaminergic agonist-induced AIMs. Our findings may uncover a new factor that contributes to the pathophysiology of dopaminergic drug-induced AIMs, a characteristic manifestation of dyskinesia and also present in psychosis. There is a possibility that the increased ratio of D2S to D2L in the brain plays a significant role in the development of AIM side effects induced by l-dopa or D2R agonists. See Video Abstract, http://links.lww.com/WNR/A622.
Collapse
|
11
|
Dopamine D2 Long Receptors Are Critical for Caveolae-Mediated α-Synuclein Uptake in Cultured Dopaminergic Neurons. Biomedicines 2021; 9:biomedicines9010049. [PMID: 33429895 PMCID: PMC7826971 DOI: 10.3390/biomedicines9010049] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
α-synuclein accumulation into dopaminergic neurons is a pathological hallmark of Parkinson's disease. We previously demonstrated that fatty acid-binding protein 3 (FABP3) is critical for α-synuclein uptake and propagation to accumulate in dopaminergic neurons. FABP3 is abundant in dopaminergic neurons and interacts with dopamine D2 receptors, specifically the long type (D2L). Here, we investigated the importance of dopamine D2L receptors in the uptake of α-synuclein monomers and their fibrils. We employed mesencephalic neurons derived from dopamine D2L
-/-, dopamine D2 receptor null (D2 null), FABP3-/-, and wild type C57BL6 mice, and analyzed the uptake ability of fluorescence-conjugated α-synuclein monomers and fibrils. We found that D2L receptors are co-localized with FABP3. Immunocytochemistry revealed that TH+ D2L-/- or D2 null neurons do not take up α-synuclein monomers. The deletion of α-synuclein C-terminus completely abolished the uptake to dopamine neurons. Likewise, dynasore, a dynamin inhibitor, and caveolin-1 knockdown also abolished the uptake. D2L and FABP3 were also critical for α-synuclein fibrils uptake. D2L and accumulated α-synuclein fibrils were well co-localized. These data indicate that dopamine D2L with a caveola structure coupled with FABP3 is critical for α-synuclein uptake by dopaminergic neurons, suggesting a novel pathogenic mechanism of synucleinopathies, including Parkinson's disease.
Collapse
|
12
|
Cumming P, Gründer G, Brinson Z, Wong DF. Applications, Advances, and Limitations of Molecular Imaging of Brain Receptors. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
13
|
Blagotinšek Cokan K, Mavri M, Rutland CS, Glišić S, Senćanski M, Vrecl M, Kubale V. Critical Impact of Different Conserved Endoplasmic Retention Motifs and Dopamine Receptor Interacting Proteins (DRIPs) on Intracellular Localization and Trafficking of the D 2 Dopamine Receptor (D 2-R) Isoforms. Biomolecules 2020; 10:biom10101355. [PMID: 32977535 PMCID: PMC7598153 DOI: 10.3390/biom10101355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 01/13/2023] Open
Abstract
The type 2 dopamine receptor D2 (D2-R), member of the G protein-coupled receptor (GPCR) superfamily, exists in two isoforms, short (D2S-R) and long (D2L-R). They differ by an additional 29 amino acids (AA) in the third cytoplasmic loop (ICL3) of the D2L-R. These isoforms differ in their intracellular localization and trafficking functionality, as D2L-R possesses a larger intracellular pool, mostly in the endoplasmic reticulum (ER). This review focuses on the evolutionarily conserved motifs in the ICL3 of the D2-R and proteins interacting with the ICL3 of both isoforms, specifically with the 29 AA insert. These motifs might be involved in D2-R exit from the ER and have an impact on cell-surface and intracellular localization and, therefore, also play a role in the function of dopamine receptor signaling, ligand binding and possible homo/heterodimerization. Our recent bioinformatic data on potential new interaction partners for the ICL3 of D2-Rs are also presented. Both are highly relevant, and have clinical impacts on the pathophysiology of several diseases such as Parkinson’s disease, schizophrenia, Tourette’s syndrome, Huntington’s disease, manic depression, and others, as they are connected to a variety of essential motifs and differences in communication with interaction partners.
Collapse
Affiliation(s)
- Kaja Blagotinšek Cokan
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (K.B.C.); (M.M.); (M.V.)
| | - Maša Mavri
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (K.B.C.); (M.M.); (M.V.)
| | - Catrin Sian Rutland
- School of Veterinary Medicine and Science, Medical Faculty, University of Nottingham, Sutton, Bonington Campus, Loughborough LE12 5RD, UK;
| | - Sanja Glišić
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Vinča, Belgrade, Serbia; (S.G.); (M.S.)
| | - Milan Senćanski
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Vinča, Belgrade, Serbia; (S.G.); (M.S.)
| | - Milka Vrecl
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (K.B.C.); (M.M.); (M.V.)
| | - Valentina Kubale
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (K.B.C.); (M.M.); (M.V.)
- Correspondence:
| |
Collapse
|
14
|
Preferential Coupling of Dopamine D 2S and D 2L Receptor Isoforms with G i1 and G i2 Proteins-In Silico Study. Int J Mol Sci 2020; 21:ijms21020436. [PMID: 31936673 PMCID: PMC7013695 DOI: 10.3390/ijms21020436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
The dopamine D2 receptor belongs to rhodopsin-like G protein-coupled receptors (GPCRs) and it is an important molecular target for the treatment of many disorders, including schizophrenia and Parkinson's disease. Here, computational methods were used to construct the full models of the dopamine D2 receptor short (D2S) and long (D2L) isoforms (differing with 29 amino acids insertion in the third intracellular loop, ICL3) and to study their coupling with Gi1 and Gi2 proteins. It was found that the D2L isoform preferentially couples with the Gi2 protein and D2S isoform with the Gi1 protein, which is in accordance with experimental data. Our findings give mechanistic insight into the interplay between isoforms of dopamine D2 receptors and Gi proteins subtypes, which is important to understand signaling by these receptors and their mediation by pharmaceuticals, in particular psychotic and antipsychotic agents.
Collapse
|
15
|
Terrón-Díaz ME, Wright SJ, Agosto MA, Lichtarge O, Wensel TG. Residues and residue pairs of evolutionary importance differentially direct signaling bias of D2 dopamine receptors. J Biol Chem 2019; 294:19279-19291. [PMID: 31676688 PMCID: PMC6916503 DOI: 10.1074/jbc.ra119.008068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 10/16/2019] [Indexed: 01/11/2023] Open
Abstract
The D2 dopamine receptor and the serotonin 5-hydroxytryptamine 2A receptor (5-HT2A) are closely-related G-protein-coupled receptors (GPCRs) from the class A bioamine subfamily. Despite structural similarity, they respond to distinct ligands through distinct downstream pathways, whose dysregulation is linked to depression, bipolar disorder, addiction, and psychosis. They are important drug targets, and it is important to understand how their bias toward G-protein versus β-arrestin signaling pathways is regulated. Previously, evolution-based computational approaches, difference Evolutionary Trace and Evolutionary Trace-Mutual information (ET-Mip), revealed residues and residue pairs that, when switched in the D2 receptor to the corresponding residues from 5-HT2A, altered ligand potency and G-protein activation efficiency. We have tested these residue swaps for their ability to trigger recruitment of β-arrestin2 in response to dopamine or serotonin. The results reveal that the selected residues modulate agonist potency, maximal efficacy, and constitutive activity of β-arrestin2 recruitment. Whereas dopamine potency for most variants was similar to that for WT and lower than for G-protein activation, potency in β-arrestin2 recruitment for N124H3.42 was more than 5-fold higher. T205M5.54 displayed high constitutive activity, enhanced dopamine potency, and enhanced efficacy in β-arrestin2 recruitment relative to WT, and L379F6.41 was virtually inactive. These striking differences from WT activity were largely reversed by a compensating mutation (T205M5.54/L379F6.41) at residues previously identified by ET-Mip as functionally coupled. The observation that the signs and relative magnitudes of the effects of mutations in several cases are at odds with their effects on G-protein activation suggests that they also modulate signaling bias.
Collapse
Affiliation(s)
- María E Terrón-Díaz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030
| | - Sara J Wright
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology Baylor College of Medicine, Houston, Texas 77030
| | - Melina A Agosto
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology Baylor College of Medicine, Houston, Texas 77030
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology Baylor College of Medicine, Houston, Texas 77030
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Theodore G Wensel
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
16
|
Amato D, Kruyer A, Samaha AN, Heinz A. Hypofunctional Dopamine Uptake and Antipsychotic Treatment-Resistant Schizophrenia. Front Psychiatry 2019; 10:314. [PMID: 31214054 PMCID: PMC6557273 DOI: 10.3389/fpsyt.2019.00314] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/23/2019] [Indexed: 01/07/2023] Open
Abstract
Antipsychotic treatment resistance in schizophrenia remains a major issue in psychiatry. Nearly 30% of patients with schizophrenia do not respond to antipsychotic treatment, yet the underlying neurobiological causes are unknown. All effective antipsychotic medications are thought to achieve their efficacy by targeting the dopaminergic system. Here we review early literature describing the fundamental mechanisms of antipsychotic drug efficacy, highlighting mechanistic concepts that have persisted over time. We then reconsider the original framework for understanding antipsychotic efficacy in light of recent advances in our scientific understanding of the dopaminergic effects of antipsychotics. Based on these new insights, we describe a role for the dopamine transporter in the genesis of both antipsychotic therapeutic response and primary resistance. We believe that this discussion will help delineate the dopaminergic nature of antipsychotic treatment-resistant schizophrenia.
Collapse
Affiliation(s)
- Davide Amato
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Anne-Noël Samaha
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Andreas Heinz
- Department of Psychiatry, Charité University Medicine Berlin, Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
17
|
Effects of social defeat stress on dopamine D2 receptor isoforms and proteins involved in intracellular trafficking. Behav Brain Funct 2018; 14:16. [PMID: 30296947 PMCID: PMC6176509 DOI: 10.1186/s12993-018-0148-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/27/2018] [Indexed: 12/15/2022] Open
Abstract
Background Chronic social defeat stress induces depression and anxiety-like behaviors in rodents and also responsible for differentiating defeated animals into stress susceptible and resilient groups. The present study investigated the effects of social defeat stress on a variety of behavioral parameters like social behavior, spatial learning and memory and anxiety like behaviors. Additionally, the levels of various dopaminergic markers, including the long and short form of the D2 receptor, and total and phosphorylated dopamine and cyclic adenosine 3′,5′-monophosphate regulated phosphoprotein-32, and proteins involved in intracellular trafficking were assessed in several key brain regions in young adult mice. Methods Mouse model of chronic social defeat was established by resident-intruder paradigm, and to evaluate the effect of chronic social defeat, mice were subjected to behavioral tests like spontaneous locomotor activity, elevated plus maze (EPM), social interaction and Morris water maze tests. Results Mice were divided into susceptible and unsusceptible groups after 10 days of social defeat stress. The susceptible group exhibited greater decreases in time spent in the open and closed arms compared to the control group on the EPM. In the social interaction test, the susceptible group showed greater increases in submissive and neutral behaviors and greater decreases in social behaviors relative to baseline compared to the control group. Furthermore, increased expression of D2L, D2S, Rab4, and G protein-coupled receptor associated sorting protein-1 was observed in the amygdala of the susceptible group compared to the control group. Conclusion These findings suggest that social defeat stress induce anxiety-like and altered social interacting behaviors, and changes in dopaminergic markers and intracellular trafficking-related proteins. Electronic supplementary material The online version of this article (10.1186/s12993-018-0148-5) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Amato D, Vernon AC, Papaleo F. Dopamine, the antipsychotic molecule: A perspective on mechanisms underlying antipsychotic response variability. Neurosci Biobehav Rev 2018; 85:146-159. [DOI: 10.1016/j.neubiorev.2017.09.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 09/20/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022]
|
19
|
The Conserved Arginine Cluster in the Insert of the Third Cytoplasmic Loop of the Long Form of the D₂ Dopamine Receptor (D2L-R) Acts as an Intracellular Retention Signal. Int J Mol Sci 2016; 17:ijms17071152. [PMID: 27447620 PMCID: PMC4964525 DOI: 10.3390/ijms17071152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/05/2016] [Accepted: 07/09/2016] [Indexed: 12/20/2022] Open
Abstract
This study examined whether the conserved arginine cluster present within the 29-amino acid insert of the long form of the D2 dopamine receptor (D2L-R) confers its predominant intracellular localization. We hypothesized that the conserved arginine cluster (RRR) located within the insert could act as an RXR-type endoplasmic reticulum (ER) retention signal. Arginine residues (R) within the cluster at positions 267, 268, and 269 were charge-reserved to glutamic acids (E), either individually or in clusters, thus generating single, double, and triple D2L-R mutants. Through analyses of cellular localization by confocal microscopy and enzyme-linked immunosorbent assay (ELISA), radioligand binding assay, bioluminescence resonance energy transfer (BRET2) β-arrestin 2 (βarr2) recruitment assay, and cAMP signaling, it was revealed that charge reversal of the R residues at all three positions within the motif impaired their colocalization with ER marker calnexin and led to significantly improved cell surface expression. Additionally, these data demonstrate that an R to glutamic acid (E) substitution at position 2 within the RXR motif is not functionally permissible. Furthermore, all generated D2L-R mutants preserved their functional integrity regarding ligand binding, agonist-induced βarr2 recruitment and Gαi-mediated signaling. In summary, our results show that the conserved arginine cluster within the 29-amino acid insert of third cytoplasmic loop (IC3) of the D2L-R appears to be the ER retention signal.
Collapse
|
20
|
O'Tuathaigh CMP, Desbonnet L, Moran PM, Kirby BP, Waddington JL. Molecular genetic models related to schizophrenia and psychotic illness: heuristics and challenges. Curr Top Behav Neurosci 2016; 7:87-119. [PMID: 21298380 DOI: 10.1007/7854_2010_111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Schizophrenia is a heritable disorder that may involve several common genes of small effect and/or rare copy number variation, with phenotypic heterogeneity across patients. Furthermore, any boundaries vis-à-vis other psychotic disorders are far from clear. Consequently, identification of informative animal models for this disorder, which typically relate to pharmacological and putative pathophysiological processes of uncertain validity, faces considerable challenges. In juxtaposition, the majority of mutant models for schizophrenia relate to the functional roles of a diverse set of genes associated with risk for the disorder or with such putative pathophysiological processes. This chapter seeks to outline the evidence from phenotypic studies in mutant models related to schizophrenia. These have commonly assessed the degree to which mutation of a schizophrenia-related gene is associated with the expression of several aspects of the schizophrenia phenotype or more circumscribed, schizophrenia-related endophenotypes; typically, they place specific emphasis on positive and negative symptoms and cognitive deficits, and extend to structural and other pathological features. We first consider the primary technological approaches to the generation of such mutants, to include their relative merits and demerits, and then highlight the diverse phenotypic approaches that have been developed for their assessment. The chapter then considers the application of mutant phenotypes to study pathobiological and pharmacological mechanisms thought to be relevant for schizophrenia, particularly in terms of dopaminergic and glutamatergic dysfunction, and to an increasing range of candidate susceptibility genes and copy number variants. Finally, we discuss several pertinent issues and challenges within the field which relate to both phenotypic evaluation and a growing appreciation of the functional genomics of schizophrenia and the involvement of gene × environment interactions.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland,
| | | | | | | | | |
Collapse
|
21
|
Sánchez-Soto M, Bonifazi A, Cai NS, Ellenberger MP, Newman AH, Ferré S, Yano H. Evidence for Noncanonical Neurotransmitter Activation: Norepinephrine as a Dopamine D2-Like Receptor Agonist. Mol Pharmacol 2016; 89:457-66. [PMID: 26843180 PMCID: PMC4809307 DOI: 10.1124/mol.115.101808] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/28/2016] [Indexed: 01/11/2023] Open
Abstract
The Gαi/o-coupled dopamine D2-like receptor family comprises three subtypes: the D2 receptor (D2R), with short and long isoform variants (D2SR and D2LR), D3 receptor (D3R), and D4 receptor (D4R), with several polymorphic variants. The common overlap of norepinephrine innervation and D2-like receptor expression patterns prompts the question of a possible noncanonical action by norepinephrine. In fact, previous studies have suggested that norepinephrine can functionally interact with D4R. To our knowledge, significant interactions between norepinephrine and D2R or D3R receptors have not been demonstrated. By using radioligand binding and bioluminescent resonance energy transfer (BRET) assays in transfected cells, the present study attempted a careful comparison between dopamine and norepinephrine in their possible activation of all D2-like receptors, including the two D2R isoforms and the most common D4R polymorphic variants. Functional BRET assays included activation of G proteins with all Gαi/o subunits, adenylyl cyclase inhibition, and β arrestin recruitment. Norepinephrine acted as a potent agonist for all D2-like receptor subtypes, with the general rank order of potency of D3R > D4R ≥ D2SR ≥ D2L. However, for both dopamine and norepinephrine, differences depended on the Gαi/o protein subunit involved. The most striking differences were observed with Gαi2, where the rank order of potencies for both dopamine and norepinephrine were D4R > D2SR = D2LR >> D3R. Furthermore the results do not support the existence of differences in the ability of dopamine and norepinephrine to activate different human D4R variants. The potency of norepinephrine for adrenergic α2A receptor was only about 20-fold higher compared with D3R and D4R across the three functional assays.
Collapse
Affiliation(s)
- Marta Sánchez-Soto
- Integrative Neurobiology Section (M.S.-S., N.S.C., S.F., H.Y.) and Medicinal Chemistry Section (A.B., M.P.E., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain (M.S.-S.)
| | - Alessandro Bonifazi
- Integrative Neurobiology Section (M.S.-S., N.S.C., S.F., H.Y.) and Medicinal Chemistry Section (A.B., M.P.E., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain (M.S.-S.)
| | - Ning Sheng Cai
- Integrative Neurobiology Section (M.S.-S., N.S.C., S.F., H.Y.) and Medicinal Chemistry Section (A.B., M.P.E., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain (M.S.-S.)
| | - Michael P Ellenberger
- Integrative Neurobiology Section (M.S.-S., N.S.C., S.F., H.Y.) and Medicinal Chemistry Section (A.B., M.P.E., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain (M.S.-S.)
| | - Amy Hauck Newman
- Integrative Neurobiology Section (M.S.-S., N.S.C., S.F., H.Y.) and Medicinal Chemistry Section (A.B., M.P.E., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain (M.S.-S.)
| | - Sergi Ferré
- Integrative Neurobiology Section (M.S.-S., N.S.C., S.F., H.Y.) and Medicinal Chemistry Section (A.B., M.P.E., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain (M.S.-S.)
| | - Hideaki Yano
- Integrative Neurobiology Section (M.S.-S., N.S.C., S.F., H.Y.) and Medicinal Chemistry Section (A.B., M.P.E., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain (M.S.-S.)
| |
Collapse
|
22
|
Vitucci D, Di Giorgio A, Napolitano F, Pelosi B, Blasi G, Errico F, Attrotto MT, Gelao B, Fazio L, Taurisano P, Di Maio A, Marsili V, Pasqualetti M, Bertolino A, Usiello A. Rasd2 Modulates Prefronto-Striatal Phenotypes in Humans and 'Schizophrenia-Like Behaviors' in Mice. Neuropsychopharmacology 2016; 41:916-27. [PMID: 26228524 PMCID: PMC4707838 DOI: 10.1038/npp.2015.228] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/03/2015] [Accepted: 07/25/2015] [Indexed: 12/18/2022]
Abstract
Rasd2 is a thyroid hormone target gene, which encodes for a GTP-binding protein enriched in the striatum where, among other functions, it modulates dopaminergic neurotransmission. Here we report that human RASD2 mRNA is abundant in putamen, but it also occurs in the cerebral cortex, with a distinctive expression pattern that differs from that present in rodents. Consistent with its localization, we found that a genetic variation in RASD2 (rs6518956) affects postmortem prefrontal mRNA expression in healthy humans and is associated with phenotypes of relevance to schizophrenia, including prefrontal and striatal grey matter volume and physiology during working memory, as measured with magnetic resonance imaging. Interestingly, quantitative real-time PCR analysis indicated that RASD2 mRNA is slightly reduced in postmortem prefrontal cortex of patients with schizophrenia. In the attempt to uncover the neurobiological substrates associated with Rasd2 activity, we used knockout mice to analyze the in vivo influence of this G-protein on the prepulse inhibition of the startle response and psychotomimetic drug-related behavioral response. Data showed that Rasd2 mutants display deficits in basal prepulse inhibition that, in turn, exacerbate gating disruption under psychotomimetic drug challenge. Furthermore, we documented that lack of Rasd2 strikingly enhances the behavioral sensitivity to motor stimulation elicited by amphetamine and phencyclidine. Based on animal model data, along with the finding that RASD2 influences prefronto-striatal phenotypes in healthy humans, we suggest that genetic mutation or reduced levels of this G-protein might have a role in cerebral circuitry dysfunction underpinning exaggerated psychotomimetic drugs responses and development of specific biological phenotypes linked to schizophrenia.
Collapse
Affiliation(s)
- Daniela Vitucci
- Ceinge Biotecnologie Avanzate, Naples, Italy,Dipartimento di Scienze Motorie e del Benessere DiSMeB, Università degli Studi di Napoli Parthenope, Naples, Italy
| | - Annabella Di Giorgio
- Istituto di Ricovero e Cura a Carattere Scientifico ‘Casa Sollievo della Sofferenza', Foggia, Italy
| | - Francesco Napolitano
- Ceinge Biotecnologie Avanzate, Naples, Italy,Department of Molecular Medicine and Medical Biotechnology, University of Naples ‘Federico II', Naples, Italy
| | - Barbara Pelosi
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - Giuseppe Blasi
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro', Bari, Italy
| | - Francesco Errico
- Ceinge Biotecnologie Avanzate, Naples, Italy,Department of Molecular Medicine and Medical Biotechnology, University of Naples ‘Federico II', Naples, Italy
| | - Maria Teresa Attrotto
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro', Bari, Italy
| | - Barbara Gelao
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro', Bari, Italy
| | - Leonardo Fazio
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro', Bari, Italy
| | - Paolo Taurisano
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro', Bari, Italy
| | | | | | - Massimo Pasqualetti
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy,Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto (Trento), Italy
| | - Alessandro Bertolino
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro', Bari, Italy,pRED, Neuroscience DTA, Hoffmann-La Roche, Basel, Switzerland,Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro', Piazza G. Cesare 11, Bari 70124, Italy, Tel: +39 0805478572, Fax: +39 0805593172,
| | - Alessandro Usiello
- Ceinge Biotecnologie Avanzate, Naples, Italy,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples (SUN), Caserta, Italy,Ceinge Biotecnologie Avanzate, Via G. Salvatore 486, Naples 80145, Italy, Tel: +39 0813737899, Fax: +39 0813737808. E-mail:
| |
Collapse
|
23
|
Agnati LF, Guidolin D, Cervetto C, Borroto-Escuela DO, Fuxe K. Role of iso-receptors in receptor-receptor interactions with a focus on dopamine iso-receptor complexes. Rev Neurosci 2016; 27:1-25. [DOI: 10.1515/revneuro-2015-0024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/27/2015] [Indexed: 12/17/2022]
Abstract
AbstractIntercellular and intracellular communication processes consist of signals and recognition/decoding apparatuses of these signals. In humans, the G protein-coupled receptor (GPCR) family represents the largest family of cell surface receptors. More than 30 years ago, it has been proposed that GPCR could form dimers or higher-order oligomers (receptor mosaics [RMs] at the plasma membrane level and receptor-receptor interactions [RRIs] have been proposed as a new integrative mechanism for chemical signals impinging on cell plasma membranes). The basic phenomena involved in RRIs are allostery and cooperativity of membrane receptors, and the present paper provides basic information concerning their relevance for the integrative functions of RMs. In this context, the possible role of iso-receptor RM is discussed (with a special focus on dopamine receptor subtypes and on some of the RMs they form with other dopamine iso-receptors), and it is proposed that two types of cooperativity, namely, homotropic and heterotropic cooperativity, could allow distinguishing two types of functionally different RMs. From a general point of view, the presence of iso-receptors and their topological organization within RMs allow the use of a reduced number of signals for the intercellular communication processes, since the target cells can recognize and decode the same signal in different ways. This theoretical aspect is further analyzed here by means of an analogy with artificial information systems. Thus, it is suggested that the ‘multiplexer’ and ‘demultiplexer’ concepts could, at least in part, model the role of RMs formed by iso-receptors in the information handling by the cell.
Collapse
Affiliation(s)
- Luigi F. Agnati
- 1Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Via Campi 287, 41100 Modena, Italy
| | - Diego Guidolin
- 2Department of Molecular Medicine, University of Padova, Via Gabelli 65, 35121 Padova, Italy
| | - Chiara Cervetto
- 3Department of Pharmacy, University of Genova, Viale Cembrano 4, 16147 Genova, Italy
| | | | - Kjell Fuxe
- 4Department of Neuroscience, Karolinska Institutet, Retzius vag 8, 17177 Stockholm, Sweden
| |
Collapse
|
24
|
Bagalkot T, Jin HM, Prabhu V, Muna S, Cui Y, Yadav B, Chae HJ, Chung YC. Chronic social defeat stress increases dopamine D2 receptor dimerization in the prefrontal cortex of adult mice. Neuroscience 2015; 311:444-52. [DOI: 10.1016/j.neuroscience.2015.10.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/10/2015] [Accepted: 10/12/2015] [Indexed: 12/12/2022]
|
25
|
Kaalund SS, Newburn EN, Ye T, Tao R, Li C, Deep-Soboslay A, Herman MM, Hyde TM, Weinberger DR, Lipska BK, Kleinman JE. Contrasting changes in DRD1 and DRD2 splice variant expression in schizophrenia and affective disorders, and associations with SNPs in postmortem brain. Mol Psychiatry 2014; 19:1258-66. [PMID: 24322206 DOI: 10.1038/mp.2013.165] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/04/2013] [Accepted: 10/17/2013] [Indexed: 12/29/2022]
Abstract
Dopamine 2 receptor (DRD2) is of major interest to the pathophysiology of schizophrenia (SCZ) both as a target for antipsychotic drug action as well as a SCZ-associated risk gene. The dopamine 1 receptor (DRD1) is thought to mediate some of the cognitive deficits in SCZ, including impairment of working memory that relies on normal dorsolateral prefrontal cortex (DLPFC) function. To better understand the association of dopamine receptors with SCZ, we studied the expression of three DRD2 splice variants and the DRD1 transcript in DLPFC, hippocampus and caudate nucleus in a large cohort of subjects (~700), including patients with SCZ, affective disorders and nonpsychiatric controls (from 14th gestational week to 85 years of age), and examined genotype-expression associations of 278 single-nucleotide polymorphisms (SNPs) located in or near DRD2 and DRD1 genes. Expression of D2S mRNA and D2S/D2-long (D2L) ratio were significantly increased in DLPFC of patients with SCZ relative to controls (P<0.0001 and P<0.0001, respectively), whereas D2L, D2Longer and DRD1 were decreased (P<0.0001). Patients with affective disorders showed an opposite pattern: reduced expression of D2S (major depressive disorder, P<0.0001) and increased expression of D2L and DRD1 (bipolar disorder, P<0.0001). Moreover, SCZ-associated risk alleles at rs1079727, rs1076560 and rs2283265 predicted increased D2S/D2L expression ratio (P<0.05) in control individuals. Our data suggest that altered splicing of DRD2 and expression of DRD1 may constitute a pathophysiological mechanism in risk for SCZ and affective disorders. The association between SCZ risk-associated polymorphism and the ratio of D2S/D2L is consistent with this possibility.
Collapse
Affiliation(s)
- S S Kaalund
- 1] Human Brain Collection Core, IRP, National Institute of Mental Health, Bethesda, MD, USA [2] Research Laboratory for Stereology and Neuroscience, Bispebjerg University Hospital, Copenhagen NV, Denmark [3] Faculty of Health Sciences, Protein Laboratory, Institute of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - E N Newburn
- Human Brain Collection Core, IRP, National Institute of Mental Health, Bethesda, MD, USA
| | - T Ye
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - R Tao
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - C Li
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | - M M Herman
- Human Brain Collection Core, IRP, National Institute of Mental Health, Bethesda, MD, USA
| | - T M Hyde
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - D R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - B K Lipska
- Human Brain Collection Core, IRP, National Institute of Mental Health, Bethesda, MD, USA
| | - J E Kleinman
- Lieber Institute for Brain Development, Baltimore, MD, USA
| |
Collapse
|
26
|
Viaro R, Calcagno M, Marti M, Borrelli E, Morari M. Pharmacological and genetic evidence for pre- and postsynaptic D2 receptor involvement in motor responses to nociceptin/orphanin FQ receptor ligands. Neuropharmacology 2013; 72:126-38. [PMID: 23643745 DOI: 10.1016/j.neuropharm.2013.04.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 04/16/2013] [Accepted: 04/20/2013] [Indexed: 11/21/2022]
Abstract
A combined pharmacological and genetic approach was undertaken to investigate the contribution of endogenous dopamine to the motor actions of nociceptin/orphanin FQ (N/OFQ) receptor (NOP receptor) ligands. Motor activity was evaluated by a battery of behavioural tests in mice. The involvement of the various DA receptor subtypes in the motor effects of N/OFQ and NOP receptor antagonists was evaluated pharmacologically, using D1/D5 (SCH23390), D2/D3 (raclopride, amisulpride) and D3 (S33084) receptor antagonists, and by using D2 receptor knockout mice. Low doses of N/OFQ and NOP receptor antagonists promoted movement whereas higher doses inhibited it. Motor facilitation was selectively prevented by raclopride while motor inhibition was prevented by amisulpride. Amisulpride also attenuated the hypolocomotion induced by the D2/D3 receptor agonist pramipexole and dopamine precursor l-3,4-dihydroxyphenylalanine, whereas raclopride (and S33084) worsened it. To dissect out the contribution of pre- and postsynaptic D2 receptors, mice lacking the D2 receptor (D2R(-/-)) or its long isoform (D2L(-/-)) were used. Motor facilitation induced by N/OFQ and NOP receptor antagonists was lost in D2R(-/-) and D2L(-/-) mice whereas motor inhibition induced by NOP receptor antagonists (and pramipexole) was lost in D2R(-/-) but preserved in D2L(-/-) mice. N/OFQ-induced hypolocomotion was observed in both genotypes. We demonstrate that motor actions of NOP receptor ligands rely on the modulation of endogenous dopamine. Motor facilitation induced by NOP receptor antagonists as well as low dose N/OFQ is mediated through D2L postsynaptic receptors whereas motor inhibition observed with higher doses of N/OFQ occurs by direct inhibition of mesencephalic DA neurons. Motor inhibition seen with high doses of NOP receptor antagonists appears to be mediated through the D2 presynaptic autoreceptors. These data confirm that endogenous N/OFQ is a powerful modulator of dopamine transmission in vivo and that the effects of NOP receptor antagonists on motor function reflect the blockade of this endogenous N/OFQ tone.
Collapse
Affiliation(s)
- Riccardo Viaro
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara, via Fossato di Mortara 19, 44100 Ferrara, Italy.
| | | | | | | | | |
Collapse
|
27
|
Wang Y, Sasaoka T, Dang MT. A molecular genetic approach to uncovering the differential functions of dopamine D2 receptor isoforms. Methods Mol Biol 2013; 964:181-200. [PMID: 23296784 DOI: 10.1007/978-1-62703-251-3_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Alterations in the activity of the dopamine D2 receptor (D2R) have been implicated in several neurological and psychiatric disorders, including schizophrenia, Parkinson's disease, Huntington's disease, Tourette syndrome, attention-deficit hyperactivity disorder (ADHD), and drug addiction. Two isoforms of D2R, long form (D2LR) and short form (D2SR), have been identified. The specific function of each D2R isoform is poorly understood, primarily because isoform-selective pharmacological agents are not available. Using homologous recombination, we have generated D2LR knockout (KO) mice. D2LR KO mice are completely deficient in D2LR, but still express functional D2SR at a level similar to the total D2R level in wild-type (WT) mice. D2LR is generally the predominant isoform expressed in WT mice. We showed that D2LR KO mice displayed a number of robust behavioral phenotypes distinct from WT mice, indicating that D2LR and D2SR have differential functions. In this chapter we describe the generation and characterization of the D2LR KO mouse. This genetic approach provides a valuable research tool to investigate the functional role of individual D2R isoforms in the mammalian central nervous system (CNS).
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Pharmacology, College of Medicine, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | | | | |
Collapse
|
28
|
Hofford RS, Wellman PJ, Eitan S. Morphine alters the locomotor responses to a D2/D3 dopamine receptor agonist differentially in adolescent and adult mice. J Psychopharmacol 2012; 26:1355-65. [PMID: 22522973 DOI: 10.1177/0269881112443741] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The D2-like dopamine receptors mediate the emotional/aversive state during morphine withdrawal. Given age-dependent differences in the affective responses to withdrawal, this study examined whether the response to dopamine receptor agonists is altered differentially across ages following morphine administration. Adolescent and adult mice were injected with morphine (twice daily, 10-40 mg/kg, s.c.) or saline for 6 days. Subsequently, they were examined for their locomotor response to quinpirole, a D2/D3 receptor agonist, and SKF 38393, a D1 receptor agonist. Quinpirole dose-dependently reduced locomotion in drug-naïve animals. Initial suppression was also observed in morphine-treated animals, but was followed by enhanced locomotion. Notably, this enhanced locomotion was markedly greater in adolescents than adults. Quinpirole-induced hypo-locomotion is thought to be mediated by the presynaptic D2Short receptors, whereas its activating effect is mediated by postsynaptic D2Long/D3 receptors. This suggests that following morphine administration, the postsynaptic, but not the presynaptic, dopaminergic signaling is differentially modulated across ages. This locomotor supersensitivity was not observed for SKF 38393, a D1 dopamine receptor agonist. The D2/D3 receptors are involved in the pathophysiology of many mental illnesses. Thus, this study offers a potential explanation for the increased psychiatric disorder co-morbidities when drug use begins during adolescence.
Collapse
Affiliation(s)
- Rebecca S Hofford
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX, USA
| | | | | |
Collapse
|
29
|
Identification of two functionally distinct endosomal recycling pathways for dopamine D₂ receptor. J Neurosci 2012; 32:7178-90. [PMID: 22623662 DOI: 10.1523/jneurosci.0008-12.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Dopamine D₂ receptor (DRD2) is important for normal function of the brain reward circuit. Lower DRD2 function in the brain increases the risk for substance abuse, obesity, attention deficit/hyperactivity disorder, and depression. Moreover, DRD2 is the target of most antipsychotics currently in use. It is well known that dopamine-induced DRD2 endocytosis is important for its desensitization. However, it remains controversial whether DRD2 is recycled back to the plasma membrane or targeted for degradation following dopamine stimulation. Here, we used total internal reflection fluorescent microscopy (TIRFM) to image DRD2 with a superecliptic pHluorin tagged to its N terminus. With these technical advances, we were able to directly visualize vesicular insertion events of DRD2 in cultured mouse striatal medium spiny neurons. We showed that insertion of DRD2 occurs on neuronal somatic and dendritic surfaces. Lateral diffusion of DRD2 was observed following its insertion. Most importantly, using our new approach, we uncovered two functionally distinct recycling pathways for DRD2: a constitutive recycling pathway and a dopamine activity-dependent recycling pathway. We further demonstrated that Rab4 plays an important role in constitutive DRD2 recycling, while Rab11 is required for dopamine activity-dependent DRD2 recycling. Finally, we demonstrated that the two DRD2 recycling pathways play distinct roles in determining DRD2 function: the Rab4-sensitive constitutive DRD2 recycling pathway determines steady-state surface expression levels of DRD2, whereas the Rab11-sensitive dopamine activity-dependent DRD2 recycling pathway is important for functional resensitization of DRD2. Our findings underscore the significance of endosomal recycling in regulation of DRD2 function.
Collapse
|
30
|
Barrie ES, Smith RM, Sanford JC, Sadee W. mRNA transcript diversity creates new opportunities for pharmacological intervention. Mol Pharmacol 2012; 81:620-30. [PMID: 22319206 PMCID: PMC3336806 DOI: 10.1124/mol.111.076604] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/07/2012] [Indexed: 12/13/2022] Open
Abstract
Most protein coding genes generate multiple RNA transcripts through alternative splicing, variable 3' and 5'UTRs, and RNA editing. Although drug design typically targets the main transcript, alternative transcripts can have profound physiological effects, encoding proteins with distinct functions or regulatory properties. Formation of these alternative transcripts is tissue-selective and context-dependent, creating opportunities for more effective and targeted therapies with reduced adverse effects. Moreover, genetic variation can tilt the balance of alternative versus constitutive transcripts or generate aberrant transcripts that contribute to disease risk. In addition, environmental factors and drugs modulate RNA splicing, affording new opportunities for the treatment of splicing disorders. For example, therapies targeting specific mRNA transcripts with splice-site-directed oligonucleotides that correct aberrant splicing are already in clinical trials for genetic disorders such as Duchenne muscular dystrophy. High-throughput sequencing technologies facilitate discovery of novel RNA transcripts and protein isoforms, applications ranging from neuromuscular disorders to cancer. Consideration of a gene's transcript diversity should become an integral part of drug design, development, and therapy.
Collapse
Affiliation(s)
- Elizabeth S Barrie
- Program in Pharmacogenomics, Department of Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
31
|
O'Tuathaigh CMP, Desbonnet L, Waddington JL. Mutant mouse models in evaluating novel approaches to antipsychotic treatment. Handb Exp Pharmacol 2012:113-45. [PMID: 23027414 DOI: 10.1007/978-3-642-25758-2_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this review we consider the application of mutant mouse phenotypes to the study of psychotic illness in general and schizophrenia in particular, as they relate to behavioral, psychopharmacological, and cellular phenotypes of putative import for antipsychotic drug development. Mutant models appear to be heuristic at two main levels; firstly, by indicating the functional roles of neuronal components thought to be of relevance to the putative pathobiology of psychotic illness, they help resolve overt behavioral and underlying cellular processes regulated by those neuronal components; secondly, by indicating the functional roles of genes associated with risk for psychotic illness, they help resolve overt behavioral and underlying cellular processes regulated by those risk genes. We focus initially on models of dopaminergic and glutamatergic dysfunction. Then, we consider advances in the genetics of schizophrenia and mutant models relating to replicable risk genes. Lastly, we extend this discussion by exemplifying two new variant approaches in mutant mice that may serve as prototypes for advancing antipsychotic drug development. There is continuing need not only to address numerous technical challenges but also to develop more "real-world" paradigms that reflect the milieu of gene × environment and gene × gene interactions that characterize psychotic illness and its response to antipsychotic drugs.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | | | | |
Collapse
|
32
|
Chiba S, Takada E, Tadokoro M, Taniguchi T, Kadoyama K, Takenokuchi M, Kato S, Suzuki N. Loss of dopaminoreceptive neuron causes L-dopa resistant parkinsonism in tauopathy. Neurobiol Aging 2011; 33:2491-505. [PMID: 22169201 DOI: 10.1016/j.neurobiolaging.2011.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 09/16/2011] [Accepted: 11/03/2011] [Indexed: 10/14/2022]
Abstract
Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) is a family of inherited dementias caused by tauopathy. A mutation in exon 10 of the tau gene, N279K, causes a particular kindred of FTDP-17, which is predominant for parkinsonism. The disease initially presents as L-dopa resistant parkinsonism which then rapidly progresses. The final pathological features reveal disappearing dopamine (DA) neurons, but the causes remain poorly understood. We previously established a transgenic mouse with human N279K mutant tau as a model for FTDP-17, which showed cognitive dysfunctions caused by the mutant. Here we analyze L-dopa resistant parkinsonism by several behavioral tests, and focus on the distributions and accumulations of the mutant tau in the DA system by immunohistochemistry and Western blot. Interestingly, dopaminoreceptive (DAr) neurons in the striatum showed neurofibrils degeneration and apoptosis through caspase-3 activation by mutant tau accumulation. The DAr neuron loss in the caudoputamen, the target of the nigrostriatal system occurred before DA neuron loss in young symptomatic mice. Residual DA neurons in the mouse functioned in DA transportation, whereas dysregulation of intracellular DA compartmentalization implied an excess level of DA caused by DAr neuron loss. In the final stages, both DAr and DA neurons decreased equally, unlike Parkinson's disease. Therefore, DAr neurons were fundamentally vulnerable to the mutation indicating a critical role for the L-dopa resistant parkinsonism in tauopathy.
Collapse
Affiliation(s)
- Shunmei Chiba
- Department of Pathology and Cell Biology, University of the Ryukyus Graduate School of Medicine, Okinawa, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bulwa ZB, Sharlin JA, Clark PJ, Bhattacharya TK, Kilby CN, Wang Y, Rhodes JS. Increased consumption of ethanol and sugar water in mice lacking the dopamine D2 long receptor. Alcohol 2011; 45:631-9. [PMID: 21803530 DOI: 10.1016/j.alcohol.2011.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/14/2011] [Accepted: 06/20/2011] [Indexed: 11/24/2022]
Abstract
Individual differences in dopamine D2 receptor (D2R) expression in the brain are thought to influence motivation and reinforcement for ethanol and other rewards. D2R exists in two isoforms, D2 long (D2LR) and D2 short (D2SR), produced by alternative splicing of the same gene. The relative contributions of D2LR versus D2SR to ethanol and sugar water drinking are not known. Genetic engineering was used to produce a line of knockout (KO) mice that lack D2LR and consequently have increased expression of D2SR. KO and wild-type (WT) mice of both sexes were tested for intake of 20% ethanol, 10% sugar water and plain tap water using established drinking-in-the-dark procedures. Mice were also tested for effects of the D2 antagonist eticlopride on intake of ethanol to determine whether KO responses were caused by lack of D2LR or overrepresentation of D2SR. Locomotor activity on running wheels and in cages without wheels was also measured for comparison. D2L KO mice drank significantly more ethanol than WT in both sexes. KO mice drank more sugar water than WT in females but not in males. Eticlopride dose dependently decreased ethanol intake in all groups except male KO. KO mice were less physically active than WT in cages with or without running wheels. Results suggest that overrepresentation of D2SR contributes to increased intake of ethanol in the KO mice. Decreasing wheel running and general levels of physical activity in the KO mice rules out the possibility that higher intake results from higher motor activity. Results extend the literature implicating altered expression of D2R in risk for addiction by delineating the contribution of individual D2R isoforms. These findings suggest that D2LR and D2SR play differential roles in consumption of alcohol and sugar rewards.
Collapse
|
34
|
Zalachoras I, Evers MM, van Roon-Mom WMC, Aartsma-Rus AM, Meijer OC. Antisense-mediated RNA targeting: versatile and expedient genetic manipulation in the brain. Front Mol Neurosci 2011; 4:10. [PMID: 21811437 PMCID: PMC3142880 DOI: 10.3389/fnmol.2011.00010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 07/08/2011] [Indexed: 12/28/2022] Open
Abstract
A limiting factor in brain research still is the difficulty to evaluate in vivo the role of the increasing number of proteins implicated in neuronal processes. We discuss here the potential of antisense-mediated RNA targeting approaches. We mainly focus on those that manipulate splicing (exon skipping and exon inclusion), but will also briefly discuss mRNA targeting. Classic knockdown of expression by mRNA targeting is only one possible application of antisense oligonucleotides (AON) in the control of gene function. Exon skipping and inclusion are based on the interference of AONs with splicing of pre-mRNAs. These are powerful, specific and particularly versatile techniques, which can be used to circumvent pathogenic mutations, shift splice variant expression, knock down proteins, or to create molecular models using in-frame deletions. Pre-mRNA targeting is currently used both as a research tool, e.g., in models for motor neuron disease, and in clinical trials for Duchenne muscular dystrophy and amyotrophic lateral sclerosis. AONs are particularly promising in relation to brain research, as the modified AONs are taken up extremely fast in neurons and glial cells with a long residence, and without the need for viral vectors or other delivery tools, once inside the blood brain barrier. In this review we cover (1). The principles of antisense-mediated techniques, chemistry, and efficacy. (2) The pros and cons of AON approaches in the brain compared to other techniques of interfering with gene function, such as transgenesis and short hairpin RNAs, in terms of specificity of the manipulation, spatial, and temporal control over gene expression, toxicity, and delivery issues. (3) The potential applications for Neuroscience. We conclude that there is good evidence from animal studies that the central nervous system can be successfully targeted, but the potential of the diverse AON-based approaches appears to be under-recognized.
Collapse
Affiliation(s)
- Ioannis Zalachoras
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research Leiden, Netherlands
| | | | | | | | | |
Collapse
|
35
|
Intronic polymorphisms affecting alternative splicing of human dopamine D2 receptor are associated with cocaine abuse. Neuropsychopharmacology 2011; 36:753-62. [PMID: 21150907 PMCID: PMC3055737 DOI: 10.1038/npp.2010.208] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The dopamine receptor D2 (encoded by DRD2) is implicated in susceptibility to mental disorders and cocaine abuse, but mechanisms responsible for this relationship remain uncertain. DRD2 mRNA exists in two main splice isoforms with distinct functions: D2 long (D2L) and D2 short (D2S, lacking exon 6), expressed mainly postsynaptically and presynaptically, respectively. Two intronic single-nucleotide polymorphisms (SNPs rs2283265 (intron 5) and rs1076560 (intron 6)) in high linkage disequilibrium (LD) with each other have been reported to alter D2S/D2L splicing and several behavioral traits in human subjects, such as memory processing. To assess the role of DRD2 variants in cocaine abuse, we measured levels of D2S and D2L mRNA in human brain autopsy tissues (prefrontal cortex and putamen) obtained from cocaine abusers and controls, and genotyped a panel of DRD2 SNPs (119 abusers and 95 controls). Robust effects of rs2283265 and rs1076560 on reducing formation of D2S relative to D2L were confirmed. The minor alleles of rs2283265/rs1076560 were considerably more frequent in Caucasians (18%) compared with African Americans (7%). Also, in Caucasians, rs2283265/rs1076560 minor alleles were significantly overrepresented in cocaine abusers compared with controls (rs2283265: 25 to 9%, respectively; p=0.001; OR=3.4 (1.7-7.1)). Several SNPs previously implicated in diverse clinical association studies are in high LD with rs2283265/rs1076560 and could have served as surrogate markers. Our results confirm the role of rs2283265/rs1076560 in D2 alternative splicing and support a strong role in susceptibility to cocaine abuse.
Collapse
|
36
|
O'Tuathaigh CMP, Desbonnet L, Moran PM, Waddington JL. Susceptibility genes for schizophrenia: mutant models, endophenotypes and psychobiology. Curr Top Behav Neurosci 2011; 12:209-50. [PMID: 22367925 DOI: 10.1007/7854_2011_194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Schizophrenia is characterised by a multifactorial aetiology that involves genetic liability interacting with epigenetic and environmental factors to increase risk for developing the disorder. A consensus view is that the genetic component involves several common risk alleles of small effect and/or rare but penetrant copy number variations. Furthermore, there is increasing evidence for broader, overlapping genetic-phenotypic relationships in psychosis; for example, the same susceptibility genes also confer risk for bipolar disorder. Phenotypic characterisation of genetic models of candidate risk genes and/or putative pathophysiological processes implicated in schizophrenia, as well as examination of epidemiologically relevant gene × environment interactions in these models, can illuminate molecular and pathobiological mechanisms involved in schizophrenia. The present chapter outlines both the evidence from phenotypic studies in mutant mouse models related to schizophrenia and recently described mutant models addressing such gene × environment interactions. Emphasis is placed on evaluating the extent to which mutant phenotypes recapitulate the totality of the disease phenotype or model selective endophenotypes. We also discuss new developments and trends in relation to the functional genomics of psychosis which might help to inform on the construct validity of mutant models of schizophrenia and highlight methodological challenges in phenotypic evaluation that relate to such models.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland,
| | | | | | | |
Collapse
|
37
|
Morikawa T, Manabe T. Aberrant regulation of alternative pre-mRNA splicing in schizophrenia. Neurochem Int 2010; 57:691-704. [DOI: 10.1016/j.neuint.2010.08.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/07/2010] [Accepted: 08/12/2010] [Indexed: 01/06/2023]
|
38
|
Sora I, Li B, Igari M, Hall FS, Ikeda K. Transgenic mice in the study of drug addiction and the effects of psychostimulant drugs. Ann N Y Acad Sci 2010; 1187:218-46. [PMID: 20201856 DOI: 10.1111/j.1749-6632.2009.05276.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The first transgenic models used to study addiction were based upon a priori assumptions about the importance of particular genes in addiction, including the main target molecules of morphine, amphetamine, and cocaine. This consequently emphasized the importance of monoamine transporters, opioid receptors, and monoamine receptors in addiction. Although the effects of opiates were largely eliminated by mu opioid receptor gene knockout, the case for psychostimulants was much more complex. Research using transgenic models supported the idea of a polygenic basis for psychostimulant effects and has associated particular genes with different behavioral consequences of psychostimulants. Phenotypic analysis of transgenic mice, especially gene knockout mice, has been instrumental in identifying the role of specific molecular targets of addictive drugs in their actions. In this article, we summarize studies that have provided insight into the polygenic determination of drug addiction phenotypes in ways that are not possible with other methods, emphasizing research into the effects of psychostimulant drugs in gene knockouts of the monoamine transporters and monoamine receptors.
Collapse
Affiliation(s)
- Ichiro Sora
- Department of Biological Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | |
Collapse
|
39
|
Sasabe T, Ishiura S. Alcoholism and alternative splicing of candidate genes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:1448-66. [PMID: 20617039 PMCID: PMC2872348 DOI: 10.3390/ijerph7041448] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 03/21/2010] [Accepted: 03/23/2010] [Indexed: 11/24/2022]
Abstract
Gene expression studies have shown that expression patterns of several genes have changed during the development of alcoholism. Gene expression is regulated not only at the level of transcription but also through alternative splicing of pre-mRNA. In this review, we discuss some of the evidence suggesting that alternative splicing of candidate genes such as DRD2 (encoding dopamine D2 receptor) may form the basis of the mechanisms underlying the pathophysiology of alcoholism. These reports suggest that aberrant expression of splice variants affects alcohol sensitivities, and alcohol consumption also regulates alternative splicing. Thus, investigations of alternative splicing are essential for understanding the molecular events underlying the development of alcoholism.
Collapse
Affiliation(s)
- Toshikazu Sasabe
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| | | |
Collapse
|
40
|
van den Buuse M. Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophr Bull 2010; 36:246-70. [PMID: 19900963 PMCID: PMC2833124 DOI: 10.1093/schbul/sbp132] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, there have been huge advances in the use of genetically modified mice to study pathophysiological mechanisms involved in schizophrenia. This has allowed rapid progress in our understanding of the role of several proposed gene mechanisms in schizophrenia, and yet this research has also revealed how much still remains unresolved. Behavioral studies in genetically modified mice are reviewed with special emphasis on modeling psychotic-like behavior. I will particularly focus on observations on locomotor hyperactivity and disruptions of prepulse inhibition (PPI). Recommendations are included to address pharmacological and methodological aspects in future studies. Mouse models of dopaminergic and glutamatergic dysfunction are then discussed, reflecting the most important and widely studied neurotransmitter systems in schizophrenia. Subsequently, psychosis-like behavior in mice with modifications in the most widely studied schizophrenia susceptibility genes is reviewed. Taken together, the available studies reveal a wealth of available data which have already provided crucial new insight and mechanistic clues which could lead to new treatments or even prevention strategies for schizophrenia.
Collapse
Affiliation(s)
- Maarten van den Buuse
- Mental Health Research Institute of Victoria, Parkville, Melbourne, Victoria 3052, Australia.
| |
Collapse
|
41
|
Packeu A, Béghin T, De Backer JP, Vauquelin G. Antagonist-D2S-dopamine receptor interactions in intact recombinant Chinese hamster ovary cells [corrected]. Fundam Clin Pharmacol 2009; 24:293-303. [PMID: 20015228 DOI: 10.1111/j.1472-8206.2009.00777.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
D(2)-type dopamine receptors are major recognition sites for antipsychotic drugs. There are two splice variants: D(2S) and D(2L) with an additional 29 amino acid sequence in the third intracellular loop. Only little comparative information is hitherto available about their pharmacological properties and none of these studies dealt with intact cell systems. This prompted us to investigate the binding properties of [(3)H]-raclopride, a hydrophilic benzamide, and [(3)H]-spiperone, a highly hydrophobic butyrophenone, to intact CHO cells expressing recombinant human D(2L)-receptors. Presently, we have repeated and extended this experimental approach to the human D(2S)-receptors in the same cell system. Except for a slower dissociation of [(3)H]-spiperone from D(2S), the binding properties of these and other antagonists were not significantly different for both isoforms (P > 0.05). The very slow dissociation of the atypical antipsychotic clozapine was surprising in light of its low affinity. Two experiments pointed out the existence of non-competitive interactions between raclopride and spiperone for D(2S) as well as D(2L) (A. Packeu, J. P. De Backer & G. Vauquelin, in preparation). Alongside the different physicochemical properties of these ligands, this finding fits with a model wherein the hydrophilic raclopride approaches the D(2L)-receptor from the aqueous phase, while the hydrophobic spiperone approaches the receptor by lateral diffusion between the membrane lipids. These different modes of approach could imply the existence of topologically distinct ligand binding sites at D(2)-receptors.
Collapse
Affiliation(s)
- Ann Packeu
- Department of Molecular and Biochemical Pharmacology, Institute for Molecular Biology and Biotechnology, Free University of Brussels (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| | | | | | | |
Collapse
|
42
|
Fell MJ, Perry KW, Falcone JF, Johnson BG, Barth VN, Rash KS, Lucaites VL, Threlkeld PG, Monn JA, McKinzie DL, Marek GJ, Svensson KA, Nelson DL. In vitro and in vivo evidence for a lack of interaction with dopamine D2 receptors by the metabotropic glutamate 2/3 receptor agonists 1S,2S,5R,6S-2-aminobicyclo[3.1.0]hexane-2,6-bicaroxylate monohydrate (LY354740) and (-)-2-oxa-4-aminobicyclo[3.1.0] Hexane-4,6-dicarboxylic acid (LY379268). J Pharmacol Exp Ther 2009; 331:1126-36. [PMID: 19755662 DOI: 10.1124/jpet.109.160598] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Some recently published in vitro studies with two metabotropic glutamate 2/3 receptor (mGluR(2/3)) agonists [(-)-2-oxa-4-aminobicyclo[3.1.0] hexane-4,6-dicarboxylic acid (LY379268) and 1S,2S,5R,6S-2-aminobicyclo[3.1.0]hexane-2,6-bicaroxylate monohydrate (LY354740)] suggest that these compounds may also directly interact with dopamine (DA) D(2) receptors. The current in vitro and in vivo studies were undertaken to further explore this potential interaction with D(2) receptors. LY379268 and LY354740 failed to inhibit D(2) binding in both native striatal tissue homogenates and cloned receptors at concentrations up to 10 microM. LY379268 and LY354740 (up to 10 microM) also failed to stimulate [(35)S]GTPgammaS binding in D(2L)- and D(2S)-expressing clones in the presence of NaCl or N-methyl-d-glucamine. In an in vivo striatal D(2) receptor occupancy assay, LY379268 (3-30 mg/kg) or LY354740 (1-10 mg/kg) failed to displace raclopride (3 microg/kg i.v.), whereas aripiprazole (10-60 mg/kg) showed up to 90% striatal D(2) receptor occupancy. LY379268 (10 mg/kg) and raclopride (3 mg/kg) blocked d-amphetamine and phencyclidine (PCP)-induced hyperactivity in wild-type mice. However, the effects of LY379268 were lost in mGlu(2/3) receptor knockout mice. In DA D(2) receptor-deficient mice, LY379268 but not raclopride blocked both PCP and d-amphetamine-evoked hyperactivity. In the striatum and nucleus accumbens, LY379268 (3 and 10 mg/kg) was without effect on the DA synthesis rate in reserpinized rats and also failed to prevent S-(-)-3-(3-hydroxyphenyl)-N-propylpiperidine-induced reductions in DA synthesis rate. Taken together, the current data fail to show evidence of direct DA D(2) receptor interactions of LY379268 and LY354740 in vitro or in vivo. Instead, these results provide further evidence for a novel antipsychotic mechanism of action for mGluR(2/3) agonists.
Collapse
Affiliation(s)
- Matthew J Fell
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Benaliouad F, Kapur S, Natesan S, Rompré PP. Effects of the dopamine stabilizer, OSU-6162, on brain stimulation reward and on quinpirole-induced changes in reward and locomotion. Eur Neuropsychopharmacol 2009; 19:416-30. [PMID: 19269794 DOI: 10.1016/j.euroneuro.2009.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 01/09/2009] [Accepted: 01/21/2009] [Indexed: 11/17/2022]
Abstract
Dysregulation of limbic dopamine (DA) neurotransmission results in abnormal positive or negative emotional states that characterize several mental disorders. Drugs that restore DA homeostasis are most likely to constitute effective treatments for such emotional disturbances. In this study, we investigated the effects of several doses of OSU-6162, a drug that belongs to a new class named "DA stabilizers", on brain stimulation reward. Because quinpirole produces, depending on the dose, a pre-synaptic depressant and a post-synaptic stimulatory effect on reward and locomotor activity, we also compared the ability of OSU-6162 and haloperidol to prevent these effects of the full DA agonist. Results show that OSU-6162 produced a dose-orderly reduction of reward with no change in the capacity of the animals to produce the operant response, and prevented, like haloperidol, both stimulatory and depressant effects of quinpirole on locomotor activity but only its reward stimulatory effect. The observed functional antagonism of OSU-6162 on these DA-dependent behaviors suggests that it may constitute an effective treatment for abnormal positive emotional state, and that it would be exempt of motor side-effects.
Collapse
Affiliation(s)
- Faïza Benaliouad
- Centre de recherche Fernand-Seguin de l'Hôpital Louis-H. Lafontaine Montréal, Canada; Département de physiologie, Université de Montréal, Montréal, Canada
| | | | | | | |
Collapse
|
44
|
Hranilovic D, Bucan M, Wang Y. Emotional response in dopamine D2L receptor-deficient mice. Behav Brain Res 2008; 195:246-50. [PMID: 18835570 DOI: 10.1016/j.bbr.2008.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 07/02/2008] [Accepted: 09/10/2008] [Indexed: 11/29/2022]
Abstract
The dopamine D2 receptor (D2R) system has been implicated in emotional processing which is often impaired in neuropsychiatric disorders. The long (D2L) and the short (D2S) isoforms of D2R are generated by alternative splicing of the same gene. To study differential roles of the two D2R isoforms, D2L-deficient mice (D2L-/-) expressing functional D2S were previously generated. In this study the contribution of D2L isoform to emotional response was investigated by examining behaviors that reflect emotionality (exploratory behavior, anxiety-like behavior and learned helplessness) in D2L-/- and (wild-type) WT mice. While the thigmotactic, locomotor and general components of anxiety in zero maze did not differ among the genotypes, D2L-/- mice displayed significantly lower level of exploration in a hole board and zero maze, and significantly higher increase in latency to escape from a foot-shock after the learned helplessness training, compared with WT mice. These results suggest that D2L may play a more prominent role than D2S in mediating emotional response, such as behavioral reactions to novelty and inescapable stress. Our findings contribute to a better understanding of the molecular and cellular mechanisms underlying emotional responses.
Collapse
Affiliation(s)
- Dubravka Hranilovic
- Department of Animal Physiology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | | |
Collapse
|
45
|
Packeu A, De Backer JP, Van Liefde I, Vanderheyden PML, Vauquelin G. Antagonist-radioligand binding to D2L-receptors in intact cells. Biochem Pharmacol 2008; 75:2192-203. [PMID: 18436192 DOI: 10.1016/j.bcp.2008.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 12/01/2022]
Abstract
D(2)-dopamine receptors mediate most of the physiological actions of dopamine and are important recognition sites for antipsychotic drugs. Earlier binding studies were predominantly done with broken cell preparations with the tritiated D(2)-receptor antagonists [(3)H]-raclopride, a hydrophilic benzamide, and [(3)H]-spiperone, a highly hydrophobic butyrophenone. Here we compared [(3)H]-raclopride and [(3)H]-spiperone binding properties in intact Chinese Hamster Ovary cells stably expressing recombinant human D(2L)-receptors. Specific binding of both radioligands occurred to a comparable number of sites. In contrast to the rapid dissociation of [(3)H]-raclopride in both medium only and in the presence of an excess of unlabelled ligand [(3)H]-spiperone dissociation was only observed in the latter condition, and it was still slower than in broken cell preparations. However, this could not explain the pronounced difference in the potency of some unlabelled ligands to compete with both radioligands. To integrate these new findings, a model is proposed in which raclopride approaches the receptor from the aqueous phase, while spiperone approaches the receptor by lateral diffusion within the membrane.
Collapse
Affiliation(s)
- Ann Packeu
- Free University of Brussels (VUB), Department of Molecular and Biochemical Pharmacology, Institute for Molecular Biology and Biotechnology, Pleinlaan 2, B-1050 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
46
|
Phillips TJ, Kamens HM, Wheeler JM. Behavioral genetic contributions to the study of addiction-related amphetamine effects. Neurosci Biobehav Rev 2007; 32:707-59. [PMID: 18207241 PMCID: PMC2360482 DOI: 10.1016/j.neubiorev.2007.10.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 09/28/2007] [Accepted: 10/28/2007] [Indexed: 11/24/2022]
Abstract
Amphetamines, including methamphetamine, pose a significant cost to society due to significant numbers of amphetamine-abusing individuals who suffer major health-related consequences. In addition, methamphetamine use is associated with heightened rates of violent and property-related crimes. The current paper reviews the existing literature addressing genetic differences in mice that impact behavioral responses thought to be relevant to the abuse of amphetamine and amphetamine-like drugs. Summarized are studies that used inbred strains, selected lines, single-gene knockouts and transgenics, and quantitative trait locus (QTL) mapping populations. Acute sensitivity, neuroadaptive responses, rewarding and conditioned effects are among those reviewed. Some gene mapping work has been accomplished, and although no amphetamine-related complex trait genes have been definitively identified, translational work leading from results in the mouse to studies performed in humans is beginning to emerge. The majority of genetic investigations have utilized single-gene knockout mice and have concentrated on dopamine- and glutamate-related genes. Genes that code for cell support and signaling molecules are also well-represented. There is a large behavioral genetic literature on responsiveness to amphetamines, but a considerably smaller literature focused on genes that influence the development and acceleration of amphetamine use, withdrawal, relapse, and behavioral toxicity. Also missing are genetic investigations into the effects of amphetamines on social behaviors. This information might help to identify at-risk individuals and in the future to develop treatments that take advantage of individualized genetic information.
Collapse
|
47
|
Giacomini NJ, Rose B, Kobayashi K, Guo S. Antipsychotics produce locomotor impairment in larval zebrafish. Neurotoxicol Teratol 2006; 28:245-50. [PMID: 16527449 DOI: 10.1016/j.ntt.2006.01.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 12/31/2005] [Accepted: 01/26/2006] [Indexed: 11/17/2022]
Abstract
Zebrafish has been a favored vertebrate genetic model organism for studying developmental processes. It also holds a great potential for understanding the genetic basis of behavior and associated behavioral disorders. Despite such potential, their use in the study of behavior is greatly under-explored. It is well known that multiple classes of drugs used to treat psychiatric diseases produce extrapyramidal side (EPS) effects and consequent movement disorders in humans. The underlying molecular causes of these drug-induced movement disorders are poorly understood. Here we report that zebrafish treated with the antipsychotics fluphenazine and haloperidol (both of which can induce severe EPS in humans) develop movement defects. In contrast, another antipsychotic olanzapine, which produces mild to little EPS in humans, leads to minimal movement defects in zebrafish. These results establish a rapid assay system in which the effects of EPS-inducing agents can be assessed. Thus, future genetic screening in zebrafish shall identify genes and pathways that elucidate drug-induced movement disorder in human as well as provide insights into the brain control of locomotor activity. Future chemical screening in zebrafish may act as a preclinical test for the EPS effect of certain drugs, as well as a test used to researching drugs made to counteract the effects of EPS.
Collapse
Affiliation(s)
- Nicholas J Giacomini
- Department of Biopharmaceutical Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, California, 94143-0446, USA
| | | | | | | |
Collapse
|
48
|
Hiroi N, Zhu H, Lee M, Funke B, Arai M, Itokawa M, Kucherlapati R, Morrow B, Sawamura T, Agatsuma S. A 200-kb region of human chromosome 22q11.2 confers antipsychotic-responsive behavioral abnormalities in mice. Proc Natl Acad Sci U S A 2005; 102:19132-7. [PMID: 16365290 PMCID: PMC1323212 DOI: 10.1073/pnas.0509635102] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human chromosome 22q11.2 has been implicated in various behavioral abnormalities, including schizophrenia and other neuropsychiatric/behavioral disorders. However, the specific genes within 22q11.2 that contribute to these disorders are still poorly understood. Here, we show that an approximately 200-kb segment of human 22q11.2 causes specific behavioral abnormalities in mice. Mice that overexpress an approximately 200-kb region of human 22q11.2, containing CDCrel, GP1Bbeta, TBX1, and WDR14, exhibited spontaneous sensitization of hyperactivity and a lack of habituation. These effects were ameliorated by antipsychotic drugs. The transgenic mice were also impaired in nesting behavior. Although Tbx1 has been shown to be responsible for many physical defects associated with 22q11.2 haploinsufficiency, Tbx1 heterozygous mice did not display these behavioral abnormalities. Our results show that the approximately 200-kb region of 22q11.2 contains a gene(s) responsible for behavioral abnormalities and suggest that distinct genetic components within 22q11.2 mediate physical and behavioral abnormalities.
Collapse
Affiliation(s)
- Noboru Hiroi
- Laboratory of Molecular Psychobiology, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Waddington JL, O'Tuathaigh C, O'Sullivan G, Tomiyama K, Koshikawa N, Croke DT. Phenotypic studies on dopamine receptor subtype and associated signal transduction mutants: insights and challenges from 10 years at the psychopharmacology-molecular biology interface. Psychopharmacology (Berl) 2005; 181:611-38. [PMID: 16041535 DOI: 10.1007/s00213-005-0058-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Mutants with targeted gene deletion ('knockout') or insertion (transgenic) of D1, D2, D3, D4 and D5 dopamine (DA) receptor subtypes are complemented by an increasing variety of double knockout and transgenic-'knockout' models, together with knockout of critical components of DA receptor signalling cascades such as G alpha(olf)[G gamma7], adenylyl cyclase type 5, PKA [RIIbeta] and DARPP-32. However, it is increasingly recognised that these molecular techniques have a number of inherent limitations. Furthermore, there are poorly understood methodological factors that contribute to inconsistent phenotypic findings between laboratories. OBJECTIVE This review seeks to document the impact of DA receptor subtype and related transduction mutants on our understanding of the behavioural roles of these entities, primarily at the level of unconditioned psychomotor behaviour. METHODS It includes ethologically based and orofacial movement studies in our own laboratories, since these are the only studies to systematically compare each of the D1, D2, D3, D4 and D5 receptor and DARPP-32 signal transduction 'knockouts'. DISCUSSION There is a particular emphasis on identifying methodological factors that might influence phenotypic effects and account for inconsistencies. The findings are offered empirically to (1) specify the extent of phenotypic diversity among individual DA receptor subtypes and transduction components and (2) indicate relationships between D1, D2, D3, D4 and D5 receptor subtype proteins, associated G alpha(i)/G alpha(s)/G alpha(olf)[G gamma7]-adenylyl cyclase type 5-PKA [RIIbeta]-DARPP-32 signalling cascades and behaviour. The findings are also offered heuristically as a base for such phenotypic comparisons at additional levels of behaviour so that a yet more complete phenotypic profile might emerge.
Collapse
Affiliation(s)
- John L Waddington
- Institute of Biopharmaceutical Sciences, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland.
| | | | | | | | | | | |
Collapse
|
50
|
Fetsko LA, Xu R, Wang Y. Effects of age and dopamine D2L receptor-deficiency on motor and learning functions. Neurobiol Aging 2005; 26:521-30. [PMID: 15653180 DOI: 10.1016/j.neurobiolaging.2004.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 04/12/2004] [Indexed: 11/28/2022]
Abstract
Decreases in the activity or density of dopamine D2 receptor (D2R) have been associated with age-related changes and neurodegenerative diseases such as Parkinson's disease. There are two isoforms of the D2R, termed the D2 long receptor (D2LR) and D2 short receptor (D2SR). To study the function of these two isoforms and their role in aging, we generated mice selectively lacking D2LR (D2L-/-). Here, we showed that middle-aged (12 months) to aged wild-type (WT) mice (22-24 months) displayed significantly lower levels of motor and learning functions than young WT mice (3 months). Interestingly, young D2L-/- mice (which still express D2SR) showed behavioral deficits similar to aged WT mice. It is possible that deletion of the D2LR might facilitate the aging process in mice. Our results also suggest that a deterioration of the D2LR (but not D2SR) system during aging may account, at least in part, for the motor and learning deficits exhibited in aged WT mice. We also showed that the critical age at which significant reduction in behavior occurred varied among different behaviors. Defining the age-related critical periods and understanding the role of the two D2R isoforms in aging may facilitate the development of new strategies for delaying or ameliorating age-related motor and learning impairments.
Collapse
Affiliation(s)
- Leah A Fetsko
- Department of Molecular and Integrative Physiology, Beckman Institute, MC-251, University of Illinois at Urbana-Champaign, 405 N. Mathews Avenue, Urbana, IL 61801, USA
| | | | | |
Collapse
|