1
|
Delevich K, Jaaro-Peled H, Penzo M, Sawa A, Li B. Parvalbumin Interneuron Dysfunction in a Thalamo-Prefrontal Cortical Circuit in Disc1 Locus Impairment Mice. eNeuro 2020; 7:ENEURO.0496-19.2020. [PMID: 32029441 PMCID: PMC7054897 DOI: 10.1523/eneuro.0496-19.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 01/22/2023] Open
Abstract
Altered cortical excitation-inhibition (E-I) balance resulting from abnormal parvalbumin interneuron (PV IN) function is a proposed pathophysiological mechanism of schizophrenia and other major psychiatric disorders. Preclinical studies have indicated that disrupted-in-schizophrenia-1 (Disc1) is a useful molecular lead to address the biology of prefrontal cortex (PFC)-dependent cognition and PV IN function. To date, PFC inhibitory circuit function has not been investigated in depth in Disc1 locus impairment (LI) mouse models. Therefore, we used a Disc1 LI mouse model to investigate E-I balance in medial PFC (mPFC) circuits. We found that inhibition onto layer 2/3 excitatory pyramidal neurons in the mPFC was significantly reduced in Disc1 LI mice. This reduced inhibition was accompanied by decreased GABA release from local PV, but not somatostatin (SOM) INs, and by impaired feedforward inhibition (FFI) in the mediodorsal thalamus (MD) to mPFC circuit. Our mechanistic findings of abnormal PV IN function in a Disc1 LI model provide insight into biology that may be relevant to neuropsychiatric disorders including schizophrenia.
Collapse
Affiliation(s)
- Kristen Delevich
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Hanna Jaaro-Peled
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Mario Penzo
- National Institute of Mental Health, Bethesda, MD 20892
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Bo Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
2
|
Barnett BR, Anderson JM, Torres-Velázquez M, Yi SY, Rowley PA, Yu JPJ. Exercise ameliorates deficits in neural microstructure in a Disc1 model of psychiatric illness. Magn Reson Imaging 2019; 61:90-96. [PMID: 31103832 PMCID: PMC6663582 DOI: 10.1016/j.mri.2019.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 01/06/2023]
Abstract
Recent studies have investigated the effectiveness of aerobic exercise to improve physical and mental health outcomes in schizophrenia; however, few have explicitly explored the impact of aerobic exercise on neural microstructure, which is hypothesized to mediate the behavioral changes observed. Neural microstructure is influenced by numerous genetic factors including DISC1, which is a major molecular scaffold protein that interacts with partners like GSK3β, NDEL1, and PDE4. DISC1 has been shown to play a role in neurogenesis, neuronal migration, neuronal maturation, and synaptic signaling. As with other genetic variants that present an increased risk for disease, mutations of the DISC1 gene have been implicated in the molecular intersection of schizophrenia and numerous other major psychiatric illnesses. This study investigated whether short-term exercise recovers deficits in neural microstructure in a novel genetic Disc1 svΔ2 rat model. Disc1 svΔ2 animals and age- and sex-matched controls were subjected to a treadmill exercise protocol. Subsequent ex-vivo diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) compared neural microstructure in regions of interest (ROI) between sedentary and exercise wild-type animals and between sedentary and exercise Disc1 svΔ2 animals. Short-term exercise uncovered no significant differences in neural microstructure between sedentary and exercise control animals but did lead to significant differences between sedentary and exercise Disc1 svΔ2 animals in neocortex, basal ganglia, corpus callosum, and external capsule, suggesting a positive benefit derived from a short-term exercise regimen. Our findings suggest that Disc1 svΔ2 animals are more sensitive to the effects of short-term exercise and highlight the ameliorating potential of positive treatment interventions such as exercise on neural microstructure in genetic backgrounds of psychiatric disease susceptibility.
Collapse
Affiliation(s)
- Brian R Barnett
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jacqueline M Anderson
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Maribel Torres-Velázquez
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sue Y Yi
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Paul A Rowley
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - John-Paul J Yu
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
3
|
Wilkinson B, Evgrafov O, Zheng D, Hartel N, Knowles JA, Graham NA, Ichida J, Coba MP. Endogenous Cell Type-Specific Disrupted in Schizophrenia 1 Interactomes Reveal Protein Networks Associated With Neurodevelopmental Disorders. Biol Psychiatry 2019; 85:305-316. [PMID: 29961565 PMCID: PMC6251761 DOI: 10.1016/j.biopsych.2018.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 04/03/2018] [Accepted: 05/03/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Disrupted in schizophrenia 1 (DISC1) has been implicated in a number of psychiatric diseases along with neurodevelopmental phenotypes such as the proliferation and differentiation of neural progenitor cells. While there has been significant effort directed toward understanding the function of DISC1 through the determination of its protein-protein interactions within an in vitro setting, endogenous interactions involving DISC1 within a cell type-specific setting relevant to neural development remain unclear. METHODS Using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) genome engineering technology, we inserted an endogenous 3X-FLAG tag at the C-terminus of the canonical DISC1 gene in human induced pluripotent stem cells (iPSCs). We further differentiated these cells and used affinity purification to determine protein-protein interactions involving DISC1 in iPSC-derived neural progenitor cells and astrocytes. RESULTS We were able to determine 151 novel cell type-specific proteins present in DISC1 endogenous interactomes. The DISC1 interactomes can be clustered into several subcomplexes that suggest novel DISC1 cell-specific functions. In addition, the DISC1 interactome in iPSC-derived neural progenitor cells associates in a connected network containing proteins found to harbor de novo mutations in patients affected by schizophrenia and contains a subset of novel interactions that are known to harbor syndromic mutations in neurodevelopmental disorders. CONCLUSIONS Endogenous DISC1 interactomes within iPSC-derived human neural progenitor cells and astrocytes are able to provide context to DISC1 function in a cell type-specific setting relevant to neural development and enables the integration of psychiatric disease risk factors within a set of defined molecular functions.
Collapse
Affiliation(s)
- Brent Wilkinson
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Oleg Evgrafov
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - DongQing Zheng
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90033, USA
| | - Nicolas Hartel
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90033, USA
| | - James A. Knowles
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Nicholas A. Graham
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90033, USA
| | - Justin Ichida
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA,Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC
| | - Marcelo P. Coba
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA,Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA,Corresponding Author: Marcelo P. Coba, Keck School of Medicine, University of Southern California, Zilkha Neurogenetic Institute, 1501 San Pablo St, Los Angeles, CA 90033, USA. Phone: 323-442-4345.
| |
Collapse
|
4
|
Barnett BR, Torres-Velázquez M, Yi SY, Rowley PA, Sawin EA, Rubinstein CD, Krentz K, Anderson JM, Bakshi VP, Yu JPJ. Sex-specific deficits in neurite density and white matter integrity are associated with targeted disruption of exon 2 of the Disc1 gene in the rat. Transl Psychiatry 2019; 9:82. [PMID: 30745562 PMCID: PMC6370885 DOI: 10.1038/s41398-019-0429-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 02/06/2023] Open
Abstract
Diffusion tensor imaging (DTI) has provided remarkable insight into our understanding of white matter microstructure and brain connectivity across a broad spectrum of psychiatric disease. While DTI and other diffusion weighted magnetic resonance imaging (MRI) methods have clarified the axonal contribution to the disconnectivity seen in numerous psychiatric diseases, absent from these studies are quantitative indices of neurite density and orientation that are especially important features in regions of high synaptic density that would capture the synaptic contribution to the psychiatric disease state. Here we report the application of neurite orientation dispersion and density imaging (NODDI), an emerging microstructure imaging technique, to a novel Disc1 svΔ2 rat model of psychiatric illness and demonstrate the complementary and more specific indices of tissue microstructure found in NODDI than those reported by DTI. Our results demonstrate global and sex-specific changes in white matter microstructural integrity and deficits in neurite density as a consequence of the Disc1 svΔ2 genetic variation and highlight the application of NODDI and quantitative measures of neurite density and neurite dispersion in psychiatric disease.
Collapse
Affiliation(s)
- Brian R Barnett
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Maribel Torres-Velázquez
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sue Y Yi
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Paul A Rowley
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Emily A Sawin
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - C Dustin Rubinstein
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Kathleen Krentz
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jacqueline M Anderson
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Vaishali P Bakshi
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - John-Paul J Yu
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA.
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA.
| |
Collapse
|
5
|
Dittrich L, Petese A, Jackson WS. The natural Disc1-deletion present in several inbred mouse strains does not affect sleep. Sci Rep 2017; 7:5665. [PMID: 28720848 PMCID: PMC5515846 DOI: 10.1038/s41598-017-06015-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/06/2017] [Indexed: 02/03/2023] Open
Abstract
The gene Disrupted in Schizophrenia-1 (DISC1) is linked to a range of psychiatric disorders. Two recent transgenic studies suggest DISC1 is also involved in homeostatic sleep regulation. Several strains of inbred mice commonly used for genome manipulation experiments, including several Swiss and likely all 129 substrains, carry a natural deletion mutation of Disc1. This constitutes a potential confound for studying sleep in genetically modified mice. Since disturbed sleep can also influence psychiatric and neurodegenerative disease models, this putative confound might affect a wide range of studies in several fields. Therefore, we asked to what extent the natural Disc1 deletion affects sleep. To this end, we first compared sleep and electroencephalogram (EEG) phenotypes of 129S4 mice carrying the Disc1 deletion and C57BL/6N mice carrying the full-length version. We then bred Disc1 from C57BL/6N into the 129S4 background, resulting in S4-Disc1 mice. The differences between 129S4 and C57BL/6N were not detected in the 129S4 to S4-Disc1 comparison. We conclude that the mutation has no effect on the measured sleep and EEG characteristics. Thus, it is unlikely the widespread Disc1 deletion has led to spurious results in previous sleep studies or that it alters sleep in mouse models of psychiatric or neurodegenerative diseases.
Collapse
Affiliation(s)
- Lars Dittrich
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Sigmund-Freud-Str, 27 53127, Bonn, Germany
| | - Alessandro Petese
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Sigmund-Freud-Str, 27 53127, Bonn, Germany
| | - Walker S Jackson
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Sigmund-Freud-Str, 27 53127, Bonn, Germany.
| |
Collapse
|
6
|
Tanaka M, Ishizuka K, Nekooki-Machida Y, Endo R, Takashima N, Sasaki H, Komi Y, Gathercole A, Huston E, Ishii K, Hui KKW, Kurosawa M, Kim SH, Nukina N, Takimoto E, Houslay MD, Sawa A. Aggregation of scaffolding protein DISC1 dysregulates phosphodiesterase 4 in Huntington's disease. J Clin Invest 2017; 127:1438-1450. [PMID: 28263187 DOI: 10.1172/jci85594] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/11/2017] [Indexed: 01/19/2023] Open
Abstract
Huntington's disease (HD) is a polyglutamine (polyQ) disease caused by aberrant expansion of the polyQ tract in Huntingtin (HTT). While motor impairment mediated by polyQ-expanded HTT has been intensively studied, molecular mechanisms for nonmotor symptoms in HD, such as psychiatric manifestations, remain elusive. Here we have demonstrated that HTT forms a ternary protein complex with the scaffolding protein DISC1 and cAMP-degrading phosphodiesterase 4 (PDE4) to regulate PDE4 activity. We observed pathological cross-seeding between DISC1 and mutant HTT aggregates in the brains of HD patients as well as in a murine model that recapitulates the polyQ pathology of HD (R6/2 mice). In R6/2 mice, consequent reductions in soluble DISC1 led to dysregulation of DISC1-PDE4 complexes, aberrantly increasing the activity of PDE4. Importantly, exogenous expression of a modified DISC1, which binds to PDE4 but not mutant HTT, normalized PDE4 activity and ameliorated anhedonia in the R6/2 mice. We propose that cross-seeding of mutant HTT and DISC1 and the resultant changes in PDE4 activity may underlie the pathology of a specific subset of mental manifestations of HD, which may provide an insight into molecular signaling in mental illness in general.
Collapse
|
7
|
Interneuronal DISC1 regulates NRG1-ErbB4 signalling and excitatory-inhibitory synapse formation in the mature cortex. Nat Commun 2015; 6:10118. [PMID: 26656849 PMCID: PMC4682104 DOI: 10.1038/ncomms10118] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 11/05/2015] [Indexed: 12/11/2022] Open
Abstract
Neuregulin-1 (NRG1) and its receptor ErbB4 influence several processes of neurodevelopment, but the mechanisms regulating this signalling in the mature brain are not well known. DISC1 is a multifunctional scaffold protein that mediates many cellular processes. Here we present a functional relationship between DISC1 and NRG1-ErbB4 signalling in mature cortical interneurons. By cell type-specific gene modulation in vitro and in vivo including in a mutant DISC1 mouse model, we demonstrate that DISC1 inhibits NRG1-induced ErbB4 activation and signalling. This effect is likely mediated by competitive inhibition of binding of ErbB4 to PSD95. Finally, we show that interneuronal DISC1 affects NRG1-ErbB4-mediated phenotypes in the fast spiking interneuron-pyramidal neuron circuit. Post-mortem brain analyses and some genetic studies have reported interneuronal deficits and involvement of the DISC1, NRG1 and ErbB4 genes in schizophrenia, respectively. Our results suggest a mechanism by which cross-talk between DISC1 and NRG1-ErbB4 signalling may contribute to these deficits. Neuregulin-1 and DISC1 signalling pathways have both been linked to neurodevelopment and schizophrenia. Here, Seshadri et al. demonstrate that DISC1 negatively regulates NRG1-induced ErbB4 signalling in adult cortical interneurons both in vitro and in vivo, possibly via competitive binding to PSD95.
Collapse
|
8
|
DISC1 regulates trafficking and processing of APP and Aβ generation. Mol Psychiatry 2015; 20:874-9. [PMID: 25224257 PMCID: PMC4362789 DOI: 10.1038/mp.2014.100] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 06/23/2014] [Accepted: 07/14/2014] [Indexed: 12/13/2022]
Abstract
We report the novel regulation of proteolytic processing of amyloid precursor protein (APP) by DISC1, a major risk factor for psychiatric illnesses, such as depression and schizophrenia. RNAi knockdown of DISC1 in mature primary cortical neurons led to a significant increase in the levels of intracellular α-C-terminal fragment of APP (APP-CTFα) and the corresponding N-terminal-secreted ectodomain product sAPPα. DISC1 knockdown also elicited a significant decrease in the levels of amyloid beta (Aβ)42 and Aβ40. These aberrant proteolytic events were successfully rescued by co-expression of wild-type DISC1, but not by mutant DISC1 lacking the amino acids required for the interaction with APP, suggesting that APP-DISC1 protein interactions are crucial for the regulation of the C-terminal proteolysis. In a genetically engineered model in which a major full-length DISC1 isoform is depleted, consistent changes in APP processing were seen: an increase in APP-CTFα and decrease in Aβ42 and Aβ40 levels. Finally, we found that knockdown of DISC1 increased the expression of APP at the cell surface and decreased its internalization. The presented DISC1 mechanism of APP proteolytic processing and Aβ peptide generation, which is central to Alzheimer's disease pathology, suggests a novel interface between neurological and psychiatric conditions.
Collapse
|
9
|
Disrupted-in-schizophrenia 1 regulates transport of ITPR1 mRNA for synaptic plasticity. Nat Neurosci 2015; 18:698-707. [DOI: 10.1038/nn.3984] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/22/2015] [Indexed: 02/07/2023]
|
10
|
Ritchie DJ, Clapcote SJ. Disc1 deletion is present in Swiss-derived inbred mouse strains: implications for transgenic studies of learning and memory. Lab Anim 2014; 47:162-7. [PMID: 23563120 DOI: 10.1177/0023677213478299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Inbred mouse strains are widely used for genetic studies because of the isogenicity within a strain or F1 hybrid and the genetic heterogeneity between inbred strains. In the process of modifying Disc1 in the mouse genome, a 25-bp deletion was discovered in exon 6 of the gene in the 129S6/SvEvTac inbred strain, and subsequently in 16 other inbred strains in the category known as ‘Castle’s mice’. The deletion (Disc1del ) induces a frame shift that introduces a premature termination codon, which has been shown to confer an impairment in working memory. To extend knowledge of the distribution of Disc1del among the various inbred strains of laboratory mouse, we investigated whether Disc1del is present in the categories known as ‘Swiss mice’ and ‘strains derived from China and Japan’. We found that the FVB/NJ, SJL/J and SWR/J strains in the ‘Swiss mice’ category and DDY/JclSidSeyFrkJ in the ‘China and Japan’ category are homozygous for the Disc1del allele, while ICR/HaJ in the ‘Swiss mice’ category is homozygous for wild-type Disc1. Since the Disc1del -positive strains FVB and SJL are commonly used for the generation of transgenic mice, and thus contribute to the genetic background of multiple transgenic lines, our results may allow scientists to avoid the potential confounding effects of the Disc1del allele in transgenic studies of learning and memory.
Collapse
Affiliation(s)
- D J Ritchie
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | | |
Collapse
|
11
|
Tsang KH, Lai SK, Li Q, Yung WH, Liu H, Mak PHS, Ng CCP, McAlonan G, Chan YS, Chan SY. The nucleosome assembly protein TSPYL2 regulates the expression of NMDA receptor subunits GluN2A and GluN2B. Sci Rep 2014; 4:3654. [PMID: 24413569 PMCID: PMC3888966 DOI: 10.1038/srep03654] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/16/2013] [Indexed: 12/31/2022] Open
Abstract
TSPYL2 is an X-linked gene encoding a nucleosome assembly protein. TSPYL2 interacts with calmodulin-associated serine/threonine kinase, which is implicated in X-linked mental retardation. As nucleosome assembly and chromatin remodeling are important in transcriptional regulation and neuronal function, we addressed the importance of TSPYL2 through analyzing Tspyl2 loss-of-function mice. We detected down-regulation of N-methyl-D-aspartate receptor subunits 2A and 2B (GluN2A and GluN2B) in the mutant hippocampus. Evidence from luciferase reporter assays and chromatin immunoprecipitation supported that TSPYL2 regulated the expression of Grin2a and Grin2b, the genes encoding GluN2A and GluN2B. We also detected an interaction between TSPYL2 and CBP, indicating that TSPYL2 may activate gene expression through binding CBP. In terms of functional outcome, Tspyl2 loss-of-function impaired long-term potentiation at hippocampal Schaffer collateral-CA1 synapses. Moreover, mutant mice showed a deficit in fear learning and memory. We conclude that TSPYL2 contributes to cognitive variability through regulating the expression of Grin2a and Grin2b.
Collapse
Affiliation(s)
- Ka Hing Tsang
- 1] Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [2] Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Suk King Lai
- 1] Department of Physiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [2] Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Qi Li
- 1] Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [2] Department of Psychiatry, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Wing Ho Yung
- School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Hang Liu
- 1] Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [2] Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Priscilla Hoi Shan Mak
- 1] Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [2] Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Cypress Chun Pong Ng
- 1] Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [2] Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Grainne McAlonan
- 1] Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [2] Department of Psychiatry, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [3] Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College London, United Kingdom
| | - Ying Shing Chan
- 1] Department of Physiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [2] Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Siu Yuen Chan
- 1] Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [2] Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Davies W. Functional themes from psychiatric genome-wide screens. Front Genet 2011; 2:89. [PMID: 22303383 PMCID: PMC3268640 DOI: 10.3389/fgene.2011.00089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 11/28/2011] [Indexed: 12/24/2022] Open
Abstract
Technological advances and a greater degree of inter-laboratory co-operation mean that genome-wide analyses can now be used to identify genetic variants that are robustly associated with the risk of developing psychiatric and neurological disorders. In contrast to the candidate gene approach, such screens may identify variants within genes which have a hitherto unappreciated role in disorder pathogenesis, and whose brain function is obscure. In this Perspective, I discuss how the behavioral functions of such genes may be investigated using model systems, drawing attention to the potential caveats and limitations with such approaches. The power of focused cross-species studies needs to be effectively exploited to enable useful insights into the molecular pathogenesis of common and disabling disorders, and ultimately to provide better clinical outcomes for patients.
Collapse
Affiliation(s)
- William Davies
- Behavioural Genetics Group, Schools of Medicine and Psychology, Cardiff UniversityCardiff, UK
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff UniversityCardiff, UK
- Neuroscience and Mental Health Research Institute, Cardiff UniversityCardiff, UK
| |
Collapse
|
13
|
Brandon NJ, Sawa A. Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nat Rev Neurosci 2011; 12:707-22. [PMID: 22095064 DOI: 10.1038/nrn3120] [Citation(s) in RCA: 331] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent advances in our understanding of the underlying genetic architecture of psychiatric disorders has blown away the diagnostic boundaries that are defined by currently used diagnostic manuals. The disrupted in schizophrenia 1 (DISC1) gene was originally discovered at the breakpoint of an inherited chromosomal translocation, which segregates with major mental illnesses. In addition, many biological studies have indicated a role for DISC1 in early neurodevelopment and synaptic regulation. Given that DISC1 is thought to drive a range of endophenotypes that underlie major mental conditions, elucidating the biology of DISC1 may enable the construction of new diagnostic categories for mental illnesses with a more meaningful biological foundation.
Collapse
|
14
|
Soares DC, Carlyle BC, Bradshaw NJ, Porteous DJ. DISC1: Structure, Function, and Therapeutic Potential for Major Mental Illness. ACS Chem Neurosci 2011; 2:609-632. [PMID: 22116789 PMCID: PMC3222219 DOI: 10.1021/cn200062k] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/05/2011] [Indexed: 01/09/2023] Open
Abstract
![]()
Disrupted in schizophrenia 1 (DISC1) is well established
as a genetic risk factor across a spectrum of psychiatric disorders,
a role supported by a growing body of biological studies, making the
DISC1 protein interaction network an attractive therapeutic target.
By contrast, there is a relative deficit of structural information
to relate to the myriad biological functions of DISC1. Here, we critically
appraise the available bioinformatics and biochemical analyses on
DISC1 and key interacting proteins, and integrate this with the genetic
and biological data. We review, analyze, and make predictions regarding
the secondary structure and propensity for disordered regions within
DISC1, its protein-interaction domains, subcellular localization motifs,
and the structural and functional implications of common and ultrarare DISC1 variants associated with major mental illness. We
discuss signaling pathways of high pharmacological potential wherein
DISC1 participates, including those involving phosphodiesterase 4
(PDE4) and glycogen synthase kinase 3 (GSK3). These predictions and
priority areas can inform future research in the translational and
potentially guide the therapeutic processes.
Collapse
Affiliation(s)
- Dinesh C. Soares
- Medical Genetics Section, Molecular
Medicine Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital,
Crewe Road South, Edinburgh EH4 2XU, United Kingdom
| | - Becky C. Carlyle
- Department of Psychiatry, Yale University School of Medicine, 300 George Street,
Suite 901, New Haven, Connecticut 06511, United States
| | - Nicholas J. Bradshaw
- Medical Genetics Section, Molecular
Medicine Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital,
Crewe Road South, Edinburgh EH4 2XU, United Kingdom
| | - David J. Porteous
- Medical Genetics Section, Molecular
Medicine Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital,
Crewe Road South, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
15
|
Kuroda K, Yamada S, Tanaka M, Iizuka M, Yano H, Mori D, Tsuboi D, Nishioka T, Namba T, Iizuka Y, Kubota S, Nagai T, Ibi D, Wang R, Enomoto A, Isotani-Sakakibara M, Asai N, Kimura K, Kiyonari H, Abe T, Mizoguchi A, Sokabe M, Takahashi M, Yamada K, Kaibuchi K. Behavioral alterations associated with targeted disruption of exons 2 and 3 of the Disc1 gene in the mouse. Hum Mol Genet 2011; 20:4666-83. [PMID: 21903668 DOI: 10.1093/hmg/ddr400] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Disrupted-In-Schizophrenia 1 (DISC1) is a promising candidate gene for susceptibility to psychiatric disorders, including schizophrenia. DISC1 appears to be involved in neurogenesis, neuronal migration, axon/dendrite formation and synapse formation; during these processes, DISC1 acts as a scaffold protein by interacting with various partners. However, the lack of Disc1 knockout mice and a well-characterized antibody to DISC1 has made it difficult to determine the exact role of DISC1 in vivo. In this study, we generated mice lacking exons 2 and 3 of the Disc1 gene and prepared specific antibodies to the N- and C-termini of DISC1. The Disc1 mutant mice are viable and fertile, and no gross phenotypes, such as disorganization of the brain's cytoarchitecture, were observed. Western blot analysis revealed that the DISC1-specific antibodies recognize a protein with an apparent molecular mass of ~100 kDa in brain extracts from wild-type mice but not in brain extracts from DISC1 mutant mice. Immunochemical studies demonstrated that DISC1 is mainly localized to the vicinity of the Golgi apparatus in hippocampal neurons and astrocytes. A deficiency of full-length Disc1 induced a threshold shift in the induction of long-term potentiation in the dentate gyrus. The Disc1 mutant mice displayed abnormal emotional behavior as assessed by the elevated plus-maze and cliff-avoidance tests, thereby suggesting that a deficiency of full-length DISC1 may result in lower anxiety and/or higher impulsivity. Based on these results, we suggest that full-length Disc1-deficient mice and DISC1-specific antibodies are powerful tools for dissecting the pathophysiological functions of DISC1.
Collapse
Affiliation(s)
- Keisuke Kuroda
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kvajo M, McKellar H, Gogos JA. Avoiding mouse traps in schizophrenia genetics: lessons and promises from current and emerging mouse models. Neuroscience 2011; 211:136-64. [PMID: 21821099 DOI: 10.1016/j.neuroscience.2011.07.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/15/2011] [Accepted: 07/19/2011] [Indexed: 01/31/2023]
Abstract
Schizophrenia is one of the most common psychiatric disorders, but despite progress in identifying the genetic factors implicated in its development, the mechanisms underlying its etiology and pathogenesis remain poorly understood. Development of mouse models is critical for expanding our understanding of the causes of schizophrenia. However, translation of disease pathology into mouse models has proven to be challenging, primarily due to the complex genetic architecture of schizophrenia and the difficulties in the re-creation of susceptibility alleles in the mouse genome. In this review we highlight current research on models of major susceptibility loci and the information accrued from their analysis. We describe and compare the different approaches that are necessitated by diverse susceptibility alleles, and discuss their advantages and drawbacks. Finally, we discuss emerging mouse models, such as second-generation pathophysiology models based on innovative approaches that are facilitated by the information gathered from the current genetic mouse models.
Collapse
Affiliation(s)
- M Kvajo
- Department of Physiology and Cellular Biophysics, College of Physicians & Surgeons, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
17
|
Papaleo F, Lipska BK, Weinberger DR. Mouse models of genetic effects on cognition: relevance to schizophrenia. Neuropharmacology 2011; 62:1204-20. [PMID: 21557953 DOI: 10.1016/j.neuropharm.2011.04.025] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 04/08/2011] [Accepted: 04/20/2011] [Indexed: 01/27/2023]
Abstract
Cognitive dysfunction is a core feature of schizophrenia. Growing evidence indicates that a wide variety of genetic mutations and polymorphisms impact cognition and may thus be implicated in various aspects of this mental disorder. Despite differences between human and rodent brain structure and function, genetic mouse models have contributed critical information about brain mechanisms involved in cognitive processes. Here, we summarize discoveries of genetic modifications in mice that impact cognition. Based on functional hypotheses, gene modifications within five model systems are described: 1) dopamine (D1, D2, D3, D4, D5, DAT, COMT, MAO); 2) glutamate (GluR-A, NR1, NR2A, NR2B, GRM2, GRM3, GLAST); 3) GABA (α(5), γ(2), α(4), δGABA(A), GABA(B(1)), GAT1); 4) acetylcholine (nAChRβ2, α7, CHRM1); and 5) calcium (CaMKII-α, neurogranin, CaMKKβ, CaMKIV). We also consider other risk-associated genes for schizophrenia such as dysbindin (DTNBP1), neuregulin (NRG1), disrupted-in-schizophrenia1 (DISC1), reelin and proline dehydrogenase (PRODH). Because of the presumed importance of environmental factors, we further consider genetic modifications within the stress-sensitive systems of corticotropin-releasing factor (CRF), brain-derived neurotrophic factor (BDNF) and the endocannabinoid systems. We highlight the missing information and limitations of cognitive assays in genetically modified mice models relevant to schizophrenia pathology.
Collapse
Affiliation(s)
- Francesco Papaleo
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy.
| | | | | |
Collapse
|
18
|
DISC1-dependent switch from progenitor proliferation to migration in the developing cortex. Nature 2011; 473:92-6. [PMID: 21471969 PMCID: PMC3088774 DOI: 10.1038/nature09859] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 01/21/2011] [Indexed: 12/11/2022]
Abstract
Regulatory mechanisms governing the sequence from progenitor cell proliferation to neuronal migration during corticogenesis are poorly understood1–10. Here we report that phosphorylation of DISC1, a major susceptibility factor for several mental disorders, acts as a molecular switch from maintaining proliferation of mitotic progenitor cells to activating migration of postmitotic neurons. Unphosphorylated DISC1 regulates canonical Wnt signaling via an interaction with GSK3β, whereas specific phosphorylation at Serine 710 (S710) triggers the recruitment of Bardet-Biedl-Syndrome (BBS) proteins to the centrosome. In support of this model, loss of BBS1 leads to defects in migration, but not proliferation, while DISC1 knockdown leads to deficits in both. A phospho-dead mutant can only rescue proliferation, while a phospho-mimic mutant rescues exclusively migration defects. These data highlight a dual role for DISC1 in corticogenesis and suggest that phosphorylation of this protein at S710 activates a key developmental switch.
Collapse
|
19
|
Differential effects of prenatal and postnatal expressions of mutant human DISC1 on neurobehavioral phenotypes in transgenic mice: evidence for neurodevelopmental origin of major psychiatric disorders. Mol Psychiatry 2011; 16:293-306. [PMID: 20048751 PMCID: PMC2914807 DOI: 10.1038/mp.2009.144] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Strong genetic evidence implicates mutations and polymorphisms in the gene Disrupted-In-Schizophrenia-1 (DISC1) as risk factors for both schizophrenia and mood disorders. Recent studies have shown that DISC1 has important functions in both brain development and adult brain function. We have described earlier a transgenic mouse model of inducible expression of mutant human DISC1 (hDISC1) that acts in a dominant-negative manner to induce the marked neurobehavioral abnormalities. To gain insight into the roles of DISC1 at various stages of neurodevelopment, we examined the effects of mutant hDISC1 expressed during (1) only prenatal period, (2) only postnatal period, or (3) both periods. All periods of expression similarly led to decreased levels of cortical dopamine (DA) and fewer parvalbumin-positive neurons in the cortex. Combined prenatal and postnatal expression produced increased aggression and enhanced response to psychostimulants in male mice along with increased linear density of dendritic spines on neurons of the dentate gyrus of the hippocampus, and lower levels of endogenous DISC1 and LIS1. Prenatal expression only resulted in smaller brain volume, whereas selective postnatal expression gave rise to decreased social behavior in male mice and depression-like responses in female mice as well as enlarged lateral ventricles and decreased DA content in the hippocampus of female mice, and decreased level of endogenous DISC1. Our data show that mutant hDISC1 exerts differential effects on neurobehavioral phenotypes, depending on the stage of development at which the protein is expressed. The multiple and diverse abnormalities detected in mutant DISC1 mice are reminiscent of findings in major mental diseases.
Collapse
|
20
|
Balu DT, Coyle JT. Neuroplasticity signaling pathways linked to the pathophysiology of schizophrenia. Neurosci Biobehav Rev 2011; 35:848-70. [PMID: 20951727 PMCID: PMC3005823 DOI: 10.1016/j.neubiorev.2010.10.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 10/06/2010] [Accepted: 10/10/2010] [Indexed: 12/15/2022]
Abstract
Schizophrenia is a severe mental illness that afflicts nearly 1% of the world's population. One of the cardinal pathological features of schizophrenia is perturbation in synaptic connectivity. Although the etiology of schizophrenia is unknown, it appears to be a developmental disorder involving the interaction of a potentially large number of risk genes, with no one gene producing a strong effect except rare, highly penetrant copy number variants. The purpose of this review is to detail how putative schizophrenia risk genes (DISC-1, neuregulin/ErbB4, dysbindin, Akt1, BDNF, and the NMDA receptor) are involved in regulating neuroplasticity and how alterations in their expression may contribute to the disconnectivity observed in schizophrenia. Moreover, this review highlights how many of these risk genes converge to regulate common neurotransmitter systems and signaling pathways. Future studies aimed at elucidating the functions of these risk genes will provide new insights into the pathophysiology of schizophrenia and will likely lead to the nomination of novel therapeutic targets for restoring proper synaptic connectivity in the brain in schizophrenia and related disorders.
Collapse
Affiliation(s)
- Darrick T Balu
- Department of Psychiatry, Harvard Medical School, Belmont, MA, USA.
| | | |
Collapse
|
21
|
Kim G, Kandler K. Synaptic changes underlying the strengthening of GABA/glycinergic connections in the developing lateral superior olive. Neuroscience 2010; 171:924-33. [PMID: 20888399 DOI: 10.1016/j.neuroscience.2010.09.054] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/22/2010] [Accepted: 09/24/2010] [Indexed: 10/19/2022]
Abstract
Before hearing onset, the topographic organization of the auditory GABA/glycinergic pathway from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO) is refined by synaptic silencing and strengthening. The synaptic mechanisms underlying the developmental strengthening of maintained MNTB-LSO connections are unknown. Here we address this question using whole-cell recordings from LSO neurons in slices prepared from prehearing mice. Minimal and maximal stimulation techniques demonstrated that during the first two postnatal weeks, individual LSO neurons lose about 55% of their initial presynaptic MNTB partners while maintained single-fiber connections become about 14-fold stronger. Analysis of MNTB-evoked miniature events indicates that this strengthening is accompanied by a 2-fold increase in quantal amplitude. Strengthening is not caused by an increase in the probability of release because paired pulse ratios (PPRs) increased from 0.7 in newborn animals to 0.9 around hearing onset, indicating a developmental decrease rather than increase in release probability. In addition, a possible soma-dendritic relocation of MNTB input seems unlikely to underlie their strengthening as indicated by analysis of the rise times of synaptic currents. Taken together, we conclude that the developmental strengthening of MNTB-LSO connections is achieved by a 2-fold increase in quantal size and an 8-fold increase in quantal content.
Collapse
Affiliation(s)
- G Kim
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
22
|
Wilson C, Terry AV. Neurodevelopmental animal models of schizophrenia: role in novel drug discovery and development. ACTA ACUST UNITED AC 2010; 4:124-37. [PMID: 20643635 DOI: 10.3371/csrp.4.2.4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Schizophrenia is a devastating mental illness that is associated with a lifetime of disability. For patients to successfully function in society, the amelioration of disease symptoms is imperative. The recently published results of two large antipsychotic clinical trials (e.g., CATIE, CUtLASS) clearly exemplified the limitations of currently available treatment options for schizophrenia, and further highlighted the critical need for novel drug discovery and development in this field. One of the biggest challenges in schizophrenia-related drug discovery is to find an appropriate animal model of the illness so that novel hypotheses can be tested at the basic science level. A number of pharmacological, genetic, and neurodevelopmental models have been introduced; however, none of these models has been rigorously evaluated for translational relevance or to satisfy requirements of "face," "construct" and "predictive" validity. Given the apparent polygenic nature of schizophrenia and the limited translational significance of pharmacological models, neurodevelopmental models may offer the best chance of success. The purpose of this review is to provide a general overview of the various neurodevelopmental models of schizophrenia that have been introduced to date, and to summarize their behavioral and neurochemical phenotypes that may be useful from a drug discovery and development standpoint. While it may be that, in the final analysis, no single animal model will satisfy all the requirements necessary for drug discovery purposes, several of the models may be useful for modeling various phenomenological and pathophysiological components of schizophrenia that could be targeted independently with separate molecules or multi-target drugs.
Collapse
Affiliation(s)
- Christina Wilson
- Department of Pharmacology and Toxicology, School of Graduate Studies, Medical College of Georgia, Augusta, GA 30912-2300, USA
| | | |
Collapse
|
23
|
Kubo KI, Tomita K, Uto A, Kuroda K, Seshadri S, Cohen J, Kaibuchi K, Kamiya A, Nakajima K. Migration defects by DISC1 knockdown in C57BL/6, 129X1/SvJ, and ICR strains via in utero gene transfer and virus-mediated RNAi. Biochem Biophys Res Commun 2010; 400:631-7. [PMID: 20807500 DOI: 10.1016/j.bbrc.2010.08.117] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 08/26/2010] [Indexed: 02/01/2023]
Abstract
Disrupted-in-Schizophrenia 1 (DISC1) is a promising genetic risk factor for major mental disorders. Many groups repeatedly reported a role for DISC1 in brain development in various strains of mice and rats by using RNA interference (RNAi) approach. Nonetheless, due to the complexity of its molecular disposition, such as many splice variants and a spontaneous deletion in a coding exon of the DISC1 gene in some mouse strains, there have been debates on the interpretation on these published data. Thus, in this study, we address this question by DISC1 knockdown via short-hairpin RNAs (shRNAs) against several distinct target sequences with more than one delivery methodologies into several mouse strains, including C57BL/6, ICR, and 129X1/SvJ. Here, we show that DISC1 knockdown by in utero electroporation of shRNA against exons 2, 6, and 10 consistently results in neuronal migration defects in the developing cerebral cortex, which are successfully rescued by co-expression of full-length DISC1. Furthermore, lentivirus-mediated shRNA also led to migration defects, which is consistent with two other methodologies already published, such as plasmid-mediated and retrovirus-mediated ones. The previous study by Song's group also reported that, in the adult hippocampus, the phenotype elicited by DISC1 knockdown with shRNA targeting exon 2 was consistently seen in both C57BL/6 and 129S6 mice. Taken together, we propose that some of DISC1 isoforms that are feasible to be knocked down by shRNAs to exon 2, 6, and 10 of the DISC1 gene play a key role for neuronal migration commonly in various mouse strains and rats.
Collapse
Affiliation(s)
- Ken-Ichiro Kubo
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dixdc1 is a critical regulator of DISC1 and embryonic cortical development. Neuron 2010; 67:33-48. [PMID: 20624590 DOI: 10.1016/j.neuron.2010.06.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2010] [Indexed: 01/30/2023]
Abstract
The psychiatric illness risk gene Disrupted in Schizophrenia-1 (DISC1) plays an important role in brain development; however, it is unclear how DISC1 is regulated during cortical development. Here, we report that DISC1 is regulated during embryonic neural progenitor proliferation and neuronal migration through an interaction with DIX domain containing-1 (Dixdc1), the third mammalian gene discovered to contain a Disheveled-Axin (DIX) domain. We determined that Dixdc1 functionally interacts with DISC1 to regulate neural progenitor proliferation by co-modulating Wnt-GSK3beta/beta-catenin signaling. However, DISC1 and Dixdc1 do not regulate migration via this pathway. During neuronal migration, we discovered that phosphorylation of Dixdc1 by cyclin-dependent kinase 5 (Cdk5) facilitates its interaction with the DISC1-binding partner Ndel1. Furthermore, Dixdc1 phosphorylation and its interaction with DISC1/Ndel1 in vivo is required for neuronal migration. Together, these data reveal that Dixdc1 integrates DISC1 into Wnt-GSK3beta/beta-catenin-dependent and -independent signaling pathways during cortical development and further delineate how DISC1 contributes to neuropsychiatric disorders.
Collapse
|
25
|
DISC1 regulates primary cilia that display specific dopamine receptors. PLoS One 2010; 5:e10902. [PMID: 20531939 PMCID: PMC2878344 DOI: 10.1371/journal.pone.0010902] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 05/10/2010] [Indexed: 12/11/2022] Open
Abstract
Background Mutations in the DISC1 gene are strongly associated with major psychiatric syndromes such as schizophrenia. DISC1 encodes a cytoplasmic protein with many potential interaction partners, but its cellular functions remain poorly understood. We identified a role of DISC1 in the cell biology of primary cilia that display disease-relevant dopamine receptors. Methodology/Principal Findings A GFP-tagged DISC1 construct expressed in NIH3T3 cells and rat striatal neurons localized near the base of primary cilia. RNAi-mediated knockdown of endogenous DISC1 resulted in a marked reduction in the number of cells expressing a primary cilium. FLAG-tagged versions of the cloned human D1, D2 and D5 dopamine receptors concentrated highly on the ciliary surface, and this reflects a specific targeting mechanism specific because D3 and D4 receptors localized to the plasma membrane but were not concentrated on cilia. Conclusions/Significance These results identify a role of DISC1 in regulating the formation and/or maintenance of primary cilia, and establish subtype-specific targeting of dopamine receptors to the ciliary surface. Our findings provide new insight to receptor cell biology and suggest a relationship between DISC1 and neural dopamine signaling.
Collapse
|
26
|
Disrupted-in-Schizophrenia-1 expression is regulated by beta-site amyloid precursor protein cleaving enzyme-1-neuregulin cascade. Proc Natl Acad Sci U S A 2010; 107:5622-7. [PMID: 20212127 DOI: 10.1073/pnas.0909284107] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuregulin-1 (NRG1) and Disrupted-in-Schizophrenia-1 (DISC1) are promising susceptibility factors for schizophrenia. Both are multifunctional proteins with roles in a variety of neurodevelopmental processes, including progenitor cell proliferation, migration, and differentiation. Here, we provide evidence linking these factors together in a single pathway, which is mediated by ErbB receptors and PI3K/Akt. We show that signaling by NRG1 and NRG2, but not NRG3, increase expression of an isoform of DISC1 in vitro. Receptors ErbB2 and ErbB3, but not ErbB4, are responsible for transducing this effect, and PI3K/Akt signaling is also required. In NRG1 knockout mice, this DISC1 isoform is selectively reduced during neurodevelopment. Furthermore, a similar decrease in DISC1 expression is seen in beta-site amyloid precursor protein cleaving enzyme-1 (BACE1) knockout mice, in which NRG1/Akt signaling is reportedly impaired. In contrast to neuronal DISC1 that was reported and characterized, expression of DISC1 in other types of cells in the brain has not been addressed. Here we demonstrate that DISC1, like NRG and ErbB proteins, is expressed in neurons, astrocytes, oligodendrocytes, microglia, and radial progenitors. These findings may connect NRG1, ErbBs, Akt, and DISC1 in a common pathway, which may regulate neurodevelopment and contribute to susceptibility to schizophrenia.
Collapse
|
27
|
Hayashi-Takagi A, Takaki M, Graziane N, Seshadri S, Murdoch H, Dunlop AJ, Makino Y, Seshadri AJ, Ishizuka K, Srivastava DP, Xie Z, Baraban JM, Houslay MD, Tomoda T, Brandon NJ, Kamiya A, Yan Z, Penzes P, Sawa A. Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1. Nat Neurosci 2010; 13:327-32. [PMID: 20139976 PMCID: PMC2846623 DOI: 10.1038/nn.2487] [Citation(s) in RCA: 337] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 12/23/2009] [Indexed: 11/17/2022]
Abstract
Synaptic spines are dynamic structures that regulate neuronal responsiveness and plasticity. We examined the role of the schizophrenia risk factor DISC1 in the maintenance of spine morphology and function. We found that DISC1 anchored Kalirin-7 (Kal-7), regulating access of Kal-7 to Rac1 and controlling the duration and intensity of Rac1 activation in response to NMDA receptor activation in both cortical cultures and rat brain in vivo. These results explain why Rac1 and its activator (Kal-7) serve as important mediators of spine enlargement and why constitutive Rac1 activation decreases spine size. This mechanism likely underlies disturbances in glutamatergic neurotransmission that have been frequently reported in schizophrenia that can lead to alteration of dendritic spines with consequential major pathological changes in brain function. Furthermore, the concept of a signalosome involving disease-associated factors, such as DISC1 and glutamate, may well contribute to the multifactorial and polygenetic characteristics of schizophrenia.
Collapse
Affiliation(s)
- Akiko Hayashi-Takagi
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Schizophrenia may well represent one of the most heterogenous mental disorders in human history. This heterogeneity encompasses (1) etiology; where numerous putative genetic and environmental factors may contribute to disease manifestation, (2) symptomatology; with symptoms characterized by group; positive--behaviors not normally present in healthy subjects (e.g. hallucinations), negative--reduced expression of normal behaviors (e.g. reduced joy), and cognitive--reduced cognitive capabilities separable from negative symptoms (e.g. impaired attention), and (3) individual response variation to treatment. The complexity of this uniquely human disorder has complicated the development of suitable animal models with which to assay putative therapeutics. Moreover, the development of animal models is further limited by a lack of positive controls because currently approved therapeutics only addresses psychotic symptoms, with minor negative symptom treatment. Despite these complexities however, many animal models of schizophrenia have been developed mainly focusing on modeling individual symptoms. Validation criteria have been established to assay the utility of these models, determining the (1) face, (2) predictive, (3) construct, and (4) etiological validities, as well as (5) reproducibility of each model. Many of these models have been created following the development of major hypotheses of schizophrenia, including the dopaminergic, glutamatergic, and neurodevelopmental hypotheses. The former two models have largely consisted of manipulating these neurotransmitter systems to produce behavioral abnormalities with some relevance to symptoms or putative etiology of schizophrenia. Given the serotonergic link to hallucinations and cholinergic link to attention, other models have manipulated these systems also. Finally, there has also been a drive toward creating mouse models of schizophrenia utilizing transgenic technology. Thus, there are opportunities to combine both environmental and genetic factors to create more suitable models of schizophrenia. More sophisticated animal tasks are also being created with which to ascertain whether these models produce behavioral abnormalities consistent with patients with schizophrenia. While animal models of schizophrenia continue to be developed, we must be cognizant that (1) validating these models are limited to the degree by which Clinicians can provide relevant information on the behavior of these patients, and (2) any putative treatments that are developed are also likely to be given with concurrent antipsychotic treatment. While our knowledge of this devastating disorder increases and our animal models and tasks with which to measure their behaviors become more sophisticated, caution must still be taken when validating these models to limit complications when introducing putative therapeutics to human trials.
Collapse
Affiliation(s)
- Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA.
| | | | | |
Collapse
|
29
|
Jaaro-Peled H. Gene models of schizophrenia: DISC1 mouse models. PROGRESS IN BRAIN RESEARCH 2009; 179:75-86. [PMID: 20302820 DOI: 10.1016/s0079-6123(09)17909-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Disrupted in Schizophrenia-1 (DISC1) is one of the most likely susceptibility genes for schizophrenia (SZ). DISC1 is being established as a hub protein with various functions in the pre- and postnatal development of the nervous system. Since generation of a knockout (KO) mouse has proved challenging, various alternative approaches have been taken. Seven DISC1 mouse models have been described to date. All of them display neuroanatomical and behavioral abnormalities relevant to SZ, although most of them have not been fully characterized yet, requiring further analysis. NRG1 and ErbB4, also highly promising susceptibility genes for SZ, share many features with DISC1. They are involved in various aspects of pre- and postnatal neurodevelopment. The NRG1 and ErbB4 mouse models also display neuroanatomical and behavioral abnormalities similar to the DISC1 mouse models. In the future, four main directions need further study. First, further characterization of the seven DISC1 mouse models, especially in light of basic research findings. Second, more extensive employment of the inducible models. Third, generation of a DISC1 KO. Fourth, combination of the DISC1 mouse models with other risk factors: crossing with other genetic models such as NRG1/ErbB4 mutants and exposure to environmental risk factors.
Collapse
Affiliation(s)
- Hanna Jaaro-Peled
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
30
|
Kim JY, Duan X, Liu CY, Jang MH, Guo JU, Pow-anpongkul N, Kang E, Song H, Ming GL. DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron 2009; 63:761-73. [PMID: 19778506 DOI: 10.1016/j.neuron.2009.08.008] [Citation(s) in RCA: 270] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 05/29/2009] [Accepted: 08/03/2009] [Indexed: 12/27/2022]
Abstract
Disrupted-in-schizophrenia 1 (DISC1), a susceptibility gene for major mental illnesses, regulates multiple aspects of embryonic and adult neurogenesis. Here, we show that DISC1 suppression in newborn neurons of the adult hippocampus leads to overactivated signaling of AKT, another schizophrenia susceptibility gene. Mechanistically, DISC1 directly interacts with KIAA1212, an AKT binding partner that enhances AKT signaling in the absence of DISC1, and DISC1 binding to KIAA1212 prevents AKT activation in vitro. Functionally, multiple genetic manipulations to enhance AKT signaling in adult-born neurons in vivo exhibit similar defects as DISC1 suppression in neuronal development that can be rescued by pharmacological inhibition of mammalian target of rapamycin (mTOR), an AKT downstream effector. Our study identifies the AKT-mTOR signaling pathway as a critical DISC1 target in regulating neuronal development and provides a framework for understanding how multiple susceptibility genes may functionally converge onto a common pathway in contributing to the etiology of certain psychiatric disorders.
Collapse
Affiliation(s)
- Ju Young Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
DISC1 splice variants are upregulated in schizophrenia and associated with risk polymorphisms. Proc Natl Acad Sci U S A 2009; 106:15873-8. [PMID: 19805229 DOI: 10.1073/pnas.0903413106] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Disrupted-In-Schizophrenia-1 (DISC1) is a promising susceptibility gene for major mental illness, but the mechanism of the clinical association is unknown. We searched for DISC1 transcripts in adult and fetal human brain and tested whether their expression is altered in patients with schizophrenia and is associated with genetic variation in DISC1. Many alternatively spliced transcripts were identified, including groups lacking exon 3 (Delta3), exons 7 and 8 (Delta7Delta8), an exon 3 insertion variant (extra short variant-1, Esv1), and intergenic splicing between TSNAX and DISC1. Isoforms Delta7Delta8, Esv1, and Delta3, which encode truncated DISC1 proteins, were expressed more abundantly during fetal development than during postnatal ages, and their expression was higher in the hippocampus of patients with schizophrenia. Schizophrenia risk-associated polymorphisms [non-synonymous SNPs rs821616 (Cys704Ser) and rs6675281 (Leu607Phe), and rs821597] were associated with the expression of Delta3 and Delta7Delta8. Moreover, the same allele at rs6675281, which predicted higher expression of these transcripts in the hippocampus, was associated with higher expression of DISC1Delta7Delta8 in lymphoblasts in an independent sample. Our results implicate a molecular mechanism of genetic risk associated with DISC1 involving specific alterations in gene processing.
Collapse
|
32
|
Modeling cognitive endophenotypes of schizophrenia in mice. Trends Neurosci 2009; 32:347-58. [PMID: 19409625 DOI: 10.1016/j.tins.2009.02.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 02/04/2009] [Accepted: 02/10/2009] [Indexed: 01/02/2023]
Abstract
Schizophrenia is a complex mental disorder that is still characterized by its symptoms rather than by biological markers because we have only a limited knowledge of its underlying molecular basis. In the past two decades, however, technical advances in genetics and brain imaging have provided new insights into the biology of the disease. Based on these advances we are now in a position to develop animal models that can be used to test specific hypotheses of the disease and explore mechanisms of pathogenesis. Here, we consider some of the insights that have emerged from studying in mice the relationship between defined genetic and molecular alterations and the cognitive endophenotypes of schizophrenia.
Collapse
|
33
|
Schizophrenia-related neural and behavioral phenotypes in transgenic mice expressing truncated Disc1. J Neurosci 2008; 28:10893-904. [PMID: 18945897 DOI: 10.1523/jneurosci.3299-08.2008] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Disrupted-in-Schizophrenia-1 (DISC1), identified by positional cloning of a balanced translocation (1;11) with the breakpoint in intron 8 of a large Scottish pedigree, is associated with a range of neuropsychiatric disorders including schizophrenia. To model this mutation in mice, we have generated Disc1(tr) transgenic mice expressing 2 copies of truncated Disc1 encoding the first 8 exons using a bacterial artificial chromosome (BAC). With this partial simulation of the human situation, we have discovered a range of phenotypes including a series of novel features not previously reported. Disc1(tr) transgenic mice display enlarged lateral ventricles, reduced cerebral cortex, partial agenesis of the corpus callosum, and thinning of layers II/III with reduced neural proliferation at midneurogenesis. Parvalbumin GABAergic neurons are reduced in the hippocampus and medial prefrontal cortex, and displaced in the dorsolateral frontal cortex. In culture, transgenic neurons grow fewer and shorter neurites. Behaviorally, transgenic mice exhibit increased immobility and reduced vocalization in depression-related tests, and impairment in conditioning of latent inhibition. These abnormalities in Disc1(tr) transgenic mice are consistent with findings in severe schizophrenia.
Collapse
|
34
|
Development of hippocampal mossy fiber synaptic outputs by new neurons in the adult brain. Proc Natl Acad Sci U S A 2008; 105:14157-62. [PMID: 18780780 DOI: 10.1073/pnas.0806658105] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
New neurons are continuously generated in restricted regions of the adult mammalian brain. Although these adult-born neurons have been shown to receive synaptic inputs, little is known about their synaptic outputs. Using retrovirus-mediated birth-dating and labeling in combination with serial section electron microscopic reconstruction, we report that mossy fiber en passant boutons of adult-born dentate granule cells form initial synaptic contacts with CA3 pyramidal cells within 2 weeks after their birth and reach morphologic maturity within 8 weeks in the adult hippocampus. Knockdown of Disrupted-in-Schizophrenia-1 (DISC1) in newborn granule cells leads to defects in axonal targeting and development of synaptic outputs in the adult brain. Together with previous reports of synaptic inputs, these results demonstrate that adult-born neurons are fully integrated into the existing neuronal circuitry. Our results also indicate a role for DISC1 in presynaptic development and may have implications for the etiology of schizophrenia and related mental disorders.
Collapse
|
35
|
Meyer KD, Morris JA. Immunohistochemical analysis of Disc1 expression in the developing and adult hippocampus. Gene Expr Patterns 2008; 8:494-501. [PMID: 18620078 DOI: 10.1016/j.gep.2008.06.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 06/13/2008] [Accepted: 06/16/2008] [Indexed: 01/21/2023]
Abstract
In recent years, Disrupted-In-Schizophrenia 1 (DISC1) has emerged as one of the most promising candidate genes whose disruption confers an increased risk for schizophrenia. Cell biology studies have implicated DISC1 in key neurodevelopmental processes including neurite outgrowth and neuronal migration. In situ hybridization analysis has revealed that Disc1 is expressed in the hypothalamus, olfactory bulbs, the developing cerebral cortex and the hippocampus. The hippocampus is of particular interest because abnormalities in hippocampal volume and function have been consistently reported in schizophrenics. Moreover, DISC1 mutations have been associated with abnormal activation of the hippocampus in humans. Given the involvement of the hippocampus in the pathophysiology of schizophrenia, there is an intriguing possibility that disruption of DISC1 may increase schizophrenia susceptibility by altering the normal development and function of the hippocampus. In order to contribute to our understanding of DISC1's role in the hippocampus, we have performed a detailed analysis of the Disc1 expression pattern in the mouse hippocampus throughout development. We report that Disc1 is expressed throughout the hippocampus during embryonic development, with expression becoming increasingly specialized in Ammon's horn and dentate gyrus granule cells within the first postnatal week. This expression pattern remains consistent into adulthood, with a noted decrease in Disc1 expression in the adult CA1. Disc1 is also expressed in proliferating cells in the adult subgranular zone, as well as in a subset of GABAergic interneurons. Our results are the first report of a detailed immunohistochemical analysis of the ontogeny of Disc1 expression within the hippocampus.
Collapse
Affiliation(s)
- Kate D Meyer
- Human Molecular Genetics Program, Department of Pediatrics, Children's Memorial Research Center, Feinberg School of Medicine, Northwestern University, 2300 Children's Plaza, P.O. Box 211, Chicago, IL 60614, USA
| | | |
Collapse
|
36
|
A mutation in mouse Disc1 that models a schizophrenia risk allele leads to specific alterations in neuronal architecture and cognition. Proc Natl Acad Sci U S A 2008; 105:7076-81. [PMID: 18458327 DOI: 10.1073/pnas.0802615105] [Citation(s) in RCA: 240] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
DISC1 is a strong candidate susceptibility gene for schizophrenia, bipolar disorder, and depression. Using a mouse strain carrying an endogenous Disc1 orthologue engineered to model the putative effects of the disease-associated chromosomal translocation we demonstrate that impaired Disc1 function results in region-specific morphological alterations, including alterations in the organization of newly born and mature neurons of the dentate gyrus. Field recordings at CA3/CA1 synapses revealed a deficit in short-term plasticity. Using a battery of cognitive tests we found a selective impairment in working memory (WM), which may relate to deficits in WM and executive function observed in individuals with schizophrenia. Our results implicate malfunction of neural circuits within the hippocampus and medial prefrontal cortex and selective deficits in WM as contributing to the genetic risk conferred by this gene.
Collapse
|
37
|
Pletnikov MV, Ayhan Y, Nikolskaia O, Xu Y, Ovanesov MV, Huang H, Mori S, Moran TH, Ross CA. Inducible expression of mutant human DISC1 in mice is associated with brain and behavioral abnormalities reminiscent of schizophrenia. Mol Psychiatry 2008; 13:173-86, 115. [PMID: 17848917 DOI: 10.1038/sj.mp.4002079] [Citation(s) in RCA: 265] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A strong candidate gene for schizophrenia and major mental disorders, disrupted-in-schizophrenia 1 (DISC1) was first described in a large Scottish family in which a balanced chromosomal translocation segregates with schizophrenia and other psychiatric illnesses. The translocation mutation may result in loss of DISC1 function via haploinsufficiency or dominant-negative effects of a predicted mutant DISC1 truncated protein product. DISC1 has been implicated in neurodevelopment, including maturation of the cerebral cortex. To evaluate the neuronal and behavioral effects of mutant DISC1, the Tet-off system under the regulation of the CAMKII promoter was used to generate transgenic mice with inducible expression of mutant human DISC1 (hDISC1) limited to forebrain regions, including cerebral cortex, hippocampus and striatum. Expression of mutant hDISC1 was not associated with gross neurodevelopmental abnormalities, but led to a mild enlargement of the lateral ventricles and attenuation of neurite outgrowth in primary cortical neurons. These morphological changes were associated with decreased protein levels of endogenous mouse DISC1, LIS1 and SNAP-25. Compared to their sex-matched littermate controls, mutant hDISC1 transgenic male mice exhibited spontaneous hyperactivity in the open field and alterations in social interaction, and transgenic female mice showed deficient spatial memory. The results show that the neuronal and behavioral effects of mutant hDISC1 are consistent with a dominant-negative mechanism, and are similar to some features of schizophrenia. The present mouse model may facilitate the study of aspects of the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- M V Pletnikov
- Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
How has DISC1 enabled drug discovery? Mol Cell Neurosci 2008; 37:187-95. [DOI: 10.1016/j.mcn.2007.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 10/15/2007] [Accepted: 10/16/2007] [Indexed: 11/17/2022] Open
|
39
|
Specific developmental disruption of disrupted-in-schizophrenia-1 function results in schizophrenia-related phenotypes in mice. Proc Natl Acad Sci U S A 2007; 104:18280-5. [PMID: 17984054 DOI: 10.1073/pnas.0706900104] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Disrupted-in-schizophrenia 1 (DISC1) was initially discovered through a balanced translocation (1;11)(q42.1;q14.3) that results in loss of the C terminus of the DISC1 protein, a region that is thought to play an important role in brain development. Here, we use an inducible and reversible transgenic system to demonstrate that early postnatal, but not adult induction, of a C-terminal portion of DISC1 in mice results in a cluster of schizophrenia-related phenotypes, including reduced hippocampal dendritic complexity, depressive-like traits, abnormal spatial working memory, and reduced sociability. Accordingly, we report that individuals in a discordant twin sample with a DISC1 haplotype, associating with schizophrenia as well as working memory impairments and reduced gray matter density, were more likely to show deficits in sociability than those without the haplotype. Our findings demonstrate that alterations in DISC1 function during brain development contribute to schizophrenia pathogenesis.
Collapse
|
40
|
Millar JK, Mackie S, Clapcote SJ, Murdoch H, Pickard BS, Christie S, Muir WJ, Blackwood DH, Roder JC, Houslay MD, Porteous DJ. Disrupted in schizophrenia 1 and phosphodiesterase 4B: towards an understanding of psychiatric illness. J Physiol 2007; 584:401-5. [PMID: 17823207 PMCID: PMC2277141 DOI: 10.1113/jphysiol.2007.140210] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Disrupted in schizophrenia 1 (DISC1) is one of the most convincing genetic risk factors for major mental illness identified to date. DISC1 interacts directly with phosphodiesterase 4B (PDE4B), an independently identified risk factor for schizophrenia. DISC1-PDE4B complexes are therefore likely to be involved in molecular mechanisms underlying psychiatric illness. PDE4B hydrolyses cAMP and DISC1 may regulate cAMP signalling through modulating PDE4B activity. There is evidence that expression of both genes is altered in some psychiatric patients. Moreover, DISC1 missense mutations that give rise to phenotypes related to schizophrenia and depression in mice are located within binding sites for PDE4B. These mutations reduce the association between DISC1 and PDE4B, and one results in reduced brain PDE4B activity. Altered DISC1-PDE4B interaction may thus underlie the symptoms of some cases of schizophrenia and depression. Factors likely to influence this interaction include expression levels, binding site affinities and the DISC1 and PDE4 isoforms involved. DISC1 and PDE4 isoforms are targeted to specific subcellular locations which may contribute to the compartmentalization of cAMP signalling. Dysregulated cAMP signalling in specific cellular compartments may therefore be a predisposing factor for major mental illness.
Collapse
Affiliation(s)
- J Kirsty Millar
- University of Edinburgh, Medical Genetics Section, Molecular Medicine Centre, Crewe Road, Edinburgh EH4 2XU, Scotland, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Clapcote SJ, Lipina TV, Millar JK, Mackie S, Christie S, Ogawa F, Lerch JP, Trimble K, Uchiyama M, Sakuraba Y, Kaneda H, Shiroishi T, Houslay MD, Henkelman RM, Sled JG, Gondo Y, Porteous DJ, Roder JC. Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 2007; 54:387-402. [PMID: 17481393 DOI: 10.1016/j.neuron.2007.04.015] [Citation(s) in RCA: 403] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 03/01/2007] [Accepted: 04/18/2007] [Indexed: 01/25/2023]
Abstract
To support the role of DISC1 in human psychiatric disorders, we identified and analyzed two independently derived ENU-induced mutations in Exon 2 of mouse Disc1. Mice with mutation Q31L showed depressive-like behavior with deficits in the forced swim test and other measures that were reversed by the antidepressant bupropion, but not by rolipram, a phosphodiesterase-4 (PDE4) inhibitor. In contrast, L100P mutant mice exhibited schizophrenic-like behavior, with profound deficits in prepulse inhibition and latent inhibition that were reversed by antipsychotic treatment. Both mutant DISC1 proteins exhibited reduced binding to the known DISC1 binding partner PDE4B. Q31L mutants had lower PDE4B activity, consistent with their resistance to rolipram, suggesting decreased PDE4 activity as a contributory factor in depression. This study demonstrates that Disc1 missense mutations in mice give rise to phenotypes related to depression and schizophrenia, thus supporting the role of DISC1 in major mental illness.
Collapse
Affiliation(s)
- Steven J Clapcote
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|