1
|
Hamdan F, Feodoroff M, Russo S, Fusciello M, Feola S, Chiaro J, Antignani G, Greco F, Leusen J, Ylösmäki E, Grönholm M, Cerullo V. Controlled release of enhanced cross-hybrid IgGA Fc PD-L1 inhibitors using oncolytic adenoviruses. Mol Ther Oncolytics 2023; 28:264-276. [PMID: 36911070 PMCID: PMC9995465 DOI: 10.1016/j.omto.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/31/2023] [Indexed: 02/07/2023] Open
Abstract
Immune checkpoint inhibitors have clinical success in prolonging the life of many cancer patients. However, only a minority of patients benefit from such therapy, calling for further improvements. Currently, most PD-L1 checkpoint inhibitors in the clinic do not elicit Fc effector mechanisms that would substantially increase their efficacy. To gain potency and circumvent off-target effects, we previously designed an oncolytic adenovirus (Ad-Cab) expressing an Fc fusion peptide against PD-L1 on a cross-hybrid immunoglobulin GA (IgGA) Fc. Ad-Cab elicited antibody effector mechanisms of IgG1 and IgA, which led to higher tumor killing compared with each isotype alone and with clinically approved PD-L1 checkpoint inhibitors. In this study, we further improved the therapy to increase the IgG1 Fc effector mechanisms of the IgGA Fc fusion peptide (Ad-Cab FT) by adding four somatic mutations that increase natural killer (NK) cell activation. Ad-Cab FT was shown to work better at lower concentrations compared with Ad-Cab in vitro and in vivo and to have better tumor- and myeloid-derived suppressor cell killing, likely because of higher NK cell activation. Additionally, the biodistribution of the Fc fusion peptide demonstrated targeted release in the tumor microenvironment with minimal or no leakage to the peripheral blood and organs in mice. These data demonstrate effective and safe use of Ad-Cab FT, bidding for further clinical investigation.
Collapse
Affiliation(s)
- Firas Hamdan
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Michaela Feodoroff
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Salvatore Russo
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Manlio Fusciello
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Sara Feola
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jacopo Chiaro
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Gabriella Antignani
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Francesca Greco
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jeanette Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Erkko Ylösmäki
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Mikaela Grönholm
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.,Department of Molecular Medicine and Medical Biotechnology and CEINGE, Naples University Federico II, Naples, Italy
| |
Collapse
|
2
|
Höti N, Lih TS, Dong M, Zhang Z, Mangold L, Partin AW, Sokoll LJ, Kay Li Q, Zhang H. Urinary PSA and Serum PSA for Aggressive Prostate Cancer Detection. Cancers (Basel) 2023; 15:cancers15030960. [PMID: 36765916 PMCID: PMC9913326 DOI: 10.3390/cancers15030960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 02/05/2023] Open
Abstract
Serum PSA, together with digital rectal examination and imaging of the prostate gland, have remained the gold standard in urological practices for the management of and intervention for prostate cancer. Based on these adopted practices, the limitations of serum PSA in identifying aggressive prostate cancer has led us to evaluate whether urinary PSA levels might have any clinical utility in prostate cancer diagnosis. Utilizing the Access Hybritech PSA assay, we evaluated a total of n = 437 urine specimens from post-DRE prostate cancer patients. In our initial cohort, PSA tests from a total of one hundred and forty-six (n = 146) urine specimens were obtained from patients with aggressive (Gleason Score ≥ 8, n = 76) and non-aggressive (Gleason Score = 6, n = 70) prostate cancer. A second cohort, with a larger set of n = 291 urine samples from patients with aggressive (GS ≥ 7, n = 168) and non-aggressive (GS = 6, n = 123) prostate cancer, was also utilized in our study. Our data demonstrated that patients with aggressive disease had lower levels of urinary PSA compared to the non-aggressive patients, while the serum PSA levels were higher in patients with aggressive prostate disease. The discordance between serum and urine PSA levels was further validated by immuno-histochemistry (IHC) assay in biopsied tumors and in metastatic lesions (n = 62). Our data demonstrated that aggressive prostate cancer was negatively correlated with the PSA in prostate cancer tissues, and, unlike serum PSA, urinary PSA might serve a better surrogate for capitulating tissue milieus to detect aggressive prostate cancer. We further explored the utility of urine PSA as a cancer biomarker, either alone and in combination with serum PSA, and their ratio (serum to urine PSA) to predict disease status. Comparing the AUCs for the urine and serum PSA alone, we found that urinary PSA had a higher predictive power (AUC= 0.732) in detecting aggressive disease. Furthermore, combining the ratios between serum to urine PSA with urine and serum assay enhanced the performance (AUC = 0.811) in predicting aggressive prostate disease. These studies support the role of urinary PSA in combination with serum for detecting aggressive prostate cancer.
Collapse
Affiliation(s)
- Naseruddin Höti
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, University of Maryland Medical Center, Baltimore, MD 21201, USA
| | - Tung-Shing Lih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mingming Dong
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zhen Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Leslie Mangold
- Department of Urology, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alan W. Partin
- Department of Urology, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lori J. Sokoll
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Urology, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Qing Kay Li
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Urology, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Correspondence: ; Tel.: +410-502-8149; Fax: +443-287-6388
| |
Collapse
|
3
|
Hamdan F, Ylösmäki E, Chiaro J, Giannoula Y, Long M, Fusciello M, Feola S, Martins B, Feodoroff M, Antignani G, Russo S, Kari O, Lee M, Järvinen P, Nisen H, Kreutzman A, Leusen J, Mustjoki S, McWilliams TG, Grönholm M, Cerullo V. Novel oncolytic adenovirus expressing enhanced cross-hybrid IgGA Fc PD-L1 inhibitor activates multiple immune effector populations leading to enhanced tumor killing in vitro, in vivo and with patient-derived tumor organoids. J Immunother Cancer 2021; 9:jitc-2021-003000. [PMID: 34362830 PMCID: PMC8351494 DOI: 10.1136/jitc-2021-003000] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 01/18/2023] Open
Abstract
Background Despite the success of immune checkpoint inhibitors against PD-L1 in the clinic, only a fraction of patients benefit from such therapy. A theoretical strategy to increase efficacy would be to arm such antibodies with Fc-mediated effector mechanisms. However, these effector mechanisms are inhibited or reduced due to toxicity issues since PD-L1 is not confined to the tumor and also expressed on healthy cells. To increase efficacy while minimizing toxicity, we designed an oncolytic adenovirus that secretes a cross-hybrid Fc-fusion peptide against PD-L1 able to elicit effector mechanisms of an IgG1 and also IgA1 consequently activating neutrophils, a population neglected by IgG1, in order to combine multiple effector mechanisms. Methods The cross-hybrid Fc-fusion peptide comprises of an Fc with the constant domains of an IgA1 and IgG1 which is connected to a PD-1 ectodomain via a GGGS linker and was cloned into an oncolytic adenovirus. We demonstrated that the oncolytic adenovirus was able to secrete the cross-hybrid Fc-fusion peptide able to bind to PD-L1 and activate multiple immune components enhancing tumor cytotoxicity in various cancer cell lines, in vivo and ex vivo renal-cell carcinoma patient-derived organoids. Results Using various techniques to measure cytotoxicity, the cross-hybrid Fc-fusion peptide expressed by the oncolytic adenovirus was shown to activate Fc-effector mechanisms of an IgA1 (neutrophil activation) as well as of an IgG1 (natural killer and complement activation). The activation of multiple effector mechanism simultaneously led to significantly increased tumor killing compared with FDA-approved PD-L1 checkpoint inhibitor (Atezolizumab), IgG1-PDL1 and IgA-PDL1 in various in vitro cell lines, in vivo models and ex vivo renal cell carcinoma organoids. Moreover, in vivo data demonstrated that Ad-Cab did not require CD8+ T cells, unlike conventional checkpoint inhibitors, since it was able to activate other effector populations. Conclusion Arming PD-L1 checkpoint inhibitors with Fc-effector mechanisms of both an IgA1 and an IgG1 can increase efficacy while maintaining safety by limiting expression to the tumor using oncolytic adenovirus. The increase in tumor killing is mostly attributed to the activation of multiple effector populations rather than activating a single effector population leading to significantly higher tumor killing.
Collapse
Affiliation(s)
- Firas Hamdan
- Laboratory of Immunovirotherapy, Drug Research Program, University of Helsinki Faculty of Pharmacy, Helsinki, Uusimaa, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Erkko Ylösmäki
- Laboratory of Immunovirotherapy, Drug Research Program, University of Helsinki Faculty of Pharmacy, Helsinki, Uusimaa, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jacopo Chiaro
- Laboratory of Immunovirotherapy, Drug Research Program, University of Helsinki Faculty of Pharmacy, Helsinki, Uusimaa, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Yvonne Giannoula
- Laboratory of Immunovirotherapy, Drug Research Program, University of Helsinki Faculty of Pharmacy, Helsinki, Uusimaa, Finland
| | - Maeve Long
- Translational Stem Cell Biology & Metabolism Program, Research Programs Unit, Department of Anatomy, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Manlio Fusciello
- Laboratory of Immunovirotherapy, Drug Research Program, University of Helsinki Faculty of Pharmacy, Helsinki, Uusimaa, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Sara Feola
- Laboratory of Immunovirotherapy, Drug Research Program, University of Helsinki Faculty of Pharmacy, Helsinki, Uusimaa, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Beatriz Martins
- Laboratory of Immunovirotherapy, Drug Research Program, University of Helsinki Faculty of Pharmacy, Helsinki, Uusimaa, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Michaela Feodoroff
- Laboratory of Immunovirotherapy, Drug Research Program, University of Helsinki Faculty of Pharmacy, Helsinki, Uusimaa, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Gabriella Antignani
- Laboratory of Immunovirotherapy, Drug Research Program, University of Helsinki Faculty of Pharmacy, Helsinki, Uusimaa, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Salvatore Russo
- Laboratory of Immunovirotherapy, Drug Research Program, University of Helsinki Faculty of Pharmacy, Helsinki, Uusimaa, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Otto Kari
- Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Moon Lee
- TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland.,Hematology Research Unit Helsinki, University of Helsinki, Helsinki, Uusimaa, Finland
| | - Petrus Järvinen
- Abdominal Center, Urology, Helsinki University Central Hospital, Helsinki, Uusimaa, Finland
| | - Harry Nisen
- Abdominal Center, Urology, Helsinki University Central Hospital, Helsinki, Uusimaa, Finland
| | - Anna Kreutzman
- Laboratory of Immunovirotherapy, Drug Research Program, University of Helsinki Faculty of Pharmacy, Helsinki, Uusimaa, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jeanette Leusen
- Center for Translational Immunology, UMC Utrecht, Utrecht, Netherlands
| | - Satu Mustjoki
- TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland.,Hematology Research Unit Helsinki, University of Helsinki, Helsinki, Uusimaa, Finland.,iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.,Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Thomas G McWilliams
- Translational Stem Cell Biology & Metabolism Program, Research Programs Unit, Department of Anatomy, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.,Department of Anatomy, University of Helsinki, Helsinki, Finland
| | - Mikaela Grönholm
- Laboratory of Immunovirotherapy, Drug Research Program, University of Helsinki Faculty of Pharmacy, Helsinki, Uusimaa, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Drug Research Program, University of Helsinki Faculty of Pharmacy, Helsinki, Uusimaa, Finland .,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.,Department of Molecular Medicine and Medical Biotechnology and CEINGE, Naples University 24 Federico II, 80131, Naples, Italy
| |
Collapse
|
4
|
Lu K, Wang F, Ma B, Cao W, Guo Q, Wang H, Rodriguez R, Wang Z. Teratogenic Toxicity Evaluation of Bladder Cancer-Specific Oncolytic Adenovirus on Mice. Curr Gene Ther 2021; 21:160-166. [PMID: 33334289 DOI: 10.2174/1566523220999201217161258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In our previous studies, we had demonstrated the efficiency and specificity of constructed bladder tissue-specific adenovirus Ad-PSCAE-UPII-E1A-AR (APU-EIA-AR) on bladder cancer. The virus biodistribution and body toxicity in nude mice have also been investigated. However, the safety of the bladder cancer-specific oncolytic adenovirus on fetal mice and F1 mice should be under intense investigation. OBJECTIVE In order to evaluate the teratogenic toxicity of bladder cancer-specific oncolytic adenovirus APU-EIA-AR on mice, in this study, we investigated the fetal mice weight, fetal body length and tail length, fetal skeleton development, as well as the F1 mice weight, growth curve, and major organ pathology. These teratogenic toxicity data of bladder tissue-specific adenovirus Ad-PSCAE- UPII-E1A-AR (AD) would provide safe information prior to embarking on clinical trials. METHODS On the sixth day of being fertilized, the pregnant mice began to be intramuscularly administrated with AD (1×107VP, 1×108VP, 1×109VP) every other day for ten days. The pregnant mice were then divided into two groups. One group was euthanized on the seventeenth day; the fetal mice were taken out, and the bone structure of the infants was observed. The other group was observed until natural childbirth. The Filial Generation (F1) is fed for 30 days; the variations in the growth progress and development were assessed. The mice were then euthanized; The tissues from major organs were harvested and observed under the microscope. RESULTS In the process of teratogenic toxicity test, the Placenta weight, fetal mice weight, body length, and a tail length of mice fetal in adenovirus treated group did not reveal any alteration. Meanwhile, comparing with the PBS group, there is no obvious change in the skeleton of fetal mice treated with adenovirus. During the development process of F1 mice treated with adenovirus, the changes in mice weight show statistical significance. However, in the progress of the growth curve, this difference is not very obvious. Furthermore, the pathological section showed no obvious alteration in major organs. CONCLUSION Our study demonstrated that bladder cancer-specific adenovirus Ad-PSCAE-UPII- E1A-AR appears safe in pregnant mice without any discernable effects on fetal mice and F1 development. Hence, it is relatively safe for tumor gene therapy.
Collapse
Affiliation(s)
- Keqing Lu
- Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases, Gansu Province (Lanzhou University), Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou730000, China
| | - Fang Wang
- Center of Medical Experiments, School of Basic Medical Sciences, Lanzhou University, Gansu Province, Lanzhou730000, China
| | - Baoliang Ma
- Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases, Gansu Province (Lanzhou University), Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou730000, China
| | - Wenjuan Cao
- Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases, Gansu Province (Lanzhou University), Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou730000, China
| | - Qi Guo
- Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases, Gansu Province (Lanzhou University), Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou730000, China
| | - Hanzhang Wang
- Department of Urology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States
| | - Ronald Rodriguez
- Department of Urology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States
| | - Zhiping Wang
- Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases, Gansu Province (Lanzhou University), Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou730000, China
| |
Collapse
|
5
|
Xu D, Yao J, Zhang Y, Xiao N, Peng P, Li Z, Pan Z, Yao Z. The Effect of PEI-Mediated E1A on the Radiosensitivity of Hepatic Carcinoma Cells. Asian Pac J Cancer Prev 2020; 21:911-917. [PMID: 32334450 PMCID: PMC7445989 DOI: 10.31557/apjcp.2020.21.4.911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 11/26/2022] Open
Abstract
Objective: The study was undertaken to investigate the effects of polyethyleneimine (PEI)-mediated adenovirus 5 early region 1A (E1A) on radiosensitivity of human hepatic carcinoma cell in vitro and to disclosure the underlying mechanism. Materials and Methods: Human hepatic carcinoma SMMC-7721 cell line was transfected with E1A gene using PEI vector. Untransfected cells (SMMC-7721 group), cells transfected with blank-vector (SMMC-7721-vect group), and cells transfected with E1A gene (SMMC-7721-E1A group) were treated with 6 MV X-ray irradiation at doses of 0, 1, 2, 4, 8 and Gy, respectively. Radiosensitivity was determined by MTT assay and quantified by calculating the cell survival rate. Cell-cycle distribution and apotosis rate were monitored by flow cytometry. Results: The survival rate of SMMC-7721-E1A was significantly lower than that of SMMC-7721 cell. Apoptosis rate of SMMC-7721-E1A group was significantly higher than that of SMMC-7721group (P<0.01).The ratio of S stage in cell cycle of SMMC-7721-E1A was significantly lower than that in SMMC-7721 cell. The ratio of G2/M stage in cell cycle of SMMC-7721-E1A was significantly higher than that in SMMC-7721 cell (P<0.01). Conclusion: PEI could transfect E1A gene into hepatic carcinoma cells PEI-mediated E1A could effectively enhance radiosensitivity of hepatic carcinoma cells which may be related to its effects on apoptosis promoting leading to S phase suppression and G2/M phase arrest.
Collapse
Affiliation(s)
- Danghui Xu
- Department of Radiology,Affiliated Hospital of Nanjing University of Chinese Medicine,Jiangsu Provincial Hospital of Traditional Chinese Medicine,Nanjing, Jiangsu Province ,China
| | - Jianxin Yao
- Department of Medical Imaging, Nanjing Vocational Health College, Nanjing, Jiangsu Province, China
| | - Yiwen Zhang
- Department of Nursing, The Affiliated Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Nan Xiao
- Department of Medical Imaging, Nanjing Vocational Health College, Nanjing, Jiangsu Province, China
| | - Peng Peng
- Department of Nursing, Nanjing Health College of Jiangsu Union Technical Institute, Nanjing, Jiangsu Province, China
| | - Zhanfeng Li
- Department of Medical Imaging, Nanjing Vocational Health College, Nanjing, Jiangsu Province, China
| | - Zhiyao Pan
- Department of Basic Medical Science, Zhejiang University Medical College, Hangzhou, Zhejiang Province, China
| | - Zhifeng Yao
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of Radiotherapy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
6
|
Höti N, Lih TS, Pan J, Zhou Y, Yang G, Deng A, Chen L, Dong M, Yang RB, Tu CF, Haffner MC, Kay Li Q, Zhang H. A Comprehensive Analysis of FUT8 Overexpressing Prostate Cancer Cells Reveals the Role of EGFR in Castration Resistance. Cancers (Basel) 2020; 12:cancers12020468. [PMID: 32085441 PMCID: PMC7072180 DOI: 10.3390/cancers12020468] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 01/12/2023] Open
Abstract
The emergence of castration-resistance is one of the major challenges in the management of patients with advanced prostate cancer. Although the spectrum of systemic therapies that are available for use alongside androgen deprivation for treatment of castration-resistant prostate cancer (CRPC) is expanding, none of these regimens are curative. Therefore, it is imperative to apply systems approaches to identify and understand the mechanisms that contribute to the development of CRPC. Using comprehensive proteomic approaches, we show that a glycosylation-related enzyme, alpha (1,6) fucosyltransferase (FUT8), which is upregulated in CRPC, might be responsible for resistance to androgen deprivation. Mechanistically, we demonstrated that overexpression of FUT8 resulted in upregulation of the cell surface epidermal growth factor receptor (EGFR) and corresponding downstream signaling, leading to increased cell survival in androgen-depleted conditions. We studied the coregulatory mechanisms of EGFR and FUT8 expression in CRPC xenograft models and found that castration induced FUT8 overexpression associated with increased expression of EGFR. Taken together, our findings suggest a crucial role played by FUT8 as a mediator in switching prostate cancer cells from nuclear receptor signaling (androgen receptor) to the cell surface receptor (EGFR) mechanisms in escaping castration-induced cell death. These findings have clinical implication in understanding the role of FUT8 as a master regulator of cell surface receptors in cancer-resistant phenotypes.
Collapse
Affiliation(s)
- Naseruddin Höti
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
- Correspondence: ; Tel.: (410)-502-8149; Fax: (443)-287-6388
| | - Tung-Shing Lih
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
| | - Jianbo Pan
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
| | - Yangying Zhou
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
| | - Ganglong Yang
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
| | - Ashely Deng
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
| | - Lijun Chen
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
| | - Mingmimg Dong
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (R.-B.Y.); (C.-F.T.)
| | - Cheng-Fen Tu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (R.-B.Y.); (C.-F.T.)
| | - Michael C. Haffner
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Qing Kay Li
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
| |
Collapse
|
7
|
Li D, Tian G, Wang J, Zhao LY, Co O, Underill ZC, Mymryk JS, Claessens F, Dehm SM, Daaka Y, Liao D. Inhibition of androgen receptor transactivation function by adenovirus type 12 E1A undermines prostate cancer cell survival. Prostate 2018; 78:1140-1156. [PMID: 30009471 PMCID: PMC6424568 DOI: 10.1002/pros.23689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mutations or truncation of the ligand-binding domain (LBD) of androgen receptor (AR) underlie treatment resistance for prostate cancer (PCa). Thus, targeting the AR N-terminal domain (NTD) could overcome such resistance. METHODS Luciferase reporter assays after transient transfection of various DNA constructs were used to assess effects of E1A proteins on AR-mediated transcription. Immunofluorescence microscopy and subcellular fractionation were applied to assess intracellular protein localization. Immunoprecipitation and mammalian two-hybrid assays were used to detect protein-protein interactions. qRT-PCR was employed to determine RNA levels. Western blotting was used to detect protein expression in cells. Effects of adenoviruses on prostate cancer cell survival were evaluated with CellTiter-Glo assays. RESULTS Adenovirus 12 E1A (E1A12) binds specifically to the AR. Interestingly, the full-length E1A12 (266 aa) preferentially binds to full-length AR, while the small E1A12 variant (235 aa) interacts more strongly with AR-V7. E1A12 promotes AR nuclear translocation, likely through mediating intramolecular AR NTD-LBD interactions. In the nucleus, AR and E1A12 co-expression in AR-null PCa cells results in E1A12 redistribution from nuclear foci containing CBX4 (also known as Pc2), suggesting a preferential AR-E1A12 interaction over other E1A12 interactors. E1A12 represses AR-mediated transcription in reporter gene assays and endogenous AR target genes such as ATAD2 and MYC in AR-expressing PCa cells. AR-expressing PCa cells are more sensitive to death induced by a recombinant adenovirus expressing E1A12 (Ad-E1A12) than AR-deficient PCa cells, which could be attributed to the increased viral replication promoted by androgen stimulation. Targeting the AR by E1A12 promotes apoptosis in PCa cells that express the full-length AR or C-terminally truncated AR variants. Importantly, inhibition of mTOR signaling that blocks the expression of anti-apoptotic proteins markedly augments Ad-E1A12-induced apoptosis of AR-expressing cells. Mechanistically, Ad-E1A12 infection triggers apoptotic response while activating the PI3K-AKT-mTOR signaling axis; thus, mTOR inhibition enhances apoptosis in AR-expressing PCa cells infected by Ad-E1A12. CONCLUSION Ad12 E1A inhibits AR-mediated transcription and suppresses PCa cell survival, suggesting that targeting the AR by E1A12 might have therapeutic potential for treating advanced PCa with heightened AR signaling.
Collapse
Affiliation(s)
- Dawei Li
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, P. R. China
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Guimei Tian
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Jia Wang
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
- Affiliated Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Lisa Y. Zhao
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
- Present address: Department of Medicine, University of Florida, Gainesville, FL 32610
| | - Olivia Co
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Zoe C. Underill
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Joe S. Mymryk
- Department of Microbiology and Immunology, the University of Western Ontario, London Regional Cancer Centre, Ontario, Canada
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 PO box 901, 3000 Leuven, Belgium
| | - Scott M. Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455
| | - Yehia Daaka
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Daiqing Liao
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
- Corresponding author: Department of Anatomy and Cell Biology, University of Florida, 1333 Center Drive, Gainesville, Florida, 32610-0235, , Phone: 352-273-8188, Fax: 352-846-1248
| |
Collapse
|
8
|
Höti N, Johnson TJ, Chowdhury WH, Rodriguez R. Loss of Cyclin-Dependent Kinase Inhibitor Alters Oncolytic Adenovirus Replication and Promotes More Efficient Virus Production. Cancers (Basel) 2018; 10:cancers10060202. [PMID: 29914081 PMCID: PMC6025342 DOI: 10.3390/cancers10060202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 01/01/2023] Open
Abstract
We elucidate the role of p21/Waf-1, a cyclin-dependent kinase inhibitor, on the oncolytic infection and replication cycle of adenovirus by studying both mRNA and adenoviral proteins expression. We found that infection in the absence of p21 causes a significant increase in adenoviral genomes and late gene expression. Similarly, the oncolytic adenoviral infected p21−/− cells have earlier formation of replication foci and robust replication kinetics that were not observed in the wild type p21/Waf-1 intact cells. These findings suggest a culmination that the presence of intact p21 in host cells causes defects in the oncolytic viral life cycle which results in the production of immature and noninfectious particles.
Collapse
Affiliation(s)
- Naseruddin Höti
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Tamara Jane Johnson
- James Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Wasim H Chowdhury
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA.
| | - Ronald Rodriguez
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
9
|
Baker AT, Aguirre-Hernández C, Halldén G, Parker AL. Designer Oncolytic Adenovirus: Coming of Age. Cancers (Basel) 2018; 10:E201. [PMID: 29904022 PMCID: PMC6025169 DOI: 10.3390/cancers10060201] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022] Open
Abstract
The licensing of talimogene laherparepvec (T-Vec) represented a landmark moment for oncolytic virotherapy, since it provided unequivocal evidence for the long-touted potential of genetically modified replicating viruses as anti-cancer agents. Whilst T-Vec is promising as a locally delivered virotherapy, especially in combination with immune-checkpoint inhibitors, the quest continues for a virus capable of specific tumour cell killing via systemic administration. One candidate is oncolytic adenovirus (Ad); it’s double stranded DNA genome is easily manipulated and a wide range of strategies and technologies have been employed to empower the vector with improved pharmacokinetics and tumour targeting ability. As well characterised clinical and experimental agents, we have detailed knowledge of adenoviruses’ mechanisms of pathogenicity, supported by detailed virological studies and in vivo interactions. In this review we highlight the strides made in the engineering of bespoke adenoviral vectors to specifically infect, replicate within, and destroy tumour cells. We discuss how mutations in genes regulating adenoviral replication after cell entry can be used to restrict replication to the tumour, and summarise how detailed knowledge of viral capsid interactions enable rational modification to eliminate native tropisms, and simultaneously promote active uptake by cancerous tissues. We argue that these designer-viruses, exploiting the viruses natural mechanisms and regulated at every level of replication, represent the ideal platforms for local overexpression of therapeutic transgenes such as immunomodulatory agents. Where T-Vec has paved the way, Ad-based vectors now follow. The era of designer oncolytic virotherapies looks decidedly as though it will soon become a reality.
Collapse
Affiliation(s)
- Alexander T Baker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| | - Carmen Aguirre-Hernández
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Gunnel Halldén
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Alan L Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| |
Collapse
|
10
|
Höti N, Yang S, Aiyetan P, Kumar B, Hu Y, Clark D, Eroglu AU, Shah P, Johnson T, Chowdery WH, Zhang H, Rodriguez R. Overexpression of Exportin-5 Overrides the Inhibitory Effect of miRNAs Regulation Control and Stabilize Proteins via Posttranslation Modifications in Prostate Cancer. Neoplasia 2017; 19:817-829. [PMID: 28881308 PMCID: PMC5587889 DOI: 10.1016/j.neo.2017.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 01/21/2023] Open
Abstract
Although XPO5 has been characterized to have tumor-suppressor features in the miRNA biogenesis pathway, the impact of altered expression of XPO5 in cancers is unexplored. Here we report a novel "oncogenic" role of XPO5 in advanced prostate cancer. Using prostate cancer models, we found that excess levels of XPO5 override the inhibitory effect of the canoncial miRNA-mRNA regulation, resulting in a global increase in proteins expression. Importantly, we found that decreased expression of XPO5 could promote an increase in proteasome degradation, whereas overexpression of XPO5 leads to altered protein posttranslational modification via hyperglycosylation, resulting in cellular protein stability. We evaluated the therapeutic advantage of targeting XPO5 in prostate cancer and found that knocking down XPO5 in prostate cancer cells suppressed cellular proliferation and tumor development without significantly impacting normal fibroblast cells survival. To our knowledge, this is the first report describing the oncogenic role of XPO5 in overriding the miRNAs regulation control. Furthermore, we believe that these findings will provide an explanation as to why, in some cancers that express higher abundance of mature miRNAs, fail to suppress their potential protein targets.
Collapse
Affiliation(s)
- Naseruddin Höti
- Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD; Department of Pathology, Division of Clinical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD.
| | - Shuang Yang
- Department of Pathology, Division of Clinical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD
| | - Paul Aiyetan
- Department of Pathology, Division of Clinical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD
| | - Binod Kumar
- Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Yingwei Hu
- Department of Pathology, Division of Clinical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD
| | - David Clark
- Department of Pathology, Division of Clinical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD
| | - Arife Unal Eroglu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Punit Shah
- Department of Pathology, Division of Clinical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD
| | - Tamara Johnson
- Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Wasim H Chowdery
- Department of Urology, The University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Hui Zhang
- Department of Pathology, Division of Clinical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD
| | - Ronald Rodriguez
- Department of Urology, The University of Texas Health Science Center at San Antonio, San Antonio, TX
| |
Collapse
|
11
|
Kumar B, Khaleghzadegan S, Mears B, Hatano K, Kudrolli TA, Chowdhury WH, Yeater DB, Ewing CM, Luo J, Isaacs WB, Marchionni L, Lupold SE. Identification of miR-30b-3p and miR-30d-5p as direct regulators of androgen receptor signaling in prostate cancer by complementary functional microRNA library screening. Oncotarget 2016; 7:72593-72607. [PMID: 27683042 PMCID: PMC5341930 DOI: 10.18632/oncotarget.12241] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/17/2016] [Indexed: 02/06/2023] Open
Abstract
The Androgen Receptor (AR) plays a key role in prostate biology and in the progression of prostate cancer (PCa) to castration resistance. The role of microRNAs (miRNAs) in aberrant AR signaling have not been fully characterized. Here we screened a library of 810 miRNA mimics to identify miRNAs that alter AR activity in complementary functional assays including protein lysate microarray (LMA) quantification of AR and PSA protein levels, AR transcriptional reporter activity, and AR-positive PCa cell viability. Candidate AR-regulating miRNAs were verified through AR transcriptional reporter and cell viability assays. MiRNA binding sites were found within the AR 3'-untranslated region (UTR) and within the AR and AR-V7 coding regions. MiRNA activity was characterized by western blotting, 3'-UTR reporter assay, and AR-GFP and AR-V7-GFP reporter assays. Results uncovered miR-30 family members as direct AR inhibitors. Inhibition of endogenous miR-30b-3p and miR-30d-5p enhanced AR expression and androgen-independent cell growth. Droplet digital RT-PCR quantification of miR-30c-5p and miR-30d-5p revealed significantly reduced levels in metastatic castration resistant PCa (CRPC), when compared to healthy prostate tissues. MiR-30d-5p levels were inversely correlated with AR activity, as measured by PSA mRNA, in metastatic CRPC. Collectively, these studies provide a comprehensive evaluation of AR-regulating miRNAs in PCa.
Collapse
Affiliation(s)
- Binod Kumar
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Salar Khaleghzadegan
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Brian Mears
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Koji Hatano
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tarana A. Kudrolli
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Wasim H. Chowdhury
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Current Address: University of Texas at San Antonio, San Antonio, Texas, USA
| | - David B. Yeater
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Charles M. Ewing
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jun Luo
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - William B. Isaacs
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Luigi Marchionni
- The department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Shawn E. Lupold
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
12
|
Zhang H, Wang F, Mao C, Zhang Z, Fu S, Lu J, Zhai Z, Li R, Li S, Rodriguez R, Wang Z. Effect of combined treatment of radiation and tissue-specific recombinant oncolytic adenovirus on bladder cancer cells. Int J Radiat Biol 2016; 93:174-183. [PMID: 27600610 DOI: 10.1080/09553002.2017.1231942] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE Gene therapy combined with radiation has shown promising potential for the treatment of tumors. This paper aimed to clarify the synergistic effect of radiotherapy combined with the bladder cancer tissue-specific oncolytic adenovirus (Ad-PSCAE-UPII-E1A) on bladder cancer cells and to study the underlying synergy mechanisms of the combined treatment. MATERIALS AND METHODS The Adenovirus carrying E1A under control of UPII promoter and prostate stem cell antigen enhancer (PSCAE) were successfully constructed. The viability of bladder cancer cells BIU-87 and EJ was determined by MTT assay. The apoptotic assay was demonstrated by flow cytometry and TEM. Virus titer was determined by TCID50 assay, and proteins Mre11, Chk2-Thr68, and E1A were analyzed by Western blot method. RESULTS Oncolytic adenovirus combined with radiotherapy improved antitumor efficacy compared with the single treatment at a time and was X-ray dosage-dependent. When the adenovirus infection was scheduled at 24 h after irradiation, cancer cells had the lowest viability. Adenovirus and irradiation induced cell death through the caspase-3 related apoptotic pathway, and bladder cancer cells were arrested at the G1 (BIU-87) or S phase (EJ). Autophagic vacuoles were observed in bladder cancer cells treated with radiation and adenovirus. After irradiation, more virus particles were observed in the BIU-87 and EJ cells. However, by a TCID50 assay, there was no difference in virus titter between irradiated bladder cancer cells and unirradiated cells. The proteins Mre11, Chk2-Thr68 which involved in the DNA break repair pathway were decreased while γ-H2AX-Ser139 increased; at the same time, the E1A gene and the hexon proteins of oncolytic adenovirus were increased after irradiation. CONCLUSIONS Our results proved synergistic antitumor effect of adenovirus Ad-PSCAE-UPII-E1A and radiation, which might be a potential therapeutic strategy for bladder cancer.
Collapse
Affiliation(s)
- Hongjuan Zhang
- a Urologic Clinical Center of Gansu Province, Key Laboratory of Gansu Province, Institute of Urology, The Second Hospital of Lanzhou University , Lanzhou , China.,b The Second Hospital of Tianjin Medical University , Tian Jin , China
| | - Fang Wang
- c School of Basic Medical Sciences, Lanzhou University , Lanzhou , China
| | - Chunjie Mao
- d The General Hospital of Tianjin Medical University , Tian Jin , China
| | - Zuncheng Zhang
- b The Second Hospital of Tianjin Medical University , Tian Jin , China
| | - Shengjun Fu
- a Urologic Clinical Center of Gansu Province, Key Laboratory of Gansu Province, Institute of Urology, The Second Hospital of Lanzhou University , Lanzhou , China
| | - Jianzhong Lu
- a Urologic Clinical Center of Gansu Province, Key Laboratory of Gansu Province, Institute of Urology, The Second Hospital of Lanzhou University , Lanzhou , China
| | - Zhenxing Zhai
- a Urologic Clinical Center of Gansu Province, Key Laboratory of Gansu Province, Institute of Urology, The Second Hospital of Lanzhou University , Lanzhou , China
| | - Renju Li
- a Urologic Clinical Center of Gansu Province, Key Laboratory of Gansu Province, Institute of Urology, The Second Hospital of Lanzhou University , Lanzhou , China
| | - Shuwen Li
- a Urologic Clinical Center of Gansu Province, Key Laboratory of Gansu Province, Institute of Urology, The Second Hospital of Lanzhou University , Lanzhou , China
| | - Ron Rodriguez
- e Department of Urology , University of Texas Health Science Center , San Antonio , Texas , USA
| | - Zhiping Wang
- a Urologic Clinical Center of Gansu Province, Key Laboratory of Gansu Province, Institute of Urology, The Second Hospital of Lanzhou University , Lanzhou , China
| |
Collapse
|
13
|
Castanares MA, Copeland BT, Chowdhury WH, Liu MM, Rodriguez R, Pomper MG, Lupold SE, Foss CA. Characterization of a novel metastatic prostate cancer cell line of LNCaP origin. Prostate 2016; 76:215-25. [PMID: 26499105 PMCID: PMC4729204 DOI: 10.1002/pros.23115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/02/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND The LNCaP cell line was originally isolated from the lymph node of a patient with metastatic prostate cancer. Many cell lines have been derived from LNCaP by selective pressures to study different aspects of prostate cancer progression. When injected subcutaneously into male athymic nude mice, LNCaP and its derivatives rarely metastasize. METHODS Here, we describe the characteristics of a new LNCaP derivative, JHU-LNCaP-SM, which was generated by long term passage in normal cell culture conditions. RESULTS Short tandem repeat (STR) analysis and genomic sequencing verified JHU-LNCaP-SM derivation from parental LNCaP cells. JHU-LNCaP-SM cells express the same mutated androgen receptor (AR) but unlike LNCaP, are no longer androgen dependent for growth. The cells demonstrate an attenuated androgen responsiveness in transcriptional assays and retain androgen sensitive expression of PSA, AR, and PSMA. Unlike parental LNCaP, JHU-LNCaP-SM cells quickly form subcutaneous tumors in male athymic nude mice, reliably metastasize to the lymph nodes and display a striking intra-tumoral and spreading hemorrhagic phenotype as tumor xenografts. CONCLUSIONS The JHU-LNCaP-SM cell line is a new isolate of LNCaP, which facilitates practical, preclinical studies of spontaneous metastasis of prostate cancer through lymphatic tissues.
Collapse
Affiliation(s)
- Mark A. Castanares
- Department of Pharmacology and Molecular Sciences, Lilly Corporate Center, Indianapolis, Indiana
| | - Ben T. Copeland
- Russell H Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wasim H. Chowdhury
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Minzhi M. Liu
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ronald Rodriguez
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Martin G. Pomper
- Russell H Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shawn E. Lupold
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Catherine A. Foss
- Russell H Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Correspondence to: Catherine A. Foss, Russell H Morgan Department of Radiology and Radiological Sciences, CRB2 493, Johns Hopkins University School of Medicine, Baltimore, MD, 21228.
| |
Collapse
|
14
|
A replicating adenovirus capsid display recombinant elicits antibodies against Plasmodium falciparum sporozoites in Aotus nancymaae monkeys. Infect Immun 2014; 83:268-75. [PMID: 25368113 DOI: 10.1128/iai.02626-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Decades of success with live adenovirus vaccines suggest that replication-competent recombinant adenoviruses (rAds) could serve as effective vectors for immunization against other pathogens. To explore the potential of a live rAd vaccine against malaria, we prepared a viable adenovirus 5 (Ad5) recombinant that displays a B-cell epitope from the circumsporozoite protein (CSP) of Plasmodium falciparum on the virion surface. The recombinant induced P. falciparum sporozoite-neutralizing antibodies in mice. Human adenoviruses do not replicate in mice. Therefore, to examine immunogenicity in a system in which, as in humans, the recombinant replicates, we constructed a similar recombinant in an adenovirus mutant that replicates in monkey cells and immunized four Aotus nancymaae monkeys. The recombinant replicated in the monkeys after intratracheal instillation, the first demonstration of replication of human adenoviruses in New World monkeys. Immunization elicited antibodies both to the Plasmodium epitope and the Ad5 vector. Antibodies from all four monkeys recognized CSP on intact parasites, and plasma from one monkey neutralized sporozoites in vitro and conferred partial protection against P. falciparum sporozoite infection after passive transfer to mice. Prior enteric inoculation of two animals with antigenically wild-type adenovirus primed a response to the subsequent intratracheal inoculation, suggesting a route to optimizing performance. A vaccine is not yet available against P. falciparum, which induces the deadliest form of malaria and kills approximately one million children each year. The live capsid display recombinant described here may constitute an early step in a critically needed novel approach to malaria immunization.
Collapse
|
15
|
Wu P, Sokoll LJ, Kudrolli TA, Chowdhury WH, Ma R, Liu MM, Rodriguez R, Lupold SE. A novel approach for detecting viable and tissue-specific circulating tumor cells through an adenovirus-based reporter vector. Prostate 2014; 74:1286-1296. [PMID: 25065656 PMCID: PMC4130793 DOI: 10.1002/pros.22845] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/04/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Circulating tumor cells (CTCs) hold great promise as biomarkers and are a direct source of tumor cells through a simple blood draw. However, CTCs are rare and their detection requires sensitive and specific methods to overcome the overwhelming hematocyte population. Therefore, CTC detection remains technically challenging. METHODS An assay was developed for detecting viable and tissue-specific CTCs using a tropism-enhanced and conditionally replicating reporter adenovirus (CTC-RV). Adenoviral replication was made prostate-specific by placing the E1A gene under the control of the probasin promoter and prostate-specific antigen enhancer (PSE-PBN). Viral tropism was expanded through capsid-displayed integrin targeting peptides. A secreted reporter, humanized Metridia Luciferase (hMLuc), was engineered for expression during the major late phase of viral replication. The assay involves red blood cell lysis, cell collection, viral infection, and subsequent quantification of reporter activity from cellular media. Assay and reporter stability, cell specificity and sensitivity were evaluated in cell dilution models in human blood. RESULTS A conditionally replicating prostate-selective adenovirus reporter and CTC assay system were generated. The secreted reporter, MLuc, was found to be stable for at least 3 days under assay conditions. CTC detection, modeled by cell dilution in blood, was selective for androgen receptor positive prostate cancer (PCa) cells. Serial dilution demonstrated assay linearity and sensitivity to as few as three cells. Prostate cancer cell viability declined after several hours in anticoagulated blood at ambient temperatures. CONCLUSIONS Conditionally replicative adenoviral vectors and secreted reporters offer a functional method to detect viable CTCs with cell specificity and high sensitivity.
Collapse
Affiliation(s)
- Ping Wu
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, 600 N Wolfe St, Baltimore, MD 21287
| | - Lori J Sokoll
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, 600 N Wolfe St, Baltimore, MD 21287
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Tarana A Kudrolli
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, 600 N Wolfe St, Baltimore, MD 21287
| | - Wasim H Chowdhury
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, 600 N Wolfe St, Baltimore, MD 21287
| | - Rong Ma
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, 600 N Wolfe St, Baltimore, MD 21287
| | - Minzhi M Liu
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, 600 N Wolfe St, Baltimore, MD 21287
| | - Ronald Rodriguez
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, 600 N Wolfe St, Baltimore, MD 21287
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Shawn E Lupold
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, 600 N Wolfe St, Baltimore, MD 21287
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| |
Collapse
|
16
|
Bicalutamide-activated oncolytic adenovirus for the adjuvant therapy of high-risk prostate cancer. Cancer Gene Ther 2013; 20:394-402. [PMID: 23764901 PMCID: PMC3732197 DOI: 10.1038/cgt.2013.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/18/2013] [Indexed: 01/10/2023]
Abstract
Conditionally replicating adenoviruses (CRAds) utilize tissue specific promoters to control the expression of the early genes, E1A and E1B, to preferentially replicate and lyse tumor cells (oncolysis). Previous CRAds used in prostate cancer gene therapy require androgens to activate prostate specific promoters and induce viral replication. Unfortunately, these CRAds have reduced activity in patients on androgen suppressive therapy. We describe a novel prostate specific CRAd generated by fusing the E1A gene to the androgen receptor (AR) cDNA with a point mutation in codon 685 (C685Y). The E1A-AR fusion neutralizes the previously described mutual inhibition of E1A & AR, and the C685Y point mutation alters specificity of steroid ligand binding to the AR, such that both androgens and non-steroidal anti-androgens can activate viral replication. We demonstrate that the mutated E1A-AR retained the ability to function in regulating AR responsive genes and E1A responsive viral genes. In combination therapy of virus, bicalutamide (anti-androgen) and radiation, a profound impact on cell death by viral oncolysis was seen both in vitro and tumor xenografts. To our knowledge, this is the first gene therapy engineered to be enhanced by anti-androgens, and a particularly attractive adjuvant strategy for intensity modulated radiation therapy (IMRT) of high-risk prostate cancers.
Collapse
|
17
|
Wang F, Wang Z, Tian H, Qi M, Zhai Z, Li S, Li R, Zhang H, Wang W, Fu S, Lu J, Rodriguez R, Guo Y, Zhou L. Biodistribution and safety assessment of bladder cancer specific recombinant oncolytic adenovirus in subcutaneous xenografts tumor model in nude mice. Curr Gene Ther 2012; 12:67-76. [PMID: 22384806 DOI: 10.2174/156652312800099599] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 11/22/2022]
Abstract
BACKGROUND The previous works about safety evaluation for constructed bladder tissue specific adenovirus are poorly documented. Thus, we investigated the biodistribution and body toxicity of bladder specific oncolytic adenovirus Ad-PSCAE-UPII-E1A (APU-E1A) and Ad-PSCAE-UPII-E1A-AR (APU-E1A-AR), providing meaningful information prior to embarking on human clinical trials. MATERIALS AND METHOD Conditionally replicate recombinant adenovirus (CRADs) APU-E1A, APU-EIA-AR were constructed with bladder tissue specific UroplakinII(UPII) promoter to induce the expression of Ad5E1A gene and E1A-AR fusing gene, and PSCAE was inserted at upstream of promoter to enhance the function of promoter. Based on the cytopathic and anti-tumor effect of bladder cancer, these CRADs were intratumorally injected into subcutaneous xenografts tumor in nude mice. We then determined the toxicity through general health and behavioral assessment, hepatic and hematological toxicity evaluation, macroscopic and microscopic postmortem analyses. The spread of the transgene E1A of adenovirus was detected with RT-PCR and Western blot. Virus replication and distribution were examined with APU-LUC administration and Luciferase Assay. RESULTS General assessment and body weight of the animals did not reveal any alteration in general behavior. The hematological alterations of groups which were injected with 5x10(8) pfu or higher dose (5x10(9) pfu) of APU-E1A and APU-E1A-AR showed no difference in comparison with PBS group, and only slight increased transaminases in contrast to PBS group at 5x10(9) pfu of APU-E1A and APU-E1A-AR were observed. E1A transgene did not disseminate to organs outside of xenograft tumor. Virus replication was not detected in other organs beside tumor according to Luciferase Assay. CONCLUSIONS Our study showed that recombinant adenovirus APU-E1A-AR and APU-E1A appear safe with 5x10(7) pfu and 5x10(8) pfu intratumorally injection in mice, without any discernable effects on general health and behavior.
Collapse
Affiliation(s)
- Fang Wang
- School of Life Sciences in Lanzhou University, Lanzhou, Gansu Province, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Antitumor effects of bladder cancer-specific adenovirus carrying E1A-androgen receptor in bladder cancer. Gene Ther 2012; 19:1065-74. [PMID: 22218302 DOI: 10.1038/gt.2011.180] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The high frequency of recurrence and poor survival rate of bladder cancer demand exploration of novel strategies. Gene therapy via adenovirus has shown promising potential for the treatment of tumors. We constructed a bladder cancer-specific adenovirus carrying E1A-androgen receptor (AR) under the control of UPII promoter and prostate stem cell antigen enhancer (PSCAE), designated as Ad/PSCAE/UPII/E1A-AR, and investigated its antitumor effects in vitro and in vivo. We demonstrated that Ad/PSCAE/UPII/E1A-AR could be selectively replicated in bladder tumor cell lines (5637, BIU87, EJ and T24) when compared with control adenovirus Ad/PSCAE/UPII/Luc. However, there was no evidence of cytotoxicity for normal human bladder cell line SV-HUC-1 and hepatoma cell line SMMC7721. AR agonist R1881 could strengthen the oncolytic effect of Ad/PSCAE/UPII/E1A-AR in bladder cancer cells. In addition, we demonstrated that intratumoral injection of Ad/PSCAE/UPII/E1A-AR into established subcutaneous human EJ tumors in nude mice could significantly regress the growth of tumor and markedly prolong survival for tumor-bearing mice; on the other hand, saline-treated tumors continued to grow rapidly. Our studies indicate that Ad/PSCAE/UPII/E1A-AR could effectively treat bladder cancer in vitro and in vivo. Furthermore, our findings provide a promising therapeutic modality for the treatment of bladder cancer.
Collapse
|
19
|
Höti N, Chowdhury WH, Mustafa S, Ribas J, Castanares M, Johnson T, Liu M, Lupold SE, Rodriguez R. Armoring CRAds with p21/Waf-1 shRNAs: the next generation of oncolytic adenoviruses. Cancer Gene Ther 2010; 17:585-97. [PMID: 20448671 DOI: 10.1038/cgt.2010.15] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Conditionally replicating adenoviruses (CRAds) represent a promising modality for the treatment of neoplastic diseases, including Prostate Cancer. Selectively replicating viruses can be generated by placing a tissue or cancer-specific promoter upstream of one or more of the viral genes required for replication (for example, E1A, E1B). We have previously reported multiple cellular processes that can attenuate viral replication, which in turn compromises viral oncolysis and tumor kill. In this study, we investigated the importance of the cyclin-dependent kinase inhibitor p21/Waf-1, on viral replication and tumor growth. To our knowledge, this is the first report describing the importance of p21/Waf-1shRNA on the induction of an androgen responsive element (ARE) based promoter driving the E1A gene. As a proof of concept, the study emphasizes the use of RNA interference technology to overcome promoter weaknesses for tissue-specific oncolytic viruses, as well as the cellular inhibitor pathways on viral life cycle. Using RNA interference against p21/Waf-1, we were able to show an increase in viral replication and viral oncolysis of prostate cancer cells. Similarly, CRAd viruses that carry p21/Waf-1 shRNA (Ad5-RV004.21) were able to prevent tumor outgrowth that resulted in a marked increase in the mean survival time of tumor-bearing mice compared with CRAd without p21/Waf-1 shRNA (Ad5-RV004). In studies combining Ad5-RV004.21 with Adriamycin, a suprar-additive effect was observed only in CRAds that harbor shRNA against p21/Waf-1. Taken together, these findings of enhanced viral replication in prostate cancer cells by using RNA interference against the cdk inhibitor p21/Waf-1 have significant implications in the development of prostate-specific CRAd therapies.
Collapse
Affiliation(s)
- N Höti
- Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287-2101, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Liu C, Zhang Y, Liu MM, Zhou H, Chowdhury W, Lupold SE, Deweese TL, Rodriguez R. Evaluation of continuous low dose rate versus acute single high dose rate radiation combined with oncolytic viral therapy for prostate cancer. Int J Radiat Biol 2010; 86:220-9. [PMID: 20201650 DOI: 10.3109/09553000903419338] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Conditionally Replicative Adenovirus (CRAd) has been previously demonstrated to augment the activity of radiation, resulting in synergy of cell kill. However, previous models combining radiation with CRAd have not focused on the methods of radiation delivery. MATERIALS AND METHODS We model the combination of a novel prostate-specific CRAd, Ad5 PSE/PBN E1A-AR (Ad5: adenovirus 5; PSE: prostate-specific enhancer; PBN: rat probasin promoter; E1A: early region 1A; AR: androgen receptor), with radiation delivered both acutely and continuously, in an effort to better mimic the potential clinical modes of prostate cancer radiotherapy. RESULTS We demonstrate that pre-treatment of cells with acute single high dose rate (HDR) radiation 24 hours prior to viral infection results in significantly enhanced viral replication and virus-mediated cell death. In addition, this combination causes increased level of gamma-H2AX (Phosphorylated histone protein H2AX on serine 139), a marker of double-stranded DNA damage and an indirect measure of nuclear fragmentation. In contrast, continuous low dose rate (LDR) radiation immediately following infection of the same CRAd results in no enhancement of viral replication, and only additive effects in virus-mediated cell death. CONCLUSIONS These data provide the first direct assessment of the real-time impact of radiation on viral replication and the first comparison of the effect of radiation delivery on the efficacy of CRAd virotherapy. Our data demonstrate substantial differences in CRAd efficacy based on the mode of radiation delivery.
Collapse
Affiliation(s)
- Chunyan Liu
- James Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Copland JA, Sheffield-Moore M, Koldzic-Zivanovic N, Gentry S, Lamprou G, Tzortzatou-Stathopoulou F, Zoumpourlis V, Urban RJ, Vlahopoulos SA. Sex steroid receptors in skeletal differentiation and epithelial neoplasia: is tissue-specific intervention possible? Bioessays 2009; 31:629-41. [DOI: 10.1002/bies.200800138] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
22
|
Lupold SE, Kudrolli TA, Chowdhury WH, Wu P, Rodriguez R. A novel method for generating and screening peptides and libraries displayed on adenovirus fiber. Nucleic Acids Res 2007; 35:e138. [PMID: 17965092 PMCID: PMC2175307 DOI: 10.1093/nar/gkm914] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Capsid-displayed adenoviral peptide libraries have been a significant, yet unfeasible goal in biotechnology. Three barriers have made this difficult: the large size of the viral genome, the low efficiency of converting plasmid-based genomes into packaged adenovirus and the fact that library amplification is hampered by the ability of two (or more) virus to co-infect one cell. Here, we present a novel vector system, pFex, which is capable of overcoming all three barriers. With pFex, modified fiber genes are recombined into the natural genetic locus of adenovirus through unidirectional Cre-lox recombination. Modified-fiber genes can be directly shuttled into replicating viral genomes in mammalian cells. The 'acceptor' vector does not contain the fiber gene, and therefore does not propagate until it has received a 'donor' fiber gene. Therefore, This methodology overcomes the low efficiency of transfecting large viral genomes and bypasses the need for transition to functional virus. Thus, with a fiber-shuttle library, one can generate and evaluate large numbers of fiber-modified adenovirus simultaneously. Finally, successful fiber genes can be rescued from virus and recombined back into shuttle plasmids, avoiding the need to propagate mixed viral pools. For proof of principal, we use this new system to screen a capsid-displayed peptide library for retargeted viral infection.
Collapse
Affiliation(s)
- Shawn E Lupold
- James Buchanan Brady Urology Institute, Johns Hopkins University School of Medicine, Broadway Research Building 467, 733N Broadway, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|