1
|
Dagotto G, Fisher JL, Li D, Li Z, Jenni S, Li Z, Tartaglia LJ, Abbink P, Barouch DH. Identification of a novel neutralization epitope in rhesus AAVs. Mol Ther Methods Clin Dev 2024; 32:101350. [PMID: 39469420 PMCID: PMC11513466 DOI: 10.1016/j.omtm.2024.101350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Adeno-associated viruses (AAVs) are popular gene therapy delivery vectors, but their application can be limited by anti-vector immunity. Both preexisting neutralizing antibodies (NAbs) and post-administration NAbs can limit transgene expression and reduce the clinical utility of AAVs. The development of novel AAVs will advance our understanding of AAV immunity and may also have practical applications. In this study, we identified five novel AAV capsids from rhesus macaques. RhAAV4282 exhibited 91.4% capsid sequence similarity with AAV7 and showed similar tissue tropism with slightly diminished overall signal. Despite this sequence homology, RhAAV4282 and AAV7 showed limited cross-neutralization. We determined a cryo-EM structure of the RhAAV4282 capsid at 2.57 Å resolution and identified a small segment within the hypervariable region IV, involving seven amino acids that formed a shortened external loop in RhAAV4282 compared with AAV7. We generated RhAAV4282 and AAV7 mutants that involved swaps of this region and showed that this region partially determined neutralization phenotype. We termed this region the hypervariable region IV neutralizing epitope (HRNE). Our data suggests that modification of the HRNE can lead to AAVs with altered neutralization profiles.
Collapse
Affiliation(s)
- Gabriel Dagotto
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jana L. Fisher
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David Li
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zhenyu Li
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Zongli Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | | | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Vu Hong A, Suel L, Petat E, Dubois A, Le Brun PR, Guerchet N, Veron P, Poupiot J, Richard I. An engineered AAV targeting integrin alpha V beta 6 presents improved myotropism across species. Nat Commun 2024; 15:7965. [PMID: 39261465 PMCID: PMC11390886 DOI: 10.1038/s41467-024-52002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
Current adeno-associated virus (AAV) gene therapy using nature-derived AAVs is limited by non-optimal tissue targeting. In the treatment of muscular diseases (MD), high doses are often required but can lead to severe adverse effects. Here, we rationally design an AAV capsid that specifically targets skeletal muscle to lower treatment doses. We computationally integrate binding motifs of human integrin alphaV beta6, a skeletal muscle receptor, into a liver-detargeting capsid. Designed AAVs show higher productivity and superior muscle transduction compared to their parent. One variant, LICA1, demonstrates comparable muscle transduction to other myotropic AAVs with reduced liver targeting. LICA1's myotropic properties are observed across species, including non-human primate. Consequently, LICA1, but not AAV9, effectively delivers therapeutic transgenes and improved muscle functionality in two mouse MD models (male mice) at a low dose (5E12 vg/kg). These results underline the potential of our design method for AAV engineering and LICA1 variant for MD gene therapy.
Collapse
Affiliation(s)
- Ai Vu Hong
- Genethon, 1 bis rue de l'internationale, Evry, France.
- INTEGRARE research unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), Evry, France.
| | - Laurence Suel
- Genethon, 1 bis rue de l'internationale, Evry, France
- INTEGRARE research unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), Evry, France
| | - Eva Petat
- Genethon, 1 bis rue de l'internationale, Evry, France
- INTEGRARE research unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), Evry, France
| | - Auriane Dubois
- Genethon, 1 bis rue de l'internationale, Evry, France
- INTEGRARE research unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), Evry, France
| | - Pierre-Romain Le Brun
- Genethon, 1 bis rue de l'internationale, Evry, France
- INTEGRARE research unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), Evry, France
| | - Nicolas Guerchet
- Genethon, 1 bis rue de l'internationale, Evry, France
- INTEGRARE research unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), Evry, France
| | - Philippe Veron
- Genethon, 1 bis rue de l'internationale, Evry, France
- INTEGRARE research unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), Evry, France
| | - Jérôme Poupiot
- Genethon, 1 bis rue de l'internationale, Evry, France
- INTEGRARE research unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), Evry, France
| | - Isabelle Richard
- Genethon, 1 bis rue de l'internationale, Evry, France.
- INTEGRARE research unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), Evry, France.
- Atamyo Therapeutics, 1 bis rue de l'internationale, Evry, France.
| |
Collapse
|
3
|
Duran T, Naik S, Sharifi L, DiLuzio WR, Chanda A, Chaudhuri B. Studying the ssDNA loaded adeno-associated virus aggregation using coarse-grained molecular dynamics simulations. Int J Pharm 2024; 655:123985. [PMID: 38484860 DOI: 10.1016/j.ijpharm.2024.123985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
The aggregation of adeno-associated viral (AAV) capsids in an aqueous environment was investigated via coarse-grained molecular dynamics (CG-MD) simulations. The primary driving force and mechanism of the aggregation were investigated with or without single-strand DNA (ssDNA) loaded at various process temperatures. Capsid aggregation appeared to involve multiple residue interactions (i.e., hydrophobic, polar and charged residues) leading to complex protein aggregation. In addition, two aggregation mechanisms (i.e., the fivefold face-to-face contact and the edge-to-edge contact) were identified from this study. The ssDNA with its asymmetric structure could be the reason for destabilizing protein subunits and enhancing the interaction between the charged residues, and further result in the non-reversible face-to-face contact. At higher temperature, the capsid structure was found to be unstable with the significant size expansion of the loaded ssDNA which could be attributed to reduced number of intramolecular hydrogen bonds, the increased conformational deviations of protein subunits and the higher residue fluctuations. The CG-MD model was further validated with previous experimental and simulation data, including the full capsid size measurement and the capsid internal pressure. Thus, a good understanding of AAV capsid aggregation, instability and the role of ssDNA were revealed by applying the developed computational model.
Collapse
Affiliation(s)
- Tibo Duran
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Shivangi Naik
- Technical Operations, Sarepta Therapeutics, Cambridge, MA 02142, USA
| | - Leila Sharifi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Willow R DiLuzio
- Technical Operations, Sarepta Therapeutics, Cambridge, MA 02142, USA
| | - Arani Chanda
- Technical Operations, Sarepta Therapeutics, Cambridge, MA 02142, USA
| | - Bodhisattwa Chaudhuri
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA; Institute of Material Sciences (IMS), University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
4
|
Körbelin J, Arrulo A, Schwaninger M. Gene therapy targeting the blood-brain barrier. VITAMINS AND HORMONES 2024; 126:191-217. [PMID: 39029973 DOI: 10.1016/bs.vh.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Endothelial cells are the building blocks of vessels in the central nervous system (CNS) and form the blood-brain barrier (BBB). An intact BBB limits permeation of large hydrophilic molecules into the CNS. Thus, the healthy BBB is a major obstacle for the treatment of CNS disorders with antibodies, recombinant proteins or viral vectors. Several strategies have been devised to overcome the barrier. A key principle often consists in attaching the therapeutic compound to a ligand of receptors expressed on the BBB, for example, the transferrin receptor (TfR). The fusion molecule will bind to TfR on the luminal side of brain endothelial cells, pass the endothelial layer by transcytosis and be delivered to the brain parenchyma. However, attempts to endow therapeutic compounds with the ability to cross the BBB can be difficult to implement. An alternative and possibly more straight-forward approach is to produce therapeutic proteins in the endothelial cells that form the barrier. These cells are accessible from blood circulation and have a large interface with the brain parenchyma. They may be an ideal production site for therapeutic protein and afford direct supply to the CNS.
Collapse
Affiliation(s)
- Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, UKE Hamburg-Eppendorf, Hamburg, Germany
| | - Adriana Arrulo
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany; DZHK (German Research Centre for Cardiovascular Research), Hamburg-Lübeck-Kiel, Germany.
| |
Collapse
|
5
|
Wang JH, Gessler DJ, Zhan W, Gallagher TL, Gao G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct Target Ther 2024; 9:78. [PMID: 38565561 PMCID: PMC10987683 DOI: 10.1038/s41392-024-01780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Adeno-associated virus (AAV) has emerged as a pivotal delivery tool in clinical gene therapy owing to its minimal pathogenicity and ability to establish long-term gene expression in different tissues. Recombinant AAV (rAAV) has been engineered for enhanced specificity and developed as a tool for treating various diseases. However, as rAAV is being more widely used as a therapy, the increased demand has created challenges for the existing manufacturing methods. Seven rAAV-based gene therapy products have received regulatory approval, but there continue to be concerns about safely using high-dose viral therapies in humans, including immune responses and adverse effects such as genotoxicity, hepatotoxicity, thrombotic microangiopathy, and neurotoxicity. In this review, we explore AAV biology with an emphasis on current vector engineering strategies and manufacturing technologies. We discuss how rAAVs are being employed in ongoing clinical trials for ocular, neurological, metabolic, hematological, neuromuscular, and cardiovascular diseases as well as cancers. We outline immune responses triggered by rAAV, address associated side effects, and discuss strategies to mitigate these reactions. We hope that discussing recent advancements and current challenges in the field will be a helpful guide for researchers and clinicians navigating the ever-evolving landscape of rAAV-based gene therapy.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, 3002, Australia
| | - Dominic J Gessler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurological Surgery, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Thomas L Gallagher
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
6
|
Tong H, Huang J, Xiao Q, He B, Dong X, Liu Y, Yang X, Han D, Wang Z, Wang X, Ying W, Zhang R, Wei Y, Xu C, Zhou Y, Li Y, Cai M, Wang Q, Xue M, Li G, Fang K, Zhang H, Yang H. High-fidelity Cas13 variants for targeted RNA degradation with minimal collateral effects. Nat Biotechnol 2023; 41:108-119. [PMID: 35953673 DOI: 10.1038/s41587-022-01419-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/01/2022] [Indexed: 01/21/2023]
Abstract
CRISPR-Cas13 systems have recently been used for targeted RNA degradation in various organisms. However, collateral degradation of bystander RNAs has limited their in vivo applications. Here, we design a dual-fluorescence reporter system for detecting collateral effects and screening Cas13 variants in mammalian cells. Among over 200 engineered variants, several Cas13 variants including Cas13d and Cas13X exhibit efficient on-target activity but markedly reduced collateral activity. Furthermore, transcriptome-wide off-targets and cell growth arrest induced by Cas13 are absent for these variants. High-fidelity Cas13 variants show similar RNA knockdown activity to wild-type Cas13 but no detectable collateral damage in transgenic mice or adeno-associated-virus-mediated somatic cell targeting. Thus, high-fidelity Cas13 variants with minimal collateral effects are now available for targeted degradation of RNAs in basic research and therapeutic applications.
Collapse
Affiliation(s)
- Huawei Tong
- HuiGene Therapeutics Co., Ltd., Shanghai, China
| | - Jia Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Qingquan Xiao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bingbing He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xue Dong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yuanhua Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiali Yang
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Provincial Colleges and Universities, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Dingyi Han
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zikang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xuchen Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenqin Ying
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Runze Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chunlong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | - Yingsi Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yanfei Li
- Zhoupu Hospital Affiliated to Shanghai Health Medical College and Shanghai Key Laboratory of MolecularImaging, Shanghai, China
| | - Minqing Cai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Qifang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Mingxing Xue
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Guoling Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Kailun Fang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Hainan Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- HuiEdit Therapeutics Co., Ltd., Shanghai, China.
| | - Hui Yang
- HuiGene Therapeutics Co., Ltd., Shanghai, China.
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China.
- HuiEdit Therapeutics Co., Ltd., Shanghai, China.
| |
Collapse
|
7
|
Jäschke N, Büning H. Adeno-Associated Virus Vector Design-Moving the Adeno-Associated Virus to a Bioengineered Therapeutic Nanoparticle. Hematol Oncol Clin North Am 2022; 36:667-685. [PMID: 35778330 DOI: 10.1016/j.hoc.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Although the number of market-approved gene therapies is still low, this new class of therapeutics has become an integral part of modern medicine. The success and safety of gene therapy depend on the vectors used to deliver the therapeutic material. Adeno-associated virus (AAV) vectors have emerged as the most frequently used delivery system for in vivo gene therapy. This success was achieved with first-generation vectors, using capsids derived from natural AAV serotypes. Their broad tropism, the high seroprevalence for many of the AAV serotypes in the human population, and the high vector doses needed to transduce a sufficient number of therapy-relevant target cells are challenges that are addressed by engineering the capsid and the vector genome, improving the efficacy of these biological nanoparticles.
Collapse
Affiliation(s)
- Nico Jäschke
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str.1, Hannover 30625, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str.1, Hannover 30625, Germany; REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str.1, Hannover 30625, Germany; German Center for Infection Research, Partner Site Hannover-Braunschweig.
| |
Collapse
|
8
|
Becker J, Fakhiri J, Grimm D. Fantastic AAV Gene Therapy Vectors and How to Find Them—Random Diversification, Rational Design and Machine Learning. Pathogens 2022; 11:pathogens11070756. [PMID: 35890005 PMCID: PMC9318892 DOI: 10.3390/pathogens11070756] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Parvoviruses are a diverse family of small, non-enveloped DNA viruses that infect a wide variety of species, tissues and cell types. For over half a century, their intriguing biology and pathophysiology has fueled intensive research aimed at dissecting the underlying viral and cellular mechanisms. Concurrently, their broad host specificity (tropism) has motivated efforts to develop parvoviruses as gene delivery vectors for human cancer or gene therapy applications. While the sum of preclinical and clinical data consistently demonstrates the great potential of these vectors, these findings also illustrate the importance of enhancing and restricting in vivo transgene expression in desired cell types. To this end, major progress has been made especially with vectors based on Adeno-associated virus (AAV), whose capsid is highly amenable to bioengineering, repurposing and expansion of its natural tropism. Here, we provide an overview of the state-of-the-art approaches to create new AAV variants with higher specificity and efficiency of gene transfer in on-target cells. We first review traditional and novel directed evolution approaches, including high-throughput screening of AAV capsid libraries. Next, we discuss programmable receptor-mediated targeting with a focus on two recent technologies that utilize high-affinity binders. Finally, we highlight one of the latest stratagems for rational AAV vector characterization and optimization, namely, machine learning, which promises to facilitate and accelerate the identification of next-generation, safe and precise gene delivery vehicles.
Collapse
Affiliation(s)
- Jonas Becker
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Center for Integrative Infectious Diseases Research (CIID), BioQuant, 69120 Heidelberg, Germany;
- Faculty of Biosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Julia Fakhiri
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
- Correspondence: (J.F.); (D.G.); Tel.: +49-174-3486203 (J.F.); +49-6221-5451331 (D.G.)
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Center for Integrative Infectious Diseases Research (CIID), BioQuant, 69120 Heidelberg, Germany;
- German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, 69120 Heidelberg, Germany
- Correspondence: (J.F.); (D.G.); Tel.: +49-174-3486203 (J.F.); +49-6221-5451331 (D.G.)
| |
Collapse
|
9
|
Gross DA, Tedesco N, Leborgne C, Ronzitti G. Overcoming the Challenges Imposed by Humoral Immunity to AAV Vectors to Achieve Safe and Efficient Gene Transfer in Seropositive Patients. Front Immunol 2022; 13:857276. [PMID: 35464422 PMCID: PMC9022790 DOI: 10.3389/fimmu.2022.857276] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/16/2022] [Indexed: 11/23/2022] Open
Abstract
One of the major goals of in vivo gene transfer is to achieve long-term expression of therapeutic transgenes in terminally differentiated cells. The extensive clinical experience and the recent approval of Luxturna® (Spark Therapeutics, now Roche) and Zolgensma® (AveXis, now Novartis) place vectors derived from adeno-associated viruses (AAV) among the best options for gene transfer in multiple tissues. Despite these successes, limitations remain to the application of this therapeutic modality in a wider population. AAV was originally identified as a promising virus to derive gene therapy vectors because, despite infecting humans, it was not associated with any evident disease. Thee large proportion of AAV infections in the human population is now revealing as a limitation because after exposure to wild-type AAV, anti-AAV antibodies develops and may neutralize the vectors derived from the virus. Injection of AAV in humans is generally well-tolerated although the immune system can activate after the recognition of AAV vectors capsid and genome. The formation of high-titer neutralizing antibodies to AAV after the first injection precludes vector re-administration. Thus, both pre-existing and post-treatment humoral responses to AAV vectors greatly limit a wider application of this gene transfer modality. Different methods were suggested to overcome this limitation. The extensive preclinical data available and the large clinical experience in the control of AAV vectors immunogenicity are key to clinical translation and to demonstrate the safety and efficacy of these methods and ultimately bring a curative treatment to patients.
Collapse
Affiliation(s)
- David-Alexandre Gross
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Novella Tedesco
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Christian Leborgne
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Giuseppe Ronzitti
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| |
Collapse
|
10
|
Cabanes-Creus M, Navarro RG, Zhu E, Baltazar G, Liao SH, Drouyer M, Amaya AK, Scott S, Nguyen LH, Westhaus A, Hebben M, Wilson LO, Thrasher AJ, Alexander IE, Lisowski L. Novel human liver-tropic AAV variants define transferable domains that markedly enhance the human tropism of AAV7 and AAV8. Mol Ther Methods Clin Dev 2022; 24:88-101. [PMID: 34977275 PMCID: PMC8693155 DOI: 10.1016/j.omtm.2021.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/07/2021] [Indexed: 12/19/2022]
Abstract
Recent clinical successes have intensified interest in using adeno-associated virus (AAV) vectors for therapeutic gene delivery. The liver is a key clinical target, given its critical physiological functions and involvement in a wide range of genetic diseases. Here, we report the bioengineering of a set of next-generation AAV vectors, named AAV-SYDs (where "SYD" stands for Sydney, Australia), with increased human hepato-tropism in a liver xenograft mouse model repopulated with primary human hepatocytes. We followed a two-step process that staggered directed evolution and domain-swapping approaches. Using DNA-family shuffling, we first mapped key AAV capsid regions responsible for efficient human hepatocyte transduction in vivo. Focusing on these regions, we next applied domain-swapping strategies to identify and study key capsid residues that enhance primary human hepatocyte uptake and transgene expression. Our findings underscore the potential of AAV-SYDs as liver gene therapy vectors and provide insights into the mechanism responsible for their enhanced transduction profile.
Collapse
Affiliation(s)
- Marti Cabanes-Creus
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Renina Gale Navarro
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Erhua Zhu
- Gene Therapy Research Unit, Children's Medical Research Institute & The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW 2145, Australia
| | - Grober Baltazar
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Sophia H.Y. Liao
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Matthieu Drouyer
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Anais K. Amaya
- Gene Therapy Research Unit, Children's Medical Research Institute & The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW 2145, Australia
| | - Suzanne Scott
- Gene Therapy Research Unit, Children's Medical Research Institute & The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW 2145, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW 2113, Australia
| | - Loan Hanh Nguyen
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Adrian Westhaus
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
- Great Ormond Institute of Child Health, University College London, WC1N 1EH London, UK
| | - Matthias Hebben
- LogicBio Therapeutics, 65 Hayden avenue, Lexington, 02421 MA, USA
| | - Laurence O.W. Wilson
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW 2113, Australia
| | - Adrian J. Thrasher
- Great Ormond Institute of Child Health, University College London, WC1N 1EH London, UK
| | - Ian E. Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute & The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW 2145, Australia
- Discipline of Child and Adolescent Health, The University of Sydney, Sydney Medical School, Faculty of Medicine and Health, Westmead, NSW 2145, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
- Vector and Genome Engineering Facility, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
- Military Institute of Medicine, Laboratory of Molecular Oncology and Innovative Therapies, 04-141 Warsaw, Poland
| |
Collapse
|
11
|
Fakhiri J, Grimm D. Best of most possible worlds: Hybrid gene therapy vectors based on parvoviruses and heterologous viruses. Mol Ther 2021; 29:3359-3382. [PMID: 33831556 PMCID: PMC8636155 DOI: 10.1016/j.ymthe.2021.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/12/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Parvoviruses and especially the adeno-associated virus (AAV) species provide an exciting and versatile platform for the rational design or molecular evolution of human gene-therapy vectors, documented by literature from over half a century, hundreds of clinical trials, and the recent commercialization of multiple AAV gene therapeutics. For the last three decades, the power of these vectors has been further potentiated through various types of hybrid vectors created by intra- or inter-genus juxtaposition of viral DNA and protein cis elements or by synergistic complementation of parvoviral features with those of heterologous, prokaryotic, or eukaryotic viruses. Here, we provide an overview of the history and promise of this rapidly expanding field of hybrid parvoviral gene-therapy vectors, starting with early generations of chimeric particles composed of a recombinant AAV genome encapsidated in shells of synthetic AAVs or of adeno-, herpes-, baculo-, or protoparvoviruses. We then dedicate our attention to two newer, highly promising types of hybrid vectors created via (1) pseudotyping of AAV genomes with bocaviral serotypes and capsid mutants or (2) packaging of AAV DNA into, or tethering of entire vector particles to, bacteriophages. Finally, we conclude with an outlook summarizing critical requirements and improvements toward clinical translation of these original concepts.
Collapse
Affiliation(s)
- Julia Fakhiri
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany; BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany; BioQuant, University of Heidelberg, Heidelberg, Germany; German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
12
|
Wagner HJ, Weber W, Fussenegger M. Synthetic Biology: Emerging Concepts to Design and Advance Adeno-Associated Viral Vectors for Gene Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004018. [PMID: 33977059 PMCID: PMC8097373 DOI: 10.1002/advs.202004018] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/18/2020] [Indexed: 05/28/2023]
Abstract
Three recent approvals and over 100 ongoing clinical trials make adeno-associated virus (AAV)-based vectors the leading gene delivery vehicles in gene therapy. Pharmaceutical companies are investing in this small and nonpathogenic gene shuttle to increase the therapeutic portfolios within the coming years. This prospect of marking a new era in gene therapy has fostered both investigations of the fundamental AAV biology as well as engineering studies to enhance delivery vehicles. Driven by the high clinical potential, a new generation of synthetic-biologically engineered AAV vectors is on the rise. Concepts from synthetic biology enable the control and fine-tuning of vector function at different stages of cellular transduction and gene expression. It is anticipated that the emerging field of synthetic-biologically engineered AAV vectors can shape future gene therapeutic approaches and thus the design of tomorrow's gene delivery vectors. This review describes and discusses the recent trends in capsid and vector genome engineering, with particular emphasis on synthetic-biological approaches.
Collapse
Affiliation(s)
- Hanna J. Wagner
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26Basel4058Switzerland
- Faculty of BiologyUniversity of FreiburgSchänzlestraße 1Freiburg79104Germany
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 18Freiburg79104Germany
| | - Wilfried Weber
- Faculty of BiologyUniversity of FreiburgSchänzlestraße 1Freiburg79104Germany
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 18Freiburg79104Germany
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26Basel4058Switzerland
- Faculty of ScienceUniversity of BaselKlingelbergstrasse 50Basel4056Switzerland
| |
Collapse
|
13
|
Kayesh MEH, Amako Y, Hashem MA, Murakami S, Ogawa S, Yamamoto N, Hifumi T, Miyoshi N, Sugiyama M, Tanaka Y, Mizokami M, Kohara M, Tsukiyama-Kohara K. Development of an in vivo delivery system for CRISPR/Cas9-mediated targeting of hepatitis B virus cccDNA. Virus Res 2020; 290:198191. [PMID: 33049308 DOI: 10.1016/j.virusres.2020.198191] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Chronic hepatitis B virus (HBV) infection constitutes a global health issue with limited current therapeutic efficacy owing to the persistence of viral episomal DNA (cccDNA). The CRISPR/Cas9 system, a newly developed, powerful tool for genome editing and potential gene therapy, requires efficient delivery of CRISPR components for successful therapeutic application. Here, we investigated the effects of lentiviral- or adeno-associated virus 2 (AAV2) vector-mediated delivery of 3 guide (g)RNAs/Cas9 selected from 16 gRNAs. These significantly suppressed HBV replication in cells, with WJ11/Cas9 exhibiting highest efficacy and chosen for in vivo study. AAV2/WJ11-Cas9 also significantly inhibited HBV replication and significantly reduced cccDNA in the tested cells. Moreover, AAV2/WJ11-Cas9 enhanced entecavir effects when used in combination, indicative of different modes of action. Notably, in humanized chimeric mice, AAV2/WJ11-Cas9 significantly suppressed HBcAg, HBsAg, and HBV DNA along with cccDNA in the liver tissues without significant cytotoxicity; accordingly, next generation sequencing data showed no significant genomic mutations. To our knowledge, this represents the first evaluation of the CRISPR/Cas9 system using an HBV natural infection mode. Therefore, WJ11/Cas9 delivered by comparatively safer AAV2 vectors may provide a new therapeutic strategy for eliminating HBV infection and serve as an effective platform for curing chronic HBV infection.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Department of Microbiology and Public Health, Patuakhali Science and Technology University, Bangladesh
| | - Yutaka Amako
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Md Abul Hashem
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Shuko Murakami
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shintaro Ogawa
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Naoki Yamamoto
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tatsuro Hifumi
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Department of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Noriaki Miyoshi
- Department of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Masaya Sugiyama
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Chiba, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masashi Mizokami
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Chiba, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Tsukiyama-Kohara
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
14
|
Balestra D, Scalet D, Ferrarese M, Lombardi S, Ziliotto N, C. Croes C, Petersen N, Bosma P, Riccardi F, Pagani F, Pinotti M, van de Graaf SFJ. A Compensatory U1snRNA Partially Rescues FAH Splicing and Protein Expression in a Splicing-Defective Mouse Model of Tyrosinemia Type I. Int J Mol Sci 2020; 21:E2136. [PMID: 32244944 PMCID: PMC7139742 DOI: 10.3390/ijms21062136] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
The elucidation of aberrant splicing mechanisms, frequently associated with disease has led to the development of RNA therapeutics based on the U1snRNA, which is involved in 5' splice site (5'ss) recognition. Studies in cellular models have demonstrated that engineered U1snRNAs can rescue different splicing mutation types. However, the assessment of their correction potential in vivo is limited by the scarcity of animal models with the targetable splicing defects. Here, we challenged the U1snRNA in the FAH5961SB mouse model of hepatic fumarylacetoacetate hydrolase (FAH) deficiency (Hereditary Tyrosinemia type I, HT1) due to the FAH c.706G>A splicing mutation. Through minigene expression studies we selected a compensatory U1snRNA (U1F) that was able to rescue this mutation. Intriguingly, adeno-associated virus-mediated delivery of U1F (AAV8-U1F), but not of U1wt, partially rescued FAH splicing in mouse hepatocytes. Consistently, FAH protein was detectable only in the liver of AAV8-U1F treated mice, which displayed a slightly prolonged survival. Moreover, RNA sequencing revealed the negligible impact of the U1F on the splicing profile and overall gene expression, thus pointing toward gene specificity. These data provide early in vivo proof-of-principle of the correction potential of compensatory U1snRNAs in HTI and encourage further optimization on a therapeutic perspective, and translation to other splicing-defective forms of metabolic diseases.
Collapse
Affiliation(s)
- Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (D.S.); (M.F.); (S.L.); (N.Z.); (M.P.)
| | - Daniela Scalet
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (D.S.); (M.F.); (S.L.); (N.Z.); (M.P.)
| | - Mattia Ferrarese
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (D.S.); (M.F.); (S.L.); (N.Z.); (M.P.)
| | - Silvia Lombardi
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (D.S.); (M.F.); (S.L.); (N.Z.); (M.P.)
| | - Nicole Ziliotto
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (D.S.); (M.F.); (S.L.); (N.Z.); (M.P.)
| | - Chrystal C. Croes
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (C.C.C.); (N.P.); (P.B.); (S.F.J.v.d.G.)
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Naomi Petersen
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (C.C.C.); (N.P.); (P.B.); (S.F.J.v.d.G.)
| | - Piter Bosma
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (C.C.C.); (N.P.); (P.B.); (S.F.J.v.d.G.)
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Federico Riccardi
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy; (F.R.); (F.P.)
| | - Franco Pagani
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy; (F.R.); (F.P.)
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (D.S.); (M.F.); (S.L.); (N.Z.); (M.P.)
- LTTA, University of Ferrara, 44121 Ferrara, Italy
| | - Stan F. J. van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (C.C.C.); (N.P.); (P.B.); (S.F.J.v.d.G.)
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
15
|
Wang C, Sun W, Ling S, Wang Y, Wang X, Meng H, Li Y, Yuan X, Li J, Liu R, Zhao D, Lu Q, Wang A, Guo Q, Lu S, Tian H, Li Y, Peng J. AAV-Anti-miR-214 Prevents Collapse of the Femoral Head in Osteonecrosis by Regulating Osteoblast and Osteoclast Activities. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:841-850. [PMID: 31739209 PMCID: PMC6861671 DOI: 10.1016/j.omtn.2019.09.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 09/10/2019] [Accepted: 09/15/2019] [Indexed: 02/07/2023]
Abstract
Osteonecrosis of the femoral head, an intractable but common disease that eventually triggers collapse of the femoral head, is characterized by increased osteoclast activity and markedly decreased osteoblast activity in the necrotic region of the femoral head. MicroRNA (miRNA)-214 (miR-214) may play important roles in vertebrate skeletal development by inhibiting osteoblast function by targeting activating transcription factor 4 (ATF4) and promoting osteoclast function via phosphatase and tensin homolog (PTEN). This study revealed significantly increased levels of miR-214 in necrotic regions, with commensurate changes in the numbers of its target cells (both osteoblasts and osteoclasts). To investigate whether targeting miR-214 could prevent femoral head collapse, we constructed an adeno-associated virus (AAV)-associated anti-miR-214 (AAV-anti-miR-214) and evaluated its function in vivo. AAV-anti-miR-214 promoted osteoblast activity and diminished osteoclast activity, effectively preventing collapse of the femoral head in a rat model of osteonecrosis.
Collapse
Affiliation(s)
- Cheng Wang
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China; Department of Orthopedics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Weijia Sun
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yu Wang
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Xin Wang
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Haoye Meng
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Yuheng Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China; The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shanxi, China
| | - Xueling Yuan
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Jianwei Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Ruoxi Liu
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Dingsheng Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Qiang Lu
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Aiyuan Wang
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Quanyi Guo
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Shibi Lu
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Hua Tian
- Department of Orthopedics, Peking University Third Hospital, Beijing, People's Republic of China.
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.
| | - Jiang Peng
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
16
|
Maurer AC, Cepeda Diaz AK, Vandenberghe LH. Residues on Adeno-associated Virus Capsid Lumen Dictate Interactions and Compatibility with the Assembly-Activating Protein. J Virol 2019; 93:e02013-18. [PMID: 30651367 PMCID: PMC6430561 DOI: 10.1128/jvi.02013-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/04/2019] [Indexed: 01/09/2023] Open
Abstract
The adeno-associated virus (AAV) serves as a broadly used vector system for in vivo gene delivery. The process of AAV capsid assembly remains poorly understood. The viral cofactor assembly-activating protein (AAP) is required for maximum AAV production and has multiple roles in capsid assembly, namely, trafficking of the structural proteins (VP) to the nuclear site of assembly, promoting the stability of VP against multiple degradation pathways, and facilitating stable interactions between VP monomers. The N-terminal 60 amino acids of AAP (AAPN) are essential for these functions. Presumably, AAP must physically interact with VP to execute its multiple functions, but the molecular nature of the AAP-VP interaction is not well understood. Here, we query how structurally related AAVs functionally engage AAP from AAV serotype 2 (AAP2) toward virion assembly. These studies led to the identification of key residues on the lumenal capsid surface that are important for AAP-VP and for VP-VP interactions. Replacing a cluster of glutamic acid residues with a glutamine-rich motif on the conserved VP beta-barrel structure of variants incompatible with AAP2 creates a gain-of-function mutant compatible with AAP2. Conversely, mutating positively charged residues within the hydrophobic region of AAP2 and conserved core domains within AAPN creates a gain-of-function AAP2 mutant that rescues assembly of the incompatible variant. Our results suggest a model for capsid assembly where surface charge/neutrality dictates an interaction between AAPN and the lumenal VP surface to nucleate capsid assembly.IMPORTANCE Efforts to engineer the AAV capsid to gain desirable properties for gene therapy (e.g., tropism, reduced immunogenicity, and higher potency) require that capsid modifications do not affect particle assembly. The relationship between VP and the cofactor that facilitates its assembly, AAP, is central to both assembly preservation and vector production. Understanding the requirements for this compatibility can inform manufacturing strategies to maximize production and reduce costs. Additionally, library-based approaches that simultaneously examine a large number of capsid variants would benefit from a universally functional AAP, which could hedge against overlooking variants with potentially valuable phenotypes that were lost during vector library production due to incompatibility with the cognate AAP. Studying interactions between the structural and nonstructural components of AAV enhances our fundamental knowledge of capsid assembly mechanisms and the protein-protein interactions required for productive assembly of the icosahedral capsid.
Collapse
Affiliation(s)
- Anna C Maurer
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, Massachusetts, USA
- Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ana Karla Cepeda Diaz
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, Massachusetts, USA
- Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, Massachusetts, USA
- Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
17
|
Cabanes-Creus M, Ginn SL, Amaya AK, Liao SHY, Westhaus A, Hallwirth CV, Wilmott P, Ward J, Dilworth KL, Santilli G, Rybicki A, Nakai H, Thrasher AJ, Filip AC, Alexander IE, Lisowski L. Codon-Optimization of Wild-Type Adeno-Associated Virus Capsid Sequences Enhances DNA Family Shuffling while Conserving Functionality. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:71-84. [PMID: 30534580 PMCID: PMC6279885 DOI: 10.1016/j.omtm.2018.10.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022]
Abstract
Adeno-associated virus (AAV) vectors have become one of the most widely used gene transfer tools in human gene therapy. Considerable effort is currently being focused on AAV capsid engineering strategies with the aim of developing novel variants with enhanced tropism for specific human cell types, decreased human seroreactivity, and increased manufacturability. Selection strategies based on directed evolution rely on the generation of highly variable AAV capsid libraries using methods such as DNA-family shuffling, a technique reliant on stretches of high DNA sequence identity between input parental capsid sequences. This identity dependence for reassembly of shuffled capsids is inherently limiting and results in decreased shuffling efficiency as the phylogenetic distance between parental AAV capsids increases. To overcome this limitation, we have developed a novel codon-optimization algorithm that exploits evolutionarily defined codon usage at each amino acid residue in the parental sequences. This method increases average sequence identity between capsids, while enhancing the probability of retaining capsid functionality, and facilitates incorporation of phylogenetically distant serotypes into the DNA-shuffled libraries. This technology will help accelerate the discovery of an increasingly powerful repertoire of AAV capsid variants for cell-type and disease-specific applications.
Collapse
Affiliation(s)
- Marti Cabanes-Creus
- Translational Vectorology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.,Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Samantha L Ginn
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Sydney, NSW 2006, Australia
| | - Anais K Amaya
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Sydney, NSW 2006, Australia
| | - Sophia H Y Liao
- Translational Vectorology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.,Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Sydney, NSW 2006, Australia
| | - Adrian Westhaus
- Translational Vectorology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Claus V Hallwirth
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Sydney, NSW 2006, Australia
| | - Patrick Wilmott
- Translational Vectorology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jason Ward
- Translational Vectorology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Kimberley L Dilworth
- Vector and Genome Engineering Facility, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Giorgia Santilli
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Arkadiusz Rybicki
- Vector and Genome Engineering Facility, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Hiroyuki Nakai
- Oregon Health & Science University, Portland, OR 97239, USA
| | - Adrian J Thrasher
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Adrian C Filip
- Translational Vectorology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Sydney, NSW 2006, Australia.,Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2145, Australia
| | - Leszek Lisowski
- Translational Vectorology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.,Vector and Genome Engineering Facility, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.,Military Institute of Hygiene and Epidemiology, The Biological Threats Identification and Countermeasure Centre, 24-100 Puławy, Poland
| |
Collapse
|
18
|
Herrmann AK, Grimm D. High-Throughput Dissection of AAV-Host Interactions: The Fast and the Curious. J Mol Biol 2018; 430:2626-2640. [PMID: 29782834 DOI: 10.1016/j.jmb.2018.05.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 12/24/2022]
Abstract
Over 50 years after its initial description, adeno-associated virus (AAV) remains the most exciting but also most elusive study object in basic or applied virology. On the one hand, its simple structure not only facilitates investigations into virus biology but, combined with the availability of numerous natural AAV variants with distinct infection efficiency and specificity, also makes AAV a preferred substrate for engineering of gene delivery vectors. On the other hand, it is striking to witness a recent flurry of reports that highlight and partially close persistent gaps in our understanding of AAV virus and vector biology. This is all the more perplexing considering that recombinant AAVs have already been used in >160 clinical trials and recently been commercialized as gene therapeutics. Here, we discuss a reason for these advances in AAV research, namely, the advent and application of powerful high-throughput technology for dissection of AAV-host interactions and optimization of AAV gene therapy vectors. As relevant examples, we focus on the discovery of (i) a "new" cellular AAV receptor, AAVR, (ii) host restriction factors for AAV entry, and (iii) AAV capsid determinants that mediate trafficking through the blood-brain barrier. While items i/ii are prototypes of extra- or intracellular AAV host factors that were identified via high-throughput screenings, item iii exemplifies the power of molecular evolution to investigate the virus itself. In the future, we anticipate that these and other key technologies will continue to accelerate the dissection of AAV biology and will yield a wealth of new designer viruses for clinical use.
Collapse
Affiliation(s)
- Anne-Kathrin Herrmann
- Cluster of Excellence CellNetworks,Virus-Host Interaction Group, Department of Infectious Diseases/Virology, Heidelberg University Hospital, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; BioQuant Center, University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Dirk Grimm
- Cluster of Excellence CellNetworks,Virus-Host Interaction Group, Department of Infectious Diseases/Virology, Heidelberg University Hospital, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; BioQuant Center, University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), Partner site Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
19
|
Steines B, Dickey DD, Bergen J, Excoffon KJ, Weinstein JR, Li X, Yan Z, Abou Alaiwa MH, Shah VS, Bouzek DC, Powers LS, Gansemer ND, Ostedgaard LS, Engelhardt JF, Stoltz DA, Welsh MJ, Sinn PL, Schaffer DV, Zabner J. CFTR gene transfer with AAV improves early cystic fibrosis pig phenotypes. JCI Insight 2016; 1:e88728. [PMID: 27699238 DOI: 10.1172/jci.insight.88728] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The physiological components that contribute to cystic fibrosis (CF) lung disease are steadily being elucidated. Gene therapy could potentially correct these defects. CFTR-null pigs provide a relevant model to test gene therapy vectors. Using an in vivo selection strategy that amplifies successful capsids by replicating their genomes with helper adenovirus coinfection, we selected an adeno-associated virus (AAV) with tropism for pig airway epithelia. The evolved capsid, termed AAV2H22, is based on AAV2 with 5 point mutations that result in a 240-fold increased infection efficiency. In contrast to AAV2, AAV2H22 binds specifically to pig airway epithelia and is less reliant on heparan sulfate for transduction. We administer AAV2H22-CFTR expressing the CF transmembrane conductance regulator (CFTR) cDNA to the airways of CF pigs. The transduced airways expressed CFTR on ciliated and nonciliated cells, induced anion transport, and improved the airway surface liquid pH and bacterial killing. Most gene therapy studies to date focus solely on Cl- transport as the primary metric of phenotypic correction. Here, we describe a gene therapy experiment where we not only correct defective anion transport, but also restore bacterial killing in CFTR-null pig airways.
Collapse
Affiliation(s)
- Benjamin Steines
- Department of Internal Medicine.,Molecular and Cellular Biology Program, and.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - David D Dickey
- Department of Internal Medicine.,Molecular and Cellular Biology Program, and
| | - Jamie Bergen
- Departments of Chemical and Biomolecular Engineering, Bioengineering, The Helen Wills Neuroscience Institute, Molecular and Cellular Biology, University of California, Berkeley, California, USA
| | | | - John R Weinstein
- Departments of Chemical and Biomolecular Engineering, Bioengineering, The Helen Wills Neuroscience Institute, Molecular and Cellular Biology, University of California, Berkeley, California, USA
| | - Xiaopeng Li
- Department of Internal Medicine.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | | | - Mahmoud H Abou Alaiwa
- Department of Internal Medicine.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Viral S Shah
- Department of Internal Medicine.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | | | | | | | - Lynda S Ostedgaard
- Department of Internal Medicine.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | | | - David A Stoltz
- Department of Internal Medicine.,Molecular and Cellular Biology Program, and.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Michael J Welsh
- Department of Internal Medicine.,Molecular and Cellular Biology Program, and.,Molecular Physiology and Biophysics
| | - Patrick L Sinn
- Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.,Howard Hughes Medical Institute, and
| | - David V Schaffer
- Departments of Chemical and Biomolecular Engineering, Bioengineering, The Helen Wills Neuroscience Institute, Molecular and Cellular Biology, University of California, Berkeley, California, USA
| | - Joseph Zabner
- Department of Internal Medicine.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
20
|
Pierson EE, Keifer DZ, Asokan A, Jarrold MF. Resolving Adeno-Associated Viral Particle Diversity With Charge Detection Mass Spectrometry. Anal Chem 2016; 88:6718-25. [PMID: 27310298 PMCID: PMC6537880 DOI: 10.1021/acs.analchem.6b00883] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Recombinant adeno-associated viruses (AAVs) are promising vectors for human gene therapy. However, current methods for evaluating AAV particle populations and vector purity are inefficient and low resolution. Here, we show that charge detection mass spectrometry (CDMS) can resolve capsids that contain the entire vector genome from those that contain partial genomes and from empty capsids. Measurements were performed for both single-stranded and self-complementary genomes. The self-complementary AAV vector preparation appears to contain particles with partially truncated genomes averaging at half the genome length. Comparison to results from electron microscopy with manual particle counting shows that CDMS has no significant mass discrimination in the relevant mass range (after a correction for the ion velocity is taken into account). Empty AAV capsids are intrinsically heterogeneous, and capsids from different sources have slightly different masses. However, the average masses of both the empty and full capsids are in close agreement with expected values. Mass differences between the empty and full capsids for both single-stranded and self-complementary AAV vectors indicate that the genomes are largely packaged without counterions.
Collapse
Affiliation(s)
- Elizabeth E. Pierson
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - David. Z. Keifer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Aravind Asokan
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Martin F. Jarrold
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
21
|
Grimm D, Zolotukhin S. E Pluribus Unum: 50 Years of Research, Millions of Viruses, and One Goal--Tailored Acceleration of AAV Evolution. Mol Ther 2015; 23:1819-31. [PMID: 26388463 PMCID: PMC4700111 DOI: 10.1038/mt.2015.173] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/10/2015] [Indexed: 12/11/2022] Open
Abstract
Fifty years ago, a Science paper by Atchison et al. reported a newly discovered virus that would soon become known as adeno-associated virus (AAV) and that would subsequently emerge as one of the most versatile and most auspicious vectors for human gene therapy. A large part of its attraction stems from the ease with which the viral capsid can be engineered for particle retargeting to cell types of choice, evasion from neutralizing antibodies or other desirable properties. Particularly powerful and in the focus of the current review are high-throughput methods aimed at expanding the repertoire of AAV vectors by means of directed molecular evolution, such as random mutagenesis, DNA family shuffling, in silico reconstruction of ancestral capsids, or peptide display. Here, unlike the wealth of prior reviews on this topic, we especially emphasize and critically discuss the practical aspects of the different procedures that affect the ultimate outcome, including diversification protocols, combinatorial library complexity, and selection strategies. Our overall aim is to provide general guidance that should help users at any level, from novice to expert, to safely navigate through the rugged space of directed AAV evolution while avoiding the pitfalls that are associated with these challenging but promising technologies.
Collapse
Affiliation(s)
- Dirk Grimm
- Department of Infectious Diseases/Virology, Cluster of Excellence CellNetworks, Heidelberg University Hospital, Heidelberg, Germany
| | - Sergei Zolotukhin
- Division of Cell and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
22
|
Identification of an adeno-associated virus binding epitope for AVB sepharose affinity resin. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15040. [PMID: 26605372 PMCID: PMC4632836 DOI: 10.1038/mtm.2015.40] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 02/07/2023]
Abstract
Recent successes of adeno-associated virus (AAV)-based gene therapy have created a demand for large-scale AAV vector manufacturing and purification techniques for use in clinical trials and beyond. During the development of purification protocols for rh.10, hu.37, AAV8, rh.64R1, AAV3B, and AAV9 vectors, based on a widely used affinity resin, AVB sepharose (GE), we found that, under the same conditions, different serotypes have different affinities to the resin, with AAV3B binding the best and AAV9 the poorest. Further analysis revealed a surface-exposed residue (amino acid number 665 in AAV8 VP1 numbering) differs between the high-affinity AAV serotypes (serine in AAV3B, rh.10, and hu.37) and the low-affinity ones (asparagine in AAV8, rh.64R1, and AAV9). The residue locates within a surface-exposed, variable epitope flanked by highly conserved residues. The substitution of the epitope in AAV8, rh.64R1, and AAV9 with the corresponding epitope of AAV3B (SPAKFA) resulted in greatly increased affinity to AVB sepharose with no reduction in the vectors' in vitro potency. The presence of the newly identified AVB-binding epitope will be useful for affinity resin selection for the purification of novel AAV serotypes. It also suggests the possibility of vector engineering to yield a universal affinity chromatography purification method for multiple AAV serotypes.
Collapse
|
23
|
Lisowski L, Tay SS, Alexander IE. Adeno-associated virus serotypes for gene therapeutics. Curr Opin Pharmacol 2015; 24:59-67. [PMID: 26291407 DOI: 10.1016/j.coph.2015.07.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 12/11/2022]
Abstract
Gene transfer vectors based on adeno-associated virus (AAV) are showing exciting therapeutic promise in early phase clinical trials. The ability to cross-package the prototypic AAV2 vector genome into different capsids is a powerful way of conferring novel tropism and biology, with evolving capsid engineering technologies and directed evolution approaches further enhancing the utility and flexibility of these vectors. Novel properties of specific capsids show unpredictable species and cell-type specificity. Therefore, full realisation of the therapeutic potential of AAV vectors requires the development of more therapeutically predictive preclinical methods for evaluating capsid performance. This will strongly complement an iterative approach to the evaluation of capsid variants in the clinic and, should wherever possible, include the determination of gene transfer efficiencies.
Collapse
Affiliation(s)
- Leszek Lisowski
- Gene Transfer, Targeting and Therapeutics Core, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, San Diego, CA, USA
| | - Szun Szun Tay
- Gene Therapy Research Unit, The Children's Hospital at Westmead and Children's Medical Research Institute, Locked Bag 4001, Westmead 2145, NSW, Australia
| | - Ian Edward Alexander
- Gene Therapy Research Unit, The Children's Hospital at Westmead and Children's Medical Research Institute, Locked Bag 4001, Westmead 2145, NSW, Australia; Discipline of Paediatrics and Child Health, The University of Sydney, NSW, Australia.
| |
Collapse
|
24
|
Zinn E, Pacouret S, Khaychuk V, Turunen HT, Carvalho LS, Andres-Mateos E, Shah S, Shelke R, Maurer AC, Plovie E, Xiao R, Vandenberghe LH. In Silico Reconstruction of the Viral Evolutionary Lineage Yields a Potent Gene Therapy Vector. Cell Rep 2015; 12:1056-68. [PMID: 26235624 PMCID: PMC4536165 DOI: 10.1016/j.celrep.2015.07.019] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/26/2015] [Accepted: 07/09/2015] [Indexed: 12/12/2022] Open
Abstract
Adeno-associated virus (AAV) vectors have emerged as a gene-delivery platform with demonstrated safety and efficacy in a handful of clinical trials for monogenic disorders. However, limitations of the current generation vectors often prevent broader application of AAV gene therapy. Efforts to engineer AAV vectors have been hampered by a limited understanding of the structure-function relationship of the complex multimeric icosahedral architecture of the particle. To develop additional reagents pertinent to further our insight into AAVs, we inferred evolutionary intermediates of the viral capsid using ancestral sequence reconstruction. In-silico-derived sequences were synthesized de novo and characterized for biological properties relevant to clinical applications. This effort led to the generation of nine functional putative ancestral AAVs and the identification of Anc80, the predicted ancestor of the widely studied AAV serotypes 1, 2, 8, and 9, as a highly potent in vivo gene therapy vector for targeting liver, muscle, and retina.
Collapse
Affiliation(s)
- Eric Zinn
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, 20 Staniford Street, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Simon Pacouret
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, 20 Staniford Street, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Vadim Khaychuk
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, 20 Staniford Street, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Heikki T Turunen
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, 20 Staniford Street, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Livia S Carvalho
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, 20 Staniford Street, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Eva Andres-Mateos
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, 20 Staniford Street, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Samiksha Shah
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, 20 Staniford Street, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Rajani Shelke
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, 20 Staniford Street, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Anna C Maurer
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, 20 Staniford Street, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Eva Plovie
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, 20 Staniford Street, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Ru Xiao
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, 20 Staniford Street, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, 20 Staniford Street, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
25
|
Tenney RM, Bell CL, Wilson JM. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating. Virology 2014; 454-455:227-36. [PMID: 24725949 DOI: 10.1016/j.virol.2014.02.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 10/22/2013] [Accepted: 02/12/2014] [Indexed: 01/03/2023]
Abstract
Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8׳s robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 - a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII & IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype.
Collapse
Affiliation(s)
- Rebeca M Tenney
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christie L Bell
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James M Wilson
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
Correction of Diabetic Hyperglycemia and Amelioration of Metabolic Anomalies by Minicircle DNA Mediated Glucose-Dependent Hepatic Insulin Production. PLoS One 2013; 8:e67515. [PMID: 23826312 PMCID: PMC3694888 DOI: 10.1371/journal.pone.0067515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 05/23/2013] [Indexed: 11/19/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is caused by immune destruction of insulin-producing pancreatic β-cells. Commonly used insulin injection therapy does not provide a dynamic blood glucose control to prevent long-term systemic T1DM-associated damages. Donor shortage and the limited long-term success of islet transplants have stimulated the development of novel therapies for T1DM. Gene therapy-based glucose-regulated hepatic insulin production is a promising strategy to treat T1DM. We have developed gene constructs which cause glucose-concentration-dependent human insulin production in liver cells. A novel set of human insulin expression constructs containing a combination of elements to improve gene transcription, mRNA processing, and translation efficiency were generated as minicircle DNA preparations that lack bacterial and viral DNA. Hepatocytes transduced with the new constructs, ex vivo, produced large amounts of glucose-inducible human insulin. In vivo, insulin minicircle DNA (TA1m) treated streptozotocin (STZ)-diabetic rats demonstrated euglycemia when fasted or fed, ad libitum. Weight loss due to uncontrolled hyperglycemia was reversed in insulin gene treated diabetic rats to normal rate of weight gain, lasting ∼1 month. Intraperitoneal glucose tolerance test (IPGT) demonstrated in vivo glucose-responsive changes in insulin levels to correct hyperglycemia within 45 minutes. A single TA1m treatment raised serum albumin levels in diabetic rats to normal and significantly reduced hypertriglyceridemia and hypercholesterolemia. Elevated serum levels of aspartate transaminase, alanine aminotransferase, and alkaline phosphatase were restored to normal or greatly reduced in treated rats, indicating normalization of liver function. Non-viral insulin minicircle DNA-based TA1m mediated glucose-dependent insulin production in liver may represent a safe and promising approach to treat T1DM.
Collapse
|
27
|
Atomic modeling of cryo-electron microscopy reconstructions--joint refinement of model and imaging parameters. J Struct Biol 2013; 182:10-21. [PMID: 23376441 DOI: 10.1016/j.jsb.2013.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/20/2012] [Accepted: 01/11/2013] [Indexed: 11/22/2022]
Abstract
When refining the fit of component atomic structures into electron microscopic reconstructions, use of a resolution-dependent atomic density function makes it possible to jointly optimize the atomic model and imaging parameters of the microscope. Atomic density is calculated by one-dimensional Fourier transform of atomic form factors convoluted with a microscope envelope correction and a low-pass filter, allowing refinement of imaging parameters such as resolution, by optimizing the agreement of calculated and experimental maps. A similar approach allows refinement of atomic displacement parameters, providing indications of molecular flexibility even at low resolution. A modest improvement in atomic coordinates is possible following optimization of these additional parameters. Methods have been implemented in a Python program that can be used in stand-alone mode for rigid-group refinement, or embedded in other optimizers for flexible refinement with stereochemical restraints. The approach is demonstrated with refinements of virus and chaperonin structures at resolutions of 9 through 4.5 Å, representing regimes where rigid-group and fully flexible parameterizations are appropriate. Through comparisons to known crystal structures, flexible fitting by RSRef is shown to be an improvement relative to other methods and to generate models with all-atom rms accuracies of 1.5-2.5 Å at resolutions of 4.5-6 Å.
Collapse
|
28
|
The threefold protrusions of adeno-associated virus type 8 are involved in cell surface targeting as well as postattachment processing. J Virol 2012; 86:9396-408. [PMID: 22718833 DOI: 10.1128/jvi.00209-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adeno-associated virus (AAV) has attracted considerable interest as a vector for gene therapy owing its lack of pathogenicity and the wealth of available serotypes with distinct tissue tropisms. One of the most promising isolates for vector development, based on its superior gene transfer efficiency to the liver in small animals compared to AAV type 2 (AAV2), is AAV8. Comparison of the in vivo gene transduction of rAAV2 and rAAV8 in mice showed that single amino acid exchanges in the 3-fold protrusions of AAV8 in the surface loops comprised of residues 581 to 584 and 589 to 592 to the corresponding amino acids of AAV2 and vice versa had a strong influence on transduction efficiency and tissue tropism. Surprisingly, not only did conversion of AAV8 to AAV2 cap sequences increase the transduction efficiency and change tissue tropism but so did the reciprocal conversion of AAV2 to AAV8. Insertion of new peptide motifs at position 590 in AAV8 also enabled retargeting of AAV8 capsids to specific tissues, suggesting that these sequences can interact with receptors on the cell surface. However, a neutralizing monoclonal antibody that binds to amino acids (588)QQNTA(592) of AAV8 does not prevent cell binding and virus uptake, indicating that this region is not necessary for receptor binding but rather that the antibody interferes with an essential step of postattachment processing in which the 3-fold protrusion is also involved. This study supports a multifunctional role of the 3-fold region of AAV capsids in the infection process.
Collapse
|
29
|
Mapping a neutralizing epitope onto the capsid of adeno-associated virus serotype 8. J Virol 2012; 86:7739-51. [PMID: 22593150 DOI: 10.1128/jvi.00218-12] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Adeno-associated viruses (AAVs) are small single-stranded DNA viruses that can package and deliver nongenomic DNA for therapeutic gene delivery. AAV8, a liver-tropic vector, has shown great promise for the treatment of hemophilia A and B. However, as with other AAV vectors, host anti-capsid immune responses are a deterrent to therapeutic success. To characterize the antigenic structure of this vector, cryo-electron microscopy and image reconstruction (cryo-reconstruction) combined with molecular genetics, biochemistry, and in vivo approaches were used to define an antigenic epitope on the AAV8 capsid surface for a neutralizing monoclonal antibody, ADK8. Docking of the crystal structures of AAV8 and a generic Fab into the cryo-reconstruction for the AAV8-ADK8 complex identified a footprint on the prominent protrusions that flank the 3-fold axes of the icosahedrally symmetric capsid. Mutagenesis and cell-binding studies, along with in vitro and in vivo transduction assays, showed that the major ADK8 epitope is formed by an AAV variable region, VRVIII (amino acids 586 to 591 [AAV8 VP1 numbering]), which lies on the surface of the protrusions facing the 3-fold axis. This region plays a role in AAV2 and AAV8 cellular transduction. Coincidently, cell binding and trafficking assays indicate that ADK8 affects a postentry step required for successful virus trafficking to the nucleus, suggesting a probable mechanism of neutralization. This structure-directed strategy for characterizing the antigenic regions of AAVs can thus generate useful information to help re-engineer vectors that escape host neutralization and are hence more efficacious.
Collapse
|
30
|
Structural studies of adeno-associated virus serotype 8 capsid transitions associated with endosomal trafficking. J Virol 2011; 85:11791-9. [PMID: 21900159 DOI: 10.1128/jvi.05305-11] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The single-stranded DNA (ssDNA) parvoviruses enter host cells through receptor-mediated endocytosis, and infection depends on processing in the early to late endosome as well as in the lysosome prior to nuclear entry for replication. However, the mechanisms of capsid endosomal processing, including the effects of low pH, are poorly understood. To gain insight into the structural transitions required for this essential step in infection, the crystal structures of empty and green fluorescent protein (GFP) gene-packaged adeno-associated virus serotype 8 (AAV8) have been determined at pH values of 6.0, 5.5, and 4.0 and then at pH 7.5 after incubation at pH 4.0, mimicking the conditions encountered during endocytic trafficking. While the capsid viral protein (VP) topologies of all the structures were similar, significant amino acid side chain conformational rearrangements were observed on (i) the interior surface of the capsid under the icosahedral 3-fold axis near ordered nucleic acid density that was lost concomitant with the conformational change as pH was reduced and (ii) the exterior capsid surface close to the icosahedral 2-fold depression. The 3-fold change is consistent with DNA release from an ordering interaction on the inside surface of the capsid at low pH values and suggests transitions that likely trigger the capsid for genome uncoating. The surface change results in disruption of VP-VP interface interactions and a decrease in buried surface area between VP monomers. This disruption points to capsid destabilization which may (i) release VP1 amino acids for its phospholipase A2 function for endosomal escape and nuclear localization signals for nuclear targeting and (ii) trigger genome uncoating.
Collapse
|
31
|
Michelfelder S, Varadi K, Raupp C, Hunger A, Körbelin J, Pahrmann C, Schrepfer S, Müller OJ, Kleinschmidt JA, Trepel M. Peptide ligands incorporated into the threefold spike capsid domain to re-direct gene transduction of AAV8 and AAV9 in vivo. PLoS One 2011; 6:e23101. [PMID: 21850255 PMCID: PMC3151269 DOI: 10.1371/journal.pone.0023101] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 07/11/2011] [Indexed: 12/25/2022] Open
Abstract
Efficiency and specificity of viral vectors are vital issues in gene therapy. Insertion of peptide ligands into the adeno-associated viral (AAV) capsid at receptor binding sites can re-target AAV2-derived vectors to alternative cell types. Also, the use of serotypes AAV8 and -9 is more efficient than AAV2 for gene transfer to certain tissues in vivo. Consequently, re-targeting of these serotypes by ligand insertion could be a promising approach but has not been explored so far. Here, we generated AAV8 and -9 vectors displaying peptides in the threefold spike capsid domain. These peptides had been selected from peptide libraries displayed on capsids of AAV serotype 2 to optimize systemic gene delivery to murine lung tissue and to breast cancer tissue in PymT transgenic mice (PymT). Such peptide insertions at position 590 of the AAV8 capsid and position 589 of the AAV9 capsid changed the transduction properties of both serotypes. However, both peptides inserted in AAV8 did not result in the same changes of tissue tropism as they did in AAV2. While the AAV2 peptides selected on murine lung tissue did not alter tropism of serotypes 8 and -9, insertion of the AAV2-derived peptide selected on breast cancer tissue augmented tumor gene delivery in both serotypes. Further, this peptide mediated a strong but unspecific in vivo gene transfer for AAV8 and abrogated transduction of various control tissues for AAV9. Our findings indicate that peptide insertion into defined sites of AAV8 and -9 capsids can change and improve their efficiency and specificity compared to their wild type variants and to AAV2, making these insertion sites attractive for the generation of novel targeted vectors in these serotypes.
Collapse
Affiliation(s)
- Stefan Michelfelder
- Department of Oncology and Hematology, Hubertus Wald Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl Varadi
- Internal Medicine III, University Medical Center Heidelberg, Im Neuenheimer Feld 10, Heidelberg, Germany
| | - Christina Raupp
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, Heidelberg, Germany
| | - Agnes Hunger
- Department of Oncology and Hematology, Hubertus Wald Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob Körbelin
- Department of Oncology and Hematology, Hubertus Wald Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christiane Pahrmann
- Transplant and Stem Cell Immunobiology Lab, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Schrepfer
- Transplant and Stem Cell Immunobiology Lab, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver J. Müller
- Internal Medicine III, University Medical Center Heidelberg, Im Neuenheimer Feld 10, Heidelberg, Germany
| | | | - Martin Trepel
- Department of Oncology and Hematology, Hubertus Wald Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
32
|
Koornneef A, Maczuga P, van Logtenstein R, Borel F, Blits B, Ritsema T, van Deventer S, Petry H, Konstantinova P. Apolipoprotein B knockdown by AAV-delivered shRNA lowers plasma cholesterol in mice. Mol Ther 2011; 19:731-40. [PMID: 21304496 PMCID: PMC3070114 DOI: 10.1038/mt.2011.6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 01/10/2011] [Indexed: 12/22/2022] Open
Abstract
Serum low-density lipoprotein cholesterol (LDL-C) levels are proportionate to the risk of atherosclerotic cardiovascular disease. In order to reduce serum total cholesterol and LDL-C levels in mice, RNA interference (RNAi) was used to inhibit expression of the structural protein of LDL-C, apolipoprotein B100 (ApoB). We developed and screened 19 short hairpin RNAs (shRNAs) targeting conserved sequences in human, mouse, and macaque ApoB mRNAs (shApoB) and subsequently narrowed our focus to one candidate for in vivo testing. Self-complementary adeno-associated virus serotype 8 (scAAV8) was used for long-term transduction of murine liver with shApoB. A strong dose-dependent knockdown of ApoB mRNA and protein was observed, which correlated with a reduction in total cholesterol levels, without obvious signs of toxicity. Furthermore, shApoB was found to specifically reduce LDL-C in diet-induced dyslipidemic mice, whereas high-density lipoprotein cholesterol (HDL-C) remained unaffected. Finally, elevated lipid accumulation was shown in murine liver transduced with shApoB, a known phenotypic side effect of lowering ApoB levels. These results demonstrate a robust dose-dependent knockdown of ApoB by AAV-delivered shRNA in murine liver, thus providing an excellent candidate for development of RNAi-based gene therapy for the treatment of hypercholesterolemia.
Collapse
Affiliation(s)
- Annemart Koornneef
- Department of Research and Development, Amsterdam Molecular Therapeutics, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Adachi K, Nakai H. A NEW RECOMBINANT ADENO-ASSOCIATED VIRUS (AAV)-BASED RANDOM PEPTIDE DISPLAY LIBRARY SYSTEM: INFECTION-DEFECTIVE AAV1.9-3 AS A NOVEL DETARGETED PLATFORM FOR VECTOR EVOLUTION. GENE THERAPY AND REGULATION 2010; 5:31-55. [PMID: 21603583 PMCID: PMC3095953 DOI: 10.1142/s1568558610000197] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Directed evolution through genetic engineering of viral capsids followed by selection has emerged as a powerful means to create novel recombinant adeno-associated virus (rAAV) vectors with desired tropism and enhanced properties. One of the most effective approaches uses rAAV-based random peptide display libraries. Here we report a novel system based on an infection-defective rAAV1.9-3 as a platform for random peptide display, and show that biopanning of the libraries in vitro effectively identifies the peptides that restore and enhance rAAV transduction. rAAV1.9-3 has a genetically engineered AAV1 capsid with amino acids 445-568 being replaced with those of AAV9, and has been identified as a variant exhibiting significantly impaired infectivity and delayed blood clearance when infused into mice. In this study, we generated rAAV1.9-3 variant libraries in which 7- or 12-mer random peptides were expressed at the capsid amino acid position 590. Three rounds of positive selection for primary human dermal fibroblasts successfully identified new rAAV-peptide variants that transduce them more efficiently than the prototype rAAV2. Thus our study demonstrates that an infection-defective rAAV variant serves as a novel detargeted platform for random peptide display libraries. We also describe a brief review of recent progress in rAAV-based random peptide display library approaches.
Collapse
Affiliation(s)
- Kei Adachi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Hiroyuki Nakai
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
34
|
Structural characterization of the dual glycan binding adeno-associated virus serotype 6. J Virol 2010; 84:12945-57. [PMID: 20861247 DOI: 10.1128/jvi.01235-10] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The three-dimensional structure of adeno-associated virus (AAV) serotype 6 (AAV6) was determined using cryo-electron microscopy and image reconstruction and using X-ray crystallography to 9.7- and 3.0-Å resolution, respectively. The AAV6 capsid contains a highly conserved, eight-stranded (βB to βI) β-barrel core and large loop regions between the strands which form the capsid surface, as observed in other AAV structures. The loops show conformational variation compared to other AAVs, consistent with previous reports that amino acids in these loop regions are involved in differentiating AAV receptor binding, transduction efficiency, and antigenicity properties. Toward structure-function annotation of AAV6 with respect to its unique dual glycan receptor (heparan sulfate and sialic acid) utilization for cellular recognition, and its enhanced lung epithelial transduction compared to other AAVs, the capsid structure was compared to that of AAV1, which binds sialic acid and differs from AAV6 in only 6 out of 736 amino acids. Five of these residues are located at or close to the icosahedral 3-fold axis of the capsid, thereby identifying this region as imparting important functions, such as receptor attachment and transduction phenotype. Two of the five observed amino acids are located in the capsid interior, suggesting that differential AAV infection properties are also controlled by postentry intracellular events. Density ordered inside the capsid, under the 3-fold axis in a previously reported, conserved AAV DNA binding pocket, was modeled as a nucleotide and a base, further implicating this capsid region in AAV genome recognition and/or stabilization.
Collapse
|
35
|
Koerber JT, Klimczak R, Jang JH, Dalkara D, Flannery JG, Schaffer DV. Molecular evolution of adeno-associated virus for enhanced glial gene delivery. Mol Ther 2009; 17:2088-95. [PMID: 19672246 PMCID: PMC2788045 DOI: 10.1038/mt.2009.184] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 07/15/2009] [Indexed: 01/15/2023] Open
Abstract
The natural tropism of most viral vectors, including adeno-associated viral (AAV) vectors, leads to predominant transduction of neurons and epithelia within the central nervous system (CNS) and retina. Despite the clinical relevance of glia for homeostasis in neural tissue, and as causal contributors in genetic disorders such as Alzheimer's and amyotrophic lateral sclerosis, efforts to develop more efficient gene delivery vectors for glia have met with limited success. Recently, viral vector engineering involving high-throughput random diversification and selection has enabled the rapid creation of AAV vectors with valuable new gene delivery properties. We have engineered novel AAV variants capable of efficient glia transduction by employing directed evolution with a panel of four distinct AAV libraries, including a new semi-random peptide replacement strategy. These variants transduced both human and rat astrocytes in vitro up to 15-fold higher than their parent serotypes, and injection into the rat striatum yielded astrocyte transduction levels up to 16% of the total transduced cell population, despite the human astrocyte selection platform. Furthermore, one variant exhibited a substantial shift in tropism toward Müller glia within the retina, further highlighting the general utility of these variants for efficient glia transduction in multiple species within the CNS and retina.
Collapse
Affiliation(s)
- James T Koerber
- Department of Chemical Engineering, Helen Wills Neuroscience Institute, The University of California, Berkeley, California 94720-1462, USA
| | | | | | | | | | | |
Collapse
|
36
|
Glushakova LG, Lisankie MJ, Eruslanov EB, Ojano-Dirain C, Zolotukhin I, Liu C, Srivastava A, Stacpoole PW. AAV3-mediated transfer and expression of the pyruvate dehydrogenase E1 alpha subunit gene causes metabolic remodeling and apoptosis of human liver cancer cells. Mol Genet Metab 2009; 98:289-99. [PMID: 19586787 PMCID: PMC2779054 DOI: 10.1016/j.ymgme.2009.05.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 05/26/2009] [Accepted: 05/26/2009] [Indexed: 12/25/2022]
Abstract
Most cancers rely disproportionately on glycolysis for energy even in the presence of adequate oxygen supply, a condition known as "aerobic glycolysis", or the Warburg effect. Pharmacological reversal of the Warburg effect has been shown to cause selective apoptosis of tumor cells, presumably by stimulating mitochondrial respiratory chain activity and production of reactive oxygen species that, in turn, induce a caspase-mediated series of reactions leading to cell death. We reasoned that a similar effect on tumor cells might result from up-regulation of the E1alpha subunit gene (pda1) of the pyruvate dehydrogenase complex (PDC) that catalyzes the rate-limiting step in aerobic glucose oxidation and thus plays a major role in the control of oxidative phosphorylation. To test this postulate, we employed a self-complementary adeno-associated virus (scAAV)-based delivery and expression system for targeting pda1 to the mitochondria of primary cultures of human hepatoblastoma (HB) and hepatocellular carcinoma (HCC) cells. Serotypes 1-10 scAAV vectors that included enhanced green fluorescent (egfp) reporter gene driven by either cytomegalovirus (CMV) or chicken beta-actin (CBA) promoters were analyzed for transduction ability of HB (Huh-6) and HCC (Huh-7 and HepG2) cell lines and primary cultures of normal human hepatocytes. Serotype 3 scAAV-egfp (scAAV3-egfp) vector was the most efficient and transduced up to 90% of cells. We limited the transgene expression primarily to liver cancer cells by generating scAAV3 vectors that contained the human alpha-fetoprotein promoter (AFP)-driven reporter gene (scAAV3.AFP-egfp) and the potentially therapeutic gene scAAV3.AFP-pda1. Infection of Huh-6 cells by the scAAV3.AFP-pda1 vector increased protein expression of E1alpha, PDC catalytic activity, and late-stage apoptotic cell death. Apoptosis was also associated with increased protein expression of Bcl-X/S, an early marker of apoptosis, and release of cytochrome c into the cytosol of infected HB cells. These data indicate that molecular targeting of mitochondrial oxidative metabolism in liver cancer cells by AAV3-mediated delivery of pda1 holds promise as a novel and effective therapeutic approach for human hepatic tumors.
Collapse
Affiliation(s)
- Lyudmyla G. Glushakova
- Department of Medicine, Division of Endocrinology and Metabolism College of Medicine, University of Florida
| | - Matthew J. Lisankie
- Department of Medicine, Division of Endocrinology and Metabolism College of Medicine, University of Florida
| | | | - Carolyn Ojano-Dirain
- Department of Medicine, Division of Endocrinology and Metabolism College of Medicine, University of Florida
| | - Irene Zolotukhin
- Department of Pediatrics, Division of Cellular and Molecular Therapy College of Medicine, University of Florida
| | - Chen Liu
- Department of Pathology and Immunology College of Medicine, University of Florida
| | - Arun Srivastava
- Department of Pediatrics, Division of Cellular and Molecular Therapy College of Medicine, University of Florida
- Department of Molecular Genetics & Microbiology College of Medicine, University of Florida
- Powell Gene Therapy Center College of Medicine, University of Florida
| | - Peter W. Stacpoole
- Department of Medicine, Division of Endocrinology and Metabolism College of Medicine, University of Florida
- Department of Biochemistry and Molecular Biology College of Medicine, University of Florida
- Peter W. Stacpoole, PhD, MD, PO Box 100219, University of Florida College of Medicine, Gainesville, FL 32610-0219;
| |
Collapse
|
37
|
Adeno-associated virus capsid serotype identification: Analytical methods development and application. J Virol Methods 2009; 159:167-77. [DOI: 10.1016/j.jviromet.2009.03.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 03/11/2009] [Accepted: 03/16/2009] [Indexed: 11/18/2022]
|
38
|
Immune barriers to successful gene therapy. Trends Mol Med 2009; 15:32-9. [DOI: 10.1016/j.molmed.2008.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 11/04/2008] [Accepted: 11/04/2008] [Indexed: 12/15/2022]
|
39
|
Koerber JT, Jang JH, Schaffer DV. DNA shuffling of adeno-associated virus yields functionally diverse viral progeny. Mol Ther 2008; 16:1703-9. [PMID: 18728640 PMCID: PMC2683895 DOI: 10.1038/mt.2008.167] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adeno-associated virus (AAV) vectors are extremely effective gene-delivery vehicles for a broad range of applications. However, the therapeutic efficacy of these and other vectors is currently limited by barriers to safe, efficient gene delivery, including pre-existing antiviral immunity, and infection of off-target cells. Recently, we have implemented directed evolution of AAV, involving the generation of randomly mutagenized viral libraries based on serotype 2 and high-throughput selection, to engineer enhanced viral vectors. Here, we significantly extend this capability by performing high-efficiency in vitro recombination to create a large (10(7)), diverse library of random chimeras of numerous parent AAV serotypes (AAV1, 2, 4-6, 8, and 9). In order to analyze the extent to which such highly chimeric viruses can be viable, we selected the library for efficient viral packaging and infection, and successfully recovered numerous novel chimeras. These new viruses exhibited a broad range of cell tropism both in vitro and in vivo and enhanced resistance to human intravenous immunoglobulin (IVIG), highlighting numerous functional differences between these chimeras and their parent serotypes. Thus, directed evolution can potentially yield unlimited numbers of new AAV variants with novel gene-delivery properties, and subsequent analysis of these variants can further extend basic knowledge of AAV biology.
Collapse
Affiliation(s)
- James T Koerber
- Department of Chemical Engineering, University of California at Berkeley, Berkeley, California 94720-1462, USA
| | | | | |
Collapse
|
40
|
In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J Virol 2008; 82:5887-911. [PMID: 18400866 DOI: 10.1128/jvi.00254-08] [Citation(s) in RCA: 499] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adeno-associated virus (AAV) serotypes differ broadly in transduction efficacies and tissue tropisms and thus hold enormous potential as vectors for human gene therapy. In reality, however, their use in patients is restricted by prevalent anti-AAV immunity or by their inadequate performance in specific targets, exemplified by the AAV type 2 (AAV-2) prototype in the liver. Here, we attempted to merge desirable qualities of multiple natural AAV isolates by an adapted DNA family shuffling technology to create a complex library of hybrid capsids from eight different wild-type viruses. Selection on primary or transformed human hepatocytes yielded pools of hybrids from five of the starting serotypes: 2, 4, 5, 8, and 9. More stringent selection with pooled human antisera (intravenous immunoglobulin [IVIG]) then led to the selection of a single type 2/type 8/type 9 chimera, AAV-DJ, distinguished from its closest natural relative (AAV-2) by 60 capsid amino acids. Recombinant AAV-DJ vectors outperformed eight standard AAV serotypes in culture and greatly surpassed AAV-2 in livers of naïve and IVIG-immunized mice. A heparin binding domain in AAV-DJ was found to limit biodistribution to the liver (and a few other tissues) and to affect vector dose response and antibody neutralization. Moreover, we report the first successful in vivo biopanning of AAV capsids by using a new AAV-DJ-derived viral peptide display library. Two peptides enriched after serial passaging in mouse lungs mediated the retargeting of AAV-DJ vectors to distinct alveolar cells. Our study validates DNA family shuffling and viral peptide display as two powerful and compatible approaches to the molecular evolution of novel AAV vectors for human gene therapy applications.
Collapse
|
41
|
Abstract
The HI loop is a prominent domain on the adeno-associated virus (AAV) capsid surface that extends from each viral protein (VP) subunit overlapping the neighboring fivefold VP. Despite the highly conserved nature of the residues at the fivefold pore, the HI loops surrounding this critical region vary significantly in amino acid sequence between the AAV serotypes. In order to understand the role of this unique capsid domain, we ablated side chain interactions between the HI loop and the underlying EF loop in the neighboring VP subunit by generating a collection of deletion, insertion, and substitution mutants. A mutant lacking the HI loop was unable to assemble particles, while a substitution mutant (10 glycine residues) assembled particles but was unable to package viral genomes. Substitution mutants carrying corresponding regions from AAV1, AAV4, AAV5, and AAV8 yielded (i) particles with titers and infectivity identical to those of AAV2 (AAV2 HI1 and HI8), (ii) particles with a decreased virus titer (1 log) but normal infectivity (HI4), and (iii) particles that synthesized VPs but were unable to assemble into intact capsids (HI5). AAV5 HI is shorter than all other HI loops by one amino acid. Replacing the missing residue (threonine) in AAV2 HI5 resulted in a moderate particle assembly rescue. In addition, we replaced the HI loop with peptides varying in length and amino acid sequence. This region tolerated seven-amino-acid peptide substitutions unless they spanned a conserved phenylalanine at amino acid position 661. Mutation of this highly conserved phenylalanine to a glycine resulted in a modest decrease in virus titer but a substantial decrease (1 log order) in infectivity. Subsequently, confocal studies revealed that AAV2 F661G is incapable of efficiently completing a key step in the infectious pathway nuclear entry, hinting at a possible perturbation of VP1 phospholipase activity. Molecular modeling studies with the F661G mutant suggest that disruption of interactions between F661 and an underlying P373 residue in the EF loop of the neighboring subunit might adversely affect incorporation of the VP1 subunit at the fivefold axis. Western blot analysis confirmed inefficient incorporation of VP1, as well as a proteolytically processed VP1 subunit that could account for the markedly reduced infectivity. In summary, our studies show that the HI loop, while flexible in amino acid sequence, is critical for AAV capsid assembly, proper VP1 subunit incorporation, and viral genome packaging, all of which implies a potential role for this unique surface domain in viral infectivity.
Collapse
|
42
|
Arbuthnot P, Thompson LJ. Harnessing the RNA interference pathway to advance treatment and prevention of hepatocellular carcinoma. World J Gastroenterol 2008; 14:1670-81. [PMID: 18350598 PMCID: PMC2695907 DOI: 10.3748/wjg.14.1670] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 01/27/2008] [Indexed: 02/06/2023] Open
Abstract
Primary liver cancer is the fifth most common malignancy in the world and is a leading cause of cancer-related mortality. Available treatment for hepatocellular carcinoma (HCC), the commonest primary liver cancer, is rarely curative and there is a need to develop therapy that is more effective. Specific and powerful gene silencing that can be achieved by activating RNA interference (RNAi) has generated enthusiasm for exploiting this pathway for HCC therapy. Many studies have been carried out with the aim of silencing HCC-related cellular oncogenes or the hepatocarcinogenic hepatitis B virus (HBV) and hepatitis C virus (HCV). Proof of principle studies have demonstrated promising results, and an early clinical trial assessing RNAi-based HBV therapy is currently in progress. Although the data augur well, there are several significant hurdles that need to be overcome before the goal of RNAi-based therapy for HCC is realized. Particularly important are the efficient and safe delivery of RNAi effecters to target malignant tissue and the limitation of unintended harmful non-specific effects.
Collapse
|