1
|
Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
2
|
Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_18-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
3
|
Cancer Detection and Quantification of Treatment Response Using Diffusion-Weighted MRI. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
4
|
Salehi Ravesh M, Huhndorf M, Moussavi A. Non-contrast enhanced molecular characterization of C6 rat glioma tumor at 7 T. Magn Reson Imaging 2019; 61:175-186. [PMID: 31150813 DOI: 10.1016/j.mri.2019.05.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/08/2019] [Accepted: 05/26/2019] [Indexed: 01/19/2023]
Abstract
PURPOSE The aim of this study was to investigate, how to assess the relevant magnetization changes in the rat brain tissue due to the present of glioma tumor and its growth at a 7 T animal magnetic resonance imaging (MRI) system. MATERIAL AND METHODS For this study, a custom-built two dimensional (2D) chemical exchange saturation transfer (CEST) pulse sequence was optimized for different tissue properties using fresh and cooked quail eggs. C6 tumor cells were investigated by in-vivo and post-mortem measurements in six Wistar rats using the optimized CEST sequence up to 5 weeks. Magnetization transfer ratio (MTR)- and asymmetric MTR (MTRasym)-maps of rat brains were created at different frequency offsets. In-vivo results were verified by 1H spectroscopic, histological and also in-vitro C6 cell culture examinations. RESULTS The CEST module for the optimal visualization of magnetization effects consists of five RF-pulses, each with a duration of 20 ms and a flip angle of 180°. In-vivo and post-mortem z-spectra of the cerebrospinal fluid (CSF), cortex, myelinated/demyelinated, healthy and tumorous tissue and tumor rim were obtained. The magnetization level and shape of the z-spectra on the upfield and downfield from the water peak were not the same. The magnetization dips on the upfield and downfield from the water peak of the z-spectra disappeared due to the thermal denaturation in cooked quail eggs and due to formaldehyde-induced fixation in post-mortem rat brains. The z-spectra of the rat brain in a range of ±2 to ±4 ppm displayed valuable information about the differentiation of various brain regions from the tumor tissue. Histological examinations confirmed our results. The C6 cell culture examinations showed that the observed magnetization changes in the rat brain occurred only due to the interaction between glioma cells and their environment in the rat brain and not from the C6 tumor cells. CONCLUSIONS Based on our in-vivo and post-mortem results, it is to be recommended to create the MTR-maps at a special offset frequency depending on the aim of research project instead of MTRasym-maps. Otherwise, the desired effect attenuates or vanishes.
Collapse
Affiliation(s)
- Mona Salehi Ravesh
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany; Department for Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany.
| | - Monika Huhndorf
- Department for Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Amir Moussavi
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany; Functional Imaging Unit, German Primate Center, Leibnitz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
5
|
Wu L, Li J, Fu C, Kühn B, Wang X. Chemotherapy response of pancreatic cancer by diffusion-weighted imaging (DWI) and intravoxel incoherent motion DWI (IVIM-DWI) in an orthotopic mouse model. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 32:501-509. [DOI: 10.1007/s10334-019-00745-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/19/2019] [Accepted: 02/17/2019] [Indexed: 12/14/2022]
|
6
|
Poliaková M, Aebersold DM, Zimmer Y, Medová M. The relevance of tyrosine kinase inhibitors for global metabolic pathways in cancer. Mol Cancer 2018; 17:27. [PMID: 29455660 PMCID: PMC5817809 DOI: 10.1186/s12943-018-0798-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
Tumor metabolism is a thrilling discipline that focuses on mechanisms used by cancer cells to earn crucial building blocks and energy to preserve growth and overcome resistance to various treatment modalities. At the same time, therapies directed specifically against aberrant signalling pathways driven by protein tyrosine kinases (TKs) involved in proliferation, metastasis and growth count for several years to promising anti-cancer approaches. In this respect, small molecule inhibitors are the most widely used clinically relevant means for targeted therapy, with a rising number of approvals for TKs inhibitors. In this review, we discuss recent observations related to TKs-associated metabolism and to metabolic feedback that is initialized as cellular response to particular TK-targeted therapies. These observations provide collective evidence that therapeutic responses are primarily linked to such pathways as regulation of lipid and amino acid metabolism, TCA cycle and glycolysis, advocating therefore the development of further effective targeted therapies against a broader spectrum of TKs to treat patients whose tumors display deregulated signalling driven by these proteins.
Collapse
Affiliation(s)
- Michaela Poliaková
- Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.,Department for BioMedical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Daniel M Aebersold
- Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.,Department for BioMedical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Yitzhak Zimmer
- Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.,Department for BioMedical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Michaela Medová
- Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland. .,Department for BioMedical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.
| |
Collapse
|
7
|
Ramirez G, Proctor AR, Jung KW, Wu TT, Han S, Adams RR, Ren J, Byun DK, Madden KS, Brown EB, Foster TH, Farzam P, Durduran T, Choe R. Chemotherapeutic drug-specific alteration of microvascular blood flow in murine breast cancer as measured by diffuse correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2016; 7:3610-3630. [PMID: 27699124 PMCID: PMC5030036 DOI: 10.1364/boe.7.003610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 05/08/2023]
Abstract
The non-invasive, in vivo measurement of microvascular blood flow has the potential to enhance breast cancer therapy monitoring. Here, longitudinal blood flow of 4T1 murine breast cancer (N=125) under chemotherapy was quantified with diffuse correlation spectroscopy based on layer models. Six different treatment regimens involving doxorubicin, cyclophosphamide, and paclitaxel at clinically relevant doses were investigated. Treatments with cyclophosphamide increased blood flow as early as 3 days after administration, whereas paclitaxel induced a transient blood flow decrease at 1 day after administration. Early blood flow changes correlated strongly with the treatment outcome and distinguished treated from untreated mice individually for effective treatments.
Collapse
Affiliation(s)
- Gabriel Ramirez
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Ashley R. Proctor
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Ki Won Jung
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642,
USA
| | - Songfeng Han
- The Institute of Optics, University of Rochester, Rochester, NY 14627,
USA
| | - Russell R. Adams
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Jingxuan Ren
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Daniel K. Byun
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Kelley S. Madden
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Edward B. Brown
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Thomas H. Foster
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
- The Institute of Optics, University of Rochester, Rochester, NY 14627,
USA
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY 14642,
USA
| | - Parisa Farzam
- ICFO- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona),
Spain
| | - Turgut Durduran
- ICFO- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona),
Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08015 Barcelona,
Spain
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627,
USA
| |
Collapse
|
8
|
Yang C, Lee DH, Mangraviti A, Su L, Zhang K, Zhang Y, Zhang B, Li W, Tyler B, Wong J, Wang KKH, Velarde E, Zhou J, Ding K. Quantitative correlational study of microbubble-enhanced ultrasound imaging and magnetic resonance imaging of glioma and early response to radiotherapy in a rat model. Med Phys 2016; 42:4762-72. [PMID: 26233204 DOI: 10.1118/1.4926550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Radiotherapy remains a major treatment method for malignant tumors. Magnetic resonance imaging (MRI) is the standard modality for assessing glioma treatment response in the clinic. Compared to MRI, ultrasound imaging is low-cost and portable and can be used during intraoperative procedures. The purpose of this study was to quantitatively compare contrast-enhanced ultrasound (CEUS) imaging and MRI of irradiated gliomas in rats and to determine which quantitative ultrasound imaging parameters can be used for the assessment of early response to radiation in glioma. METHODS Thirteen nude rats with U87 glioma were used. A small thinned skull window preparation was performed to facilitate ultrasound imaging and mimic intraoperative procedures. Both CEUS and MRI with structural, functional, and molecular imaging parameters were performed at preradiation and at 1 day and 4 days postradiation. Statistical analysis was performed to determine the correlations between MRI and CEUS parameters and the changes between pre- and postradiation imaging. RESULTS Area under the curve (AUC) in CEUS showed significant difference between preradiation and 4 days postradiation, along with four MRI parameters, T2, apparent diffusion coefficient, cerebral blood flow, and amide proton transfer-weighted (APTw) (all p < 0.05). The APTw signal was correlated with three CEUS parameters, rise time (r = - 0.527, p < 0.05), time to peak (r = - 0.501, p < 0.05), and perfusion index (r = 458, p < 0.05). Cerebral blood flow was correlated with rise time (r = - 0.589, p < 0.01) and time to peak (r = - 0.543, p < 0.05). CONCLUSIONS MRI can be used for the assessment of radiotherapy treatment response and CEUS with AUC as a new technique and can also be one of the assessment methods for early response to radiation in glioma.
Collapse
Affiliation(s)
- Chen Yang
- Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Dong-Hoon Lee
- Division of MR Research, Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287
| | - Antonella Mangraviti
- Department of Neurosurgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287
| | - Lin Su
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231
| | - Kai Zhang
- Division of MR Research, Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287
| | - Yin Zhang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231
| | - Bin Zhang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231
| | - Wenxiao Li
- Division of MR Research, Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287
| | - John Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231
| | - Ken Kang-Hsin Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231
| | - Esteban Velarde
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231
| | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287
| | - Kai Ding
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231
| |
Collapse
|
9
|
Kim H, Hartman YE, Zhai G, Chung TK, Korb ML, Beasley TM, Zhou T, Rosenthal EL. Dynamic contrast-enhanced MRI evaluates the early response of human head and neck tumor xenografts following anti-EMMPRIN therapy with cisplatin or irradiation. J Magn Reson Imaging 2015; 42:936-45. [PMID: 25704985 DOI: 10.1002/jmri.24871] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 01/28/2015] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To assess the early therapeutic effects of anti-EMMPRIN (extracellular matrix metalloprotease inducer) antibody with/without cisplatin or X-ray radiation in head and neck cancer mouse models using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). MATERIALS AND METHODS Mice bearing SCC1 (or OSC19) tumor xenografts were treated with anti-EMMPRIN antibody, radiation, cisplatin, or anti-EMMPRIN antibody plus cisplatin (or radiation) for a week (n = 4-5 per group). DCE-MRI was carried out on a 9.4T small animal MR scanner on days 0, 3, and 7, and K(trans) values were averaged in a 0.5-mm-thick peripheral tumor region. Ki67 and CD31 staining were implemented for all tumors after imaging. RESULTS The K(trans) changes of SCC1 and OSC19 tumors treated with anti-EMMPRIN antibody for 3 days were -18 ± 8% and 4 ± 7%, respectively, which were significantly lower than those of control groups (39 ± 5% and 45 ± 7%; P = 0.0025 and 0.0220, respectively). When cisplatin was added, those were -42 ± 9% and -44 ± 9%, respectively, and with radiation, -45 ± 9% and -27 ± 10%, respectively, which were also significantly lower than those of control groups (P < 0.0001 for all four comparisons). In the eight groups untreated (served as control) or treated with anti-EMMPRIN antibody with/without cisplatin or radiation, the mean K(trans) change for 3 days was significantly correlated with the mean tumor volume change for 7 days (r = 0.74, P = 0.0346), Ki67-expressing cell density (r = 0.96, P = 0.0001), and CD31 density (r = 0.84, P = 0.0084). CONCLUSION DCE-MRI might be utilized to assess the early therapeutic effects of anti-EMMPRIN antibody with/without chemotherapy or radiotherapy in head and neck cancer.
Collapse
Affiliation(s)
- Hyunki Kim
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yolanda E Hartman
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Guihua Zhai
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thomas K Chung
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Melissa L Korb
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Timothy M Beasley
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tong Zhou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Eben L Rosenthal
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
10
|
Wang AS, Lodi A, Rivera LB, Izquierdo-Garcia JL, Firpo MA, Mulvihill SJ, Tempero MA, Bergers G, Ronen SM. HR-MAS MRS of the pancreas reveals reduced lipid and elevated lactate and taurine associated with early pancreatic cancer. NMR IN BIOMEDICINE 2014; 27:1361-70. [PMID: 25199993 PMCID: PMC5554431 DOI: 10.1002/nbm.3198] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 05/07/2023]
Abstract
The prognosis for patients with pancreatic cancer is extremely poor, as evidenced by the disease's five-year survival rate of ~5%. New approaches are therefore urgently needed to improve detection, treatment, and monitoring of pancreatic cancer. MRS-detectable metabolic changes provide useful biomarkers for tumor detection and response-monitoring in other cancers. The goal of this study was to identify MRS-detectable biomarkers of pancreatic cancer that could enhance currently available imaging approaches. We used (1) H high-resolution magic angle spinning MRS to probe metabolite levels in pancreatic tissue samples from mouse models and patients. In mice, the levels of lipids dropped significantly in pancreata with lipopolysaccharide-induced inflammation, in pancreata with pre-cancerous metaplasia (4 week old p48-Cre;LSL-Kras(G12D) mice), and in pancreata with pancreatic intraepithelial neoplasia, which precedes invasive pancreatic cancer (8 week old p48-Cre LSL-Kras(G12D) mice), to 26 ± 19% (p = 0.03), 19 ± 16% (p = 0.04), and 26 ± 10% (p = 0.05) of controls, respectively. Lactate and taurine remained unchanged in inflammation and in pre-cancerous metaplasia but increased significantly in pancreatic intraepithelial neoplasia to 266 ± 61% (p = 0.0001) and 999 ± 174% (p < 0.00001) of controls, respectively. Importantly, analysis of patient biopsies was consistent with the mouse findings. Lipids dropped in pancreatitis and in invasive cancer biopsies to 29 ± 15% (p = 0.01) and 26 ± 38% (p = 0.02) of normal tissue. In addition, lactate and taurine levels remained unchanged in inflammation but rose in tumor samples to 244 ± 155% (p = 0.02) and 188 ± 67% (p = 0.02), respectively, compared with normal tissue. Based on these findings, we propose that a drop in lipid levels could serve to inform on pancreatitis and cancer-associated inflammation, whereas elevated lactate and taurine could serve to identify the presence of pancreatic intraepithelial neoplasia and invasive tumor. Our findings may help enhance current imaging methods to improve early pancreatic cancer detection and monitoring.
Collapse
Affiliation(s)
- Alan S. Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Alessia Lodi
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Lee B. Rivera
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Jose L. Izquierdo-Garcia
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Matthew A. Firpo
- Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Sean J. Mulvihill
- Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Margaret A. Tempero
- Department of Medicine, Division of Hematology and Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Gabriele Bergers
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
11
|
Krainik A, Villien M, Troprès I, Attyé A, Lamalle L, Bouvier J, Pietras J, Grand S, Le Bas JF, Warnking J. Functional imaging of cerebral perfusion. Diagn Interv Imaging 2013; 94:1259-78. [PMID: 24011870 DOI: 10.1016/j.diii.2013.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The functional imaging of perfusion enables the study of its properties such as the vasoreactivity to circulating gases, the autoregulation and the neurovascular coupling. Downstream from arterial stenosis, this imaging can estimate the vascular reserve and the risk of ischemia in order to adapt the therapeutic strategy. This method reveals the hemodynamic disorders in patients suffering from Alzheimer's disease or with arteriovenous malformations revealed by epilepsy. Functional MRI of the vasoreactivity also helps to better interpret the functional MRI activation in practice and in clinical research.
Collapse
Affiliation(s)
- A Krainik
- Clinique universitaire de neuroradiologie et IRM, CHU de Grenoble, CS 10217, 38043 Grenoble cedex, France; Inserm U836, université Joseph-Fourier, site santé, chemin Fortuné-Ferrini, 38706 La Tronche cedex, France; UMS IRMaGe, unité IRM 3T recherche, CHU de Grenoble, CS 10217, 38043 Grenoble cedex 9, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bartusik D, Tomanek B. Detection of (19)F-labeled biopharmaceuticals in cell cultures with magnetic resonance. Adv Drug Deliv Rev 2013; 65:1056-64. [PMID: 23603212 DOI: 10.1016/j.addr.2013.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 03/18/2013] [Accepted: 04/09/2013] [Indexed: 02/06/2023]
Abstract
Magnetic resonance (MR) studies of the therapeutic efficacy of fluorinated drugs have recently become possible due to improvements in detection including the application of very strong magnetic fields up to 9.4Tesla (T). These advances allow tracking, identification, and quantification of (19)F-labeled biopharmaceuticals using (19)F MR imaging ((19)F MRI) and spectroscopy ((19)F MRS). Both techniques are noninvasive, are nondestructive, and enable serial measurements. They also allow for controlled and systematic studies of cellular metabolism in cancerous tissue in vivo (small animals and humans) and in vitro (body fluids, cells culture, tissue extracts and isolated tissues). Here we provide an overview of the (19)F MRI and (19)F MRS techniques used for tracking (19)F labeled anticancer chemotherapeutics and antibodies which allow quantification of drug uptake in cancer cells in vitro.
Collapse
|
13
|
Ward CS, Eriksson P, Izquierdo-Garcia JL, Brandes AH, Ronen SM. HDAC inhibition induces increased choline uptake and elevated phosphocholine levels in MCF7 breast cancer cells. PLoS One 2013; 8:e62610. [PMID: 23626839 PMCID: PMC3633900 DOI: 10.1371/journal.pone.0062610] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 03/26/2013] [Indexed: 11/18/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors have emerged as effective antineoplastic agents in the clinic. Studies from our lab and others have reported that magnetic resonance spectroscopy (MRS)-detectable phosphocholine (PC) is elevated following SAHA treatment, providing a potential noninvasive biomarker of response. Typically, elevated PC is associated with cancer while a decrease in PC accompanies response to antineoplastic treatment. The goal of this study was therefore to elucidate the underlying biochemical mechanism by which HDAC inhibition leads to elevated PC. We investigated the effect of SAHA on MCF-7 breast cancer cells using 13C MRS to monitor [1,2-13C] choline uptake and phosphorylation to PC. We found that PC synthesis was significantly higher in treated cells, representing 154±19% of control. This was within standard deviation of the increase in total PC levels detected by 31P MRS (129±7% of control). Furthermore, cellular choline kinase activity was elevated (177±31%), while cytidylyltransferase activity was unchanged. Expression of the intermediate-affinity choline transporter SLC44A1 and choline kinase α increased (144% and 161%, respectively) relative to control, as determined by mRNA microarray analysis with protein-level confirmation by Western blotting. Taken together, our findings indicate that the increase in PC levels following SAHA treatment results from its elevated synthesis. Additionally, the concentration of glycerophosphocholine (GPC) increased significantly with treatment to 210±45%. This is likely due to the upregulated expression of several phospholipase A2 (PLA2) isoforms, resulting in increased PLA2 activity (162±18%) in SAHA-treated cells. Importantly, the levels of total choline (tCho)-containing metabolites, comprised of choline, PC and GPC, are readily detectable clinically using 1H MRS. Our findings thus provide an important step in validating clinically translatable non-invasive imaging methods for follow-up diagnostics of HDAC inhibitor treatment.
Collapse
Affiliation(s)
- Christopher S. Ward
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Pia Eriksson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Jose L. Izquierdo-Garcia
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Alissa H. Brandes
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
DW-MRI as a Predictive Biomarker of Radiosensitization of GBM through Targeted Inhibition of Checkpoint Kinases. Transl Oncol 2013; 6:133-42. [PMID: 23544166 DOI: 10.1593/tlo.13214] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 02/13/2013] [Accepted: 02/28/2013] [Indexed: 01/22/2023] Open
Abstract
PURPOSE The inherent treatment resistance of glioblastoma (GBM) can involve multiple mechanisms including checkpoint kinase (Chk1/2)-mediated increased DNA repair capability, which can attenuate the effects of genotoxic chemotherapies and radiation. The goal of this study was to evaluate diffusion-weighted magnetic resonance imaging (DW-MRI) as a biomarker for Chk1/2 inhibitors in combination with radiation for enhancement of treatment efficacy in GBM. EXPERIMENTAL DESIGN We evaluated a specific small molecule inhibitor of Chk1/2, AZD7762, in combination with radiation using in vitro human cell lines and in vivo using a genetically engineered GBM mouse model. DW-MRI and T1-contrast MRI were used to follow treatment effects on intracranial tumor cellularity and growth rates, respectively. RESULTS AZD7762 inhibited clonal proliferation in a panel of GBM cell lines and increased radiosensitivity in p53-mutated GBM cell lines to a greater extent compared to p53 wild-type cells. In vivo efficacy of AZD7762 demonstrated a dose-dependent inhibitory effect on GBM tumor growth rate and a reduction in tumor cellularity based on DW-MRI scans along with enhancement of radiation efficacy. CONCLUSION DW-MRI was found to be a useful imaging biomarker for the detection of radiosensitization through inhibition of checkpoint kinases. Chk1/2 inhibition resulted in antiproliferative activity, prevention of DNA damage-induced repair, and radiosensitization in preclinical GBM tumor models, both in vitro and in vivo. The effects were found to be maximal in p53-mutated GBM cells. These results provide the rationale for integration of DW-MRI in clinical translation of Chk1/2 inhibition with radiation for the treatment of GBM.
Collapse
|
15
|
Choe R, Durduran T. Diffuse Optical Monitoring of the Neoadjuvant Breast Cancer Therapy. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2012; 18:1367-1386. [PMID: 23243386 PMCID: PMC3521564 DOI: 10.1109/jstqe.2011.2177963] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Recent advances in the use of diffuse optical techniques for monitoring the hemodynamic, metabolic and physiological signatures of the neoadjuvant breast cancer therapy effectiveness is critically reviewed. An extensive discussion of the state-of-theart diffuse optical mammography is presented alongside a discussion of the current approaches to breast cancer therapies. Overall, the diffuse optics field is growing rapidly with a great deal of promise to fill an important niche in the current approaches to monitor, predict and personalize neoadjuvant breast cancer therapies.
Collapse
Affiliation(s)
- Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA;
| | - Turgut Durduran
- ICFO- Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860, Barcelona, Spain;
| |
Collapse
|
16
|
Rodrigues LM, Chung YL, Al Saffar NMS, Sharp SY, Jackson LE, Banerji U, Stubbs M, Leach MO, Griffiths JR, Workman P. Effects of HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) on NEU/HER2 overexpressing mammary tumours in MMTV-NEU-NT mice monitored by Magnetic Resonance Spectroscopy. BMC Res Notes 2012; 5:250. [PMID: 22621282 PMCID: PMC3412754 DOI: 10.1186/1756-0500-5-250] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 05/23/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The importance of ERBB2/NEU/HER2 in the response of breast tumours to the heat shock protein 90 (HSP90) inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG; tanespimycin) has been demonstrated in the clinic. ERBB2 is an oncoprotein client that is highly dependent on HSP90. This and other oncogenic client proteins (e.g. B-RAF, C-RAF, ALK and CDK4) are depleted by 17-AAG in both animal tumours and patients. Here we investigate by Magnetic Resonance Spectroscopy (MRS) the metabolic response of 17-AAG in spontaneous, NEU/HER2 driven mammary tumours in transgenic MMTV-NEU-NT mice and in cells isolated and cultured from these tumours. METHODS Mammary tumours were monitored by 31P MRS in vivo and in tumour extracts, comparing control and 17-AAG treated mice. A cell line derived from NEU/HER2 mammary tumours was also cultured and the effect of 17-AAG was measured by 31P MRS in cell extracts. Molecular biomarkers were assessed by immunoblotting in extracts from cells and tumours. For comparison of tumour volume, metabolite concentrations and Western blot band intensities, two-tailed unpaired t-tests were used. RESULTS The NEU/HER2 mammary tumours were very sensitive to 17-AAG and responded in a dose-dependent manner to 3 daily doses of 20, 40 and 80mg/kg of 17-AAG, all of which caused significant regression. At the higher doses, 31P MRS of tumour extracts showed significant decreases in phosphocholine (PC) and phosphoethanolamine (PE) whereas no significant changes were seen at the 20mg/kg dose. Extracts of isolated cells cultured from the mammary carcinomas showed a significant decrease in viable cell number and total PME after 17-AAG treatment. Western blots confirmed the expected action of 17-AAG in inducing HSP72 and significantly depleting HSP90 client proteins, including NEU/HER2 both in tumours and in isolated cells. CONCLUSIONS The data demonstrate the high degree of sensitivity of this clinically relevant NEU/HER2-driven tumour model to HSP90 inhibition by 17-AAG, consistent with the clinical data, and suggest that the metabolic signature of choline phospholipids obtained by MRS could be useful both as a preclinical and clinical tool for investigating surrogate markers of response to treatment.
Collapse
MESH Headings
- Animals
- Benzoquinones/pharmacology
- Benzoquinones/therapeutic use
- Biomarkers, Tumor/metabolism
- Cell Separation
- Cells, Cultured
- Dose-Response Relationship, Drug
- Female
- HSP90 Heat-Shock Proteins/antagonists & inhibitors
- HSP90 Heat-Shock Proteins/metabolism
- Lactams, Macrocyclic/pharmacology
- Lactams, Macrocyclic/therapeutic use
- Magnetic Resonance Spectroscopy/methods
- Mammary Neoplasms, Animal/drug therapy
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/pathology
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Mice, Transgenic
- Phosphatidylcholines/metabolism
- Phosphatidylethanolamines/metabolism
- Receptor, ErbB-2/metabolism
- Tumor Burden/drug effects
Collapse
Affiliation(s)
- Loreta M Rodrigues
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Yuen-Li Chung
- Cancer Research UK and EPSRC Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey, SM2 5PT, UK
| | - Nada M S Al Saffar
- Cancer Research UK and EPSRC Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey, SM2 5PT, UK
| | - Swee Y Sharp
- Cancer Research UK Centre for Cancer Therapeutics, The Institute for Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Laura E Jackson
- Cancer Research UK and EPSRC Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey, SM2 5PT, UK
| | - Udai Banerji
- Cancer Research UK Centre for Cancer Therapeutics, The Institute for Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Marion Stubbs
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Martin O Leach
- Cancer Research UK and EPSRC Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey, SM2 5PT, UK
| | - John R Griffiths
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Paul Workman
- Cancer Research UK Centre for Cancer Therapeutics, The Institute for Cancer Research, Sutton, Surrey, SM2 5NG, UK
| |
Collapse
|
17
|
Imaging biomarkers to monitor response to the hypoxia-activated prodrug TH-302 in the MiaPaCa2 flank xenograft model. Magn Reson Imaging 2012; 30:1002-9. [PMID: 22554971 DOI: 10.1016/j.mri.2012.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/15/2011] [Accepted: 02/29/2012] [Indexed: 12/21/2022]
Abstract
TH-302, a hypoxia-activated anticancer prodrug, was evaluated for antitumor activity and changes in dynamic contrast-enhanced (DCE) and diffusion-weighted (DW) magnetic resonance imaging (MRI) in a mouse model of pancreatic cancer. TH-302 monotherapy resulted in a significant delay in tumor growth compared to vehicle-treated controls. TH-302 treatment was also associated with a significant decrease in the volume transfer constant (K(trans)) compared to vehicle-treated controls 1 day following the first dose measured using DCE-MRI. This early decrease in K(trans) following the first dose as measured is consistent with selective killing of the hypoxic fraction of cells which are associated with enhanced expression of hypoxia inducible transcription factor-1 alpha that regulates expression of permeability and perfusion factors including vascular endothelial growth factor-A. No changes were observed in DW-MRI following treatment with TH-302, which may indicate that this technique is not sensitive enough to detect changes in small hypoxic fractions of the tumor targeted by TH-302. These results suggest that changes in tumor permeability and/or perfusion may be an early imaging biomarker for response to TH-302 therapy.
Collapse
|
18
|
Venkatesh HS, Chaumeil MM, Ward CS, Haas-Kogan DA, James CD, Ronen SM. Reduced phosphocholine and hyperpolarized lactate provide magnetic resonance biomarkers of PI3K/Akt/mTOR inhibition in glioblastoma. Neuro Oncol 2012; 14:315-25. [PMID: 22156546 PMCID: PMC3280799 DOI: 10.1093/neuonc/nor209] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/28/2011] [Indexed: 12/21/2022] Open
Abstract
The phosphatidylinositol-3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway is activated in more than88% of glioblastomas (GBM). New drugs targeting this pathway are currently in clinical trials. However, noninvasive assessment of treatment response remains challenging. By using magnetic resonance spectroscopy (MRS), PI3K/Akt/mTOR pathway inhibition was monitored in 3 GBM cell lines (GS-2, GBM8, and GBM6; each with a distinct pathway activating mutation) through the measurement of 2 mechanistically linked MR biomarkers: phosphocholine (PC) and hyperpolarized lactate.(31)P MRS studies showed that treatment with the PI3K inhibitor LY294002 induced significant decreases in PC to 34 %± 9% of control in GS-2 cells, 48% ± 5% in GBM8, and 45% ± 4% in GBM6. The mTOR inhibitor everolimus also induced a significant decrease in PC to 62% ± 14%, 57% ± 1%, and 58% ± 1% in GS-2, GBM8, and GBM6 cells, respectively. Using hyperpolarized (13)C MRS, we demonstrated that hyperpolarized lactate levels were significantly decreased following PI3K/Akt/mTOR pathway inhibition in all 3 cell lines to 51% ± 10%, 62% ± 3%, and 58% ± 2% of control with LY294002 and 72% ± 3%, 61% ± 2%, and 66% ± 3% of control with everolimus in GS-2, GBM8, and GBM6 cells, respectively. These effects were mediated by decreases in the activity and expression of choline kinase α and lactate dehydrogenase, which respectively control PC and lactate production downstream of HIF-1. Treatment with the DNA damaging agent temozolomide did not have an effect on either biomarker in any cell line. This study highlights the potential of PC and hyperpolarized lactate as noninvasive MR biomarkers of response to targeted inhibitors in GBM.
Collapse
Affiliation(s)
- Humsa S Venkatesh
- University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | |
Collapse
|
19
|
Belli P, Costantini M, Ierardi C, Bufi E, Amato D, Mule’ A, Nardone L, Terribile D, Bonomo L. Diffusion-weighted Imaging in Evaluating the Response to Neoadjuvant Breast Cancer Treatment. Breast J 2011; 17:610-9. [DOI: 10.1111/j.1524-4741.2011.01160.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Glunde K, Jiang L, Moestue SA, Gribbestad IS. MRS and MRSI guidance in molecular medicine: targeting and monitoring of choline and glucose metabolism in cancer. NMR IN BIOMEDICINE 2011; 24:673-90. [PMID: 21793073 PMCID: PMC3146026 DOI: 10.1002/nbm.1751] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
MRS and MRSI are valuable tools for the detection of metabolic changes in tumors. The currently emerging era of molecular medicine, which is shaped by molecularly targeted anticancer therapies combined with molecular imaging of the effects of such therapies, requires powerful imaging technologies that are able to detect molecular information. MRS and MRSI are such technologies that are able to detect metabolites arising from glucose and choline metabolism in noninvasive in vivo settings and at higher resolution in tissue samples. The roles played by MRS and MRSI in the diagnosis of different types of cancer, as well as in the early monitoring of the tumor response to traditional chemotherapies, are reviewed. The emerging roles of MRS and MRSI in the development and detection of novel targeted anticancer therapies that target oncogenic signaling pathways or markers in choline or glucose metabolism are discussed.
Collapse
Affiliation(s)
- Kristine Glunde
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Russell H. Morgan, Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lu Jiang
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Russell H. Morgan, Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Siver A. Moestue
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Ingrid S. Gribbestad
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| |
Collapse
|
21
|
Kim H, Folks KD, Guo L, Stockard CR, Fineberg NS, Grizzle WE, George JF, Buchsbaum DJ, Morgan DE, Zinn KR. DCE-MRI detects early vascular response in breast tumor xenografts following anti-DR5 therapy. Mol Imaging Biol 2011; 13:94-103. [PMID: 20383593 DOI: 10.1007/s11307-010-0320-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) measured the early vascular changes after administration of TRA-8, bevacizumab, or TRA-8 combined with bevacizumab in breast tumor xenografts. PROCEDURES Groups 1-4 of nude mice bearing human breast carcinoma were injected with phosphate-buffered saline, TRA-8, bevacizumab, and TRA-8 + bevacizumab on day 0, respectively. DCE-MRI was performed on days 0, 1, 2, and 3, and thereafter tumors were collected for terminal deoxynucleotidyl transferase-mediated dUT nick end labeling and CD31 staining. RESULTS DCE-MRI measured a significant K (trans) change within 3 days after TRA-8 therapy that correlated with tumor growth arrest, which was not shown with statistical significance by histopathology at these early time points posttreatment. The K (trans) changes followed quadratic polynomial curves. CONCLUSION DCE-MRI detected significantly lower K (trans) levels in breast tumor xenografts following TRA-8 monotherapy or combined therapy with bevacizumab.
Collapse
Affiliation(s)
- Hyunki Kim
- The Department of Radiology, University of Alabama at Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kim H, Folks KD, Guo L, Sellers JC, Fineberg NS, Stockard CR, Grizzle WE, Buchsbaum DJ, Morgan DE, George JF, Zinn KR. Early therapy evaluation of combined cetuximab and irinotecan in orthotopic pancreatic tumor xenografts by dynamic contrast-enhanced magnetic resonance imaging. Mol Imaging 2011; 10:153-167. [PMID: 21496446 PMCID: PMC3957340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
Abstract
Early pancreatic cancer response following cetuximab and/or irinotecan therapies was measured by serial dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) before and during therapy. Groups 1 to 4 (n = 6/group) of SCID mice bearing orthotopic pancreatic adenocarcinoma xenografts expressing luciferase were treated with phosphate-buffered saline, cetuximab, irinotecan, or cetuximab combined with irinotecan, respectively, twice weekly for 3 weeks. DCE-MRI was performed on days 0, 1, 2, and 3 after therapy initiation, whereas anatomic magnetic resonance imaging was performed on days 0, 1, 2, 3, 6, and 13. Bioluminescence imaging was performed on days 0 and 21. At day 21, all tumors were collected for further histologic analyses (Ki-67 and CD31 staining), whereas tumor dimensions were measured by calipers. The Ktrans values in the 0.5 mm-thick peripheral tumor region were calculated, and the changes in Ktrans during the 3 days posttherapy were compared to tumor volume changes, bioluminescent signal changes, and histologic findings. The Ktrans changes in the peripheral tumor region after 3 days of therapy were linearly correlated with 21-day decreases in tumor volume (p < .001), bioluminescent signal (p = .050), microvessel densities (p = .002), and proliferating cell densities (p = .001). This study supports the clinical use of DCE-MRI for pancreatic cancer patients for early assessment of an anti-epidermal growth factor receptor therapy combined with chemotherapy.
Collapse
Affiliation(s)
- Hyunki Kim
- Departments of Radiology, Comprehensive Cancer Center, University of Alabama at Birmingham, AL 35294-0012, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The adaptability and the genomic plasticity of cancer cells, and the interaction between the tumor microenvironment and co-opted stromal cells, coupled with the ability of cancer cells to colonize distant organs, contribute to the frequent intractability of cancer. It is becoming increasingly evident that personalized molecular targeting is necessary for the successful treatment of this multifaceted and complex disease. Noninvasive imaging modalities such as magnetic resonance (MR), positron emission tomography (PET), and single-photon emission computed tomography (SPECT) are filling several important niches in this era of targeted molecular medicine, in applications that span from bench to bedside. In this review we focus on noninvasive magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) and their roles in future personalized medicine in cancer. Diagnosis, the identification of the most effective treatment, monitoring treatment delivery, and response to treatment are some of the broad areas into which MRS techniques can be integrated to improve treatment outcomes. The development of novel probes for molecular imaging--in combination with a slew of functional imaging capabilities--makes MRS techniques, especially in combination with other imaging modalities, valuable in cancer drug discovery and basic cancer research.
Collapse
Affiliation(s)
- Kristine Glunde
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
24
|
Kim H, Folks KD, Guo L, Sellers JC, Fineberg NS, Stockard CR, Grizzle WE, Buchsbaum DJ, Morgan DE, George JF, Zinn KR. Early Therapy Evaluation of Combined Cetuximab and Irinotecan in Orthotopic Pancreatic Tumor Xenografts by Dynamic Contrast-Enhanced Magnetic Resonance Imaging. Mol Imaging 2011. [DOI: 10.2310/7290.2010.00040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Hyunki Kim
- From the Departments of Radiology, Biomedical Engineering, Surgery, Biostatistics, Pathology, Radiation Oncology, and Medicine and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Karri D. Folks
- From the Departments of Radiology, Biomedical Engineering, Surgery, Biostatistics, Pathology, Radiation Oncology, and Medicine and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Lingling Guo
- From the Departments of Radiology, Biomedical Engineering, Surgery, Biostatistics, Pathology, Radiation Oncology, and Medicine and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Jeffery C. Sellers
- From the Departments of Radiology, Biomedical Engineering, Surgery, Biostatistics, Pathology, Radiation Oncology, and Medicine and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Naomi S. Fineberg
- From the Departments of Radiology, Biomedical Engineering, Surgery, Biostatistics, Pathology, Radiation Oncology, and Medicine and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Cecil R. Stockard
- From the Departments of Radiology, Biomedical Engineering, Surgery, Biostatistics, Pathology, Radiation Oncology, and Medicine and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - William E. Grizzle
- From the Departments of Radiology, Biomedical Engineering, Surgery, Biostatistics, Pathology, Radiation Oncology, and Medicine and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Donald J. Buchsbaum
- From the Departments of Radiology, Biomedical Engineering, Surgery, Biostatistics, Pathology, Radiation Oncology, and Medicine and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Desiree E. Morgan
- From the Departments of Radiology, Biomedical Engineering, Surgery, Biostatistics, Pathology, Radiation Oncology, and Medicine and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - James F. George
- From the Departments of Radiology, Biomedical Engineering, Surgery, Biostatistics, Pathology, Radiation Oncology, and Medicine and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Kurt R. Zinn
- From the Departments of Radiology, Biomedical Engineering, Surgery, Biostatistics, Pathology, Radiation Oncology, and Medicine and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
25
|
Jordan BF, Gallez B. Surrogate MR markers of response to chemo- or radiotherapy in association with co-treatments: a retrospective analysis of multi-modal studies. CONTRAST MEDIA & MOLECULAR IMAGING 2011; 5:323-32. [PMID: 20648644 DOI: 10.1002/cmmi.397] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The study of magnetic resonance (MR) markers over the past decade has provided evidence that the tumor microenvironnement and hemodynamics play a major role in determining tumor response to therapy. The aim of the present work is to predict and monitor the efficacy of co-treatments to radio- and chemotherapy by noninvasive MR imaging. Ten different co-treatments were involved in this retrospective analysis of our previously published data, including NO-mediated co-treatments (insulin and isosorbide dinitrate), anti-inflammatory drugs (hydrocortisone, NS-398), anti-angiogenic agents (thalidomide, SU5416 and ZD6474), a vasoactive agent (xanthinol nicotinate), botulinum toxin and carbogen breathing. Dynamic contrast enhanced (DCE) MRI, intrinsic susceptibility-weighted (BOLD) MRI and electronic paramagnetic resonance (EPR) oximetry all reflect tumor microenvironment hemodynamic variables that are known to influence tumor response. Eight MR-derived parameters (markers) were tested for their ability to predict therapeutic outcome (factor of increase in regrowth delay) in experimental tumor models (TLT and FSaII) after radiation therapy and/or chemotherapy with cyclophosphamide, namely tumor pO₂ and O₂ consumption rate (using EPR oximetry); tumor blood flow and permeability, i.e. V(p), K(trans), K(ep) and percentage of perfused vessels (using DCE-MRI); and BOLD signal intensity and R₂* (using functional MRI). This multi-modal comparison of co-treatment efficacy points out the limitations of each MR marker and identifies in vivo pO₂ as a relevant endpoint for radiation therapy. DCE parameters (V(p) and K(ep)) were identified as a relevant endpoints for cyclophosphamide chemotherapy in our tumor models. This study helps qualify relevant imaging endpoints in the preclinical setting of cancer therapy.
Collapse
Affiliation(s)
- Bénédicte F Jordan
- Laboratory of Biomedical Magnetic Resonance, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B-1200 Brussels, Belgium
| | | |
Collapse
|
26
|
Gillies RJ, Anderson AR, Gatenby RA, Morse DL. The biology underlying molecular imaging in oncology: from genome to anatome and back again. Clin Radiol 2010; 65:517-21. [PMID: 20541651 DOI: 10.1016/j.crad.2010.04.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 04/23/2010] [Accepted: 04/30/2010] [Indexed: 01/03/2023]
Abstract
Cancers are complex, evolving, multiscale ecosystems that are characterized by profound spatial and temporal heterogeneity. The interactions in cancer are non-linear in that small changes in one variable can have large changes on another. These multiple interacting phenotypes and spatial scales can best be understood with appropriate mathematical and computational models. Imaging is central to this investigation because it can non-destructively and longitudinally characterize spatial variations in the tumour phenotype and environment so that the system dynamics over time can be captured quantitatively.
Collapse
Affiliation(s)
- R J Gillies
- H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33602, USA.
| | | | | | | |
Collapse
|
27
|
Glunde K, Artemov D, Penet MF, Jacobs MA, Bhujwalla ZM. Magnetic resonance spectroscopy in metabolic and molecular imaging and diagnosis of cancer. Chem Rev 2010; 110:3043-59. [PMID: 20384323 DOI: 10.1021/cr9004007] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kristine Glunde
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | |
Collapse
|
28
|
Serkova NJ, Freund AS, Brown JL, Kominsky DJ. Use of the 1-mm micro-probe for metabolic analysis on small volume biological samples. J Cell Mol Med 2010; 13:1933-1941. [PMID: 19267884 DOI: 10.1111/j.1582-4934.2008.00464.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Endogenous metabolites are promising diagnostic end-points in cancer research. Clinical application of high-resolution NMR spectroscopy is often limited by extremely low volumes of human specimens. In the present study, the use of the Bruker 1-mm high-resolution TXI micro-probe was evaluated in the elucidation of metabolic profiles for three different clinical applications with limited sample sizes (body fluids, isolated cells and tissue biopsies). Sample preparation and (1)H-NMR metabolite quantification protocols were optimized for following oncology-oriented applications: (i) to validate the absolute concentrations of citrate and spermine in human expressed prostatic specimens (EPS volumes 5 to 10 microl: prostate cancer application); (ii) to establish the metabolic profile of isolated human lymphocytes (total cell count 4 x 10(6): chronic myelogenous leukaemia application); (iii) to assess the metabolic composition of human head-and-neck cancers from mouse xenografts (biopsy weights 20 to 70 mg: anti-cancer treatment application). In this study, the use of the Bruker 1-mm micro-probe provides a convenient way to measure and quantify endogenous metabolic profiles of samples with a very low volume/weight/cell count.
Collapse
Affiliation(s)
- Natalie J Serkova
- Biomedical MRI/MRS Cancer Center Core, University of Colorado Health Sciences Center, Denver, CO, USA
| | | | - Jaimi L Brown
- Biomedical MRI/MRS Cancer Center Core, University of Colorado Health Sciences Center, Denver, CO, USA
| | - Douglas J Kominsky
- Biomedical MRI/MRS Cancer Center Core, University of Colorado Health Sciences Center, Denver, CO, USA
| |
Collapse
|
29
|
Ward CS, Venkatesh HS, Chaumeil MM, Brandes AH, Vancriekinge M, Dafni H, Sukumar S, Nelson SJ, Vigneron DB, Kurhanewicz J, James CD, Haas-Kogan DA, Ronen SM. Noninvasive detection of target modulation following phosphatidylinositol 3-kinase inhibition using hyperpolarized 13C magnetic resonance spectroscopy. Cancer Res 2010; 70:1296-305. [PMID: 20145128 PMCID: PMC2822895 DOI: 10.1158/0008-5472.can-09-2251] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Numerous mechanism-based anticancer drugs that target the phosphatidylinositol 3-kinase (PI3K) pathway are in clinical trials. However, it remains challenging to assess responses by traditional imaging methods. Here, we show for the first time the efficacy of hyperpolarized (13)C magnetic resonance spectroscopy (MRS) in detecting the effect of PI3K inhibition by monitoring hyperpolarized [1-(13)C]lactate levels produced from hyperpolarized [1-(13)C]pyruvate through lactate dehydrogenase (LDH) activity. In GS-2 glioblastoma cells, PI3K inhibition by LY294002 or everolimus caused hyperpolarized lactate to drop to 42 +/- 12% and to 76 +/- 5%, respectively. In MDA-MB-231 breast cancer cells, hyperpolarized lactate dropped to 71 +/- 15% after treatment with LY294002. These reductions were correlated with reductions in LDH activity to 48 +/- 4%, 63 +/- 4%, and 69 +/- 12%, respectively, and were associated with a drop in levels of LDHA mRNA and LDHA and hypoxia-inducible factor-1alpha proteins. Supporting these findings, tumor growth inhibition achieved by everolimus in murine GS-2 xenografts was associated with a drop in the hyperpolarized lactate-to-pyruvate ratio detected by in vivo MRS imaging, whereas an increase in this ratio occurred with tumor growth in control animals. Taken together, our findings illustrate the application of hyperpolarized (13)C MRS of pyruvate to monitor alterations in LDHA activity and expression caused by PI3K pathway inhibition, showing the potential of this method for noninvasive imaging of drug target modulation.
Collapse
Affiliation(s)
- Christopher S Ward
- Department of Radiology and Biomedical Imaging , University of California at San Francisco, San Francisco, California 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Klawitter J, Kominsky DJ, Brown JL, Klawitter J, Christians U, Leibfritz D, Melo JV, Eckhardt SG, Serkova NJ. Metabolic characteristics of imatinib resistance in chronic myeloid leukaemia cells. Br J Pharmacol 2009; 158:588-600. [PMID: 19663881 DOI: 10.1111/j.1476-5381.2009.00345.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Early detection of resistance development is crucial for imatinib-based treatment in chronic myeloid leukaemia (CML) patients. We aimed to distinguish metabolic markers of cell resistance to imatinib. EXPERIMENTAL APPROACH Two human imatinib-sensitive CML cell lines: LAMA84-s and K562-s, and their resistant counterparts: LAMA84-r and K562-r (both resistant to 1 microM imatinib), and K562-R (5 microM) were analysed by nuclear magnetic resonance spectroscopy to assess global metabolic profiling, including energy state, glucose and phospholipid metabolism. KEY RESULTS We found, by Western blotting and flow cytometry, that the levels of Bcr-Abl tyrosine kinase and multi-drug resistance p-glycoprotein were inconsistent among resistant clones. On the other hand, phospholipid metabolism and lactate production were highly predictive for cell response to imatinib. As previously reported, sensitive cells showed significantly decreased glycolytic activity (lactate) and phospholipid synthesis (phosphocholine) as well as increased phospholipid catabolism (glycerophosphocholine) after 24 h of 1 microM imatinib treatment, which correlated with inhibition of cell proliferation and induction of apoptosis. In contrast to their sensitive counterparts, the K562-r, K562-R and LAMA84-r maintained increased phospholipid synthesis and glycolytic lactate production in the presence of 1 microM (K562-r and LAMA84-r) and 5 microM (K562-R) imatinib. CONCLUSIONS AND IMPLICATIONS Specific metabolic markers for early detection of imatinib resistance, including increased glycolytic activity and phospholipid turnover, can be identified in resistant clones. Once validated in human isolated leukocytes, they may be used to monitor the responsiveness of CML patients to treatment.
Collapse
Affiliation(s)
- Jelena Klawitter
- Department of Anesthesiology, University of Colorado Health Sciences Center, Denver, CO 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhou F, Xing D, Wu S, Chen WR. Intravital imaging of tumor apoptosis with FRET probes during tumor therapy. Mol Imaging Biol 2009; 12:63-70. [PMID: 19543775 DOI: 10.1007/s11307-009-0235-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 03/03/2009] [Indexed: 01/20/2023]
Abstract
PURPOSE The aim of the study is to dynamically and non-invasively monitor the apoptosis events in vivo during photodynamic therapy (PDT) and chemotherapy. PROCEDURES A FRET probe, SCAT3, was utilized to determine activation of caspase-3 during tumor cell apoptosis in mice, induced by PDT, and cisplatin treatments. Using this method, dynamics of caspase-3 activation was observed both in vitro and in vivo. RESULTS Analysis of the fluorescent missions from tumor cells indicated that the caspase-3 activation started immediately after PDT treatment. In contrast, the caspase-3 activation started about 13 and 36 h after cisplatin treatment in vitro and in vivo, respectively. CONCLUSIONS FRET could be used effectively to monitor activation of caspase-3 in living organism. This method could be used to provide rapid assessment of apoptosis induced by anti-tumor therapies for improvement of treatment efficacy.
Collapse
Affiliation(s)
- Feifan Zhou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou, 510631, China
| | | | | | | |
Collapse
|
32
|
Serkova NJ, Hasebroock KM, Kraft SL. Magnetic resonance spectroscopy of living tissues. Methods Mol Biol 2009; 520:315-27. [PMID: 19381964 DOI: 10.1007/978-1-60327-811-9_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The comprehensive work of both clinical and basic science colleagues has demonstrated a clear proof of concept for "in vitro discovered- in vivo validated" biomarkers in translational metabolic profiling research using magnetic resonance techniques. Major tissue metabolites (initially discovered by high-resolution in vitro techniques on cancer specimens) can be translated into in vivo protocols based on noninvasive magnetic resonance spectroscopy (MRS). Using (1)H- and (31)P-MRS on living animals or patients, a decrease in citrate and polyamines in prostate cancer, an increase of cholines in breast cancer, as well as a decreased NAA and an increased lactate in gliomas during cancer progression can be assessed noninvasively. MRS can be used to follow up conventional cytotoxic as well as targeted anticancer therapies, which has been extensively done in animal models of cancer. This review focuses on applications and protocol development for in vivo (1)H- and (31)P-MRS on small animal models as well as on larger animals in cancer research, diagnosis, and treatment.
Collapse
Affiliation(s)
- Natalie J Serkova
- Department of Anesthesiology and Radiology, University of Colorado at Denver and Health Sciences Center, Aurora, CO, USA
| | | | | |
Collapse
|
33
|
Vāvere AL, Biddlecombe GB, Spees WM, Garbow JR, Wijesinghe D, Andreev OA, Engelman DM, Reshetnyak YK, Lewis JS. A novel technology for the imaging of acidic prostate tumors by positron emission tomography. Cancer Res 2009; 69:4510-6. [PMID: 19417132 DOI: 10.1158/0008-5472.can-08-3781] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Solid tumors often develop an acidic environment due to the Warburg effect. The effectiveness of diagnosis and therapy may therefore be enhanced by the design and use of pH-sensitive agents that target acidic tumors. Recently, a novel technology was introduced to target acidic tumors using pH low insertion peptide (pHLIP), a peptide that inserts across cell membranes as an alpha-helix when the extracellular pH (pH(e)) is acidic. In this study, we expanded the application of the pHLIP technology to include positron emission tomography imaging of the acidic environment in prostate tumors using (64)Cu conjugated to the pHLIP ((64)Cu-DOTA-pHLIP). Studies showed that this construct avidly accumulated in LNCaP and PC-3 tumors, with higher uptake and retention in the LNCaP tumors. Uptake correlated with differences in the bulk pH(e) of PC-3 and LNCaP tumors measured in magnetic resonance spectroscopy experiments by the (31)P chemical shift of the pH(e) marker 3-aminopropylphosphonate. This article introduces a novel class of noninvasive pH-selective positron emission tomography imaging agents and opens new research directions in the diagnosis of acidic solid tumors.
Collapse
Affiliation(s)
- Amy L Vāvere
- Division of Radiological Sciences, Department of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The era of ‘modern medicine’ has changed its name to ‘molecular medicine’, and reflects a new age based on personalized medicine utilizing molecular biomarkers in the diagnosis, staging and monitoring of therapy. Alzheimer’s disease has a classical biomarker determined at autopsy with the histologic staining of amyloid accumulation in the brain. Today we can diagnose Alzheimer’s disease using the same classical pathologic biomarker, but now using a noninvasive imaging probe to image the amyloid deposition in a patient and potentially provide treatment strategies and measure their effectiveness. Molecular medicine is the exploitation of biomarkers to detect disease before overt expression of pathology. Physicians can now find, fight and follow disease using imaging, and the need for other disease biomarkers is in high demand. This review will discuss the innovative physical and molecular biomarker probes now being developed for imaging systems and we will introduce the concepts needed for validation and regulatory acceptance of surrogate biomarkers in the detection and treatment of disease.
Collapse
|
35
|
Klawitter J, Anderson N, Klawitter J, Christians U, Leibfritz D, Eckhardt SG, Serkova NJ. Time-dependent effects of imatinib in human leukaemia cells: a kinetic NMR-profiling study. Br J Cancer 2009; 100:923-31. [PMID: 19259085 PMCID: PMC2661771 DOI: 10.1038/sj.bjc.6604946] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The goal of this study was to evaluate the time course of metabolic changes in leukaemia cells treated with the Bcr-Abl tyrosine kinase inhibitor imatinib. Human Bcr-Abl+ K562 cells were incubated with imatinib in a dose-escalating manner (starting at 0.1 μM with a weekly increase of 0.1 μM imatinib) for up to 5 weeks. Nuclear magnetic resonance spectroscopy and liquid-chromatography mass spectrometry were performed to assess a global metabolic profile, including glucose metabolism, energy state, lipid metabolism and drug uptake, after incubation with imatinib. Initially, imatinib treatment completely inhibited the activity of Bcr-Abl tyrosine kinase, followed by the inhibition of cell glycolytic activity and glucose uptake. This was accompanied by the increased mitochondrial activity and energy production. With escalating imatinib doses, the process of cell death rapidly progressed. Phosphocreatine and NAD+ concentrations began to decrease, and mitochondrial activity, as well as the glycolysis rate, was further reduced. Subsequently, the synthesis of lipids as necessary membrane precursors for apoptotic bodies was accelerated. The concentrations of the Kennedy pathway intermediates, phosphocholine and phosphatidylcholine, were reduced. After 4 weeks of exposure to imatinib, the secondary necrosis associated with decrease in the mitochondrial and glycolytic activity occurred and was followed by a shutdown of energy production and cell death. In conclusion, monitoring of metabolic changes in cells exposed to novel signal transduction modulators supplements molecular findings and provides further mechanistic insights into longitudinal changes of the mitochondrial and glycolytic pathways of oncogenesis.
Collapse
Affiliation(s)
- J Klawitter
- Department of Anesthesiology, University of Colorado, Denver, CO 80045, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Ross J, Najjar AM, Sankaranarayanapillai M, Tong WP, Kaluarachchi K, Ronen SM. Fatty acid synthase inhibition results in a magnetic resonance-detectable drop in phosphocholine. Mol Cancer Ther 2008; 7:2556-65. [PMID: 18723500 DOI: 10.1158/1535-7163.mct-08-0015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Expression of fatty acid synthase (FASN), the key enzyme in de novo synthesis of long-chain fatty acids, is normally low but increases in cancer. Consequently, FASN is a novel target for cancer therapy. However, because FASN inhibitors can lead to tumor stasis rather than shrinkage, noninvasive methods for assessing FASN inhibition are needed. To this end, we combined (1)H, (31)P, and (13)C magnetic resonance spectroscopy (MRS) (a) to monitor the metabolic consequences of FASN inhibition and (b) to identify MRS-detectable metabolic biomarkers of response. Treatment of PC-3 cells with the FASN inhibitor Orlistat for up to 48 h resulted in inhibition of FASN activity by 70%, correlating with 74% inhibition of fatty acid synthesis. Furthermore, we have determined that FASN inhibition results not only in lower phosphatidylcholine levels but also in a 59% drop in the phospholipid precursor phosphocholine (PCho). This drop resulted from inhibition in PCho synthesis as a result of a reduction in the cellular activity of its synthetic enzyme choline kinase. The drop in PCho levels following FASN inhibition was confirmed in SKOV-3 ovarian cancer cells treated with Orlistat and in MCF-7 breast cancer cells treated with Orlistat as well as cerulenin. Combining data from all treated cells, the drop in PCho significantly correlated with the drop in de novo synthesized fatty acid levels, identifying PCho as a potential noninvasive MRS-detectable biomarker of FASN inhibition in vivo.
Collapse
Affiliation(s)
- James Ross
- Department of Radiology, University of California-San Francisco, 1700 4th Street, San Francisco, CA 94158, USA
| | | | | | | | | | | |
Collapse
|
37
|
Sierra A, Michaeli S, Niskanen JP, Valonen PK, Gröhn HI, Ylä-Herttuala S, Garwood M, Gröhn OH. Water spin dynamics during apoptotic cell death in glioma gene therapy probed by T1rho and T2rho. Magn Reson Med 2008; 59:1311-9. [PMID: 18506797 DOI: 10.1002/mrm.21600] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Longitudinal and transverse relaxations in the rotating frame, with characteristic time constants T1rho and T2rho, respectively, have potential to provide unique MRI contrast in vivo. On-resonance spin-lock T1rho with different spin-lock field strengths and adiabatic T2rho with different radiofrequency-modulation functions were measured in BT4C gliomas treated with Herpes Simplex Virus thymidine kinase (HVS-tk) gene therapy causing apoptotic cell death. These NMR tools were able to discriminate different treatment responses in tumor tissue from day 4 onward. An equilibrium two-site exchange model was used to calculate intrinsic parameters describing changes in water dynamics. Observed changes included increased correlation time of water associated with macromolecules and a decreased fractional population of this pool. These results are consistent with destructive intracellular processes associated with cell death and the increase of extracellular space during the treatment. Furthermore, association between longer exchange correlation time and decreased pH during apoptosis is discussed. In this study, we demonstrated that T1rho and T2rho MR imaging are useful tools to quantify early changes in water dynamics reflecting treatment response during gene therapy.
Collapse
Affiliation(s)
- A Sierra
- Biomedical NMR Research Group, Department of Neurobiology and Biomedical Imaging Unit, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, and Kuopio University Hospital, Kuopio, Finland
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Li X, Yankeelov TE, Rosen GD, Gore JC, Dawant BM. Enhancement of histological volumes through averaging and their use for the analysis of magnetic resonance images. Magn Reson Imaging 2008; 27:401-16. [PMID: 18786794 DOI: 10.1016/j.mri.2008.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 06/21/2008] [Accepted: 07/30/2008] [Indexed: 11/17/2022]
Abstract
Magnetic resonance imaging (MRI) of small animals is routinely performed in research centers. But despite its many advantages, MR still suffers from limited spatial resolution which makes the interpretation and quantitative analysis of the images difficult, particularly for small structures of interest within areas of significant heterogeneity. One possibility to address this issue is to complement the MR images with histological data, which requires reconstructing 3D volumes from a series of 2D images. A number of methods have been proposed recently in the literature to address this issue, but deformation or tearing during the slicing process often produces reconstructed volumes with visible artifacts and imperfections. In this paper, we show that a possible solution to this problem is to work with several histological volumes, reconstruct each of these separately and then compute an average. The resulting histological atlas shows structures and substructures more clearly than any individual volume. We also propose an original approach to normalize intensity values across slices, a required preprocessing step when reconstructing histological volumes. We show that the histological atlas we have created can be used to localize structures and substructures, which cannot be seen easily in MR images. We also create an MR atlas that is associated with the histological atlas. We show that using the histological volumes to create the MR atlas is better than using the MR volumes only. Finally, we validate our approach quantitatively on MR image volumes by comparing volumetric measurements obtained manually and obtained automatically with our atlases.
Collapse
Affiliation(s)
- Xia Li
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37240-1662, USA.
| | | | | | | | | |
Collapse
|
39
|
Reshef A, Shirvan A, Waterhouse RN, Grimberg H, Levin G, Cohen A, Ulysse LG, Friedman G, Antoni G, Ziv I. Molecular Imaging of Neurovascular Cell Death in Experimental Cerebral Stroke by PET. J Nucl Med 2008; 49:1520-8. [DOI: 10.2967/jnumed.107.043919] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
40
|
Serkova NJ, Gamito EJ, Jones RH, O'Donnell C, Brown JL, Green S, Sullivan H, Hedlund T, Crawford ED. The metabolites citrate, myo-inositol, and spermine are potential age-independent markers of prostate cancer in human expressed prostatic secretions. Prostate 2008; 68:620-8. [PMID: 18213632 DOI: 10.1002/pros.20727] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Due to specific physiological functions, prostatic tissues and fluids have unique metabolic profiles. In this study, proton nuclear magnetic resonance spectroscopy ((1)H-NMRS) is used to assess potential metabolic markers of prostate cancer (PCa) in human expressed prostatic secretions (EPS). METHODS Metabolic profiles of EPS from 52 men with PCa and from 26 healthy controls were analyzed using quantitative (1)H-NMRS. The metabolites quantified included citrate, spermine, myo-inositol, lactate, alanine, phosphocholine, glutamine, acetate, and hydroxybutyrate. Logistic regression (LR) was used to model the risk of PCa based on metabolite concentrations while adjusting for age. RESULTS The average age of the EPS donors with PCa was 58.0+/-7.0 years and 52.2+/-12.1 for the healthy donors. The median Gleason score for the men with PCa was 7 (range 5-9). The LR models indicated that the absolute concentrations of citrate, myo-inositol, and spermine were highly predictive of PCa and inversely related to the risk of PCa. The areas under the receiver operating characteristic curves (AUROC) for citrate, myo-inositol and spermine were 0.89, 0.87, and 0.79, respectively. At 90% sensitivity, these metabolites had specificities of 74%, 51%, and 34%, respectively. The LR analysis indicated that absolute levels of these three metabolites were independent of age. CONCLUSIONS The results indicate that citrate, myo-inositol and spermine are potentially important markers of PCa in human EPS. Further, the absolute concentrations of these metabolites in EPS appear to be independent of age, increasing the potential utility of these markers due to elimination of age as a confounding variable.
Collapse
Affiliation(s)
- Natalie J Serkova
- Department of Anesthesiology and Radiology, Biomedical MRI/MRS, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sankaranarayanapillai M, Tong WP, Yuan Q, Bankson JA, Dafni H, Bornmann WG, Soghomonyan S, Pal A, Ramirez MS, Webb D, Kaluarachchi K, Gelovani JG, Ronen SM. Monitoring Histone Deacetylase Inhibition In Vivo: Noninvasive Magnetic Resonance Spectroscopy Method. Mol Imaging 2008. [DOI: 10.2310/7290.2008.0011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Madhuri Sankaranarayanapillai
- From Experimental Diagnostic Imaging, Imaging Physics, and Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX; and Department of Radiology, University of California-San Francisco, San Francisco, CA
| | - William P. Tong
- From Experimental Diagnostic Imaging, Imaging Physics, and Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX; and Department of Radiology, University of California-San Francisco, San Francisco, CA
| | - Qing Yuan
- From Experimental Diagnostic Imaging, Imaging Physics, and Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX; and Department of Radiology, University of California-San Francisco, San Francisco, CA
| | - James A. Bankson
- From Experimental Diagnostic Imaging, Imaging Physics, and Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX; and Department of Radiology, University of California-San Francisco, San Francisco, CA
| | - Hagit Dafni
- From Experimental Diagnostic Imaging, Imaging Physics, and Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX; and Department of Radiology, University of California-San Francisco, San Francisco, CA
| | - William G. Bornmann
- From Experimental Diagnostic Imaging, Imaging Physics, and Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX; and Department of Radiology, University of California-San Francisco, San Francisco, CA
| | - Suren Soghomonyan
- From Experimental Diagnostic Imaging, Imaging Physics, and Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX; and Department of Radiology, University of California-San Francisco, San Francisco, CA
| | - Ashutosh Pal
- From Experimental Diagnostic Imaging, Imaging Physics, and Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX; and Department of Radiology, University of California-San Francisco, San Francisco, CA
| | - Marc S. Ramirez
- From Experimental Diagnostic Imaging, Imaging Physics, and Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX; and Department of Radiology, University of California-San Francisco, San Francisco, CA
| | - Douglas Webb
- From Experimental Diagnostic Imaging, Imaging Physics, and Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX; and Department of Radiology, University of California-San Francisco, San Francisco, CA
| | - Kumaralal Kaluarachchi
- From Experimental Diagnostic Imaging, Imaging Physics, and Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX; and Department of Radiology, University of California-San Francisco, San Francisco, CA
| | - Juri G. Gelovani
- From Experimental Diagnostic Imaging, Imaging Physics, and Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX; and Department of Radiology, University of California-San Francisco, San Francisco, CA
| | - Sabrina M. Ronen
- From Experimental Diagnostic Imaging, Imaging Physics, and Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX; and Department of Radiology, University of California-San Francisco, San Francisco, CA
| |
Collapse
|
42
|
Aerts H, van Riel N, Backes W. System identification theory in pharmacokinetic modeling of dynamic contrast-enhanced MRI: Influence of contrast injection. Magn Reson Med 2008; 59:1111-9. [DOI: 10.1002/mrm.21575] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Robinson SP, Howe FA, Griffiths JR, Ryan AJ, Waterton JC. Susceptibility contrast magnetic resonance imaging determination of fractional tumor blood volume: a noninvasive imaging biomarker of response to the vascular disrupting agent ZD6126. Int J Radiat Oncol Biol Phys 2007; 69:872-9. [PMID: 17889267 DOI: 10.1016/j.ijrobp.2007.06.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 06/01/2007] [Accepted: 06/07/2007] [Indexed: 02/08/2023]
Abstract
PURPOSE To assess tumor fractional blood volume (xi), determined in vivo by susceptibility contrast magnetic resonance imaging (MRI) as a noninvasive imaging biomarker of tumor response to the vascular disrupting agent ZD6126. METHODS AND MATERIALS The transverse MRI relaxation rate R(2)( *) of rat GH3 prolactinomas was quantified prior to and following injection of 2.5 mgFe/kg feruglose, an ultrasmall superparamagnetic iron oxide intravascular contrast agent, and xi (%) was determined from the change in R(2)( *). The rats were then treated with either saline or 50 mg/kg ZD6126, and xi measured again 24 hours later. Following posttreatment MRI, Hoechst 33342 (15 mg/kg) was administered to the rats and histological correlates from composite images of tumor perfusion and necrosis sought. RESULTS Irrespective of treatment, tumor volume significantly increased over 24 hours. Saline-treated tumors showed no statistically significant change in xi, whereas a significant (p = 0.002) 70% reduction in xi of the ZD6126-treated cohort was determined. Hoechst 33342 uptake was associated with viable tumor tissue and was significantly (p = 0.004) reduced and restricted to the rim of the ZD6126-treated tumors. A significant positive correlation between posttreatment xi and Hoechst 33342 uptake was obtained (r = 0.83, p = 0.002), providing validation of the MRI-derived measurements of fractional tumor blood volume. CONCLUSIONS These data clearly highlight the potential of susceptibility contrast MRI with ultrasmall superparamagnetic iron oxide contrast agents to provide quantitative imaging biomarkers of fractional tumor blood volume at high spatial resolution to assess tumor vascular status and response to vascular disrupting agents.
Collapse
Affiliation(s)
- Simon P Robinson
- Department of Basic Medical Sciences, St. George's, University of London, London, United Kingdom.
| | | | | | | | | |
Collapse
|
44
|
Morse DL, Galons JP, Payne CM, Jennings DL, Day S, Xia G, Gillies RJ. MRI-measured water mobility increases in response to chemotherapy via multiple cell-death mechanisms. NMR IN BIOMEDICINE 2007; 20:602-14. [PMID: 17265424 DOI: 10.1002/nbm.1127] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Numerous pre-clinical and clinical reports have demonstrated that the MRI-measured apparent diffusion coefficient of water (ADC) increases early in the response to a wide variety of anti-cancer therapies. It has been proposed that this increase in ADC generally results from an increase in the tumor extracellular volume fraction leading to a greater degree of unrestricted water motion. Furthermore, an increase in extracellular volume has been ascribed to the cell shrinkage that occurs early in the process of programmed cell death. However, other modes of death can be initiated soon after beginning therapy. These other modes of death include mitotic catastrophe and necrosis, and may also involve changes in the fraction of water with unrestricted motion. This work examines whether MRI-measured ADC is altered in response to therapies that induce cell death via non-apoptotic mechanisms and correlates ADC changes with cell death modalities regionally within the tumor. Apoptotic responses were limited to the tumor periphery in apoptosis-proficient tumors. Apoptosis was not observed in deficient tumors. Mitotic catastrophe was observed after treatment at the periphery and deeper into the tumor. Necrosis was the predominant response in the center of the tumor. ADC changes were moderate in the periphery and larger in the center. The results indicate that early and significant changes in ADC can occur in concert with mitotic catastrophe and lytic necrosis in the absence of apoptosis. Hence, changes in ADC may be a generalized measure of cytotoxic response to chemotherapy.
Collapse
Affiliation(s)
- David L Morse
- Arizona Cancer Center, The University of Arizona, Tucson, AZ 85724, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
McConville P, Hambardzumyan D, Moody JB, Leopold WR, Kreger AR, Woolliscroft MJ, Rehemtulla A, Ross BD, Holland EC. Magnetic resonance imaging determination of tumor grade and early response to temozolomide in a genetically engineered mouse model of glioma. Clin Cancer Res 2007; 13:2897-904. [PMID: 17504989 DOI: 10.1158/1078-0432.ccr-06-3058] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The median survival for patients diagnosed with glioblastoma multiforme, the most common type of brain tumor, is less than 1 year. Animal glioma models that are more predictive of therapeutic response in human patients than traditional models and that are genetically and histologically accurate are an unmet need. The nestin tv-a (Ntv-a) genetically engineered mouse spontaneously develops glioma when infected with ALV-A expressing platelet-derived growth factor, resulting in autocrine platelet-derived growth factor signaling. EXPERIMENTAL DESIGN In the Ntv-a genetically engineered mouse model, T2-weighted and T1-weighted, contrast-enhanced magnetic resonance images were correlated with histology, glioma grade (high or low), and survival. Magnetic resonance imaging (MRI) was therefore used to enroll mice with high-grade gliomas into a second study that tested efficacy of the current standard of care for glioma, temozolomide (100 mg/kg qdx5 i.p., n=13). RESULTS The Ntv-a model generated a heterogeneous group of gliomas, some with high-grade growth rate and histologic characteristics and others with characteristics of lower-grade gliomas. We showed that MRI could be used to predict tumor grade and survival. Temozolomide treatment of high-grade tv-a gliomas provided a 14-day growth delay compared with vehicle controls. Diffusion MRI measurement of the apparent diffusion coefficient showed an early decrease in cellularity with temozolomide, similar to that observed in humans. CONCLUSIONS The use of MRI in the Ntv-a model allows determination of glioma grade and survival prediction, distribution of mice with specific tumor types into preclinical trials, and efficacy determination both by tumor growth and early apparent diffusion coefficient response.
Collapse
|
46
|
Seierstad T, Folkvord S, Røe K, Flatmark K, Skretting A, Olsen DR. Early changes in apparent diffusion coefficient predict the quantitative antitumoral activity of capecitabine, oxaliplatin, and irradiation in HT29 xenografts in athymic nude mice. Neoplasia 2007; 9:392-400. [PMID: 17534444 PMCID: PMC1877980 DOI: 10.1593/neo.07154] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 03/29/2007] [Accepted: 04/02/2007] [Indexed: 01/22/2023] Open
Abstract
PURPOSE The purpose of this study was to evaluate the possible use of changes in apparent diffusion coefficient (ADC) measured by magnetic resonance imaging for pretreatment prediction and early detection of tumor response in a mouse model during fractionated chemoradiotherapy. MATERIALS AND METHODS Athymic mice with bilateral HT29 xenografts on rear flanks were allocated into three groups: control, capecitabine, and capecitabine and oxaliplatin. The left flanks of the mice received daily irradiation. T2 and diffusion images were acquired before therapy and weekly for the following 9 weeks. Pretreatment and changes in ADC were calculated and compared with tumor doubling growth delay. RESULTS No correlations between pretreatment ADC and changes in tumor volumes after therapy were seen. All treated tumors, except those receiving capecitabine (P = .06), showed increased mean tumor ADC values 11 days after initialization of therapy (P < .05) before returning to pretreatment values within 5 days posttherapy (day 18 after onset of therapy). This increase in mean tumor ADC showed a strong positive correlation (r = 0.92, P < .01) with mean tumor doubling growth delay. CONCLUSIONS Pretreatment ADC values did not predict the effectiveness of therapy, whereas early changes in mean ADC quantitatively correlated with treatment outcome.
Collapse
Affiliation(s)
- Therese Seierstad
- Department of Medical Physics, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
- Department of Radiation Biology, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
- Buskerud University College, Faculty of Health, Drammen, Norway
| | - Sigurd Folkvord
- Department of Tumor Biology, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
| | - Kathrine Røe
- Department of Radiation Biology, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
| | - Kjersti Flatmark
- Department of Tumor Biology, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
| | - Arne Skretting
- Department of Medical Physics, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
| | - Dag Rune Olsen
- Department of Radiation Biology, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
- University of Oslo, Oslo, Norway
| |
Collapse
|
47
|
Yankeelov TE, Gore JC. Dynamic Contrast Enhanced Magnetic Resonance Imaging in Oncology: Theory, Data Acquisition, Analysis, and Examples. Curr Med Imaging 2007; 3:91-107. [PMID: 19829742 DOI: 10.2174/157340507780619179] [Citation(s) in RCA: 287] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dynamic contrast enhanced MRI (DCE-MRI) enables the quantitative assessment of tumor status and has found application in both pre-clinical tumor models as well as clinical oncology. DCE-MRI requires the serial acquisition of images before and after the injection of a paramagnetic contrast agent so that the variation of MR signal intensity with time can be recorded for each image voxel. As the agent enters into a tissue, it changes the MR signal intensity from the tissue to a degree that depends on the local concentration. After the agent is transported out of the tissue, the MR signal intensity returns to its' baseline value. By analyzing the associated signal intensity time course using an appropriate mathematical model, physiological parameters related to blood flow, vessel permeability, and tissue volume fractions can be extracted for each voxel or region of interest.In this review we first discuss the basic physics of this methodology, and then present technical aspects of how DCE-MRI data are acquired and analyzed. We also discuss appropriate models of contrast agent kinetics and how these can be used to elucidate tissue characteristics of importance in cancer biology. We conclude by briefly summarizing some future goals and demands of DCE-MRI.
Collapse
|
48
|
Stephen RM, Gillies RJ. Promise and Progress for Functional and Molecular Imaging of Response to Targeted Therapies. Pharm Res 2007; 24:1172-85. [PMID: 17385018 DOI: 10.1007/s11095-007-9250-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 01/23/2007] [Indexed: 01/18/2023]
Abstract
Biomarkers to predict or monitor therapy response are becoming essential components of drug developer's armamentaria. Molecular and functional imaging has particular promise as a biomarker for anticancer therapies because it is non-invasive, can be used longitudinally and provides information on the whole patient or tumor. Despite this promise, molecular or functional imaging endpoints are not routinely incorporated into clinical trial design. As the costs of clinical trials and drug development become prohibitively more expensive, the need for improved biomarkers has become imperative and thus, the relatively high cost of imaging is justified. Imaging endpoints, such as Diffusion-Weighted MRI, DCE-MRI and FDG-PET have the potential to make drug development more efficient at all phases, from discovery screening with in vivo pharmacodynamics in animal models through the phase III enrichment of the patient population for potential responders. This review focuses on the progress of imaging responses to new classes of anti-cancer therapies targeted against PI3 kinase/AKT, HIF-1alpha and VEGF. The ultimate promise of molecular and functional imaging is to theragnostically predict response prior to commencement of targeted therapy.
Collapse
Affiliation(s)
- Renu M Stephen
- Arizona Cancer Center, University of Arizona, 1515 N. Campbell, P.O. box: 245024, Tucson, Arizona 85724, USA.
| | | |
Collapse
|
49
|
Glunde K, Serkova NJ. Therapeutic targets and biomarkers identified in cancer choline phospholipid metabolism. Pharmacogenomics 2006; 7:1109-23. [PMID: 17054420 DOI: 10.2217/14622416.7.7.1109] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Choline phospholipid metabolism is altered in a wide variety of cancers. The choline metabolite profile of tumors and cancer cells is characterized by an elevation of phosphocholine and total choline-containing compounds. Noninvasive magnetic resonance spectroscopy can be used to detect this elevation as an endogenous biomarker of cancer, or as a predictive biomarker for monitoring tumor response to novel targeted therapies. The enzymes directly causing this elevation, such as choline kinase, phospholipase C and phospholipase D may provide molecular targets for anticancer therapies. Signal transduction pathways that are activated in cancers, such as those mediated by the receptor tyrosine kinases breakpoint cluster region-abelson (Bcr-Abl), c-KIT or epidermal growth factor receptor (EGFR), correlate with the alterations in choline phospholipid metabolism of cancers, and also offer molecular targets for specific anticancer therapies. This review summarizes recently discovered molecular targets in choline phospholipid metabolism and signal transduction pathways, which may lead to novel anticancer therapies potentially being monitored by magnetic resonance spectroscopy techniques.
Collapse
Affiliation(s)
- Kristine Glunde
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, 212 Traylor Building Baltimore, MD 21205, USA.
| | | |
Collapse
|
50
|
Santini MT, Romano R, Rainaldi G, Indovina P, Ferrante A, Motta A, Indovina PL. Temporal Dynamics of1H-NMR-Visible Metabolites during Radiation-Induced Apoptosis in MG-63 Human Osteosarcoma Spheroids. Radiat Res 2006; 166:734-45. [PMID: 17067211 DOI: 10.1667/rr0635.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 06/27/2006] [Indexed: 11/03/2022]
Abstract
The metabolic changes that occur as a function of time in MG-63 osteosarcoma three-dimensional tumor spheroids undergoing radiation-induced apoptosis were studied using high-resolution proton nuclear magnetic resonance ((1)H-NMR) spectroscopy. Specifically, the (1)H-NMR spectra of MG-63 spheroids collected at 24, 48 and 72 h after exposure to 5 Gy of ionizing radiation were compared to the spectra of their respective controls. Small spheroids (about 50-80 microm in diameter) with no hypoxic center were used. Apoptosis was verified by both staining of spheroid DNA with the Hoechst 33258 dye and determination of caspase 3 enzyme activity at the three times examined. The results demonstrate that, as the percentage of apoptosis rises with time after exposure to ionizing radiation, the metabolic changes that take place in MG-63 spheroids follow very precise temporal dynamics. In particular, significant time-related increases in both CH(2) and CH(3) mobile lipids, considered by many authors as markers of apoptosis, were observed. In addition, temporal variations were also observed in choline-containing metabolites, reduced glutathione (GSH), glutamine/glutamate, taurine, alanine, creatine/phosphocreatine and lactate. These data show that in addition to CH(2) and CH(3) lipids, other metabolites can also be extremely useful in a deeper understanding of the temporal dynamics of radiation-induced apoptosis. This comprehension is particularly important in spheroids, a cell model of great complexity that resembles in vivo tumors much more closely than monolayer cultures. Ultimately, it is hoped that such studies can help to evaluate the outcome of radiotherapy protocols more accurately.
Collapse
Affiliation(s)
- Maria Teresa Santini
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, 00161, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|