1
|
Saggu S, Bai A, Aida M, Rehman H, Pless A, Ware D, Deak F, Jiao K, Wang Q. Monoamine alterations in Alzheimer's disease and their implications in comorbid neuropsychiatric symptoms. GeroScience 2024:10.1007/s11357-024-01359-x. [PMID: 39331291 DOI: 10.1007/s11357-024-01359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by relentless cognitive decline and the emergence of profoundly disruptive neuropsychiatric symptoms. As the disease progresses, it unveils a formidable array of neuropsychiatric manifestations, including debilitating depression, anxiety, agitation, and distressing episodes of psychosis. The intricate web of the monoaminergic system, governed by serotonin, dopamine, and norepinephrine, significantly influences our mood, cognition, and behavior. Emerging evidence suggests that dysregulation and degeneration of this system occur early in AD, leading to notable alterations in these critical neurotransmitters' levels, metabolism, and receptor function. However, how the degeneration of monoaminergic neurons and subsequent compensatory changes contribute to the presentation of neuropsychiatric symptoms observed in Alzheimer's disease remains elusive. This review synthesizes current findings on monoamine alterations in AD and explores how these changes contribute to the neuropsychiatric symptomatology of the disease. By elucidating the biological underpinnings of AD-related psychiatric symptoms, we aim to underscore the complexity and inform innovative approaches for treating neuropsychiatric symptoms in AD.
Collapse
Affiliation(s)
- Shalini Saggu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| | - Ava Bai
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Mae Aida
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Hasibur Rehman
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Andrew Pless
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Destany Ware
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Ferenc Deak
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Kai Jiao
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Qin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
2
|
İlhan ÇF, Ülke E, Urcelay GP, Kişlal S. Propranolol attenuates the establishment of conditioned context aversions: differential effects compared to MK-801 in an animal model of anticipatory nausea and vomiting. Behav Pharmacol 2024; 35:293-302. [PMID: 38847463 DOI: 10.1097/fbp.0000000000000779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Cancer patients often experience anticipatory nausea and vomiting (ANV) due to Pavlovian conditioning. Both N-methyl-D-aspartate and beta-adrenergic receptors are known to mediate memory formation, but their role in the development of ANV remains unclear. This study used a conditioned context aversion (CCA) paradigm, an animal model for ANV, to assess whether administration of the beta-adrenergic receptor antagonist propranolol or the N-methyl-D-aspartate receptor antagonist MK-801 immediately after CCA training has an effect on the later expression of CCA in CD1 male mice. In experiment 1, three groups were injected with lithium chloride (LiCl) to induce aversion in a novel context, resulting in CCA. A control group was injected with sodium chloride (NaCl). Following conditioning, two of the LiCl-treated groups received different doses of MK-801 (0.05 or 0.2 mg/kg), while the remaining LiCl-treated and NaCl-treated groups received a second NaCl injection. In experiment 2, two groups were injected with LiCl, and one group was injected with NaCl. After conditioning, one of the LiCl-treated groups received a propranolol injection (10 mg/kg). The remaining LiCl-treated and NaCl-treated groups received NaCl injections. Water consumption was measured in all groups 72 h later within the conditioning context. Postconditioning administration of propranolol, but not MK-801, attenuated CCA, as revealed by similar levels of water consumption in animals that received LiCl and propranolol relative to NaCl-treated animals. These findings suggest that beta-adrenergic receptor activation is crucial for the development of CCA. Therefore, propranolol may represent a novel therapeutic approach for cancer patients at high risk of ANV.
Collapse
Affiliation(s)
- Çinar Furkan İlhan
- Department of Psychology, Middle East Technical University, Ankara, Turkey
| | - Esra Ülke
- Department of Psychology, Middle East Technical University, Ankara, Turkey
| | - Gonzalo P Urcelay
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Sezen Kişlal
- Department of Psychology, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
3
|
Ciprés-Flores FJ, Farfán-García ED, Andrade-Jorge E, Cuevas-Hernández RI, Tamay-Cach F, Martínez-Archundia M, Trujillo-Ferrara JG, Soriano-Ursúa MA. Identification of two arylimides as cholinesterase inhibitors and testing of propranolol addition on impaired rat memory. Drug Dev Res 2020; 81:256-266. [PMID: 31875337 DOI: 10.1002/ddr.21633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/08/2019] [Accepted: 12/12/2019] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is clearly linked to the decline of acetylcholine (ACh) effects in the brain. These effects are regulated by the hydrolytic action of acetylcholinesterase (AChE). Therefore, a central palliative treatment of AD is the administration of AChE inhibitors although additional mechanisms are currently described and tested for generating advantageous therapeutic strategies. In this work, we tested new arylamides and arylimides as potential inhibitors of AChE using in silico tools. Then, these compounds were tested in vitro, and two selected compounds, C7 and C8, as well as propranolol showed inhibition of AChE. In addition, they demonstrated an advantageous acute toxicity profile compared to that of galantamine as a reference AChE inhibitor. in vivo evaluation of memory performance enhancement was performed in an animal model of cognitive disturbance with each of these compounds and propranolol individually as well as each compound combined with propranolol. Memory improvement was observed in each case, but without a significant additive effect with the combinations.
Collapse
Affiliation(s)
- Fabiola J Ciprés-Flores
- Academia de Fisiología Humana and Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - Eunice D Farfán-García
- Academia de Fisiología Humana and Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
- Departamento de Bioquímica and Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - Erik Andrade-Jorge
- Departamento de Bioquímica and Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - Roberto I Cuevas-Hernández
- Departamento de Bioquímica and Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - Feliciano Tamay-Cach
- Departamento de Bioquímica and Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - Marlet Martínez-Archundia
- Laboratorio de Modelado Molecular, Bioinformática y diseño de fármacos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - José G Trujillo-Ferrara
- Departamento de Bioquímica and Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología Humana and Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| |
Collapse
|
4
|
Lebouvier T, Chen Y, Duriez P, Pasquier F, Bordet R. Antihypertensive agents in Alzheimer's disease: beyond vascular protection. Expert Rev Neurother 2019; 20:175-187. [PMID: 31869274 DOI: 10.1080/14737175.2020.1708195] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Introduction: Midlife hypertension has been consistently linked with increased risk of cognitive decline and Alzheimer's disease (AD). Observational studies and randomized trials show that the use of antihypertensive therapy is associated with a lesser incidence or prevalence of cognitive impairment and dementia. However, whether antihypertensive agents specifically target the pathological process of AD remains elusive.Areas covered: This review of literature provides an update on the clinical and preclinical arguments supporting anti-AD properties of antihypertensive drugs. The authors focused on validated all classes of antihypertensive treatments such as angiotensin-converting enzyme inhibitors (ACEi), angiotensin receptor blockers (ARB), calcium channel blockers (CCB), β-blockers, diuretics, neprilysin inhibitors, and other agents. Three main mechanisms can be advocated: action on the concurrent vascular pathology, action on the vascular component of Alzheimer's pathophysiology, and action on nonvascular targets.Expert opinion: In 2019, while there is no doubt that hypertension should be treated in primary prevention of vascular disease and in secondary prevention of stroke and mixed dementia, the place of antihypertensive agents in the secondary prevention of 'pure' AD remains an outstanding question.
Collapse
Affiliation(s)
- Thibaud Lebouvier
- Inserm URM_S1172, University of Lille, Lille, France.,DISTALZ, University of Lille, Lille, France
| | - Yaohua Chen
- DISTALZ, University of Lille, Lille, France.,Inserm, CHU Lille, University of Lille, Lille, France
| | | | - Florence Pasquier
- DISTALZ, University of Lille, Lille, France.,Inserm, CHU Lille, University of Lille, Lille, France
| | - Régis Bordet
- Inserm, CHU Lille, University of Lille, Lille, France
| |
Collapse
|
5
|
Ciprés-Flores FJ, Segura-Uribe JJ, Orozco-Suárez S, Guerra-Araiza C, Guevara-Salazar JA, Castillo-García EL, Soriano-Ursúa MA, Farfán-García ED. Beta-blockers and salbutamol limited emotional memory disturbance and damage induced by orchiectomy in the rat hippocampus. Life Sci 2019; 224:128-137. [PMID: 30905783 DOI: 10.1016/j.lfs.2019.03.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023]
Abstract
AIM To evaluate the therapeutic potential of ligands of beta-adrenoceptors in cognitive disorders. Testosterone and adrenergic pathways are involved in hippocampal and emotional memory. Moreover, is strongly suggested that androgen diminishing in aging is involved in cognitive deficit, as well as beta-adrenoceptors, particularly beta2-adrenoceptor, participate in the adrenergic modulation of memory. In this regard, some animal models of memory disruption have shown improved performance after beta-drug administration. MATERIAL AND METHODS In this work, we evaluated the effects of agonists (isoproterenol and salbutamol) and antagonists (propranolol and carvedilol) on beta-adrenoceptors in orchiectomized rats, as well as their effects in the performance on avoidance task and damage in hippocampal neurons by immunohistochemistry assays. KEY FINDINGS Surprisingly, we found that both antagonists and salbutamol (but not isoproterenol) modulate the effects of hormone deprivation, improving memory and decreasing neuronal death and amyloid-beta related changes in some regions (particularly CA1-3 and dentate gyrus) of rat hippocampus. SIGNIFICANCE Two β-antagonists and one β2-agonist modulated the effects of hormone deprivation on memory and damage in brain. The mechanisms of signaling of these drugs for beneficial effects remain unclear, even if used β-ARs ligands share a weak activity on β-arrestin/ERK-pathway activation which can be involved in these effects as we proposed in this manuscript. Our observations could be useful for understanding effects suggested of adrenergic drugs to modulate emotional memory. But also, our results could be related to other pathologies involving neuronal death and Aβ accumulation.
Collapse
Affiliation(s)
- Fabiola J Ciprés-Flores
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 Mexico City, Mexico
| | - Julia J Segura-Uribe
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 Mexico City, Mexico; Unidad de Investigación Médica en Enfermedades Neurológicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Sandra Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Juan A Guevara-Salazar
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 Mexico City, Mexico
| | - Emily L Castillo-García
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 Mexico City, Mexico
| | - Marvin A Soriano-Ursúa
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 Mexico City, Mexico.
| | - Eunice D Farfán-García
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 Mexico City, Mexico.
| |
Collapse
|
6
|
Complex noradrenergic dysfunction in Alzheimer's disease: Low norepinephrine input is not always to blame. Brain Res 2019; 1702:12-16. [PMID: 29307592 PMCID: PMC6855395 DOI: 10.1016/j.brainres.2018.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/13/2017] [Accepted: 01/02/2018] [Indexed: 11/24/2022]
Abstract
The locus coeruleus-noradrenergic (LC-NA) system supplies the cerebral cortex with norepinephrine, a key modulator of cognition. Neurodegeneration of the LC is an early hallmark of Alzheimer's disease (AD). In this article, we analyze current literature to understand whether NA degeneration in AD simply leads to a loss of norepinephrine input to the cortex. With reported adaptive changes in the LC-NA system at the anatomical, cellular, and molecular levels in AD, existing evidence support a seemingly sustained level of extracellular NE in the cortex, at least at early stages of the long course of AD. We postulate that loss of the integrity of the NA system, rather than mere loss of NE input, is a key contributor to AD pathogenesis. A thorough understanding of NA dysfunction in AD has a large impact on both our comprehension and treatment of this devastating disease.
Collapse
|
7
|
Gannon M, Che P, Chen Y, Jiao K, Roberson ED, Wang Q. Noradrenergic dysfunction in Alzheimer's disease. Front Neurosci 2015; 9:220. [PMID: 26136654 PMCID: PMC4469831 DOI: 10.3389/fnins.2015.00220] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/02/2015] [Indexed: 12/27/2022] Open
Abstract
The brain noradrenergic system supplies the neurotransmitter norepinephrine throughout the brain via widespread efferent projections, and plays a pivotal role in modulating cognitive activities in the cortex. Profound noradrenergic degeneration in Alzheimer's disease (AD) patients has been observed for decades, with recent research suggesting that the locus coeruleus (where noradrenergic neurons are mainly located) is a predominant site where AD-related pathology begins. Mounting evidence indicates that the loss of noradrenergic innervation greatly exacerbates AD pathogenesis and progression, although the precise roles of noradrenergic components in AD pathogenesis remain unclear. The aim of this review is to summarize current findings on noradrenergic dysfunction in AD, as well as to point out deficiencies in our knowledge where more research is needed.
Collapse
Affiliation(s)
- Mary Gannon
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Pulin Che
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Yunjia Chen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Kai Jiao
- Department of Genetics, University of Alabama at Birmingham Birmingham, AL, USA
| | - Erik D Roberson
- Department of Neurology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Qin Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
8
|
LI QIANG, CHEN MIN, LIU HONGMIN, YANG LIQUN, YANG GUIYING. Expression of APP, BACE1, AChE and ChAT in an AD model in rats and the effect of donepezil hydrochloride treatment. Mol Med Rep 2012; 6:1450-4. [DOI: 10.3892/mmr.2012.1102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 09/14/2012] [Indexed: 11/06/2022] Open
|
9
|
A neurochemical yin and yang: does serotonin activate and norepinephrine deactivate the prefrontal cortex? Psychopharmacology (Berl) 2011; 213:171-82. [PMID: 20386882 DOI: 10.1007/s00213-010-1856-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 03/27/2010] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The prefrontal cortex (PFC) receives serotonergic input from the dorsal raphe nucleus of the brainstem, as well as noradrenergic input from another brainstem nucleus, the locus coeruleus. A large number of studies have shown that these two neurotransmitter systems, and drugs that affect them, modulate the functional properties of the PFC in both humans and animal models. RESULTS Here I examine the hypothesis that serotonin (5-HT) plays a general role in activating the PFC, whereas norepinephrine (NE) plays a general role in deactivating this brain region. In this manner, the two neurotransmitter systems may have opposing effects on PFC-influenced behavior. To assess this hypothesis, three primary lines of evidence are examined comprising the effects of 5-HT and NE on impulsivity, cognitive flexibility, and working memory. DISCUSSION While all of the existing data do not unequivocally support the activation/deactivation hypothesis, there is a large body of support for it.
Collapse
|
10
|
Wang J, Ono K, Dickstein DL, Arrieta-Cruz I, Zhao W, Qian X, Lamparello A, Subnani R, Ferruzzi M, Pavlides C, Ho L, Hof PR, Teplow DB, Pasinetti GM. Carvedilol as a potential novel agent for the treatment of Alzheimer's disease. Neurobiol Aging 2010; 32:2321.e1-12. [PMID: 20579773 DOI: 10.1016/j.neurobiolaging.2010.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 04/15/2010] [Accepted: 05/01/2010] [Indexed: 11/16/2022]
Abstract
Oligomeric β-amyloid (Aβ) has recently been linked to synaptic plasticity deficits, which play a major role in progressive cognitive decline in Alzheimer's disease (AD). Here we present evidence that chronic oral administration of carvedilol, a nonselective β-adrenergic receptor blocker, significantly attenuates brain oligomeric β-amyloid content and cognitive deterioration in 2 independent AD mouse models. We found that carvedilol treatment significantly improved neuronal transmission, and that this improvement was associated with the maintenance of number of the less stable "learning" thin spines in the brains of AD mice. Our novel observation that carvedilol interferes with the neuropathologic, biochemical, and electrophysiological mechanisms underlying cognitive deterioration in AD supports the potential development of carvedilol as a treatment for AD.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Muravieva EV, Alberini CM. Limited efficacy of propranolol on the reconsolidation of fear memories. Learn Mem 2010; 17:306-13. [PMID: 20516209 DOI: 10.1101/lm.1794710] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Previous studies suggested that the beta-adrenergic receptor antagonist propranolol might be a novel, potential treatment for post-traumatic stress disorder (PTSD). This hypothesis stemmed mainly from rodent studies showing that propranolol interferes with the reconsolidation of Pavlovian fear conditioning (FC). However, subsequent investigations in humans have produced controversial evidence about the effect of propranolol on fear memories and an effect on PTSD symptomatology has yet to be reported. Thus, it remains to be established whether propranolol interferes with the reconsolidation of fear memories at large. To address this question, we tested the effect of systemic injections of propranolol administered before or after the retrieval of an inhibitory avoidance (IA) memory elicited with different footshock intensities. In parallel, the same treatment was tested on the reconsolidation of Pavlovian FC. Propranolol showed no effect on the reconsolidation of IA, although the pre-retrieval administration resulted in a significant retrieval impairment. This impairment was transient, and memory returned to control levels at later times. In agreement with previous studies, we found that systemic administration of propranolol disrupts the reconsolidation of Pavlovian FC and that its injection following a retrieval elicited by cue exposure also interferes with the reconsolidation of contextual FC. Hence, propranolol disrupts the reconsolidation of Pavlovian FC, but has no effect on the reconsolidation of IA. The results indicate that the efficacy of systemic administration of propranolol in disrupting the reconsolidation of fear memories is limited.
Collapse
Affiliation(s)
- Elizaveta V Muravieva
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
12
|
Stuchlik A, Petrasek T, Vales K. A dose-response study of the effects of pre-test administration of beta-adrenergic receptor antagonist propranolol on the learning of active place avoidance, a spatial cognition task, in rats. Behav Brain Res 2009; 200:144-9. [PMID: 19351584 DOI: 10.1016/j.bbr.2009.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Revised: 01/06/2009] [Accepted: 01/07/2009] [Indexed: 01/14/2023]
Abstract
The involvement of various neurotransmitter receptors in the brain in the regulation of spatial behavior is a focus of interest for many cognitive neuroscientists. Active allothetic place avoidance (AAPA) task have been demonstrated to require spatial mapping and cognitive coordination and is highly dependent upon hippocampus. The present study was designed to evaluate the role of beta-adrenergic receptors in the modulation of locomotor and spatial behavior in this task. Four doses of centrally active beta-adrenergic antagonist propranolol (5, 20, 25 and 30 mg/kg) were administered intraperitoneally 30 min prior to testing in the place avoidance task. Four daily sessions were pursued, each lasting 20 min. A dose of 25 mg/kg was found to induce a deficit in spatial behavior (measured by number of entrances into the shock sector) without altering locomotion; lower doses were without effect. The highest dose (30 mg/kg) impaired both locomotion and avoidance behavior. The results suggest that beta-adrenoceptors are involved in the regulation of behavior in the place avoidance task and that it is possible to dissociate the effect of propranolol on the spatial performance and locomotion in the AAPA using dose-selection.
Collapse
Affiliation(s)
- Ales Stuchlik
- Institute of Physiology, Academy of Sciences of Czech Republic, v.v.i., Videnska 1083, 14220 Prague 4, Czech Republic.
| | | | | |
Collapse
|
13
|
Kenton L, Boon F, Cain DP. Combined but not individual administration of beta-adrenergic and serotonergic antagonists impairs water maze acquisition in the rat. Neuropsychopharmacology 2008; 33:1298-311. [PMID: 17653108 DOI: 10.1038/sj.npp.1301518] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study examined the effects of serotonergic depletion and beta-adrenergic antagonism on performance in both visible platform and hidden platform versions of the water maze task. Male Long-Evans rats received systemic injections of p-chlorophenylalanine (500 mg/kg x 2) to deplete serotonin, or propranolol (20 or 40 mg/kg) to antagonize beta-adrenergic receptors. Some rats received treatments in combination. To separate strategies learning from spatial learning, half of the rats underwent Morris' water maze strategies pretraining before drug administration and spatial training. Individual depletion of serotonin or antagonism of beta-adrenergic receptors caused few or no impairments in either naive or pretrained rats in either version of the task. In contrast, combined depletion of serotonin and antagonism of beta-adrenergic receptors impaired naive rats in the visible platform task and impaired both naive and strategies-pretrained rats in the hidden platform task, and also caused sensorimotor impairments. This is the first finding of a 'global' water maze task/sensorimotor impairment with combined administration of two agents that, at the high doses that were given individually, produced few or no impairments. The data imply that (1) serotonergic and beta-adrenergic systems may interact in a manner that is important for adaptive behavior; (2) impairments in these systems found in Alzheimer patients may be important for their cognitive and behavioral impairments; and (3) the approach used here can model aspects of the cognitive and behavioral impairments in Alzheimer disease.
Collapse
Affiliation(s)
- Laura Kenton
- Department of Psychology, University of Western Ontario, London, ON, Canada
| | | | | |
Collapse
|
14
|
Combined administration of subthreshold doses of the nitric oxide inhibitor, nitro-L-arginine, and muscarinic receptor antagonist, scopolamine, impairs complex maze learning in rats. Behav Pharmacol 2008; 18:801-5. [PMID: 17989518 DOI: 10.1097/fbp.0b013e3282f18d2f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Traditionally, research into the neurobiological mechanisms of age-related memory impairments has focused on single neurotransmitter systems. As normal and abnormal age-related declines in memory function probably involve alterations in more than one system, a more effective approach for elucidating underlying neurobiological changes and resulting impairments may be to evaluate the roles of multiple systems simultaneously. This study evaluated the interaction of the cholinergic and nitric oxide systems in rats on acquisition in the 14-unit T-maze. This task requires learning a series of turns to avoid foot shock, and most likely reflects procedural learning. Administration of scopolamine (0.1 mg/kg) or N-nitro-L-arginine methyl ester (30 mg/kg) alone did not impair acquisition, whereas administration of the same doses in combination increased both the latency to complete the maze and number of errors committed. These data suggest that manipulation of learning and memory processes with multiple compounds potentially offers a clinically relevant paradigm for investigating cognitive function in normal and abnormal aging.
Collapse
|
15
|
Moazedi A, Belaran M, Hemmaty A, Rasekh A. The Role of Beta-Adrenergic System on the Enhancement of Spatial Learning Caused by Glucose Injection in Young Male Rats. INT J PHARMACOL 2007. [DOI: 10.3923/ijp.2008.34.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Lim EP, Verma V, Nagarajah R, Dawe GS. Propranolol blocks chronic risperidone treatment-induced enhancement of spatial working memory performance of rats in a delayed matching-to-place water maze task. Psychopharmacology (Berl) 2007; 191:297-310. [PMID: 17225165 DOI: 10.1007/s00213-006-0664-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 11/29/2006] [Indexed: 10/23/2022]
Abstract
RATIONALE Atypical antipsychotics improve cognitive function, including working memory, in schizophrenia. Some atypical antipsychotics have been reported to activate the locus coeruleus and induce beta-adrenoceptor antagonist sensitive c-Fos-like immunoreactivity in the prefrontal cortex. MATERIALS AND METHODS The present study investigated the effects of chronic treatment of rats with risperidone (1 mg kg(-1) day(-1) s.c.), clozapine (10 mg kg(-1) day(-1) s.c.), or acidified saline vehicle control for 2, 4, or 8 weeks on spatial working memory performance in a delayed matching-to-place water maze task with a 60-s inter-trial retention interval with and without acute challenge with propranolol (10 mg/kg i.p.). RESULTS Treatment with risperidone for 8 weeks, but not 2 or 4 weeks, significantly improved working memory performance. In contrast, treatment with clozapine for up to 8 weeks did not improve working memory. Acute challenge with propranolol blocked the improvement in working memory produced by chronic treatment with risperidone, but had no significant effect on performance in saline- or clozapine-treated animals. CONCLUSIONS The delayed matching-to-place water maze task may prove valuable in the investigation of the behavioural pharmacology of the cognitive effects of antipsychotic drugs. These data suggest that beta adrenoceptors may contribute to the cognitive effects of chronic treatment with atypical antipsychotics.
Collapse
Affiliation(s)
- Ee Peng Lim
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Building MD2, 18 Medical Drive, Singapore, 117597, Singapore.
| | | | | | | |
Collapse
|
17
|
Brody DL, Holtzman DM. Morris water maze search strategy analysis in PDAPP mice before and after experimental traumatic brain injury. Exp Neurol 2005; 197:330-40. [PMID: 16309676 PMCID: PMC1913184 DOI: 10.1016/j.expneurol.2005.10.020] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 09/13/2005] [Accepted: 10/12/2005] [Indexed: 11/23/2022]
Abstract
Traumatic brain injury (TBI) is a common cause of cognitive dysfunction and a major risk factor for Alzheimer's disease (AD). PDAPP mice, a transgenic line overexpressing a mutant human amyloid precursor protein (APP) implicated in familial AD, have markedly impaired behavioral performance in the Morris water maze relative to wild-type (WT) littermates. Performance further deteriorates following experimental TBI in both PDAPP and WT mice. However, the aspects of cognitive function involved are not well understood. Here, we have analyzed search strategies used in the water maze by 3-4 month old PDAPP and WT C57Bl6 littermates both before and after moderate controlled cortical impact TBI. Prior to TBI, PDAPP mice used less spatial strategies and more nonspatial systematic strategies and strategies involving repetitive looping than WT mice. With training, PDAPP mice used more spatial strategies and less repetitive looping. After TBI, PDAPP mice lost use of spatial strategies and relied more on repetitive looping. TBI in WT mice also reduced their use of spatial strategies but instead caused a switch to nonspatial systematic strategies. We also analyzed changes in the efficiency with which mice used each individual strategy, but found that differences in which strategies were used quantitatively accounted for most of the differences in performance between groups. These results demonstrate that suboptimal search strategy use in addition to effects on spatial learning and memory underlies the impaired performance of PDAPP mice and further deterioration following TBI. Human TBI patients may have analogous poor use of problem solving strategies.
Collapse
Affiliation(s)
- David L Brody
- Department of Neurology, Washington University, 660 S. Euclid Ave., Box 8111, St. Louis, MO 63110, USA.
| | | |
Collapse
|
18
|
Abstract
To investigate the noradrenergic modulation of working memory in humans single doses of two beta-blockers [either 25 mg of propranolol (lipophilic) or 50 mg of atenolol (hydrophilic)] or placebo were administered to young healthy volunteers (16 subjects per drug condition) performing a numerical working memory task that requires either short-term maintenance or maintenance plus manipulation of visually presented four-number sequences. Higher manipulation costs (i.e. process-specific slowing of reaction times in the manipulation conditions compared to the control condition) were observed after propranolol but not after atenolol. The propranolol effect was mainly observed in subjects with low emotional arousal (i.e. low state anxiety rating at baseline). Because both beta-blockers induced a comparable decrease of blood pressure and pulse, the propranolol effect on the 'working component' of working memory is considered to be a central, presumably prefrontal one.
Collapse
Affiliation(s)
- Ulrich Müller
- Department of Psychiatry, University of Leipzig, Germany.
| | | | | |
Collapse
|