1
|
Gędaj A, Gregorczyk P, Żukowska D, Chorążewska A, Ciura K, Kalka M, Porębska N, Opaliński Ł. Glycosylation of FGF/FGFR: An underrated sweet code regulating cellular signaling programs. Cytokine Growth Factor Rev 2024; 77:39-55. [PMID: 38719671 DOI: 10.1016/j.cytogfr.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 06/22/2024]
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) constitute plasma-membrane localized signaling hubs that transmit signals from the extracellular environment to the cell interior, governing pivotal cellular processes like motility, metabolism, differentiation, division and death. FGF/FGFR signaling is critical for human body development and homeostasis; dysregulation of FGF/FGFR units is observed in numerous developmental diseases and in about 10% of human cancers. Glycosylation is a highly abundant posttranslational modification that is critical for physiological and pathological functions of the cell. Glycosylation is also very common within FGF/FGFR signaling hubs. Vast majority of FGFs (15 out of 22 members) are N-glycosylated and few FGFs are O-glycosylated. Glycosylation is even more abundant within FGFRs; all FGFRs are heavily N-glycosylated in numerous positions within their extracellular domains. A growing number of studies points on the multiple roles of glycosylation in fine-tuning FGF/FGFR signaling. Glycosylation modifies secretion of FGFs, determines their stability and affects interaction with FGFRs and co-receptors. Glycosylation of FGFRs determines their intracellular sorting, constitutes autoinhibitory mechanism within FGFRs and adjusts FGF and co-receptor recognition. Sugar chains attached to FGFs and FGFRs constitute also a form of code that is differentially decrypted by extracellular lectins, galectins, which transform FGF/FGFR signaling at multiple levels. This review focuses on the identified functions of glycosylation within FGFs and FGFRs and discusses their relevance for the cell physiology in health and disease.
Collapse
Affiliation(s)
- Aleksandra Gędaj
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Paulina Gregorczyk
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Dominika Żukowska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Aleksandra Chorążewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Krzysztof Ciura
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Marta Kalka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Natalia Porębska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Łukasz Opaliński
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland.
| |
Collapse
|
2
|
Kuboyama-Sasaki A, Takahashi Y, Xia C, Hiro K, Kobayashi T, Ohdan H, Shimizu M, Yamauchi Y, Kiyono H, Sato R. Establishment of a cell culture platform for human liver organoids and its application for lipid metabolism research. Biotechnol J 2024; 19:e2300365. [PMID: 37920068 DOI: 10.1002/biot.202300365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/11/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
Human liver organoids (HLOs) are reliable tools to represent physiological human liver biology. However, their use is limited especially in basic sciences. One of the reasons for this would be the insufficient systematic methodology to handle HLOs, including culture system, functional assessment, and gene transduction. Here, we generated and characterized mouse L cells stably and simultaneously overexpressing R-spondin1, hepatocyte growth factor, fibroblast growth factor (FGF) 7, and FGF10 via lentiviral transduction. The conditioned medium of the cells contributed to HLO growth as a replacement of commercially available recombinant proteins, which leads to a significant reduction of their culture cost. Proliferative and maturation phases of the cells were controlled by switching the medium to facilitate the evaluation of hepatocyte function, including insulin responsiveness and intracellular lipid accumulation. Gene expression analysis revealed that HLOs highly expressed genes involved in lipid metabolism. Importantly, HLOs secreted physiologically matured very low-density lipoprotein, which is rarely observed in mice and in established cell lines. Efficient gene transduction into HLOs was achieved via a transient 2-dimensional culture during viral infection. This study provides an invaluable platform for utilizing HLOs in various research fields, such as molecular biology, pharmacology, toxicology, and regenerative medicine.
Collapse
Affiliation(s)
- Ayane Kuboyama-Sasaki
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yu Takahashi
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Chen Xia
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kahori Hiro
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Kobayashi
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Makoto Shimizu
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshio Yamauchi
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kiyono
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
| | - Ryuichiro Sato
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Rodboon T, Yodmuang S, Chaisuparat R, Ferreira JN. Development of high-throughput lacrimal gland organoid platforms for drug discovery in dry eye disease. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:151-158. [PMID: 35058190 DOI: 10.1016/j.slasd.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dysfunction and damage of the lacrimal gland (LG) results in ocular discomfort and dry eye disease (DED). Current therapies for DED do not fully replenish the necessary lubrication to rescue optimal vision. New drug discovery for DED has been limited perhaps because in vitro models cannot mimic the biology of the native LG. The existing platforms for LG organoid culture are scarce and still not ready for consistency and scale up production towards drug screening. The magnetic three-dimensional (3D) bioprinting (M3DB) is a novel system for 3D in vitro biofabrication of cellularized tissues using magnetic nanoparticles to bring cells together. M3DB provides a scalable platform for consistent handling of spheroid-like cell cultures facilitating consistent biofabrication of organoids. Previously, we successfully generated innervated secretory epithelial organoids from human dental pulp stem cells with M3DB and found that this platform is feasible for epithelial organoid bioprinting. Research targeting LG organogenesis, drug discovery for DED has extensively used mouse models. However, certain inter-species differences between mouse and human must be considered. Porcine LG appear to have more similarities to human LG than the mouse counterparts. We have conducted preliminary studies with the M3DB for fabricating LG organoids from primary cells isolated from murine and porcine LG, and found that this platform provides robust LG organoids for future potential high-throughput analysis and drug discovery. The LG organoid holds promise to be a functional model of tearing, a platform for drug screening, and may offer clinical applications for DED.
Collapse
Affiliation(s)
- Teerapat Rodboon
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Supansa Yodmuang
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Risa Chaisuparat
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Joao N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Faculty of Dentistry, National University of Singapore, Singapore.
| |
Collapse
|
4
|
Zhou Q, Gong J, Bi J, Yang X, Zhang L, Lu C, Li L, Chen M, Cai J, Yang R, Li X, Li Z, Wang X. Keratinocyte growth factor-2 regulates signal-transducing adaptor protein-2-mediated signal transducer and activator of transcription 3 signaling and reduces skin scar formation. J Invest Dermatol 2022; 142:2003-2013.e5. [PMID: 34999107 DOI: 10.1016/j.jid.2021.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
Hypertrophic scar (HS) is a common complication of burns, skin trauma, and postoperative trauma, which involves excessive proliferation of fibroblasts and accumulation of a large amount of disorganized collagen fibers and extracellular matrix (ECM). Keratinocyte growth factor-2 (KGF-2) plays important roles in the regulation of cellular homeostasis and wound healing. In this study, we investigate the effect and underlying mechanism of KGF-2 on scar formation following wound healing both in vitro and in vivo. We show that KGF-2 attenuates mechanical stress-induced scar formation while promoting wound healing. Mechanistically, KGF-2 inhibits STAP2 expression and STAT3 activation, leading to significantly reduced COLI and COLIII levels. Our results provide a insight into the role of KGF-2 in wound healing and scar formation, and the therapeutic potential for reducing scarring while promoting wound healing.
Collapse
Affiliation(s)
- Qingde Zhou
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China; Laboratory of Zhejiang province for pharmaceutical Engineering and development of growth factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, 325035, China
| | - Jianxiang Gong
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China; Laboratory of Zhejiang province for pharmaceutical Engineering and development of growth factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, 325035, China
| | - Jianing Bi
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China; Laboratory of Zhejiang province for pharmaceutical Engineering and development of growth factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, 325035, China
| | - Xuanxin Yang
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China; Laboratory of Zhejiang province for pharmaceutical Engineering and development of growth factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, 325035, China
| | - Li Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chao Lu
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China; Laboratory of Zhejiang province for pharmaceutical Engineering and development of growth factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, 325035, China
| | - Lijia Li
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China; Laboratory of Zhejiang province for pharmaceutical Engineering and development of growth factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, 325035, China
| | - Min Chen
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China; Laboratory of Zhejiang province for pharmaceutical Engineering and development of growth factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, 325035, China
| | - Jianqiu Cai
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China
| | - Rongshuai Yang
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China
| | - Xiaokun Li
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China; Laboratory of Zhejiang province for pharmaceutical Engineering and development of growth factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases, Chinese Academy of Medical Science
| | - Zhiming Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Xiaojie Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, 325035, China; Laboratory of Zhejiang province for pharmaceutical Engineering and development of growth factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases, Chinese Academy of Medical Science.
| |
Collapse
|
5
|
Meyer M, Ben-Yehuda Greenwald M, Rauschendorfer T, Sänger C, Jukic M, Iizuka H, Kubo F, Chen L, Ornitz DM, Werner S. Mouse genetics identifies unique and overlapping functions of fibroblast growth factor receptors in keratinocytes. J Cell Mol Med 2019; 24:1774-1785. [PMID: 31830366 PMCID: PMC6991627 DOI: 10.1111/jcmm.14871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factors (FGFs) are key regulators of tissue development, homeostasis and repair, and abnormal FGF signalling is associated with various human diseases. In human and murine epidermis, FGF receptor 3 (FGFR3) activation causes benign skin tumours, but the consequences of FGFR3 deficiency in this tissue have not been determined. Here, we show that FGFR3 in keratinocytes is dispensable for mouse skin development, homeostasis and wound repair. However, the defect in the epidermal barrier and the resulting inflammatory skin disease that develops in mice lacking FGFR1 and FGFR2 in keratinocytes were further aggravated upon additional loss of FGFR3. This caused fibroblast activation and fibrosis in the FGFR1/FGFR2 double‐knockout mice and even more in mice lacking all three FGFRs, revealing functional redundancy of FGFR3 with FGFR1 and FGFR2 for maintaining the epidermal barrier. Taken together, our study demonstrates that FGFR1, FGFR2 and FGFR3 act together to maintain epidermal integrity and cutaneous homeostasis, with FGFR2 being the dominant receptor.
Collapse
Affiliation(s)
- Michael Meyer
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Theresa Rauschendorfer
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Catharina Sänger
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Marko Jukic
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Haruka Iizuka
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Fumimasa Kubo
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Lin Chen
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Interrogation of a lacrimo-auriculo-dento-digital syndrome protein reveals novel modes of fibroblast growth factor 10 (FGF10) function. Biochem J 2016; 473:4593-4607. [PMID: 27742760 DOI: 10.1042/bcj20160441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/18/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022]
Abstract
Heterozygous mutations in the gene encoding fibroblast growth factor 10 (FGF10) or its cognate receptor, FGF-receptor 2 IIIb result in two human syndromes - LADD (lacrimo-auriculo-dento-digital) and ALSG (aplasia of lacrimal and salivary glands). To date, the partial loss-of-FGF10 function in these patients has been attributed solely to perturbed paracrine signalling functions between FGF10-producing mesenchymal cells and FGF10-responsive epithelial cells. However, the functioning of a LADD-causing G138E FGF10 mutation, which falls outside its receptor interaction interface, has remained enigmatic. In the present study, we interrogated this mutation in the context of FGF10's protein sequence and three-dimensional structure, and followed the subcellular fate of tagged proteins containing this or other combinatorial FGF10 mutations, in vitro We report that FGF10 harbours two putative nuclear localization sequences (NLSs), termed NLS1 and NLS2, which individually or co-operatively promote nuclear translocation of FGF10. Furthermore, FGF10 localizes to a subset of dense fibrillar components of the nucleolus. G138E falls within NLS1 and abrogates FGF10's nuclear translocation whilst attenuating its progression along the secretory pathway. Our findings suggest that in addition to its paracrine roles, FGF10 may normally play intracrine role/s within FGF10-producing cells. Thus, G138E may disrupt both paracrine and intracrine function/s of FGF10 through attenuated secretion and nuclear translocation, respectively.
Collapse
|
7
|
El Agha E, Kosanovic D, Schermuly RT, Bellusci S. Role of fibroblast growth factors in organ regeneration and repair. Semin Cell Dev Biol 2015; 53:76-84. [PMID: 26459973 DOI: 10.1016/j.semcdb.2015.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/08/2015] [Indexed: 02/04/2023]
Abstract
In its broad sense, regeneration refers to the renewal of lost cells, tissues or organs as part of the normal life cycle (skin, hair, endometrium etc.) or as part of an adaptive mechanism that organisms have developed throughout evolution. For example, worms, starfish and amphibians have developed remarkable regenerative capabilities allowing them to voluntarily shed body parts, in a process called autotomy, only to replace the lost parts afterwards. The bizarre myth of the fireproof homicidal salamander that can survive fire and poison apple trees has persisted until the 20th century. Salamanders possess one of the most robust regenerative machineries in vertebrates and attempting to draw lessons from limb regeneration in these animals and extrapolate the knowledge to mammals is a never-ending endeavor. Fibroblast growth factors are potent morphogens and mitogens that are highly conserved among the animal kingdom. These growth factors play key roles in organogenesis during embryonic development as well as homeostatic balance during postnatal life. In this review, we provide a summary about the current knowledge regarding the involvement of fibroblast growth factor signaling in organ regeneration and repair. We also shed light on the use of these growth factors in previous and current clinical trials in a wide array of human diseases.
Collapse
Affiliation(s)
- Elie El Agha
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Djuro Kosanovic
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Ralph T Schermuly
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Saverio Bellusci
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
8
|
Rochais F, Sturny R, Chao CM, Mesbah K, Bennett M, Mohun TJ, Bellusci S, Kelly RG. FGF10 promotes regional foetal cardiomyocyte proliferation and adult cardiomyocyte cell-cycle re-entry. Cardiovasc Res 2014; 104:432-42. [PMID: 25344367 DOI: 10.1093/cvr/cvu232] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Cardiomyocyte proliferation gradually declines during embryogenesis resulting in severely limited regenerative capacities in the adult heart. Understanding the developmental processes controlling cardiomyocyte proliferation may thus identify new therapeutic targets to modulate the cell-cycle activity of cardiomyocytes in the adult heart. This study aims to determine the mechanism by which fibroblast growth factor 10 (FGF10) controls foetal cardiomyocyte proliferation and to test the hypothesis that FGF10 promotes the proliferative capacity of adult cardiomyocytes. METHODS AND RESULTS Analysis of Fgf10(-/-) hearts and primary cardiomyocyte cultures reveals that altered ventricular morphology is associated with impaired proliferation of right but not left-ventricular myocytes. Decreased FOXO3 phosphorylation associated with up-regulated p27(kip) (1) levels was observed specifically in the right ventricle of Fgf10(-/-) hearts. In addition, cell-type-specific expression analysis revealed that Fgf10 and its receptor, Fgfr2b, are expressed in cardiomyocytes and not cardiac fibroblasts, consistent with a cell-type autonomous role of FGF10 in regulating regional specific myocyte proliferation in the foetal heart. Furthermore, we demonstrate that in vivo overexpression of Fgf10 in adult mice promotes cardiomyocyte but not cardiac fibroblast cell-cycle re-entry. CONCLUSION FGF10 regulates regional cardiomyocyte proliferation in the foetal heart through a FOXO3/p27(kip1) pathway. In addition, FGF10 triggers cell-cycle re-entry of adult cardiomyocytes and is thus a potential target for cardiac repair.
Collapse
Affiliation(s)
- Francesca Rochais
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Campus de Luminy Case 907, Marseilles Cedex 9 13288, France
| | - Rachel Sturny
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Campus de Luminy Case 907, Marseilles Cedex 9 13288, France
| | - Cho-Ming Chao
- Justus-Liebig-Universitaet Giessen, Excellence Cluster Cardio-Pulmonary System, Giessen, Germany
| | - Karim Mesbah
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Campus de Luminy Case 907, Marseilles Cedex 9 13288, France
| | - Michael Bennett
- MRC National Institute for Medical Research, Mill Hill, London, UK
| | - Tim J Mohun
- MRC National Institute for Medical Research, Mill Hill, London, UK
| | - Saverio Bellusci
- Justus-Liebig-Universitaet Giessen, Excellence Cluster Cardio-Pulmonary System, Giessen, Germany Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya St 18, Kazan, 420008, Russia
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Campus de Luminy Case 907, Marseilles Cedex 9 13288, France
| |
Collapse
|
9
|
Morosan-Puopolo G, Balakrishnan-Renuka A, Yusuf F, Chen J, Dai F, Zoidl G, Lüdtke THW, Kispert A, Theiss C, Abdelsabour-Khalaf M, Brand-Saberi B. Wnt11 is required for oriented migration of dermogenic progenitor cells from the dorsomedial lip of the avian dermomyotome. PLoS One 2014; 9:e92679. [PMID: 24671096 PMCID: PMC3966816 DOI: 10.1371/journal.pone.0092679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/24/2014] [Indexed: 12/23/2022] Open
Abstract
The embryonic origin of the dermis in vertebrates can be traced back to the dermomyotome of the somites, the lateral plate mesoderm and the neural crest. The dermal precursors directly overlying the neural tube display a unique dense arrangement and are the first to induce skin appendage formation in vertebrate embryos. These dermal precursor cells have been shown to derive from the dorsomedial lip of the dermomyotome (DML). Based on its expression pattern in the DML, Wnt11 is a candidate regulator of dorsal dermis formation. Using EGFP-based cell labelling and time-lapse imaging, we show that the Wnt11 expressing DML is the source of the dense dorsal dermis. Loss-of-function studies in chicken embryos show that Wnt11 is indeed essential for the formation of dense dermis competent to support cutaneous appendage formation. Our findings show that dermogenic progenitors cannot leave the DML to form dense dorsal dermis following Wnt11 silencing. No alterations were noticeable in the patterning or in the epithelial state of the dermomyotome including the DML. Furthermore, we show that Wnt11 expression is regulated in a manner similar to the previously described early dermal marker cDermo-1. The analysis of Wnt11 mutant mice exhibits an underdeveloped dorsal dermis and strongly supports our gene silencing data in chicken embryos. We conclude that Wnt11 is required for dense dermis and subsequent cutaneous appendage formation, by influencing the cell fate decision of the cells in the DML.
Collapse
Affiliation(s)
- Gabriela Morosan-Puopolo
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
- Department of Molecular Embryology, Freiburg University, Freiburg, Germany
- Faculty of Biology, Freiburg University, Freiburg, Germany
| | - Ajeesh Balakrishnan-Renuka
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
- Department of Molecular Embryology, Freiburg University, Freiburg, Germany
- Faculty of Biology, Freiburg University, Freiburg, Germany
| | - Faisal Yusuf
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
| | - Jingchen Chen
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
| | - Fangping Dai
- Department of Molecular Embryology, Freiburg University, Freiburg, Germany
| | - Georg Zoidl
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
| | - Timo H.-W. Lüdtke
- Institute for Molecular Biology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Andreas Kispert
- Institute for Molecular Biology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Carsten Theiss
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
| | - Mohammed Abdelsabour-Khalaf
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
- Faculty of Biology, Freiburg University, Freiburg, Germany
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Albert-Ludwigs University, Freiburg, Germany
| |
Collapse
|
10
|
Sugimoto K, Yoshida S, Mashio Y, Toyota N, Xing Y, Xu H, Fujita Y, Huang Z, Touma M, Wu Q. Role of FGF10 on tumorigenesis by MS-K. Genes Cells 2013; 19:112-25. [DOI: 10.1111/gtc.12118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/18/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Kenkichi Sugimoto
- Department of Cell Science; Faculty of Graduate School of Science and Technology; Niigata University; Nishi-ku Niigata 950-2181 Japan
| | - Suzuka Yoshida
- Department of Cell Science; Faculty of Graduate School of Science and Technology; Niigata University; Nishi-ku Niigata 950-2181 Japan
| | - Yuka Mashio
- Department of Cell Science; Faculty of Graduate School of Science and Technology; Niigata University; Nishi-ku Niigata 950-2181 Japan
| | - Naoka Toyota
- Department of Cell Science; Faculty of Graduate School of Science and Technology; Niigata University; Nishi-ku Niigata 950-2181 Japan
| | - Yanjiang Xing
- Department of Cell Science; Faculty of Graduate School of Science and Technology; Niigata University; Nishi-ku Niigata 950-2181 Japan
| | - Henan Xu
- Department of Cell Science; Faculty of Graduate School of Science and Technology; Niigata University; Nishi-ku Niigata 950-2181 Japan
| | - Yuki Fujita
- Department of Cell Science; Faculty of Graduate School of Science and Technology; Niigata University; Nishi-ku Niigata 950-2181 Japan
| | - Zhijun Huang
- School of Life Science and Biotechnology; Harbin Institute of Technology; Harbin 150001 China
| | - Maki Touma
- Department of Cell Science; Faculty of Graduate School of Science and Technology; Niigata University; Nishi-ku Niigata 950-2181 Japan
| | - Qiong Wu
- School of Life Science and Biotechnology; Harbin Institute of Technology; Harbin 150001 China
| |
Collapse
|
11
|
Kunzmann S, Collins JJ, Kuypers E, Kramer BW. Thrown off balance: the effect of antenatal inflammation on the developing lung and immune system. Am J Obstet Gynecol 2013; 208:429-37. [PMID: 23313727 DOI: 10.1016/j.ajog.2013.01.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/24/2012] [Accepted: 01/04/2013] [Indexed: 12/15/2022]
Abstract
In recent years, translational research with various animal models has been helpful to answer basic questions about the effect of antenatal inflammation on maturation and development of the fetal lung and immune system. The fetal lung and immune systems are very plastic and their development can be conditioned and influenced by both endogenous and/or exogenous factors. Antenatal inflammation can induce pulmonary inflammation, leading to lung injury and remodeling in the fetal lung. Exposure to antenatal inflammation can induce interleukin-1α production, which enhances surfactant protein and lipid synthesis thereby promoting lung maturation. Interleukin-1α is therefore a candidate for the link between lung inflammation and lung maturation, preventing respiratory distress syndrome in preterm infants. Antenatal inflammation can, however, cause structural changes in the fetal lung and affect the expression of growth factors, such as transforming growth factor-beta, connective tissue growth factor, fibroblast growth factor-10, or bone morphogenetic protein-4, which are essential for branching morphogenesis. These alterations cause alveolar and microvascular simplification resembling the histology of bronchopulmonary dysplasia. Antenatal inflammation may also affect neonatal outcome by modulating the responsiveness of the immune system. Lipopolysaccharide-tolerance (endotoxin hyporesponsiveness/immunoparalysis), induced by exposure to inflammation in utero, may prevent fetal lung damage, but increases susceptibility to postnatal infections. Moreover, prenatal exposure to inflammation appears to be a predisposition for the development of adverse neonatal outcomes, like bronchopulmonary dysplasia, if the preterm infant is exposed to a second postnatal hit, such as mechanical ventilation oxygen exposure, infections, or steroids.
Collapse
|
12
|
Scott TL, Christian PA, Kesler MV, Donohue KM, Shelton B, Wakamatsu K, Ito S, D'Orazio J. Pigment-independent cAMP-mediated epidermal thickening protects against cutaneous UV injury by keratinocyte proliferation. Exp Dermatol 2013; 21:771-7. [PMID: 23078399 DOI: 10.1111/exd.12012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The epidermis increases pigmentation and epidermal thickness in response to ultraviolet exposure to protect against UV-associated carcinogenesis; however, the contribution of epidermal thickness has been debated. In a humanized skin mouse model that maintains interfollicular epidermal melanocytes, we found that forskolin, a small molecule that directly activates adenylyl cyclase and promotes cAMP generation, up-regulated epidermal eumelanin accumulation in fair-skinned melanocortin-1-receptor (Mc1r)-defective animals. Forskolin-induced pigmentation was associated with a reproducible expansion of epidermal thickness irrespective of melanization or the presence of epidermal melanocytes. Rather, forskolin-enhanced epidermal thickening was mediated through increased keratinocyte proliferation, indirectly through secreted factor(s) from cutaneous fibroblasts. We identified keratinocyte growth factor (Kgf) as a forskolin-induced fibroblast-derived cytokine that promoted keratinocyte proliferation, as forskolin induced Kgf expression both in the skin and in primary fibroblasts. Lastly, we found that even in the absence of pigmentation, forskolin-induced epidermal thickening significantly diminished the amount of UV-A and UV-B that passed through whole skin and reduced the amount of UV-B-associated epidermal sunburn cells. These findings suggest the possibility of pharmacologic-induced epidermal thickening as a novel UV-protective therapeutic intervention, particularly for individuals with defects in pigmentation and adaptive melanization.
Collapse
Affiliation(s)
- Timothy L Scott
- Department of Pediatrics and the Graduate Center for Toxicology, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536-0096, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Meyer M, Müller AK, Yang J, Moik D, Ponzio G, Ornitz DM, Grose R, Werner S. FGF receptors 1 and 2 are key regulators of keratinocyte migration in vitro and in wounded skin. J Cell Sci 2012; 125:5690-701. [PMID: 22992463 DOI: 10.1242/jcs.108167] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Efficient wound repair is essential for the maintenance of the integrity of the skin. The repair process is controlled by a variety of growth factors and cytokines, and their abnormal expression or activity can cause healing disorders. Here, we show that wound repair is severely delayed in mice lacking fibroblast growth factor receptors (FGFR) 1 and 2 in keratinocytes. As the underlying mechanism, we identified impaired wound contraction and a delay in re-epithelialization that resulted from impaired keratinocyte migration at the wound edge. Scratch wounding and transwell assays demonstrated that FGFR1/2-deficient keratinocytes had a reduced migration velocity and impaired directional persistence owing to inefficient formation and turnover of focal adhesions. Underlying this defect, we identified a significant reduction in the expression of major focal adhesion components in the absence of FGFR signaling, resulting in a general migratory deficiency. These results identify FGFs as key regulators of keratinocyte migration in wounded skin.
Collapse
Affiliation(s)
- Michael Meyer
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sennett R, Rendl M. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. Semin Cell Dev Biol 2012; 23:917-27. [PMID: 22960356 DOI: 10.1016/j.semcdb.2012.08.011] [Citation(s) in RCA: 270] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/27/2012] [Accepted: 08/24/2012] [Indexed: 12/17/2022]
Abstract
Embryonic hair follicle induction and formation are regulated by mesenchymal-epithelial interactions between specialized dermal cells and epidermal stem cells that switch to a hair fate. Similarly, during postnatal hair growth, communication between mesenchymal dermal papilla cells and surrounding epithelial matrix cells coordinates hair shaft production. Adult hair follicle regeneration in the hair cycle again is thought to be controlled by activating signals originating from the mesenchymal compartment and acting on hair follicle stem cells. Although many signaling pathways are implicated in hair follicle formation and growth, the precise nature, timing, and intersection of these inductive and regulatory signals remains elusive. The goal of this review is to summarize our current understanding and to discuss recent new insights into mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling.
Collapse
Affiliation(s)
- Rachel Sennett
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
15
|
Qu X, Pan Y, Carbe C, Powers A, Grobe K, Zhang X. Glycosaminoglycan-dependent restriction of FGF diffusion is necessary for lacrimal gland development. Development 2012; 139:2730-9. [PMID: 22745308 DOI: 10.1242/dev.079236] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycosaminoglycans (GAGs) play a central role in embryonic development by regulating the movement and signaling of morphogens. We have previously demonstrated that GAGs are the co-receptors for Fgf10 signaling in the lacrimal gland epithelium, but their function in the Fgf10-producing periocular mesenchyme is still poorly understood. In this study, we have generated a mesenchymal ablation of UDP-glucose dehydrogenase (Ugdh), an essential biosynthetic enzyme for GAGs. Although Fgf10 RNA is expressed normally in the periocular mesenchyme, Ugdh mutation leads to excessive dispersion of Fgf10 protein, which fails to elicit an FGF signaling response or budding morphogenesis in the presumptive lacrimal gland epithelium. This is supported by genetic rescue experiments in which the Ugdh lacrimal gland defect is ameliorated by constitutive Ras activation in the epithelium but not in the mesenchyme. We further show that lacrimal gland development requires the mesenchymal expression of the heparan sulfate N-sulfation genes Ndst1 and Ndst2 but not the 6-O and 2-O-sulfation genes Hs6st1, Hs6st2 and Hs2st. Taken together, these results demonstrate that mesenchymal GAG controls lacrimal gland induction by restricting the diffusion of Fgf10.
Collapse
Affiliation(s)
- Xiuxia Qu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
16
|
Zhao C, Wang XM, Wang JH, Hua XG, Yao Y. Effect of moxibustion on the expressions of protein KGF-1, KGF-2 and IL-6 in colon of rats with ulcerative colitis. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2012. [DOI: 10.1007/s11726-012-0590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Plichta JK, Radek KA. Sugar-coating wound repair: a review of FGF-10 and dermatan sulfate in wound healing and their potential application in burn wounds. J Burn Care Res 2012; 33:299-310. [PMID: 22561305 PMCID: PMC3348504 DOI: 10.1097/bcr.0b013e318240540a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Thousands of patients suffer from burn injuries each year, yet few therapies have been developed to accelerate the wound healing process. Most fibroblast growth factors (FGFs) have been extensively evaluated but only a few have been found to participate in the wound healing process. In particular, FGF-10 is robustly increased in the wound microenvironment after injury and has demonstrated some ability to promote wound healing in vitro and in vivo. Glycosaminoglycans are linear carbohydrates that participate in wound repair by influencing cytokine/growth factor localization and interaction with cognate receptors. Dermatan sulfate (DS) is the most abundant glycosaminoglycan in human wound fluid and has been postulated to be directly involved in the healing process. Recently, the combination of FGF-10 and DS demonstrated the potential to accelerate wound healing via increased keratinocyte proliferation and migration. Based on these preliminary studies, DS may serve as a cofactor for FGF-10, and together they are likely to expedite the healing process by stimulating keratinocyte activity. As a specific subtype of wounds, the overall healing process of burn injuries does not significantly differ from other types of wounds, where optimal repair results in matrix regeneration and complete reepithelialization. At present, standard burn treatment primarily involves topical application of antimicrobial agents, while no routine therapies target acceleration of reepithelialization, the key to wound closure. Thus, this novel therapeutic combination could be used in conjunction with some of the current therapies, but it would have the unique ability to initiate wound healing by stimulating keratinocyte epithelialization.
Collapse
Affiliation(s)
- Jennifer K Plichta
- Department of Surgery, Burn and Shock Trauma Institute, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | | |
Collapse
|
18
|
|
19
|
Fon Tacer K, Bookout AL, Ding X, Kurosu H, John GB, Wang L, Goetz R, Mohammadi M, Kuro-o M, Mangelsdorf DJ, Kliewer SA. Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol 2010; 24:2050-64. [PMID: 20667984 PMCID: PMC2954642 DOI: 10.1210/me.2010-0142] [Citation(s) in RCA: 535] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 07/01/2010] [Indexed: 01/16/2023] Open
Abstract
Although members of the fibroblast growth factor (FGF) family and their receptors have well-established roles in embryogenesis, their contributions to adult physiology remain relatively unexplored. Here, we use real-time quantitative PCR to determine the mRNA expression patterns of all 22 FGFs, the seven principal FGF receptors (FGFRs), and the three members of the Klotho family of coreceptors in 39 different mouse tissues. Unsupervised hierarchical cluster analysis of the mRNA expression data reveals that most FGFs and FGFRs fall into two groups the expression of which is enriched in either the central nervous system or reproductive and gastrointestinal tissues. Interestingly, the FGFs that can act as endocrine hormones, including FGF15/19, FGF21, and FGF23, cluster in a third group that does not include any FGFRs, underscoring their roles in signaling between tissues. We further show that the most recently identified Klotho family member, Lactase-like, is highly and selectively expressed in brown adipose tissue and eye and can function as an additional coreceptor for FGF19. This FGF atlas provides an important resource for guiding future studies to elucidate the physiological functions of FGFs in adult animals.
Collapse
Affiliation(s)
- Klementina Fon Tacer
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yang J, Meyer M, Müller AK, Böhm F, Grose R, Dauwalder T, Verrey F, Kopf M, Partanen J, Bloch W, Ornitz DM, Werner S. Fibroblast growth factor receptors 1 and 2 in keratinocytes control the epidermal barrier and cutaneous homeostasis. ACTA ACUST UNITED AC 2010; 188:935-52. [PMID: 20308431 PMCID: PMC2845079 DOI: 10.1083/jcb.200910126] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Loss of FGFRs results in skin abnormalities due to activation of keratinocytes and epidermal T cells. Fibroblast growth factors (FGFs) are master regulators of organogenesis and tissue homeostasis. In this study, we used different combinations of FGF receptor (FGFR)-deficient mice to unravel their functions in the skin. Loss of the IIIb splice variants of FGFR1 and FGFR2 in keratinocytes caused progressive loss of skin appendages, cutaneous inflammation, keratinocyte hyperproliferation, and acanthosis. We identified loss of FGF-induced expression of tight junction components with subsequent deficits in epidermal barrier function as the mechanism underlying the progressive inflammatory skin disease. The defective barrier causes activation of keratinocytes and epidermal γδ T cells, which produce interleukin-1 family member 8 and S100A8/A9 proteins. These cytokines initiate an inflammatory response and induce a double paracrine loop through production of keratinocyte mitogens by dermal cells. Our results identify essential roles for FGFs in the regulation of the epidermal barrier and in the prevention of cutaneous inflammation, and highlight the importance of stromal–epithelial interactions in skin homeostasis and disease.
Collapse
Affiliation(s)
- Jingxuan Yang
- Department of Biology, Institute of Cell Biology, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nadworny PL, Landry BK, Wang J, Tredget EE, Burrell RE. Does nanocrystalline silver have a transferable effect? Wound Repair Regen 2010; 18:254-65. [PMID: 20409150 DOI: 10.1111/j.1524-475x.2010.00579.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study examined the mechanism of nanocrystalline silver antiinflammatory activity, and tested nanocrystalline silver for systemic antiinflammatory effects. Secondary ion mass spectroscopy of skin treated directly with nanocrystalline silver for 24 hours showed that at skin surfaces there were significant deposits at weights corresponding to Ag, AgO, AgCl, AgNO(3), Ag(2)O, and silver clusters Ag(2-6), but silver penetration was minimal. To test for translocation of the effect, a porcine contact dermatitis model in which wounds were induced on one side of the back and then treated with nanocrystalline silver on the opposite side of the back was used. Visual and histological data showed improvement relative to animals treated with saline only. Significantly increased induction of apoptosis in the inflammatory cells present in the dermis was observed with remote nanocrystalline silver treatments. In addition, immunohistochemical analysis showed decreased levels of proinflammatory cytokines tumor necrosis factor-alpha and interleukin-8, and increased levels of antiinflammatory cytokine interleukin-4, epidermal growth factor, keratinocyte growth factor, and keratinocyte growth factor-2. Thus, the antiinflammatory effects of nanocrystalline silver appear to be induced by interactions with cells in the top layers of the skin, which then release biological signals resulting in widespread antiinflammatory activity.
Collapse
Affiliation(s)
- Patricia L Nadworny
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | |
Collapse
|
22
|
Chioni AM, Grose R. Negative regulation of fibroblast growth factor 10 (FGF-10) by polyoma enhancer activator 3 (PEA3). Eur J Cell Biol 2009; 88:371-84. [PMID: 19410332 PMCID: PMC2691923 DOI: 10.1016/j.ejcb.2009.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 01/15/2009] [Accepted: 01/16/2009] [Indexed: 12/21/2022] Open
Abstract
FGF-10 plays an important role in development and disease, acting as the key ligand for FGFR2B to regulate cell proliferation, migration and differentiation. Aberrant FGF signalling is implicated in tumourigenesis, with several cancer studies reporting FGF-10 or FGFR2B upregulation or identifying activating mutations in Fgfr2. We used 5’ RACE to identify a novel transcription start site for murine Fgf-10. Conventional in silico analysis predicted multiple binding sites for the transcription factor PEA3 upstream of this site. Binding was confirmed by chromatin immunopreciptation, and functional significance was studied by both RNAi knockdown and transient over-expression of PEA3. Knockdown of PEA3 message led to increased Fgf-10 expression, whereas overexpression of PEA3 resulted in decreased Fgf-10 expression. Thus, we have identified PEA3 as a negative regulator of Fgf-10 expression in a murine cell line and confirmed that activity also is seen in human breast cancer cell lines (MCF-7 and MDA-MB-231). Furthermore, over-expression of PEA3 in these cells resulted in impaired cell migration, which was rescued by treatment with FGF-10. Thus, PEA3 can regulate the transcription of Fgf-10 and such modulation can control breast cancer cell behaviour.
Collapse
Affiliation(s)
- Athina-Myrto Chioni
- Centre for Tumour Biology, Institute of Cancer, Barts & The London School of Medicine & Dentistry, London EC1M 6BQ, UK
| | | |
Collapse
|
23
|
Hong S, Kang JK, Park JJ, Ryu ES, Choi SS, Lee SH, Lee JH, Seo JS. Association of matrix metalloproteinase-3 with cardiogenic activity during Noggin-induced differentiation of mouse embryonic stem cells. Int J Cardiol 2009; 141:49-60. [PMID: 19138802 DOI: 10.1016/j.ijcard.2008.11.156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 10/06/2008] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Despite the pluripotency of embryonic stem (ES) cells, their clinical applications have been hindered due to the lack of reliable differentiation methods. Recently, it was shown that Noggin could effectively induce cardiomyocyte differentiation by transient treatment of ES cells. METHODS To determine how Noggin may induce cardiac differentiation, we compared differentially expressed genes during Noggin-induced differentiation of ES cells using microarray analysis. We found Matrix metalloproteinase-3 (Mmp-3) expression was highly up-regulated by Noggin treatment. To understand the role of Mmp-3 in the cardiac differentiation of ES cells, we inhibited Mmp-3 activity by treating with a specific Mmp-3 inhibitor during Noggin-induced cardiac differentiation of ES cells. We also analyzed the expression levels of cardiac markers and the ratio of spontaneously beating embryoid bodies (EBs) in the presence of the Mmp-3 inhibitor. RESULTS We analyzed EB samples from zero, two, and four days with or without Noggin treatment, and found that the expression levels of 2 (0 day), 56 (2 days), and 805 (4 days) genes were altered with Noggin treatment. Up-regulation of Mmp-3 was closely associated with relative increases of cardiogenic, vasculogenic, and hematopoietic genes in EB treated with Noggin. By inhibiting Mmp-3 activity, we verified that Mmp-3 activation is partly responsible for both the expression of cardiac markers and the elevated ratio of spontaneously beating to non-beating EBs. CONCLUSIONS The concurrent expression of Mmp-3 with many cardiogenic genes and the specific inhibition of Mmp-3 revealed a critical role for Mmp-3 in Noggin-induced cardiac differentiation of ES cells.
Collapse
Affiliation(s)
- Su Hong
- Macrogen Inc, World Meridian Venture Center, 60-24 Gasan-dong, Seoul 153-023, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kang W, Jang J. Protein engineering, expression, and activity of a novel fusion protein possessing keratinocyte growth factor 2 and fibronectin. Acta Biochim Biophys Sin (Shanghai) 2009; 41:16-20. [PMID: 19129946 DOI: 10.1093/abbs/gmn002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Growth factor-induced proliferation and differentiation often require adhesion of cells to the extracellular matrix proteins such as fibronectin (FN). In this study, we aimed to investigate the effect of protein engineering of the keratinocyte growth factor 2 (KGF2) fused to the FN on the mitogenic activity of KGF2. The fusion protein (KGF2-FN10), which was expressed in Escherichia coli, showed significantly enhanced mitogenic activity of KGF2 on human keratinocytes. Moreover, KGF2-FN10 fusion protein showed significantly increased activity to differentiate keratinocytes from native KGF2. In conclusion, these results suggest that KGF2-FN10 fusion protein has certain advantages over native KGF2 and may offer a novel strategy to potentiate the therapeutic effect of KGF2.
Collapse
Affiliation(s)
- Wonmo Kang
- Department of Biochemistry, Inha University School of Medicine, Incheon, Korea
| | | |
Collapse
|
25
|
Radek KA, Taylor KR, Gallo RL. FGF-10 and specific structural elements of dermatan sulfate size and sulfation promote maximal keratinocyte migration and cellular proliferation. Wound Repair Regen 2009; 17:118-26. [PMID: 19152659 PMCID: PMC2721336 DOI: 10.1111/j.1524-475x.2008.00449.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fibroblast growth factor-10 (FGF-10) is essential for epithelial development, while other members of this family, such as FGF-7, are not. FGF-10 is abundantly released into wounds following injury, and likely an essential growth factor required for this process. To evaluate how activation of this growth factor is controlled, multiple glycosaminoglycans were combined with FGF-10 assayed by measurement of the proliferation of cell lines expressing FGF receptor-2-IIIb, or keratinocyte migration in an in vitro wound repair assay. Dermatan sulfate (DS) exhibited greater potency than heparan sulfate or other chondroitin sulfates found in wounds. Structural variants of DS between 10 and 20 disaccharides containing iduronic acid showed maximal capacity to enable FGF-10 receptor stimulation. Furthermore, FGF-10 and DS markedly enhanced migration of keratinocytes in an in vitro wound scratch assay, while FGF-7 or other glycosaminoglycans did not. These data strongly suggest that FGF-10 activity is uniquely important in wound repair and that specific DS structural properties are necessary to promote FGF-10 function. These observations identify a novel interplay between DS and FGF-10 in mediating wound repair.
Collapse
Affiliation(s)
- Katherine A. Radek
- Veterans Affairs San Diego Healthcare System, San Diego, California
- Department of Medicine, University of California at San Diego, La Jolla, California
| | - Kristen R. Taylor
- Veterans Affairs San Diego Healthcare System, San Diego, California
- Department of Medicine, University of California at San Diego, La Jolla, California
| | - Richard L. Gallo
- Veterans Affairs San Diego Healthcare System, San Diego, California
- Department of Medicine, University of California at San Diego, La Jolla, California
| |
Collapse
|
26
|
Abstract
Fibroblast growth factors (FGFs) are a large family of secreted growth factors that are involved in the development, regeneration and repair of various tissues. In the nervous system, FGFs have been implicated in early developmental processes, such as neural induction, proliferation and patterning. Accumulating data indicate that FGFs are also important for the formation of functional neural networks. The role of FGFs in axon guidance, target recognition and synaptic differentiation as target-derived factors, and how they cooperate with cell adhesion molecules that are also involved in the wiring of the nervous system are the focus of this review.
Collapse
Affiliation(s)
- Hisashi Umemori
- Molecular & Behavioral Neuroscience Institute and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA.
| |
Collapse
|
27
|
Mills RE, Taylor KR, Podshivalova K, McKay DB, Jameson JM. Defects in skin gamma delta T cell function contribute to delayed wound repair in rapamycin-treated mice. THE JOURNAL OF IMMUNOLOGY 2008; 181:3974-83. [PMID: 18768852 DOI: 10.4049/jimmunol.181.6.3974] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Disruptions in the normal program of tissue repair can result in poor wound healing, which perturbs the integrity of barrier tissues such as the skin. Such defects in wound repair occur in transplant recipients treated with the immunosuppressant drug rapamycin (sirolimus). Intraepithelial lymphocytes, such as gammadelta T cells in the skin, mediate tissue repair through the production of cytokines and growth factors. The capacity of skin-resident T cells to function during rapamycin treatment was analyzed in a mouse model of wound repair. Rapamycin treatment renders skin gammadelta T cells unable to proliferate, migrate, and produce normal levels of growth factors. The observed impairment of skin gammadelta T cell function is directly related to the inhibitory action of rapamycin on mammalian target of rapamycin. Skin gammadelta T cells treated with rapamycin are refractory to IL-2 stimulation and attempt to survive in the absence of cytokine and growth factor signaling by undergoing autophagy. Normal wound closure can be restored in rapamycin-treated mice by addition of the skin gammadelta T cell-produced factor, insulin-like growth factor-1. These studies not only reveal that mammalian target of rapamycin is a master regulator of gammadelta T cell function but also provide a novel mechanism for the increased susceptibility to nonhealing wounds that occurs during rapamycin administration.
Collapse
Affiliation(s)
- Robyn E Mills
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
28
|
Li M, Li C, Liu YH, Xing Y, Hu L, Borok Z, Kwong KYC, Minoo P. Mesodermal deletion of transforming growth factor-beta receptor II disrupts lung epithelial morphogenesis: cross-talk between TGF-beta and Sonic hedgehog pathways. J Biol Chem 2008; 283:36257-64. [PMID: 18990706 DOI: 10.1074/jbc.m806786200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vertebrates, Sonic hedgehog (Shh) and transforming growth factor-beta (TGF-beta) signaling pathways occur in an overlapping manner in many morphogenetic processes. In vitro data indicate that the two pathways may interact. Whether such interactions occur during embryonic development remains unknown. Using embryonic lung morphogenesis as a model, we generated transgenic mice in which exon 2 of the TbetaRII gene, which encodes the type II TGF-beta receptor, was deleted via a mesodermal-specific Cre. Mesodermal-specific deletion of TbetaRII (TbetaRII(Delta/Delta)) resulted in embryonic lethality. The lungs showed abnormalities in both number and shape of cartilage in trachea and bronchi. In the lung parenchyma, where epithelial-mesenchymal interactions are critical for normal development, deletion of mesenchymal TbetaRII caused abnormalities in epithelial morphogenesis. Failure in normal epithelial branching morphogenesis in the TbetaRII(Delta/Delta) lungs caused cystic airway malformations. Interruption of the TbetaRII locus in the lung mesenchyme increased mRNA for Patched and Gli-1, two downstream targets of Shh signaling, without alterations in Shh ligand levels produced in the epithelium. Therefore, we conclude that TbetaRII-mediated signaling in the lung mesenchyme modulates transduction of Shh signaling that originates from the epithelium. To our knowledge, this is the first in vivo evidence for a reciprocal and novel mode of cross-communication between Shh and TGF-beta pathways during embryonic development.
Collapse
Affiliation(s)
- Min Li
- Division of Neonatology, Department of Pediatrics, Will Rogers Institute Pulmonary Research Center, University of Southern California School of Medicine, Los Angeles, CA 90093, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Lu P, Ewald AJ, Martin GR, Werb Z. Genetic mosaic analysis reveals FGF receptor 2 function in terminal end buds during mammary gland branching morphogenesis. Dev Biol 2008; 321:77-87. [PMID: 18585375 DOI: 10.1016/j.ydbio.2008.06.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 05/30/2008] [Accepted: 06/02/2008] [Indexed: 01/05/2023]
Abstract
FGF signaling is associated with breast cancer and is required for mammary placode formation in the mouse. In this study, we employed a genetic mosaic analysis based on Cre-mediated recombination to investigate FGF receptor 2 (Fgfr2) function in the postnatal mammary gland. Mosaic inactivation of Fgfr2 by the MMTV-Cre transgene enabled us to compare the behavior of Fgfr2 null and Fgfr2 heterozygous cells in the same gland. Fgfr2 null cells were at a competitive disadvantage to their Fgfr2 heterozygous neighbors in the highly proliferative terminal end buds (TEBs) at the invasion front, owing to a negative effect of loss of Fgfr2 function on cell proliferation. However, Fgfr2 null cells were tolerated in mature ducts. In these genetic mosaic mammary glands, the epithelial network is apparently built by TEBs that over time are composed of a progressively larger proportion of Fgfr2-positive cells. However, subsequently, most cells lose Fgfr2 function, presumably due to additional rounds of Cre-mediated recombination. Using an independent strategy to create mosaic mammary glands, which employed an adenovirus-Cre that acts only once, we confirmed that Fgfr2 null cells were out-competed by neighboring Fgfr2 heterozygous cells. Together, our data demonstrate that Fgfr2 functions in the proliferating and invading TEBs, but it is not required in the mature ducts of the pubertal mammary gland.
Collapse
Affiliation(s)
- Pengfei Lu
- Department of Anatomy and Program in Developmental Biology, University of California at San Francisco, San Francisco, CA 94143-0452, USA
| | | | | | | |
Collapse
|
30
|
Jean JC, Lü J, Joyce-Brady M, Cardoso WV. Regulation ofFgf10 gene expression in murine mesenchymal cells. J Cell Biochem 2008; 103:1886-94. [DOI: 10.1002/jcb.21584] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Chen F, Desai TJ, Qian J, Niederreither K, Lü J, Cardoso WV. Inhibition of Tgf beta signaling by endogenous retinoic acid is essential for primary lung bud induction. Development 2007; 134:2969-79. [PMID: 17634193 DOI: 10.1242/dev.006221] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Disruption of retinoic acid (RA) signaling during early development results in severe respiratory tract abnormalities, including lung agenesis. Previous studies suggest that this might result from failure to selectively induce fibroblast growth factor 10 (Fgf10) in the prospective lung region of the foregut. Little is known about the RA-dependent pathways present in the foregut that may be crucial for lung formation. By performing global gene expression analysis of RA-deficient foreguts from a genetic [retinaldehyde dehydrogenase 2 (Raldh2)-null] and a pharmacological (BMS493-treated) mouse model, we found upregulation of a large number of Tgfbeta targets. Increased Smad2 phosphorylation further suggested that Tgfbeta signaling was hyperactive in these foreguts when lung agenesis was observed. RA rescue of the lung phenotype was associated with low levels of Smad2 phosphorylation and downregulation of Tgfbeta targets in Raldh2-null foreguts. Interestingly, the lung defect that resulted from RA-deficiency could be reproduced in RA-sufficient foreguts by hyperactivating Tgfbeta signaling with exogenous TGF beta 1. Preventing activation of endogenous Tgfbeta signaling with a pan-specific TGFbeta-blocking antibody allowed bud formation and gene expression in the lung field of both Raldh2-null and BMS493-treated foreguts. Our data support a novel mechanism of RA-Tgfbeta-Fgf10 interactions in the developing foregut, in which endogenous RA controls Tgfbeta activity in the prospective lung field to allow local expression of Fgf10 and induction of lung buds.
Collapse
Affiliation(s)
- Felicia Chen
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
32
|
Koria P, Andreadis ST. KGF promotes integrin alpha5 expression through CCAAT/enhancer-binding protein-beta. Am J Physiol Cell Physiol 2007; 293:C1020-31. [PMID: 17596295 DOI: 10.1152/ajpcell.00169.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Keratinocyte growth factor (KGF) and alpha(5)beta(1)-integrin are not expressed in normal skin but they are both highly upregulated in the migrating epidermis during wound healing. Here we report that KGF increased alpha(5) mRNA and protein levels in epidermoid carcinoma cells and stratified bioengineered epidermis. Interestingly, KGF increased integrin alpha(5) in the basal as well as suprabasal cell epidermal layers. Promoter studies indicated that KGF-induced integrin alpha(5) promoter activation was dependent on the C/EBP transcription factor binding site. Accordingly, KGF induced sustained phosphorylation of C/EBP-beta that was dependent on activation of ERK1/2. In addition, a dominant negative form of C/EBP-beta inhibited alpha(5) promoter activity and blocking C/EBP-beta with siRNA diminished integrin alpha(5) expression. Taken together, our data indicate that KGF increased integrin alpha(5) expression by phosphorylating C/EBP-beta. Interestingly, KGF-induced upregulation of integrin alpha(5) was more pronounced in three-dimensional tissue analogues than in conventional two-dimensional culture suggesting that stratified epidermis may be useful in understanding the effects of growth factors in the local tissue microenvironment.
Collapse
Affiliation(s)
- Piyush Koria
- Bioengineering Laboratory, Dept. of Chemical and Biological Engineering, 908 Furnas Hall, Univ. at Buffalo, State Univ. of New York, Amherst, NY 14260, USA
| | | |
Collapse
|
33
|
Abstract
Cutaneous tissue repair aims at restoring the barrier function of the skin. To achieve this, defects need to be replaced by granulation tissue to form new connective tissue, and epithelial wound closure is required to restore the physical barrier. Different wound-healing phases are recognized, starting with an inflammation-dominated early phase giving way to granulation tissue build-up and scar remodeling after epithelial wound closure has been achieved. In the granulation tissue, mesenchymal cells are maximally activated, cells proliferate, and synthesize huge amounts of extracellular matrix. Epithelial cells also proliferate and migrate over the provisional matrix of the underlying granulation tissue, eventually closing the defect. This review focuses on the role of keratinocyte-fibroblast interactions in the wound-healing process. There is ample evidence that keratinocytes stimulate fibroblasts to synthesize growth factors, which in turn will stimulate keratinocyte proliferation in a double paracrine manner. Moreover, fibroblasts can acquire a myofibroblast phenotype under the control of keratinocytes. This depends on a finely tuned balance between a proinflammatory or a transforming growth factor (TGF)-beta-dominated environment. As the phenotype of fibroblasts from different tissues or body sites becomes better defined, we may understand their individual contribution in wound healing in more detail and possibly explain different clinical outcomes.
Collapse
Affiliation(s)
- Sabine Werner
- Institute of Cell Biology, Eidgenössische Technische Hochschule Zürich, Hönggerberg, Zürich, Switzerland
| | | | | |
Collapse
|
34
|
Ceccarelli S, Cardinali G, Aspite N, Picardo M, Marchese C, Torrisi MR, Mancini P. Cortactin involvement in the keratinocyte growth factor and fibroblast growth factor 10 promotion of migration and cortical actin assembly in human keratinocytes. Exp Cell Res 2007; 313:1758-77. [PMID: 17449030 DOI: 10.1016/j.yexcr.2007.03.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 03/14/2007] [Accepted: 03/15/2007] [Indexed: 10/23/2022]
Abstract
Keratinocyte growth factor (KGF/FGF7) and fibroblast growth factor 10 (FGF10/KGF2) regulate keratinocyte proliferation and differentiation by binding to the tyrosine kinase KGF receptor (KGFR). KGF induces keratinocyte motility and cytoskeletal rearrangement, whereas a direct role of FGF10 on keratinocyte migration is not clearly established. Here we analyzed the motogenic activity of FGF10 and KGF on human keratinocytes. Migration assays and immunofluorescence of actin cytoskeleton revealed that FGF10 is less efficient than KGF in promoting migration and exerts a delayed effect in inducing lamellipodia and ruffles formation. Both growth factors promoted phosphorylation and subsequent membrane translocation of cortactin, an F-actin binding protein involved in cell migration; however, FGF10-induced cortactin phosphorylation was reduced, more transient and delayed with respect to that promoted by KGF. Cortactin phosphorylation induced by both growth factors was Src-dependent, while its membrane translocation and cell migration were blocked by either Src and PI3K inhibitors, suggesting that both pathways are involved in KGF- and FGF10-dependent motility. Furthermore, siRNA-mediated downregulation of cortactin inhibited KGF- and FGF10-induced migration. These results indicate that cortactin is involved in keratinocyte migration promoted by both KGF and FGF10.
Collapse
Affiliation(s)
- Simona Ceccarelli
- Dipartimento di Medicina Sperimentale, Università di Roma "La Sapienza", Viale Regina Elena 324, 00161 Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
There is a resident population of T cells found in murine skin that expresses an invariant Vgamma3Vdelta1 T-cell receptor (TCR), and these cells are significantly different from lymphoid gammadelta T cells and alphabeta T cells in terms of ontogeny, tissue tropism, and antigen receptor diversity. These dendritic epidermal T cells are derived from fetal thymic precursor cells, are in constant contact with neighboring epidermal cells, and express a monoclonal gammadeltaTCR only found in the skin. Skin gammadelta T cells have been shown to play unique roles in tissue homeostasis and during tissue repair through local secretion of distinct growth factors including keratinocyte growth factors and insulin-like growth factor-1. In this review, we discuss evidence supporting a role for cross talk between skin gammadelta T cells and keratinocytes that contributes to the maintenance of normal skin and wound healing.
Collapse
Affiliation(s)
- Julie Jameson
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
36
|
Abstract
Unlike other branched organs, the mammary gland undergoes most of its branching during adolescent rather than embryonic development. Its morphogenesis begins in utero, pauses between birth and puberty, and resumes in response to ovarian estrogens to form an open ductal tree that eventually fills the entire mammary fat pad of the young female adult. Importantly, this "open" architecture leaves room during pregnancy for the organ to develop milk-producing alveoli like leaves on otherwise bare branches. Thereafter, the ducts serve to deliver the milk that is produced throughout lactation. The hormonal cues that elicit these various phases of mammary development utilize local signaling cascades and reciprocal stromal-epithelial interactions to orchestrate the tissue reorganization, differentiation and specific activities that define each phase. Fortunately, the mammary gland is rather amenable to experimental inquiry and, as a result, we have a fair, although incomplete, understanding of the mechanisms that control its development. This review discusses our current sense and understanding of those mechanisms as they pertain to mammary branching, with the caveat that many more aspects are still waiting to be solved.
Collapse
Affiliation(s)
- Mark D Sternlicht
- Department of Anatomy and Program in Biomedical Sciences, University of California, San Francisco, CA 94143-0452, USA.
| | | | | | | |
Collapse
|
37
|
Abstract
Much progress has been made in recent years toward understanding mechanisms controlling branching morphogenesis, a fundamental aspect of development in a variety of invertebrate and vertebrate organs. To gain a deeper understanding of how branching morphogenesis occurs in the mammary gland, we compare and contrast the cellular and molecular events underlying this process in both invertebrate and vertebrate organs. Thus, in this review, we focus on the common themes that have emerged from such comparative analyses and discuss how they are implemented via a battery of signaling pathways to ensure proper branching morphogenesis in diverse systems.
Collapse
Affiliation(s)
- Pengfei Lu
- Department of Anatomy and Program in Developmental Biology, School of Medicine, University of California at San Francisco, San Francisco, CA 94143-0452, USA
| | | | | |
Collapse
|
38
|
Cardoso WV, Lü J. Regulation of early lung morphogenesis: questions, facts and controversies. Development 2006; 133:1611-24. [PMID: 16613830 DOI: 10.1242/dev.02310] [Citation(s) in RCA: 409] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During early respiratory system development, the foregut endoderm gives rise to the tracheal and lung cell progenitors. Through branching morphogenesis, and in coordination with vascular development, a tree-like structure of epithelial tubules forms and differentiates to produce the airways and alveoli. Recent studies have implicated the fibroblast growth factor, sonic hedgehog, bone morphogenetic protein, retinoic acid and Wnt signaling pathways, and various transcription factors in regulating the initial stages of lung development. However, the precise roles of these molecules and how they interact in the developing lung is subject to debate. Here, we review early stages in lung development and highlight questions and controversies regarding their molecular regulation.
Collapse
|
39
|
Geer DJ, Swartz DD, Andreadis ST. Biomimetic delivery of keratinocyte growth factor upon cellular demand for accelerated wound healing in vitro and in vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 167:1575-86. [PMID: 16314471 PMCID: PMC1613189 DOI: 10.1016/s0002-9440(10)61242-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exogenous keratinocyte growth factor (KGF) significantly enhances wound healing, but its use is hampered by a short biological half-life and lack of tissue selectivity. We used a biomimetic approach to achieve cell-controlled delivery of KGF by covalently attaching a fluorescent matrix-binding peptide that contained two domains: one recognized by factor XIII and the other by plasmin. Modified KGF was incorporated into the fibrin matrix at high concentration in a factor XIII-dependent manner. Cell-mediated activation of plasminogen to plasmin degraded the fibrin matrix and cleaved the peptides, releasing active KGF to the local microenvironment and enhancing epithelial cell proliferation and migration. To demonstrate in vivo effectiveness, we used a hybrid model of wound healing that involved transplanting human bioengineered skin onto athymic mice. At 6 weeks after grafting, the transplanted tissues underwent full thickness wounding and treatment with fibrin gels containing bound KGF. In contrast to topical KGF, fibrin-bound KGF persisted in the wounds for several days and was released gradually, resulting in significantly enhanced wound closure. A fibrinolytic inhibitor prevented this healing, indicating the requirement for cell-mediated fibrin degradation to release KGF. In conclusion, this biomimetic approach of localized, cell-controlled delivery of growth factors may accelerate healing of large full-thickness wounds and chronic wounds that are notoriously difficult to heal.
Collapse
Affiliation(s)
- David J Geer
- Department of Chemical and Biological Engineering, State University of New York at Buffalo, Amherst, 14260, USA
| | | | | |
Collapse
|
40
|
Hashimoto Y, Miyachi H. Nuclear receptor antagonists designed based on the helix-folding inhibition hypothesis. Bioorg Med Chem 2005; 13:5080-93. [PMID: 16051104 DOI: 10.1016/j.bmc.2005.03.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 03/14/2005] [Accepted: 03/15/2005] [Indexed: 10/25/2022]
Abstract
Here we review our studies on the molecular design of nuclear receptor antagonists, including retinoic acid receptor (RAR) antagonists, retinoid X receptor (RXR) antagonists, androgen receptor (AR) antagonists, and vitamin D receptor (VDR) antagonists, based on inhibition of folding of helix 12, which contains a co-activator binding site. Recent progress in structural development studies of peroxisome proliferator-activated receptor (PPAR) ligands is also reviewed.
Collapse
Affiliation(s)
- Yuichi Hashimoto
- Institute of Molecular & Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | | |
Collapse
|
41
|
Beer HD, Bittner M, Niklaus G, Munding C, Max N, Goppelt A, Werner S. The fibroblast growth factor binding protein is a novel interaction partner of FGF-7, FGF-10 and FGF-22 and regulates FGF activity: implications for epithelial repair. Oncogene 2005; 24:5269-77. [PMID: 15806171 DOI: 10.1038/sj.onc.1208560] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The fibroblast growth factor-binding protein (FGF-BP) binds and activates FGF-1 and FGF-2, thereby contributing to tumor angiogenesis. In this study, we identified novel binding partners of FGF-BP, and we provide evidence for a role of this protein in epithelial repair processes. We show that expression of FGF-BP increases after injury to murine and human skin, in particular in keratinocytes. This upregulation is most likely achieved by major keratinocyte mitogens present at the wound site. Most importantly, we demonstrate that FGF-BP interacts with FGF-7, FGF-10, and with the recently identified FGF-22, and enhances the activity of low concentrations of ligand. Due to the important functions of FGF-7 and FGF-10 for repair of injured epithelia, our findings suggest that upregulation of FGF-BP expression after injury stimulates FGF activity at the wound site, thus enhancing the process of epithelial repair.
Collapse
Affiliation(s)
- Hans-Dietmar Beer
- Department of Biology, Institute of Cell Biology, ETH Zürich, Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
42
|
Kovacs D, Falchi M, Cardinali G, Raffa S, Carducci M, Cota C, Amantea A, Torrisi MR, Picardo M. Immunohistochemical analysis of keratinocyte growth factor and fibroblast growth factor 10 expression in psoriasis. Exp Dermatol 2005; 14:130-7. [PMID: 15679583 DOI: 10.1111/j.0906-6705.2005.00261.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pathogenic mechanism underlying the hyperproliferation of keratinocytes in psoriasis is still not completely clarified. The production of cytokines released by activated T lymphocytes infiltrating the upper dermis probably has a crucial role. Even dermal fibroblasts can participate in the process through the secretion of growth factors, and some studies have reported an increased expression of the insulin-like growth factor 1. Few studies, however, have focused on the possible involvement of the keratinocyte growth factor (KGF/FGF-7) and the fibroblast growth factor 10 (FGF-10/KGF-2), which are secreted by fibroblasts and stimulate keratinocyte proliferation acting through a receptor specifically expressed by epithelial cells. The aim of this study was to investigate the expression of KGF and FGF-10 on the skin of patients with psoriasis by immunohistochemical analysis and to evaluate the correlation with the lymphocyte infiltrate and the epidermal proliferation. Immunostaining for KGF and FGF-10 showed that both the growth factors are upregulated in the upper dermis of psoriatic skin, and that the expression is correlated with the presence of T-cell infiltrate and with keratinocyte proliferation. Our data suggest that in psoriatic lesions activated lymphocytes can stimulate fibroblasts to produce KGF and FGF-10, which in turn contribute to sustain the hyperproliferative status of the keratinocytes.
Collapse
Affiliation(s)
- D Kovacs
- Istituto Dermatologico San Gallicano, Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Injury to the skin initiates a cascade of events including inflammation, new tissue formation, and tissue remodeling, that finally lead to at least partial reconstruction of the original tissue. Historically, animal models of repair have taught us much about how this repair process is orchestrated and, over recent years, the use of genetically modified mice has helped define the roles of many key molecules. Aside from conventional knockout technology, many ingenious approaches have been adopted, allowing researchers to circumvent such problems as embryonic lethality, or to affect gene function in a tissue- or temporal-specific manner. Together, these studies provide us with a growing source of information describing, to date, the in vivo function of nearly 100 proteins in the context of wound repair. This article focuses on the studies in which genetically modified mouse models have helped elucidate the roles that many soluble mediators play during wound repair, encompassing the fibroblast growth factor (FGF) and transforming growth factor-beta (TGF-beta) families and also data on cytokines and chemokines. Finally, we include a table summarizing all of the currently published data in this rapidly growing field. For a regularly updated web archive of studies, we have constructed a Compendium of Published Wound Healing Studies on Genetically Modified Mice which is avaialble at http://icbxs.ethz.ch/members/grose/woundtransgenic/home.html.
Collapse
Affiliation(s)
- Richard Grose
- London Research Institute Lab 214, Cancer Research UK, 61 Lincoln's Inn Fields, London WC2A 3PX, UK.
| | | |
Collapse
|
44
|
Wakabayashi KI, Miyachi H, Hashimoto Y, Tanatani A. Novel non-steroidal/non-anilide type androgen antagonists: discovery of 4-substituted pyrrole-2-carboxamides as a new scaffold for androgen receptor ligands. Bioorg Med Chem 2005; 13:2837-46. [PMID: 15781394 DOI: 10.1016/j.bmc.2005.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 02/08/2005] [Accepted: 02/10/2005] [Indexed: 11/24/2022]
Abstract
We designed and synthesized novel pyrrole-2-carboxamide derivatives as androgen antagonists. Compounds 10 and 13 bearing benzylamine or aniline at the 4-position of the pyrrole ring showed moderate androgen antagonistic activity, and inhibited the androgen-dependent growth of Shionogi carcinoma cells (SC-3). Study of the structure-activity relationships of compound 13 led to a potent androgen antagonist 36, which has higher affinity than flutamide (4) for androgen nuclear receptor (AR). Thus, pyrrole-2-carboxamide is a new scaffold for developing AR antagonists.
Collapse
Affiliation(s)
- Ken-ichi Wakabayashi
- Institute of Molecular & Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
45
|
Finch PW, Rubin JS. Keratinocyte growth factor/fibroblast growth factor 7, a homeostatic factor with therapeutic potential for epithelial protection and repair. Adv Cancer Res 2004; 91:69-136. [PMID: 15327889 DOI: 10.1016/s0065-230x(04)91003-2] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Keratinocyte growth factor (KGF) is a paracrine-acting, epithelial mitogen produced by cells of mesenchymal origin. It is a member of the fibroblast growth factor (FGF) family, and acts exclusively through a subset of FGF receptor isoforms (FGFR2b) expressed predominantly by epithelial cells. The upregulation of KGF after epithelial injury suggested it had an important role in tissue repair. This hypothesis was reinforced by evidence that intestinal damage was worse and healing impaired in KGF null mice. Preclinical data from several animal models demonstrated that recombinant human KGF could enhance the regenerative capacity of epithelial tissues and protect them from a variety of toxic exposures. These beneficial effects are attributed to multiple mechanisms that collectively act to strengthen the integrity of the epithelial barrier, and include the stimulation of cell proliferation, migration, differentiation, survival, DNA repair, and induction of enzymes involved in the detoxification of reactive oxygen species. KGF is currently being evaluated in clinical trials to test its ability to ameliorate severe oral mucositis (OM) that results from cancer chemoradiotherapy. In a phase 3 trial involving patients who were treated with myeloablative chemoradiotherapy before autologous peripheral blood progenitor cell transplantation for hematologic malignancies, KGF significantly reduced both the incidence and duration of severe OM. Similar investigations are underway in patients being treated for solid tumors. On the basis of its success in ameliorating chemoradiotherapy-induced OM in humans and tissue damage in a variety of animal models, additional clinical applications of KGF are worthy of investigation.
Collapse
Affiliation(s)
- Paul W Finch
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
46
|
Braun S, auf dem Keller U, Steiling H, Werner S. Fibroblast growth factors in epithelial repair and cytoprotection. Philos Trans R Soc Lond B Biol Sci 2004; 359:753-7. [PMID: 15293802 PMCID: PMC1693362 DOI: 10.1098/rstb.2004.1464] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Growth factors are polypeptides that stimulate the division of certain cell types at low concentrations. Fibroblast growth factor (FGF) 7 (FGF-7) and its homologue FGF-10 act specifically on various types of epithelial cells including keratinocytes of the skin, intestinal epithelial cells and hepatocytes. In addition, FGF-7 and FGF-10 have been shown to be more than growth factors: they can protect epithelial cells from damaging effects induced, for example, by radiation and oxidative stress. Therefore, they are currently in clinical trials for the treatment of oral mucositis, a severe side-effect of cancer therapy characterized by painful inflammation and ulceration of the oral epithelium. To gain insight into the mechanisms of FGF-7/FGF-10 action in epithelial cells, we searched for genes that are regulated by these growth factors. Indeed, we identified genes that help us to explain the mechanisms that underlie the effects of FGF-7. Most interestingly, several genes were identified that are likely to mediate the cytoprotective effect of FGF-7 for epithelial cells in vitro and possibly also in injured and diseased tissues in vivo.
Collapse
Affiliation(s)
- Susanne Braun
- Institute of Cell Biology, Department of Biology, ETH Zürich, Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
47
|
Theodorou V, Boer M, Weigelt B, Jonkers J, van der Valk M, Hilkens J. Fgf10 is an oncogene activated by MMTV insertional mutagenesis in mouse mammary tumors and overexpressed in a subset of human breast carcinomas. Oncogene 2004; 23:6047-55. [PMID: 15208658 DOI: 10.1038/sj.onc.1207816] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mouse mammary tumor virus (MMTV) infection causes a high incidence of murine mammary carcinomas by insertion of its proviral DNA in the genome of mammary epithelial cells. Retroviral insertion can activate flanking proto-oncogenes by a process called insertional mutagenesis. By sequencing the DNA adjacent to MMTV proviral insertions in mammary tumors from BALB/c mice infected with C3H-MMTV, we have found a common MMTV insertion site in the Fgf10 locus. RT-PCR studies showed that Fgf10 is expressed only in those tumors harboring a MMTV proviral insertion in this locus, suggesting that Fgf10 is a proto-oncogene. The oncogenicity of Fgf10 was evaluated in vivo by subcutaneous transplantation of retrovirally transduced HC11 mammary epithelial cells into BALB/c mice. Highly vascularized invasive subcutaneous tumors developed indicating that Fgf10 can act as an oncogene. A survey of primary human breast carcinomas revealed strongly elevated Fgf10 mRNA levels in approximately 10% of the tumors tested, suggesting that Fgf10 may also be involved in oncogenicity of a subset of human breast cancers.
Collapse
Affiliation(s)
- Vassiliki Theodorou
- Division of Tumor Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Tomlinson DC, Grindley JC, Thomson AA. Regulation of Fgf10 gene expression in the prostate: identification of transforming growth factor-beta1 and promoter elements. Endocrinology 2004; 145:1988-95. [PMID: 14726452 DOI: 10.1210/en.2003-0842] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fibroblast growth factor 10 (FGF10) is a mesenchymal paracrine-acting factor that plays a key role in the organogenesis of the prostate, and Fgf10 transcripts exhibit a highly restricted expression pattern within prostatic mesenchyme. To study the regulation of Fgf10 we have used organ rudiments grown in vitro as well as a primary stromal cell system derived from the ventral mesenchymal pad (VMP), a condensed area of mesenchyme known to induce prostatic organogenesis. Characterization of VMP cells (VMPCs) showed that they retained expression of AR as well as transcripts for FGF10 and TGFbeta1, -2, and -3. We propose that VMPCs are a good model of specialized mesenchyme involved in prostatic organogenesis and are distinct from general urogenital sinus mesenchyme/stroma. Treatment of VMPCs with TGFbeta1 resulted in a rapid and transient decrease in Fgf10 transcript levels, which were reduced 9-fold at 3 h. TGFbeta1 also inhibited Fgf10 expression in VMP organ rudiments grown in vitro. To further analyze Fgf10 regulation, 6 kb of mouse genomic sequence 5' to the translation start site was characterized by promoter analysis. Deletion analysis of the Fgf10 promoter in VMPCs identified a region of the promoter that mediated a significant proportion of promoter activity as well as mediating promoter down-regulation by TGFbeta1. This element was located between nucleotides -182 and -172 and contained a consensus Sp1 binding site. Taken together, our data suggest that TGFbeta1 is a regulator of Fgf10 expression in prostatic mesenchyme and that a proximal element within the Fgf10 promoter plays an important role in its regulation and expression.
Collapse
Affiliation(s)
- Darren C Tomlinson
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology, The University of Edinburgh, Scotland, United Kingdom
| | | | | |
Collapse
|
49
|
Petiot A, Conti FJA, Grose R, Revest JM, Hodivala-Dilke KM, Dickson C. A crucial role for Fgfr2-IIIb signalling in epidermal development and hair follicle patterning. Development 2004; 130:5493-501. [PMID: 14530295 DOI: 10.1242/dev.00788] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To understand the role Fgf signalling in skin and hair follicle development, we analysed the phenotype of mice deficient for Fgfr2-IIIb and its main ligand Fgf10. These studies showed that the severe epidermal hypoplasia found in mice null for Fgfr2-IIIb is caused by a lack of the basal cell proliferation that normally results in a stratified epidermis. Although at term the epidermis of Fgfr2-IIIb null mice is only two to three cells thick, it expresses the classical markers of epidermal differentiation and establishes a functional barrier. Mice deficient for Fgf10 display a similar but less severe epidermal hypoplasia. By contrast, Fgfr2-IIIb-/-, but not Fgf10-/-, mice produced significantly fewer hair follicles, and their follicles were developmentally retarded. Following transplantation onto nude mice, grafts of Fgfr2-IIIb-/- skin showed impaired hair formation, with a decrease in hair density and the production of abnormal pelage hairs. Expression of Lef1, Shh and Bmp4 in the developing hair follicles of Fgfr2-IIIb-/- mice was similar to wild type. These results suggest that Fgf signalling positively regulates the number of keratinocytes needed to form a normal stratified epidermis and to initiate hair placode formation. In addition, Fgf signals are required for the growth and patterning of pelage hairs.
Collapse
Affiliation(s)
- Anita Petiot
- Cancer Research UK, London Research Institute, 61 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | | | | | |
Collapse
|
50
|
Zhang H, Dessimoz J, Beyer TA, Krampert M, Williams LT, Werner S, Grose R. Fibroblast growth factor receptor 1-IIIb is dispensable for skin morphogenesis and wound healing. Eur J Cell Biol 2004; 83:3-11. [PMID: 15085950 DOI: 10.1078/0171-9335-00355] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alternative splicing in the extracellular domain is a characteristic feature of members of the fibroblast growth factor receptor (FGFR) family. This splicing event generates receptor variants, which differ in their ligand binding specificities. A poorly characterized splice variant is FGFR1-IIIb, recently found to be a functional FGF receptor predominantly expressed in the skin. Here we show that FGFR1-IIIb is expressed in normal and wounded mouse skin. Reduced expression of this type of receptor was found in wounds of healing-impaired genetically diabetic mice, suggesting that downregulation of FGFR1-IIIb is associated with wound healing defects. To address this possibility, we deleted the IIIb exon of FGFR1 in mice. The lack of FGFR-IIIb did not alter the expression of either FGFR1-IIIc, other FGF receptor genes or of FGFR1-IIIb ligands in normal and wounded skin. Histological analysis of the skin of FGFR1-IIIb knockout animals did not reveal any obvious abnormalities. Furthermore, full-thickness excisional skin wounds in these mice healed normally and no defects could be observed at the macroscopic or histological level. Finally, several genes that encode key players in wound repair were normally expressed in these animals. These data demonstrate that FGFR1-IIIb is dispensable for skin development and wound repair.
Collapse
Affiliation(s)
- Hongbing Zhang
- Five Prime Therapeutics Inc., South San Francisco, CA, USA
| | | | | | | | | | | | | |
Collapse
|