1
|
Guo Y, Wu H, Wiesmüller L, Chen M. Canonical and non-canonical functions of p53 isoforms: potentiating the complexity of tumor development and therapy resistance. Cell Death Dis 2024; 15:412. [PMID: 38866752 PMCID: PMC11169513 DOI: 10.1038/s41419-024-06783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Full-length p53 (p53α) plays a pivotal role in maintaining genomic integrity and preventing tumor development. Over the years, p53 was found to exist in various isoforms, which are generated through alternative splicing, alternative initiation of translation, and internal ribosome entry site. p53 isoforms, either C-terminally altered or N-terminally truncated, exhibit distinct biological roles compared to p53α, and have significant implications for tumor development and therapy resistance. Due to a lack of part and/or complete C- or N-terminal domains, ectopic expression of some p53 isoforms failed to induce expression of canonical transcriptional targets of p53α like CDKN1A or MDM2, even though they may bind their promoters. Yet, p53 isoforms like Δ40p53α still activate subsets of targets including MDM2 and BAX. Furthermore, certain p53 isoforms transactivate even novel targets compared to p53α. More recently, non-canonical functions of p53α in DNA repair and of different isoforms in DNA replication unrelated to transcriptional activities were discovered, amplifying the potential of p53 as a master regulator of physiological and tumor suppressor functions in human cells. Both regarding canonical and non-canonical functions, alternative p53 isoforms frequently exert dominant negative effects on p53α and its partners, which is modified by the relative isoform levels. Underlying mechanisms include hetero-oligomerization, changes in subcellular localization, and aggregation. These processes ultimately influence the net activities of p53α and give rise to diverse cellular outcomes. Biological roles of p53 isoforms have implications for tumor development and cancer therapy resistance. Dysregulated expression of isoforms has been observed in various cancer types and is associated with different clinical outcomes. In conclusion, p53 isoforms have expanded our understanding of the complex regulatory network involving p53 in tumors. Unraveling the mechanisms underlying the biological roles of p53 isoforms provides new avenues for studies aiming at a better understanding of tumor development and developing therapeutic interventions to overcome resistance.
Collapse
Affiliation(s)
- Yitian Guo
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China.
| | - Hang Wu
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Ming Chen
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China.
| |
Collapse
|
2
|
Mahapatra K, Roy S. SOG1 and BRCA1 Interdependently Regulate RAD54 Expression for Repairing Salinity-Induced DNA Double-Strand Breaks in Arabidopsis. PLANT & CELL PHYSIOLOGY 2024; 65:708-728. [PMID: 38242160 DOI: 10.1093/pcp/pcae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
As sessile organisms, land plants experience various forms of environmental stresses throughout their life span. Therefore, plants have developed extensive and complicated defense mechanisms, including a robust DNA damage response (DDR) and DNA repair systems for maintaining genome integrity. In Arabidopsis, the NAC [NO APICAL MERISTEM (NAM), ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR (ATAF), CUP-SHAPED COTYLEDON (CUC)] domain family transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1) plays an important role in regulating DDR. Here, we show that SOG1 plays a key role in regulating the repair of salinity-induced DNA double-strand breaks (DSBs) via the homologous recombination (HR) pathway in Arabidopsis. The sog1-1 mutant seedlings display a considerably slower rate of repair of salinity-induced DSBs. Accumulation of SOG1 protein increases in wild-type Arabidopsis under salinity stress, and it enhances the expression of HR pathway-related genes, including RAD51, RAD54 and BReast CAncer gene 1 (BRCA1), respectively, as found in SOG1 overexpression lines. SOG1 binds specifically to the AtRAD54 promoter at the 5'-(N)4GTCAA(N)3C-3' consensus sequence and positively regulates its expression under salinity stress. The phenotypic responses of sog1-1/atrad54 double mutants suggest that SOG1 functions upstream of RAD54, and both these genes are essential in regulating DDR under salinity stress. Furthermore, SOG1 interacts directly with BRCA1, an important component of the HR-mediated DSB repair pathway in plants, where BRCA1 appears to facilitate the binding of SOG1 to the RAD54 promoter. At the genetic level, SOG1 and BRCA1 function interdependently in modulating RAD54 expression under salinity-induced DNA damage. Together, our results suggest that SOG1 regulates the repair of salinity-induced DSBs via the HR-mediated pathway through genetic interactions with RAD54 and BRCA1 in Arabidopsis.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, 713 104 West Bengal, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, 713 104 West Bengal, India
| |
Collapse
|
3
|
Mahapatra K. Unveiling the structure and interactions of SOG1, a NAC domain transcription factor: An in-silico perspective. J Genet Eng Biotechnol 2024; 22:100333. [PMID: 38494249 PMCID: PMC10980851 DOI: 10.1016/j.jgeb.2023.100333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
SOG1 is a crucial plant-specific NAC domain family transcription factor and functions as the central regulator of DNA damage response, acting downstream of ATM and ATR kinases. In this study, various in-silico approaches have been employed for the characterization of SOG1 transcription factor in a comparative manner with its orthologues from various plant species. Amino acid sequences of more than a hundred SOG1 or SOG1-like proteins were retrieved and their relationship was determined through phylogenetic and motif analyses. Various physiochemical properties and secondary structural components of SOG1 orthologues were determined in selective plant species including Arabidopsis thaliana, Oryza sativa, Amborella trichopoda, and Physcomitrella patens. Furthermore, fold recognition or threading and homology-based three-dimensional models of SOG1 were constructed followed by subsequent evaluation of quality and accuracy of the generated protein models. Finally, extensive DNA-Protein and Protein-Protein interaction studies were performed using the HADDOCK server to give an insight into the mechanism of how SOG1 binds with the promoter region of its target genes or interacts with other proteins to regulate the DNA damage responses in plants. Our docking analysis data have shown the molecular mechanism of SOG1's binding with 5'-CTT(N)7AAG-3' and 5'-(N)4GTCAA(N)4-3' consensus sequences present in the promoter region of its target genes. Moreover, SOG1 physically interacts and forms a thermodynamically stable complex with NAC103 and BRCA1 proteins, which possibly serve as coactivators or mediators in the transcription regulatory network of SOG1. Overall, our in-silico study will provide meaningful information regarding the structural and functional characterization of the SOG1 transcription factor.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan - 713 104, West Bengal, India.
| |
Collapse
|
4
|
Han Y, Rovella V, Smirnov A, Buonomo OC, Mauriello A, Perretta T, Shi Y, Woodmsith J, Bischof J, Melino G, Candi E, Bernassola F. A BRCA2 germline mutation and high expression of immune checkpoints in a TNBC patient. Cell Death Discov 2023; 9:370. [PMID: 37813891 PMCID: PMC10562433 DOI: 10.1038/s41420-023-01651-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of mammary carcinoma. Here, we describe a case of an 81-year-old female diagnosed with ductal triple negative breast cancer with a germline pathogenic variant in BReast CAncer gene2 (BRCA2). Genetic testing also revealed the presence of four somatic mutations in the ephrin type-A receptor 3 (EphA3), TP53, BRCA1-associated protein (BAP1), and MYB genes. The BRCA2, TP53, and BAP1 gene mutations are highly predictive of a defective homologous recombination repair system and subsequent chromosomal instability in this patient. Coherently, the patient displayed a strong homologous recombination deficiency signature and high tumor mutational burden status, which are generally associated with increased probability of immune neoantigens formation and presentation, and with tumor immunogenicity. Analysis of immune checkpoint revealed high expression of programmed cell death ligand 1 (PD-L1), programmed cell death ligand 2 (PD-L2), programmed death 1 (PD1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA 4), suggesting that the patient might likely benefit from immunotherapies. Altogether, these findings support an unveiled link between BRCA2 inactivation, HR deficiency and increased expression of immune checkpoints in TNBC. This clinical case highlights the importance of screening TNBC patients for genetic mutations and TMB biomarkers in order to predict the potential efficacy of immunotherapy.
Collapse
Affiliation(s)
- Yuyi Han
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- Department of Ophthalmology, The Affiliated Hospital of Jiangnan University, 214000, Wuxi, China
| | - Valentina Rovella
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Artem Smirnov
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy
| | - Oreste Claudio Buonomo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Tommaso Perretta
- Department of Diagnostic Imaging and Interventional Radiology, Policlinico Tor Vergata University, Rome, 00133, Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | | | - Julia Bischof
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy.
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
5
|
Calheiros J, Corbo V, Saraiva L. Overcoming therapeutic resistance in pancreatic cancer: Emerging opportunities by targeting BRCAs and p53. Biochim Biophys Acta Rev Cancer 2023; 1878:188914. [PMID: 37201730 DOI: 10.1016/j.bbcan.2023.188914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Pancreatic cancer (PC) is characterized by (epi)genetic and microenvironmental alterations that negatively impact the treatment outcomes. New targeted therapies have been pursued to counteract the therapeutic resistance in PC. Aiming to seek for new therapeutic options for PC, several attempts have been undertaken to exploit BRCA1/2 and TP53 deficiencies as promising actionable targets. The elucidation of the pathogenesis of PC highlighted the high prevalence of p53 mutations and their connection with the aggressiveness and therapeutic resistance of PC. Additionally, PC is associated with dysfunctions in several DNA repair-related genes, including BRCA1/2, which sensitize tumours to DNA-damaging agents. In this context, poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) were approved for mutant BRCA1/2 PC patients. However, acquired drug resistance has become a major drawback of PARPi. This review emphasizes the importance of targeting defective BRCAs and p53 pathways for advancing personalized PC therapy, with particular focus on how this approach may provide an opportunity to tackle PC resistance.
Collapse
Affiliation(s)
- Juliana Calheiros
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine (DIMI), University and Hospital Trust of Verona, Verona, Italy; ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
6
|
Loboda AP, Adonin LS, Zvereva SD, Guschin DY, Korneenko TV, Telegina AV, Kondratieva OK, Frolova SE, Pestov NB, Barlev NA. BRCA Mutations-The Achilles Heel of Breast, Ovarian and Other Epithelial Cancers. Int J Mol Sci 2023; 24:ijms24054982. [PMID: 36902416 PMCID: PMC10003548 DOI: 10.3390/ijms24054982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Two related tumor suppressor genes, BRCA1 and BRCA2, attract a lot of attention from both fundamental and clinical points of view. Oncogenic hereditary mutations in these genes are firmly linked to the early onset of breast and ovarian cancers. However, the molecular mechanisms that drive extensive mutagenesis in these genes are not known. In this review, we hypothesize that one of the potential mechanisms behind this phenomenon can be mediated by Alu mobile genomic elements. Linking mutations in the BRCA1 and BRCA2 genes to the general mechanisms of genome stability and DNA repair is critical to ensure the rationalized choice of anti-cancer therapy. Accordingly, we review the literature available on the mechanisms of DNA damage repair where these proteins are involved, and how the inactivating mutations in these genes (BRCAness) can be exploited in anti-cancer therapy. We also discuss a hypothesis explaining why breast and ovarian epithelial tissues are preferentially susceptible to mutations in BRCA genes. Finally, we discuss prospective novel therapeutic approaches for treating BRCAness cancers.
Collapse
Affiliation(s)
- Anna P. Loboda
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | | | - Svetlana D. Zvereva
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Dmitri Y. Guschin
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | | | | | | | - Nikolay B. Pestov
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, 108819 Moscow, Russia
- Correspondence: (N.B.P.); (N.A.B.)
| | - Nick A. Barlev
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, 108819 Moscow, Russia
- Institute of Cytology, Tikhoretsky ave 4, 194064 St-Petersburg, Russia
- Correspondence: (N.B.P.); (N.A.B.)
| |
Collapse
|
7
|
Abd El-Hafeez AA, Sun N, Chakraborty A, Ear J, Roy S, Chamarthi P, Rajapakse N, Das S, Luker KE, Hazra TK, Luker GD, Ghosh P. Regulation of DNA damage response by trimeric G-proteins. iScience 2023; 26:105973. [PMID: 36756378 PMCID: PMC9900518 DOI: 10.1016/j.isci.2023.105973] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/14/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Upon sensing DNA double-strand breaks (DSBs), eukaryotic cells either die or repair DSBs via one of the two competing pathways, i.e., non-homologous end-joining (NHEJ) or homologous recombination (HR). We show that cell fate after DSBs hinges on GIV/Girdin, a guanine nucleotide-exchange modulator of heterotrimeric Giα•βγ protein. GIV suppresses HR by binding and sequestering BRCA1, a key coordinator of multiple steps within the HR pathway, away from DSBs; it does so using a C-terminal motif that binds BRCA1's BRCT-modules via both phospho-dependent and -independent mechanisms. Using another non-overlapping C-terminal motif GIV binds and activates Gi and enhances the "free" Gβγ→PI-3-kinase→Akt pathway, which promotes survival and is known to suppress HR, favor NHEJ. Absence of GIV, or loss of either of its C-terminal motifs enhanced cell death upon genotoxic stress. Because GIV selectively binds other BRCT-containing proteins suggests that G-proteins may fine-tune sensing, repair, and survival after diverse types of DNA damage.
Collapse
Affiliation(s)
- Amer Ali Abd El-Hafeez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Nina Sun
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jason Ear
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768, USA
| | - Suchismita Roy
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Pranavi Chamarthi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Navin Rajapakse
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Soumita Das
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Kathryn E. Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Tapas K. Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gary D. Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd., Ann Arbor, MI 48109-2099, USA
- Department of Microbiology and Immunology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Moores Comprehensive Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Veterans Affairs Medical Center, La Jolla, CA, USA
| |
Collapse
|
8
|
Choi E, Mun GI, Lee J, Lee H, Cho J, Lee YS. BRCA1 deficiency in triple-negative breast cancer: Protein stability as a basis for therapy. Biomed Pharmacother 2023; 158:114090. [PMID: 36493696 DOI: 10.1016/j.biopha.2022.114090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mutations in breast cancer-associated 1 (BRCA1) increase the lifetime risk of developing breast cancer by up to 51% over the risk of the general population. Many aspects of this multifunctional protein have been revealed, including its essential role in homologous recombination repair, E3 ubiquitin ligase activity, transcriptional regulation, and apoptosis. Although most studies have focused on BRCA1 deficiency due to mutations, only a minority of patients carry BRCA1 mutations. A recent study has suggested an expanded definition of BRCA1 deficiency with reduced BRCA1 levels, which accounts for almost half of all triple-negative breast cancer (TNBC) patients. Reduced BRCA1 levels can result from epigenetic modifications or increased proteasomal degradation. In this review, we discuss how this knowledge of BRCA1 function and regulation of BRCA1 protein stability can help overcome the challenges encountered in the clinic and advance current treatment strategies for BRCA1-related breast cancer patients, especially focusing on TNBC.
Collapse
Affiliation(s)
- Eun Choi
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Gil-Im Mun
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Joohyun Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hanhee Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
9
|
Tiwari S, Pandey VP, Yadav K, Dwivedi UN. Modulation of interaction of BRCA1-RAD51 and BRCA1-AURKA protein complexes by natural metabolites using as possible therapeutic intervention toward cardiotoxic effects of cancer drugs: an in-silico approach. J Biomol Struct Dyn 2022; 40:12863-12879. [PMID: 34632941 DOI: 10.1080/07391102.2021.1976278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Breast cancer type 1 susceptibility protein (BRCA1) plays an important role in maintaining genome stability and is known to interact with several proteins involved in cellular pathways, gene transcription regulation and DNA damage response. More than 40% of inherited breast cancer cases are due to BRCA1 mutation. It is also a prognostic marker in non-small cell lung cancer patients as well as a gatekeeper of cardiac function. Interaction of mutant BRCA1 with other proteins is known to disrupt the tumor suppression mechanism. Two directly interacting proteins with BRCA1 namely, DNA repair protein RAD51 (RAD51) and Aurora kinase A (AURKA), known to regulate homologous recombination (HR) and G/M cell cycle transition, respectively, form protein complex with both wild and mutant BRCA1. To analyze the interactions, protein-protein complexes were generated for each pair of proteins. In order to combat the cardiotoxic effects of cancer drugs, pharmacokinetically screened natural metabolites derived from plant, marine and bacterial sources and along with FDA-approved cancer drugs as control, were subjected to molecular docking. Piperoleine B and dihydrocircumin were the best docked natural metabolites in both RAD51 and AURKA complexes, respectively. Molecular dynamics simulation (MDS) analysis and binding free energy calculations for the best docked natural metabolite and drug for both the mutant BRCA1 complexes suggested better stability for the natural metabolites piperolein B and dihydrocurcumin as compared to drug. Thus, both natural metabolites could be further analyzed for their role against the cardiotoxic effects of cancer drugs through wet lab experiments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sameeksha Tiwari
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Veda P Pandey
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Upendra N Dwivedi
- Department of Biochemistry, University of Lucknow, Lucknow, India.,Institute for Development of Advanced Computing, ONGC Centre for Advanced Studies, University of Lucknow, Lucknow, India
| |
Collapse
|
10
|
Alterations in the p53 isoform ratio govern breast cancer cell fate in response to DNA damage. Cell Death Dis 2022; 13:907. [PMID: 36307393 PMCID: PMC9616954 DOI: 10.1038/s41419-022-05349-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Our previous studies have shown that p53 isoform expression is altered in breast cancer and related to prognosis. In particular, a high ∆40p53:p53α ratio is associated with worse disease-free survival. In this manuscript, the influence of altered Δ40p53 and p53α levels on the response to standard of care DNA-damaging agents used in breast cancer treatment was investigated in vitro. Our results revealed that a high Δ40p53:p53α ratio causes cells to respond differently to doxorubicin and cisplatin treatments. Δ40p53 overexpression significantly impairs the cells' sensitivity to doxorubicin through reducing apoptosis and DNA damage, whereas Δ40p53 knockdown has the opposite effect. Further, a high Δ40p53:p53α ratio inhibited the differential expression of several genes following doxorubicin and promoted DNA repair, impairing the cells' canonical response. Overall, our results suggest that the response of breast cancer cells to standard of care DNA-damaging therapies is dependent on the expression of p53 isoforms, which may contribute to outcomes in breast cancer.
Collapse
|
11
|
Guven-Maiorov E, Sakakibara N, Ponnamperuma RM, Dong K, Matar H, King KE, Weinberg WC. Delineating functional mechanisms of the p53/p63/p73 family of transcription factors through identification of protein-protein interactions using interface mimicry. Mol Carcinog 2022; 61:629-642. [PMID: 35560453 PMCID: PMC9949960 DOI: 10.1002/mc.23405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/08/2022]
Abstract
Members of the p53 family of transcription factors-p53, p63, and p73-share a high degree of homology; however, members can be activated in response to different stimuli, perform distinct (sometimes opposing) roles and are expressed in different tissues. The level of complexity is increased further by the transcription of multiple isoforms of each homolog, which may interact or interfere with each other and can impact cellular outcome. Proteins perform their functions through interacting with other proteins (and/or with nucleic acids). Therefore, identification of the interactors of a protein and how they interact in 3D is essential to fully comprehend their roles. By utilizing an in silico protein-protein interaction prediction method-HMI-PRED-we predicted interaction partners of p53 family members and modeled 3D structures of these protein interaction complexes. This method recovered experimentally known interactions while identifying many novel candidate partners. We analyzed the similarities and differences observed among the interaction partners to elucidate distinct functions of p53 family members and provide examples of how this information may yield mechanistic insight to explain their overlapping versus distinct/opposing outcomes in certain contexts. While some interaction partners are common to p53, p63, and p73, the majority are unique to each member. Nevertheless, most of the enriched pathways associated with these partners are common to all members, indicating that the members target the same biological pathways but through unique mediators. p63 and p73 have more common enriched pathways compared to p53, supporting their similar developmental roles in different tissues.
Collapse
Affiliation(s)
- Emine Guven-Maiorov
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States.,National Cancer Institute, Bethesda, MD, United States.,Postal and email addresses of corresponding authors FDA/CDER/OPQ/OBP, Building 52-72/2306, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States, ,
| | - Nozomi Sakakibara
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Roshini M. Ponnamperuma
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Kun Dong
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States.,National Cancer Institute, Bethesda, MD, United States
| | - Hector Matar
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Kathryn E. King
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Wendy C. Weinberg
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States.,Postal and email addresses of corresponding authors FDA/CDER/OPQ/OBP, Building 52-72/2306, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States, ,
| |
Collapse
|
12
|
Maleki Dana P, Sadoughi F, Mirzaei H, Asemi Z, Yousefi B. DNA damage response and repair in the development and treatment of brain tumors. Eur J Pharmacol 2022; 924:174957. [DOI: 10.1016/j.ejphar.2022.174957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 04/03/2022] [Accepted: 04/11/2022] [Indexed: 11/03/2022]
|
13
|
Lespay-Rebolledo C, Tapia-Bustos A, Perez-Lobos R, Vio V, Casanova-Ortiz E, Farfan-Troncoso N, Zamorano-Cataldo M, Redel-Villarroel M, Ezquer F, Quintanilla ME, Israel Y, Morales P, Herrera-Marschitz M. Sustained Energy Deficit Following Perinatal Asphyxia: A Shift towards the Fructose-2,6-bisphosphatase (TIGAR)-Dependent Pentose Phosphate Pathway and Postnatal Development. Antioxidants (Basel) 2021; 11:74. [PMID: 35052577 PMCID: PMC8773255 DOI: 10.3390/antiox11010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Labor and delivery entail a complex and sequential metabolic and physiologic cascade, culminating in most circumstances in successful childbirth, although delivery can be a risky episode if oxygen supply is interrupted, resulting in perinatal asphyxia (PA). PA causes an energy failure, leading to cell dysfunction and death if re-oxygenation is not promptly restored. PA is associated with long-term effects, challenging the ability of the brain to cope with stressors occurring along with life. We review here relevant targets responsible for metabolic cascades linked to neurodevelopmental impairments, that we have identified with a model of global PA in rats. Severe PA induces a sustained effect on redox homeostasis, increasing oxidative stress, decreasing metabolic and tissue antioxidant capacity in vulnerable brain regions, which remains weeks after the insult. Catalase activity is decreased in mesencephalon and hippocampus from PA-exposed (AS), compared to control neonates (CS), in parallel with increased cleaved caspase-3 levels, associated with decreased glutathione reductase and glutathione peroxidase activity, a shift towards the TIGAR-dependent pentose phosphate pathway, and delayed calpain-dependent cell death. The brain damage continues long after the re-oxygenation period, extending for weeks after PA, affecting neurons and glial cells, including myelination in grey and white matter. The resulting vulnerability was investigated with organotypic cultures built from AS and CS rat newborns, showing that substantia nigra TH-dopamine-positive cells from AS were more vulnerable to 1 mM of H2O2 than those from CS animals. Several therapeutic strategies are discussed, including hypothermia; N-acetylcysteine; memantine; nicotinamide, and intranasally administered mesenchymal stem cell secretomes, promising clinical translation.
Collapse
Affiliation(s)
- Carolyne Lespay-Rebolledo
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Andrea Tapia-Bustos
- School of Pharmacy, Faculty of Medicine, Universidad Andres Bello, Santiago 8370149, Chile;
| | - Ronald Perez-Lobos
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Valentina Vio
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Emmanuel Casanova-Ortiz
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Nancy Farfan-Troncoso
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Marta Zamorano-Cataldo
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Martina Redel-Villarroel
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Fernando Ezquer
- Center for Regenerative Medicine, Faculty of Medicine-Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile;
| | - Maria Elena Quintanilla
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Yedy Israel
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
- Center for Regenerative Medicine, Faculty of Medicine-Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile;
| | - Paola Morales
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Mario Herrera-Marschitz
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| |
Collapse
|
14
|
Leaf S, Carlsen L, El-Deiry WS. Opposing effects of BRCA1 mRNA expression on patient survival in breast and colorectal cancer and variations among African American, Asian, and younger patients. Oncotarget 2021; 12:1992-2005. [PMID: 34611475 PMCID: PMC8487727 DOI: 10.18632/oncotarget.28082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BC) and colorectal cancer (CRC) are common and show poor survival in advanced stages. Using The Cancer Genome Atlas (TCGA) computational tool cBioPortal, we evaluated overall patient survival in BRCA1 mRNA-low versus -high cohorts (<-1.29 versus >1.05 SD from mean BRCA1 expression, respectively). Analysis included 1082 BC patients with mRNA data (PanCancer Atlas), 382 CRCs (Firehose Legacy) and 592 CRCs (PanCancer Atlas). As previously reported, BRCA1 mRNA-low tumor expression positively correlated with BC patient survival but was negatively associated in CRC. We observed a correlation between BRCA1 mRNA-high and age <45 years at CRC diagnosis using a Fisher's exact test [Firehose Legacy database (p-value = 0.0091); CRC PanCancer Atlas (p-value = 0.0778)]. We correlated BRCA1 mRNA-low expression and basal BC (p-value = 0.0016) and BRCA1 mRNA-low tumors and frequency of African American patients (p-value = 0.0448) with BC. Other trends included higher frequency of advanced lymph node stage and mucinous adenocarcinoma among BRCA1 mRNA-low CRC and higher frequency of males in BRCA1 mRNA-high BC and CRC. African Americans more frequently had BRCA1 mRNA-low BC and BRCA1 mRNA-high CRC and the opposite was observed among Asians. Using a gene co-expression tool (cBioPortal), we observed TOP2A and ATAD5 levels correlate (Spearman's correlation>0.6) with BRCA1 in BC and CRC, whereas LMNB2 correlates with BRCA1 in CRC, suggesting tissue-specific BRCA1 interactions. Our results indicate potential for BRCA1 mRNA expression levels as a prognostic biomarker in BC and CRC, suggest tissue-specificity in BRCA1 molecular interactions, and point to BRCA1 mRNA-high levels as a characteristic of CRC tumors in younger versus older individuals.
Collapse
Affiliation(s)
- Sofia Leaf
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA.,Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,These authors contributed equally to this work
| | - Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA.,Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,These authors contributed equally to this work
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA.,Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Hematology-Oncology Division, Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| |
Collapse
|
15
|
P SS, Naresh P, A J, Wadhwani A, M SK, Jubie S. Dual Modulators of p53 and Cyclin D in ER Alpha Signaling by Albumin Nanovectors Bearing Zinc Chaperones for ER-positive Breast Cancer Therapy. Mini Rev Med Chem 2021; 21:792-802. [PMID: 33238842 DOI: 10.2174/1389557520999201124212347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/06/2020] [Accepted: 07/24/2020] [Indexed: 11/22/2022]
Abstract
CDATA[The inherited mutations and underexpression of BRCA1 in sporadic breast cancers resulting in the loss or functional inactivation of BRCA1 may contribute to a high risk of breast cancer. Recent researchers have identified small molecules (BRCA1 mimetics) that fit into a BRCA1 binding pocket within Estrogen Receptor alpha (ERα), mimic the ability of BRCA1 to inhibit ERα activity, and overcome antiestrogen resistance. Studies indicate that most of the BRCA1 breast cancer cases are associated with p53 mutations. It indicates that there is a potential connection between BRCA1 and p53. Most p53 mutations are missense point mutations that occur in the DNA-binding domain. Structural studies have demonstrated that mutant p53 core domain misfolding, especially p53-R175H, is reversible. Mutant p53 reactivation with a new class of zinc metallochaperones (ZMC) restores WT p53 structure and functions by restoring Zn2+ to Zn2+ deficient mutant p53. Considering the role of WT BRCA1 and reactivation of p53 in tumor cells, our hypothesis is to target both tumor suppressor proteins by a novel biomolecule (ZMC). Since both proteins are present in the same cell and are functionally inactive, this state may be a novel efficacious therapeutic regime for breast cancer therapy. In addition, we propose to use Albumin Nanovector (ANV) formulation for target drug release.
Collapse
Affiliation(s)
- Shyam Sundar P
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, India
| | - Podila Naresh
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, India
| | - Justin A
- Department of Pharmacology, JSS College of Pharmacy, India
| | - Ashish Wadhwani
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, India
| | - Suresh Kumar M
- Department of Pharmacognosy & Phytopharmacy, JSS College of Pharmacy, JSS Academy of Higher Education & Research Ooty, Nilgiris, Tamilnadu, India
| | - Selvaraj Jubie
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, India
| |
Collapse
|
16
|
Barrows JK, Fullbright G, Long D. BRCA1-BARD1 regulates transcription through BRD4 in Xenopus nucleoplasmic extract. Nucleic Acids Res 2021; 49:3263-3273. [PMID: 33660782 PMCID: PMC8034626 DOI: 10.1093/nar/gkab111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
The tumor suppressor BRCA1 is considered a master regulator of genome integrity. Although widely recognized for its DNA repair functions, BRCA1 has also been implicated in various mechanisms of chromatin remodeling and transcription regulation. However, the precise role that BRCA1 plays in these processes has been difficult to establish due to the widespread consequences of its cellular dysfunction. Here, we use nucleoplasmic extract derived from the eggs of Xenopus laevis to investigate the role of BRCA1 in a cell-free transcription system. We report that BRCA1-BARD1 suppresses transcription initiation independent of DNA damage signaling and its established role in histone H2A ubiquitination. BRCA1-BARD1 acts through a histone intermediate, altering acetylation of histone H4K8 and recruitment of the chromatin reader and oncogene regulator BRD4. Together, these results establish a functional relationship between an established (BRCA1) and emerging (BRD4) regulator of genome integrity.
Collapse
Affiliation(s)
- John K Barrows
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - George Fullbright
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - David T Long
- To whom correspondence should be addressed. Tel: +1 843 792 6949;
| |
Collapse
|
17
|
Satyananda V, Oshi M, Endo I, Takabe K. High BRCA2 Gene Expression is Associated with Aggressive and Highly Proliferative Breast Cancer. Ann Surg Oncol 2021; 28:7356-7365. [PMID: 33966140 DOI: 10.1245/s10434-021-10063-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mutations of BRCA genes are the most studied in breast cancer, but the clinical relevance of BRCA2 gene expression has been less well studied. Given that BRCA2 is a DNA repair gene, we hypothesized that high BRCA2 expression is associated with highly proliferative and aggressive biology in breast cancer. MATERIALS AND METHODS A total of 4342 breast cancer patients were analyzed from The Cancer Genome Atlas (TCGA, n = 1069) as the testing cohort and Gene Expression Omnibus (GEO) dataset GSE96058 (n = 3273) as a validation cohort. RESULTS There was no relationship between BRCA2 mutation and BRCA2 gene expression. BRCA2 high expression breast cancer was associated with higher Nottingham grade (p < 0.001), with high proliferation (MKI-67, p < 0.001), and with higher intratumor heterogeneity, homologous recombination deficiency, mutation rate, fraction altered, and neoantigens (all p < 0.001). BRCA2 high expression was associated with E2F1, RB1, PALB2, and PARP, as well as cell proliferation-related gene sets, E2F targets, G2M checkpoints, and mitotic spindle, and with less ESR1 and ER response early and late gene sets. They were associated with significantly reduced number of stroma cells and with high infiltration of both favorable and unfavorable immune cells. BRCA2 high expression significantly correlated with response to olaparib, a PARP inhibitor, and inversely with cyclophosphamide in ER-positive/HER2-negative tumors, but not in TNBC. CONCLUSIONS BRCA2 high gene expression was associated with highly proliferative and aggressive breast cancer that was highly immunogenic with better response to PARP inhibitors in ER-positive patients. BRCA2 gene expression may become a candidate marker for aggressive biology and to tailor specific treatment strategies in the future.
Collapse
Affiliation(s)
- Vikas Satyananda
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Itaru Endo
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA. .,Department of Surgery, Yokohama City University, Yokohama, Japan. .,Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan. .,Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan. .,Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
18
|
Huang H, Park S, Zhang H, Park S, Kwon W, Kim E, Zhang X, Jang S, Yoon D, Choi SK, Yi JK, Kim SH, Dong Z, Lee MH, Ryoo Z, Kim MO. Targeting AKT with costunolide suppresses the growth of colorectal cancer cells and induces apoptosis in vitro and in vivo. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:114. [PMID: 33785035 PMCID: PMC8010944 DOI: 10.1186/s13046-021-01895-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is a clinically challenging malignant tumor worldwide. As a natural product and sesquiterpene lactone, Costunolide (CTD) has been reported to possess anticancer activities. However, the regulation mechanism and precise target of this substance remain undiscovered in CRC. In this study, we found that CTD inhibited CRC cell proliferation in vitro and in vivo by targeting AKT. METHODS Effects of CTD on colon cancer cell growth in vitro were evaluated in cell proliferation assays, migration and invasion, propidium iodide, and annexin V-staining analyses. Targets of CTD were identified utilizing phosphoprotein-specific antibody array; Costunolide-sepharose conjugated bead pull-down analysis and knockdown techniques. We investigated the underlying mechanisms of CTD by ubiquitination, immunofluorescence staining, and western blot assays. Cell-derived tumour xenografts (CDX) in nude mice and immunohistochemistry were used to assess anti-tumour effects of CTD in vivo. RESULTS CTD suppressed the proliferation, anchorage-independent colony growth and epithelial-mesenchymal transformation (EMT) of CRC cells including HCT-15, HCT-116 and DLD1. Besides, the CTD also triggered cell apoptosis and cell cycle arrest at the G2/M phase. The CTD activates and induces p53 stability by inhibiting MDM2 ubiquitination via the suppression of AKT's phosphorylation in vitro. The CTD suppresses cell growth in a p53-independent fashion manner; p53 activation may contribute to the anticancer activity of CTD via target AKT. Finally, the CTD decreased the volume of CDX tumors without of the body weight loss and reduced the expression of AKT-MDM2-p53 signaling pathway in xenograft tumors. CONCLUSIONS Our project has uncovered the mechanism underlying the biological activity of CTD in colon cancer and confirmed the AKT is a directly target of CTD. All of which These results revealed that CTD might be a new AKT inhibitor in colon cancer treatment, and CTD is worthy of further exploration in preclinical and clinical trials.
Collapse
Affiliation(s)
- Hai Huang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Song Park
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| | - Haibo Zhang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Sijun Park
- School of Life Science, Kyungpook National University, Daegu, Republic of Korea
| | - Wookbong Kwon
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Enugyung Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Xiujuan Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Soyoung Jang
- School of Life Science, Kyungpook National University, Daegu, Republic of Korea
| | - Duhak Yoon
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Seong-Kyoon Choi
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea.,Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Jun-Koo Yi
- Gyeongsangbuk-do Livestock Research Institute, Yeongju, South Korea
| | - Sung-Hyun Kim
- Department of Bio-Medical Analysis, Korea Polytechnic College, Chungnam, Korea
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju, Jeollanamdo, 58245, Republic of Korea.
| | - Zaeyoung Ryoo
- School of Life Science, Kyungpook National University, Daegu, Republic of Korea.
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, 37224, Republic of Korea.
| |
Collapse
|
19
|
Nameki R, Chang H, Reddy J, Corona RI, Lawrenson K. Transcription factors in epithelial ovarian cancer: histotype-specific drivers and novel therapeutic targets. Pharmacol Ther 2020; 220:107722. [PMID: 33137377 DOI: 10.1016/j.pharmthera.2020.107722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Transcription factors (TFs) are major contributors to cancer risk and somatic development. In preclinical and clinical studies, direct or indirect inhibition of TF-mediated oncogenic gene expression profiles have proven to be effective in many tumor types, highlighting this group of proteins as valuable therapeutic targets. In spite of this, our understanding of TFs in epithelial ovarian cancer (EOC) is relatively limited. EOC is a heterogeneous disease composed of five major histologic subtypes; high-grade serous, low-grade serous, endometrioid, clear cell and mucinous. Each histology is associated with unique clinical etiologies, sensitivity to therapies, and molecular signatures - including diverse transcriptional regulatory programs. While some TFs are shared across EOC subtypes, a set of TFs are expressed in a histotype-specific manner and likely explain part of the histologic diversity of EOC subtypes. Targeting TFs present with unique opportunities for development of novel precision medicine strategies for ovarian cancer. This article reviews the critical TFs in EOC subtypes and highlights the potential of exploiting TFs as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Robbin Nameki
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Heidi Chang
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jessica Reddy
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rosario I Corona
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kate Lawrenson
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Principal Postulates of Centrosomal Biology. Version 2020. Cells 2020; 9:cells9102156. [PMID: 32987651 PMCID: PMC7598677 DOI: 10.3390/cells9102156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
The centrosome, which consists of two centrioles surrounded by pericentriolar material, is a unique structure that has retained its main features in organisms of various taxonomic groups from unicellular algae to mammals over one billion years of evolution. In addition to the most noticeable function of organizing the microtubule system in mitosis and interphase, the centrosome performs many other cell functions. In particular, centrioles are the basis for the formation of sensitive primary cilia and motile cilia and flagella. Another principal function of centrosomes is the concentration in one place of regulatory proteins responsible for the cell's progression along the cell cycle. Despite the existing exceptions, the functioning of the centrosome is subject to general principles, which are discussed in this review.
Collapse
|
21
|
Wang YC, Huang JL, Lee KW, Lu HH, Lin YJ, Chen LF, Wang CS, Cheng YC, Zeng ZT, Chu PY, Lin CS. Downregulation of the DNA Repair Gene DDB2 by Arecoline Is through p53's DNA-Binding Domain and Is Correlated with Poor Outcome of Head and Neck Cancer Patients with Betel Quid Consumption. Cancers (Basel) 2020; 12:cancers12082053. [PMID: 32722430 PMCID: PMC7465463 DOI: 10.3390/cancers12082053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/18/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
Arecoline is the principal alkaloid in the areca nut, a component of betel quids (BQs), which are carcinogenic to humans. Epidemiological studies indicate that BQ-chewing contributes to the occurrence of head and neck cancer (HNC). Previously, we have reported that arecoline (0.3 mM) is able to inhibit DNA repair in a p53-dependent pathway, but the underlying mechanism is unclear. Here we demonstrated that arecoline suppressed the expression of DDB2, which is transcriptionally regulated by p53 and is required for nucleotide excision repair (NER). Ectopic expression of DDB2 restored NER activity in arecoline-treated cells, suggesting that DDB2 downregulation was critical for arecoline-mediated NER inhibition. Mechanistically, arecoline inhibited p53-induced DDB2 promoter activity through the DNA-binding but not the transactivation domain of p53. Both NER and DDB2 promoter activities declined in the chronic arecoline-exposed cells, which were consistent with the downregulated DDB2 mRNA in BQ-associated HNC specimens, but not in those of The Cancer Genome Atlas (TCGA) cohort (no BQ exposure). Lower DDB2 mRNA expression was correlated with a poor outcome in HNC patients. These data uncover one of mechanisms underlying arecoline-mediated carcinogenicity through inhibiting p53-regulated DDB2 expression and DNA repair.
Collapse
Affiliation(s)
- Yu-Chu Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.W.); (H.-H.L.); (Y.-J.L.); (L.-F.C.); (C.-S.W.)
| | - Jau-Ling Huang
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 711, Taiwan; (J.-L.H.); (Y.-C.C.); (Z.-T.Z.)
| | - Ka-Wo Lee
- Department of Otorhinolaryngology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan;
| | - Hsing-Han Lu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.W.); (H.-H.L.); (Y.-J.L.); (L.-F.C.); (C.-S.W.)
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 711, Taiwan; (J.-L.H.); (Y.-C.C.); (Z.-T.Z.)
| | - Yuan-Jen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.W.); (H.-H.L.); (Y.-J.L.); (L.-F.C.); (C.-S.W.)
| | - Long-Fong Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.W.); (H.-H.L.); (Y.-J.L.); (L.-F.C.); (C.-S.W.)
- Department of Pathology and Medical Research, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
| | - Chung-Sheng Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.W.); (H.-H.L.); (Y.-J.L.); (L.-F.C.); (C.-S.W.)
| | - Yun-Chiao Cheng
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 711, Taiwan; (J.-L.H.); (Y.-C.C.); (Z.-T.Z.)
| | - Zih-Ting Zeng
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 711, Taiwan; (J.-L.H.); (Y.-C.C.); (Z.-T.Z.)
| | - Pei-Yi Chu
- Department of Pathology and Medical Research, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
| | - Chang-Shen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.W.); (H.-H.L.); (Y.-J.L.); (L.-F.C.); (C.-S.W.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Correspondence: or
| |
Collapse
|
22
|
Zhang YX, Pan WY, Chen J. p53 and its isoforms in DNA double-stranded break repair. J Zhejiang Univ Sci B 2019; 20:457-466. [PMID: 31090271 DOI: 10.1631/jzus.b1900167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
DNA double-stranded break (DSB) is one of the most catastrophic damages of genotoxic insult. Inappropriate repair of DNA DSBs results in the loss of genetic information, mutation, and the generation of harmful genomic rearrangements, which predisposes an organism to immunodeficiency, neurological damage, and cancer. The tumor repressor p53 plays a key role in DNA damage response, and has been found to be mutated in 50% of human cancer. p53, p63, and p73 are three members of the p53 gene family. Recent discoveries have shown that human p53 gene encodes at least 12 isoforms. Different p53 members and isoforms play various roles in orchestrating DNA damage response to maintain genomic integrity. This review briefly explores the functions of p53 and its isoforms in DNA DSB repair.
Collapse
Affiliation(s)
- Yu-Xi Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen-Ya Pan
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
23
|
Li Q, Hao Q, Cao W, Li J, Wu K, Elshimali Y, Zhu D, Chen QH, Chen G, Pollack JR, Vadgama J, Wu Y. PP2Cδ inhibits p300-mediated p53 acetylation via ATM/BRCA1 pathway to impede DNA damage response in breast cancer. SCIENCE ADVANCES 2019; 5:eaaw8417. [PMID: 31663018 PMCID: PMC6795508 DOI: 10.1126/sciadv.aaw8417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
Although nuclear type 2C protein phosphatase (PP2Cδ) has been demonstrated to be pro-oncogenic with an important role in tumorigenesis, the underlying mechanisms that link aberrant PP2Cδ levels with cancer development remain elusive. Here, we found that aberrant PP2Cδ activity decreases p53 acetylation and its transcriptional activity and suppresses doxorubicin-induced cell apoptosis. Mechanistically, we show that BRCA1 facilitates p300-mediated p53 acetylation by complexing with these two proteins and that S1423/1524 phosphorylation is indispensable for this regulatory process. PP2Cδ, via dephosphorylation of ATM, suppresses DNA damage-induced BRCA1 phosphorylation, leading to inhibition of p300-mediated p53 acetylation. Furthermore, PP2Cδ levels correlate with histological grade and are inversely associated with BRCA1 phosphorylation and p53 acetylation in breast cancer specimens. C23, our newly developed PP2Cδ inhibitor, promotes the anticancer effect of doxorubicin in MCF-7 xenograft-bearing nude mice. Together, our data indicate that PP2Cδ impairs p53 acetylation and DNA damage response by compromising BRCA1 function.
Collapse
Affiliation(s)
- Qun Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Department of Oncology, Shanghai Cancer Center and Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Qiongyu Hao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90059, USA
| | - Wei Cao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90059, USA
| | - Jieqing Li
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90059, USA
| | - Ke Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90059, USA
| | - Yahya Elshimali
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90059, USA
| | - Donghui Zhu
- University of North Texas, Denton, TX 76203, USA
| | - Qiao-Hong Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Guanglin Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Jonathan R. Pollack
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jay Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90059, USA
| | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90059, USA
| |
Collapse
|
24
|
BRCA-1 depletion impairs pro-inflammatory polarization and activation of RAW 264.7 macrophages in a NF-κB-dependent mechanism. Mol Cell Biochem 2019; 462:11-23. [DOI: 10.1007/s11010-019-03605-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/08/2019] [Indexed: 12/15/2022]
|
25
|
Manu KA, Cao PHA, Chai TF, Casey PJ, Wang M. p21cip1/waf1 Coordinate Autophagy, Proliferation and Apoptosis in Response to Metabolic Stress. Cancers (Basel) 2019; 11:cancers11081112. [PMID: 31382612 PMCID: PMC6721591 DOI: 10.3390/cancers11081112] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer cells possess metabolic properties that are different from benign cells. These unique characteristics have become attractive targets that are being actively investigated for cancer therapy. p21cip1/waf1, also known as Cyclin-Dependent Kinase inhibitor 1A, is encoded by the CDKN1A gene. It is a major p53 target gene involved in cell cycle progression that has been extensively evaluated. To date, p21 has been reported to regulate various cell functions, both dependent and independent of p53. Besides regulating the cell cycle, p21 also modulates apoptosis, induces senescence, and maintains cellular quiescence in response to various stimuli. p21 transcription is induced in response to stresses, including those from oxidative and chemotherapeutic treatment. A recent study has shown that in response to metabolic stresses such as nutrient and energy depletion, p21 expression is induced to regulate various cell functions. Despite the biological significance, the mechanism of p21 regulation in cancer adaptation to metabolic stress is underexplored and thus represents an exciting field. This review focuses on the recent development of p21 regulation in response to metabolic stress and its impact in inducing cell cycle arrest and death in cancer cells.
Collapse
Affiliation(s)
- Kanjoormana Aryan Manu
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Pham Hong Anh Cao
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Tin Fan Chai
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Patrick J Casey
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mei Wang
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore.
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore.
| |
Collapse
|
26
|
Tiwari S, Dwivedi UN. Discovering Innovative Drugs Targeting Both Cancer and Cardiovascular Disease by Shared Protein-Protein Interaction Network Analyses. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:417-425. [PMID: 31329050 DOI: 10.1089/omi.2019.0095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer and cardiovascular disease (CVD) have a common co-occurrence. Both diseases display overlapping pathophysiology and risk factors, suggesting shared biological mechanisms. Conditions such as obesity, diabetes, hypertension, smoking, poor diet, and inadequate physical activity can cause both heart disease and cancer. The burgeoning field of onco-cardiology aims to develop diagnostics and innovative therapeutics for both diseases through targeting shared mechanisms and molecular targets. In this overarching context, this expert review presents an analysis of the protein-protein interaction (PPI) networks for onco-cardiology drug discovery. Several PPI complexes such as MDM2-TP53 and CDK4-pRB have been studied for their tumor-suppressive functions. In addition, XIAP-SMAC, RAC1-GEF, Sur-2ESX, and TP53-BRCA1 are other PPI complexes that offer potential breakthrough for onco-cardiology therapeutics innovation. As both cancer and CVD share biological mechanisms to a certain degree, the PPI network analyses for onco-cardiology drug discovery are promising for addressing comorbid diseases in the spirit of systems medicine. We discuss the emerging architecture of PPI networks in cancer and CVD and prospects and challenges for their exploitation toward therapeutics applications. Finally, we emphasize that PPIs that were once thought to be undruggable have become potential new class of innovative drug targets.
Collapse
Affiliation(s)
- Sameeksha Tiwari
- Bioinformatics Infrastructure Facility, Department of Biochemistry, Centre of Excellence in Bioinformatics, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Upendra N Dwivedi
- Bioinformatics Infrastructure Facility, Department of Biochemistry, Centre of Excellence in Bioinformatics, University of Lucknow, Lucknow, Uttar Pradesh, India.,Institute for Development of Advanced Computing, ONGC Centre for Advanced Studies, University of Lucknow, Lucknow, Uttar Pradesh, India
| |
Collapse
|
27
|
Sarkadi B, Baghy K, Sápi Z, Nyirő G, Likó I, Patócs A. Germline BRCA1 Mutation Detected in a Multiple Endocrine Neoplasia Type 2 Case With RET Codon 634 Mutation. Front Genet 2019; 10:544. [PMID: 31263477 PMCID: PMC6584812 DOI: 10.3389/fgene.2019.00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/22/2019] [Indexed: 11/26/2022] Open
Abstract
Coincidences of more than one pathogenic mutation in high and/or moderate risk-associated cancer genes have been rarely reported, and the implication for disease progression has been debated. We present a case harboring two autosomal dominant inherited mutations potentially aggravating the phenotype. Case report: A 16-year-old female was referred to the Endocrine Unit due to two palpable thyroid nodules and hair loss. Two hypoechoic, inhomogeneous masses with microcalcification in the thyroid gland were confirmed as medullary thyroid carcinoma. Genetic testing revealed a pathogenic heterozygous RET mutation associated with multiple endocrine neoplasia type 2 (MEN2). Furthermore, genetic screening identified the same mutation in the proband’s clinically negative brother as well as in his two sons. The proband’s mother and maternal aunt died of breast cancer. No samples were available from the deceased. The proband underwent further genetic counseling and BRCA1/2 testing. A novel, frameshift heterozygous BRCA1 mutation (BRCA1 p.Ile90Serfs, NC_000017.10:g.41256905_41256917) was identified in the proband, but it was absent in the brother and father, indicative of maternal inheritance. Breast or ovarian cancer was neither detected in our case at initial presentation nor during the 6-year follow-up. Conclusion: Coincidence of two monogenic autosomal dominant tumor syndromes is extremely rare, but it represents a significant therapeutic and cancer surveillance challenge. Due to the wider use of next generation sequencing in clinical practice, similar situations may occur more frequently.
Collapse
Affiliation(s)
- Balázs Sarkadi
- HAS-SE "Lendulet" Hereditary Endocrine Tumors Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.,2nd Department of Medicine, Semmelweis University, Budapest, Hungary
| | - Kornélia Baghy
- National Bionics Program, Budapest, Hungary.,1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zoltán Sápi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Nyirő
- National Bionics Program, Budapest, Hungary.,HAS-SE Molecular Medicine Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - István Likó
- HAS-SE "Lendulet" Hereditary Endocrine Tumors Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.,National Bionics Program, Budapest, Hungary
| | - Attila Patócs
- HAS-SE "Lendulet" Hereditary Endocrine Tumors Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.,Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
28
|
Zhang X, Wang Y, Chiang HC, Hsieh YP, Lu C, Park BH, Jatoi I, Jin VX, Hu Y, Li R. BRCA1 mutations attenuate super-enhancer function and chromatin looping in haploinsufficient human breast epithelial cells. Breast Cancer Res 2019; 21:51. [PMID: 30995943 PMCID: PMC6472090 DOI: 10.1186/s13058-019-1132-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/27/2019] [Indexed: 01/07/2023] Open
Abstract
Background BRCA1-associated breast cancer originates from luminal progenitor cells. BRCA1 functions in multiple biological processes, including double-strand break repair, replication stress suppression, transcriptional regulation, and chromatin reorganization. While non-malignant cells carrying cancer-predisposing BRCA1 mutations exhibit increased genomic instability, it remains unclear whether BRCA1 haploinsufficiency affects transcription and chromatin dynamics in breast epithelial cells. Methods H3K27ac-associated super-enhancers were compared in primary breast epithelial cells from BRCA1 mutation carriers (BRCA1mut/+) and non-carriers (BRCA1+/+). Non-tumorigenic MCF10A breast epithelial cells with engineered BRCA1 haploinsufficiency were used to confirm the H3K27ac changes. The impact of BRCA1 mutations on enhancer function and enhancer-promoter looping was assessed in MCF10A cells. Results Here, we show that primary mammary epithelial cells from women with BRCA1 mutations display significant loss of H3K27ac-associated super-enhancers. These BRCA1-dependent super-enhancers are enriched with binding motifs for the GATA family. Non-tumorigenic BRCA1mut/+ MCF10A cells recapitulate the H3K27ac loss. Attenuated histone mark and enhancer activity in these BRCA1mut/+ MCF10A cells can be partially restored with wild-type BRCA1. Furthermore, chromatin conformation analysis demonstrates impaired enhancer-promoter looping in BRCA1mut/+ MCF10A cells. Conclusions H3K27ac-associated super-enhancer loss is a previously unappreciated functional deficiency in ostensibly normal BRCA1 mutation-carrying breast epithelium. Our findings offer new mechanistic insights into BRCA1 mutation-associated transcriptional and epigenetic abnormality in breast epithelial cells and tissue/cell lineage-specific tumorigenesis. Electronic supplementary material The online version of this article (10.1186/s13058-019-1132-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaowen Zhang
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, 20037, USA
| | - Yao Wang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Huai-Chin Chiang
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, 20037, USA
| | - Yuan-Pang Hsieh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ben Ho Park
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ismail Jatoi
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Victor X Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Yanfen Hu
- Department of Anatomy & Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, DC, 20037, USA.
| | - Rong Li
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, 20037, USA.
| |
Collapse
|
29
|
Overexpression of BRCA1 in Neural Stem Cells Enhances Cell Survival and Functional Recovery after Transplantation into Experimental Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8739730. [PMID: 31073355 PMCID: PMC6470423 DOI: 10.1155/2019/8739730] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/16/2018] [Indexed: 01/09/2023]
Abstract
Transplantation of neural stem cells (NSCs) is a promising therapy for ischemic stroke. However, the effectiveness of this approach is limited by grafted cell death. Breast cancer susceptibility protein 1 (BRCA1) could suppress apoptosis in neural progenitors and modulate oxidative stress in neurons. In this study, we found that BRCA1 was upregulated by oxygen-glucose deprivation/reoxygenation (OGD/R). Overexpression of BRCA1 in NSCs reduced cell apoptosis and oxidative stress after OGD/R insult. The molecule overexpression also stimulated cellular proliferation in OGD/R NSCs and increased the survival rate of grafted cells. Further, the transplantation of BRCA1-transfected NSCs into mice with ischemic stroke increased brain-derived neurotropic factor and nerve growth factor expression in the brain and elicited neurological function improvement. In addition, we found that RING finger domain and BRCT domain of BRCA1 could physically interact with p53 in NSCs. The cross talk between BRCA1 RING finger domain and p53 was responsible for p53 ubiquitination and degradation. Our findings indicate that modification with BRCA1 could enhance the efficacy of NSCs transplantation in ischemic stroke.
Collapse
|
30
|
Yu S, Dai J, Ma M, Xu T, Kong Y, Cui C, Chi Z, Si L, Tang H, Yang L, Sheng X, Guo J. RBCK1 promotes p53 degradation via ubiquitination in renal cell carcinoma. Cell Death Dis 2019; 10:254. [PMID: 30874541 PMCID: PMC6420644 DOI: 10.1038/s41419-019-1488-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 01/05/2023]
Abstract
Renal cell carcinoma (RCC) accounts for approximately 3% of adult malignancies, and the incidence of RCC continues to rise worldwide. Although RCC can be treated with surgery at an early stages, the five-year survival rates have been observed to decline dramatically in patients with advanced disease. Most patients with RCC treated with cytotoxic or targeted drugs will develop resistance at some point during therapy. Thus, it is necessary to identify novel therapeutic targets for RCC. Here, we found that RANBP2-type and C3HC4-type zinc finger-containing 1 (RBCK1) expression was upregulated in human RCC samples. Analysis of multiple public databases revealed the correlation between RBCK1 expression and poor prognosis in RCC patients. Subsequently, we performed RBCK1 depletion experiments in RCC cells that severely affected the in vivo and in vitro proliferation of renal cancer cells. The effects of RBCK1 on cell proliferation could be rescued with p53 expression knockdown in two cell lines expressing wild-type p53. Further experiments demonstrated that RBCK1 could facilitate p53 poly-ubiquitination and degradation by direct interaction with p53. Together, our results show that RBCK1 may serve as a promising target for RCC therapy by restoring p53 functions.
Collapse
Affiliation(s)
- Sifan Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jie Dai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Meng Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Tianxiao Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yan Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chuanliang Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhihong Chi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Huan Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lu Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xinan Sheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
31
|
Miresmaeili SM, Jafari F. A Novel Mutation-BRCA1 Associated Hereditary Haplotype of Intragenic Markers of BRCA1 Gene in a Family with History of Breast Cancer. Asian Pac J Cancer Prev 2019; 20:611-614. [PMID: 30806067 PMCID: PMC6897036 DOI: 10.31557/apjcp.2019.20.2.611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/31/2018] [Indexed: 11/25/2022] Open
Abstract
Background: Breast cancer is the most common cancer diagnosed among women, Tumor suppressor genes such as BRCA1 involved in cell cycle control and repairing of DNA damage. BRCA1 is a risk factor gene that alteration in its protein cause in susceptibility to breast or ovarian cancer. Short tandem repeat (STR) polymorphism is linked to some disease. Objective: The aim of this study was screening a new mutation in patients with familial breast cancer. Materials and Methods: In this study, 200 women with breast cancer were participated. Among the patients, 40 women suffer from familial breast cancer. After DNA extraction from peripheral blood samples, Exons 16 to 23 of BRCA1 gene directly analyzed in SSCP gel electrophoresis followed by direct sequencing. Results: After direct sequencing, a new mutation was detected in intron 17 of BRCA1 gene. Three patients of one family have a germ line intronic mutation in the BRCA1 gene (IVS17-27delA). Also, this mutation in this family is linked to a haplotype of intragenic short tandem repeat (STR) in the BRCA1 gene. Conclusion: By Screening of gene mutations can be found association of mutation and incidence of disease. Also, studying the mutation in families and finding specific hereditary patterns in that family can be effective in prognosis of disease in other family members.
Collapse
|
32
|
Zhang X, Li R. BRCA1-Dependent Transcriptional Regulation: Implication in Tissue-Specific Tumor Suppression. Cancers (Basel) 2018; 10:cancers10120513. [PMID: 30558184 PMCID: PMC6316118 DOI: 10.3390/cancers10120513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/24/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022] Open
Abstract
Germ-line mutations in breast cancer susceptibility gene 1 (BRCA1) predominantly predispose women to breast and ovarian cancers. BRCA1 is best known for its functions in maintenance of genomic integrity including repairing DNA double-strand breaks through homologous recombination and suppressing DNA replication stress. However, whether these universally important BRCA1 functions in maintenance of genomic stability are sufficient to account for its tissue-specific tumor-suppressing function remains unclear. Accumulating evidence indicates that there are previously underappreciated roles of BRCA1 in transcriptional regulation and chromatin remodeling. In this review, we discuss the functional significance of interactions between BRCA1 and various transcription factors, its role in epigenetic regulation and chromatin dynamics, and BRCA1-dependent crosstalk between the machineries of transcription and genome integrity. Furthermore, we propose a model of how transcriptional regulation could contribute to tissue-dependent tumor-suppressing function of BRCA1.
Collapse
Affiliation(s)
- Xiaowen Zhang
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA.
| | - Rong Li
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
33
|
Nguyen DD, Lee DG, Kim S, Kang K, Rhee JK, Chang S. Integrative Bioinformatics and Functional Analyses of GEO, ENCODE, and TCGA Reveal FADD as a Direct Target of the Tumor Suppressor BRCA1. Int J Mol Sci 2018; 19:ijms19051458. [PMID: 29757984 PMCID: PMC5983697 DOI: 10.3390/ijms19051458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/26/2018] [Accepted: 05/11/2018] [Indexed: 01/06/2023] Open
Abstract
BRCA1 is a multifunctional tumor suppressor involved in several essential cellular processes. Although many of these functions are driven by or related to its transcriptional/epigenetic regulator activity, there has been no genome-wide study to reveal the transcriptional/epigenetic targets of BRCA1. Therefore, we conducted a comprehensive analysis of genomics/transcriptomics data to identify novel BRCA1 target genes. We first analyzed ENCODE data with BRCA1 chromatin immunoprecipitation (ChIP)-sequencing results and identified a set of genes with a promoter occupied by BRCA1. We collected 3085 loci with a BRCA1 ChIP signal from four cell lines and calculated the distance between the loci and the nearest gene transcription start site (TSS). Overall, 66.5% of the BRCA1-bound loci fell into a 2-kb region around the TSS, suggesting a role in transcriptional regulation. We selected 45 candidate genes based on gene expression correlation data, obtained from two GEO (Gene Expression Omnibus) datasets and TCGA data of human breast cancer, compared to BRCA1 expression levels. Among them, we further tested three genes (MEIS2, CKS1B and FADD) and verified FADD as a novel direct target of BRCA1 by ChIP, RT-PCR, and a luciferase reporter assay. Collectively, our data demonstrate genome-wide transcriptional regulation by BRCA1 and suggest target genes as biomarker candidates for BRCA1-associated breast cancer.
Collapse
Affiliation(s)
- Dinh-Duc Nguyen
- Department of Biomedical Sciences, University of Ulsan School of Medicine, Asan Medical Center, Seoul 05505, Korea.
- Department of Physiology, University of Ulsan School of Medicine, Asan Medical Center, Seoul 05505, Korea.
| | - Dong Gyu Lee
- Department of Biomedical Sciences, University of Ulsan School of Medicine, Asan Medical Center, Seoul 05505, Korea.
| | - Sinae Kim
- Department of Biomedical Sciences, University of Ulsan School of Medicine, Asan Medical Center, Seoul 05505, Korea.
| | - Keunsoo Kang
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan 31116, Korea.
| | - Je-Keun Rhee
- Cancer Research Institute, Catholic University of Korea, Seoul 06591, Korea.
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan School of Medicine, Asan Medical Center, Seoul 05505, Korea.
- Department of Physiology, University of Ulsan School of Medicine, Asan Medical Center, Seoul 05505, Korea.
| |
Collapse
|
34
|
The long non-coding RNA GAS5 differentially regulates cell cycle arrest and apoptosis through activation of BRCA1 and p53 in human neuroblastoma. Oncotarget 2018; 8:6589-6607. [PMID: 28035057 PMCID: PMC5351655 DOI: 10.18632/oncotarget.14244] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/30/2016] [Indexed: 01/08/2023] Open
Abstract
The long non-coding RNA GAS5 has been shown to modulate cancer proliferation in numerous human cancer systems and has been correlated with successful patient outcome. Our examination of GAS5 in neuroblastoma has revealed robust expression in both MYCN-amplified and non-amplified cell lines. Knockdown of GAS5 In vitro resulted in defects in cell proliferation, apoptosis, and induced cell cycle arrest. Further analysis of GAS5 clones revealed multiple novel splice variants, two of which inversely modulated with MYCN status. Complementation studies of the variants post-knockdown of GAS5 indicated alternate phenotypes, with one variant (FL) considerably enhancing cell proliferation by rescuing cell cycle arrest and the other (C2) driving apoptosis, suggesting a unique role for each in neuroblastoma cancer physiology. Global sequencing and ELISA arrays revealed that the loss of GAS5 induced p53, BRCA1, and GADD45A, which appeared to modulate cell cycle arrest in concert. Complementation with only the FL GAS5 clone could rescue cell cycle arrest, stabilizing HDM2, and leading to the loss of p53. Together, these data offer novel therapeutic targets in the form of lncRNA splice variants for separate challenges against cancer growth and cell death.
Collapse
|
35
|
Sharma B, Preet Kaur R, Raut S, Munshi A. BRCA1 mutation spectrum, functions, and therapeutic strategies: The story so far. Curr Probl Cancer 2018; 42:189-207. [PMID: 29452958 DOI: 10.1016/j.currproblcancer.2018.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/19/2017] [Accepted: 01/04/2018] [Indexed: 02/07/2023]
Abstract
BRCA1 gene mutations account for about 25-28% of hereditary Breast Cancer as BRCA1 is included in the category of high penetrance genes. Except for few commonmutations, there is a heterogenous spectrum of BRCA1 mutations in various ethnic groups. 185AGdel and 5382ins Care the most common BRCA1 alterations (founder mutations) which have been identified in most of the population. This review has been compiled with an aim to consolidate the information on genetic variants reported in BRCA1 found in various ethnic groups, their functional implications if known; involvement of BRCA1 in various cellular pathways/processes and potential BRCA1 targeted therapies. The pathological variations of BRCA1 vary among different ethical groups. A systematic search in PubMed and Google scholar for the literature on BRCA1 gene was carried out to figure out structure and function of BRCA1 gene. BRCA1 is a large protein having 1863 amino acids with multiple functional domains and interacts with multiple proteins to carry out various crucial cellular processes. BRCA1 plays a major role in maintaining genome integrity, transcription regulation, chromatin remodeling, cell cycle checkpoint control, DNA damage repair, chromosomal segregation, and apoptosis. Studies investigating the phenotypic response of mutant BRCA1 protein and comparing it to wildtype BRCA1 protein are clinically important as they are involved in homologous recombination and other repair mechanisms. These studies may help in developing more targetted therapies, detecting novel interacting partners, identification of new signaling pathways that BRCA1 is a part of or downstream target genes that BRCA1 affects.
Collapse
Affiliation(s)
- Babita Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Raman Preet Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Sonali Raut
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
36
|
Lin D, Izadpanah R, Braun SE, Alt E. A novel model to characterize structure and function of BRCA1. Cell Biol Int 2017; 42:34-44. [PMID: 28833843 DOI: 10.1002/cbin.10846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 08/14/2017] [Indexed: 01/19/2023]
Abstract
BRCA1 plays a central role in DNA repair. Although N-terminal RING and C-terminal BRCT domains are studied well, the functions of the central region of BRCA1 are poorly characterized. Here, we report a structural and functional analysis of BRCA1 alleles and functional human BRCA1 in chicken B-lymphocyte cell line DT40. The combination of "homologous recombineering" and "RT-cassette" enables modifications of chicken BRCA1 gene in Escherichia coli. Mutant BRCA1 knock-in DT40 cell lines were generated using BRCA1 mutation constructs by homologous recombination with a targeting efficiency of up to 100%. Our study demonstrated that deletion of motifs 2-9 BRCA1Δ/Δ181-1415 (Caenorhabditis elegans BRCA1 mimic) or deletion of motif 1 BRCA1Δ/Δ126-136 decreased cell viability following cisplatin treatment. Furthermore, deletion of motifs 5 and 6 BRCA1Δ/Δ525-881 within DNA-binding region, even the conserved 7-amino acid deletion BRCA1Δ/Δ872-878 within motif 6, caused a decreased cell viability upon cisplatin treatment. Surprisingly, human BRCA1 is functional in DT40 cells as indicated by DNA damage-induced Rad 51 foci formation in human BRCA1 knock-in DT40 cells. These results demonstrate that those conserved motifs within the central region are essential for DNA repair functions of BRCA1. These findings provide a valuable tool for the development of new therapeutic modalities of breast cancer linked to BRCA1.
Collapse
Affiliation(s)
- Dong Lin
- Department of Radiation Oncology, The University of Chicago, 5801 South Ellis Avenue, Chicago, IL, 60637, USA
| | - Reza Izadpanah
- Department of Medicine, Tulane University, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Stephen E Braun
- Division of Regenerative Medicine, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Eckhard Alt
- Isar Klinikum, Sonnenstr 24-26, Munich, 80331, Germany
| |
Collapse
|
37
|
Tiwari S, Awasthi M, Singh S, Pandey VP, Dwivedi UN. Modulation of interaction of mutant TP53 and wild type BRCA1 by alkaloids: a computational approach towards targeting protein-protein interaction as a futuristic therapeutic intervention strategy for breast cancer impediment. J Biomol Struct Dyn 2017; 36:3376-3387. [PMID: 28978265 DOI: 10.1080/07391102.2017.1388286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Protein-protein interactions (PPI) are a new emerging class of novel therapeutic targets. In order to probe these interactions, computational tools provide a convenient and quick method towards the development of therapeutics. Keeping this in view the present study was initiated to analyse interaction of tumour suppressor protein p53 (TP53) and breast cancer associated protein (BRCA1) as promising target against breast cancer. Using computational approaches such as protein-protein docking, hot spot analyses, molecular docking and molecular dynamics simulation (MDS), stepwise analyses of the interactions of the wild type and mutant TP53 with that of wild type BRCA1 and their modulation by alkaloids were done. Protein-protein docking method was used to generate both wild type and mutant complexes of TP53-BRCA1. Subsequently, the complexes were docked using sixteen different alkaloids, fulfilling ADMET and Lipinski's rule of five criteria, and were compared with that of a well-known inhibitor of PPI, namely nutlin. The alkaloid dicentrine was found to be the best docked alkaloid among all the docked alklaloids as well as that of nutlin. Furthermore, MDS analyses of both wild type and mutant complexes with the best docked alkaloid i.e. dicentrine, revealed higher stability of mutant complex than that of the wild one, in terms of average RMSD, RMSF and binding free energy, corroborating the results of docking. Results suggested more pronounced interaction of BRCA1 with mutant TP53 leading to increased expression of mutated TP53 thus showing a dominant negative gain of function and hampering wild type TP53 function leading to tumour progression.
Collapse
Affiliation(s)
- Sameeksha Tiwari
- a Department of Biochemistry, Centre of Excellence in Bioinformatics, Bioinformatics Infrastructure Facility , University of Lucknow , Lucknow , 226007 , UP , India
| | - Manika Awasthi
- a Department of Biochemistry, Centre of Excellence in Bioinformatics, Bioinformatics Infrastructure Facility , University of Lucknow , Lucknow , 226007 , UP , India
| | - Swati Singh
- a Department of Biochemistry, Centre of Excellence in Bioinformatics, Bioinformatics Infrastructure Facility , University of Lucknow , Lucknow , 226007 , UP , India
| | - Veda P Pandey
- a Department of Biochemistry, Centre of Excellence in Bioinformatics, Bioinformatics Infrastructure Facility , University of Lucknow , Lucknow , 226007 , UP , India
| | - Upendra N Dwivedi
- a Department of Biochemistry, Centre of Excellence in Bioinformatics, Bioinformatics Infrastructure Facility , University of Lucknow , Lucknow , 226007 , UP , India
| |
Collapse
|
38
|
Abstract
Breast cancer 1 (BRCA1), as a tumor suppressor, exerts an effective influence on protecting DNA integrity to suppress the development of breast cancer (BC). BRCA1 expression is induced in response to DNA-damaging agents such as etoposide. Germline BRCA1 gene mutations are associated with development of hereditary BC. However, besides BRCA-mutated BCs, some sporadic cancers may also exhibit a BRCA-like phenotype, displaying so-called ‘BRCAness’. This common phenotype may respond to similar therapeutic approaches as BRCA-mutated tumors and may thus have important implications for the clinical management of these cancers. In order to determine whether and how etoposide regulates the protein levels of BRCA1 in BC cells, we exposed a panel of five selected cell lines to etoposide, compared the results to untreated control cells, and then stained the cells with the specific, reliable, and reproducible MS110 antibody directed against phosphorylated Ser1423 BRCA1. By evaluating cytoplasmic BRCA1 protein levels, we were able to distinguish three aggressive BC subtypes with BRCAness characteristics. In addition, determination of early and late apoptosis helped to complete the analysis of BRCA1 functions in the DNA damage pathway of aggressive BC. In conclusion, our study suggested that high cytoplasmic BRCA1 protein levels could be considered as a potential predictive marker for response to chemotherapy in both sporadic and hereditary BC. Tumors with either BRCAness phenotype or germline BRCA1 mutation are both aggressive BCs associated with poor prognosis and could both be subjected to targeted therapies against BRCA1-mutated BC in future clinical management strategies.
Collapse
|
39
|
Takaoka M, Miki Y. BRCA1 gene: function and deficiency. Int J Clin Oncol 2017; 23:36-44. [PMID: 28884397 DOI: 10.1007/s10147-017-1182-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/17/2017] [Indexed: 10/18/2022]
Abstract
The BRCA1 protein, a hereditary breast and ovarian cancer-causing gene product, is known as a multifunctional protein that performs various functions in cells. It is well known, along with BRCA 2, to cause hereditary breast and ovarian cancer, but here we will specifically focus on BRCA1. We introduce the mechanism and the latest report on homologous recombination repair, replication, involvement in checkpoint regulation, transcription, chromatin remodeling, and cytoplasmic function (centrosome regulation, apoptosis, selective autophagy), and consider the possibility of carcinogenesis from inhibition of the intracellular functions in each. We also consider the possibility of drug development based on each function. Finally, we will explain, from data obtained through basic research, that an appropriate regimen is important for raising the response rate for poly (ADP)-ribose polymerase inhibitors, in the case of low susceptibility, iatrogenic toxicity, tolerance, etc.
Collapse
Affiliation(s)
- Miho Takaoka
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yoshio Miki
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan. .,Department of Genetic Diagnosis, The Cancer Institute, Japanese Foundation for Cancer Research, 3-10-6 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| |
Collapse
|
40
|
Identifying novel genes and biological processes relevant to the development of cancer therapy-induced mucositis: An informative gene network analysis. PLoS One 2017; 12:e0180396. [PMID: 28678827 PMCID: PMC5498049 DOI: 10.1371/journal.pone.0180396] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/30/2017] [Indexed: 12/20/2022] Open
Abstract
Mucositis is a complex, dose-limiting toxicity of chemotherapy or radiotherapy that leads to painful mouth ulcers, difficulty eating or swallowing, gastrointestinal distress, and reduced quality of life for patients with cancer. Mucositis is most common for those undergoing high-dose chemotherapy and hematopoietic stem cell transplantation and for those being treated for malignancies of the head and neck. Treatment and management of mucositis remain challenging. It is expected that multiple genes are involved in the formation, severity, and persistence of mucositis. We used Ingenuity Pathway Analysis (IPA), a novel network-based approach that integrates complex intracellular and intercellular interactions involved in diseases, to systematically explore the molecular complexity of mucositis. As a first step, we searched the literature to identify genes that harbor or are close to the genetic variants significantly associated with mucositis. Our literature review identified 27 candidate genes, of which ERCC1, XRCC1, and MTHFR were the most frequently studied for mucositis. On the basis of this 27-gene list, we used IPA to generate gene networks for mucositis. The most biologically significant novel molecules identified through IPA analyses included TP53, CTNNB1, MYC, RB1, P38 MAPK, and EP300. Additionally, uracil degradation II (reductive) and thymine degradation pathways (p = 1.06-08) were most significant. Finally, utilizing 66 SNPs within the 8 most connected IPA-derived candidate molecules, we conducted a genetic association study for oral mucositis in the head and neck cancer patients who were treated using chemotherapy and/or radiation therapy (186 head and neck cancer patients with oral mucositis vs. 699 head and neck cancer patients without oral mucositis). The top ranked gene identified through this association analysis was RB1 (rs2227311, p-value = 0.034, odds ratio = 0.67). In conclusion, gene network analysis identified novel molecules and biological processes, including pathways related to inflammation and oxidative stress, that are relevant to mucositis development, thus providing the basis for future studies to improve the management and treatment of mucositis in patients with cancer.
Collapse
|
41
|
Godet I, Gilkes DM. BRCA1 and BRCA2 mutations and treatment strategies for breast cancer. ACTA ACUST UNITED AC 2017; 4. [PMID: 28706734 DOI: 10.15761/icst.1000228] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Breast cancer is a global burden with a woman's lifetime risk of developing breast cancer at 1 in 8. Although breast cancer is a disease that affects mostly women, the lifetime risk in men is about 1 in 1000. Most cases of breast cancer are associated with somatic mutations in breast cells that are acquired during a person's lifetime. In this scenario, the mutations are not inherited and they do not cluster in families. In hereditary breast cancer, the specific genetic factors involved will determine the inherited cancer risk. Inherited mutations in the BRCA1 or BRCA2 genes have been well-described, but mutations in ATM, CDH1, CHEK2, PALB2, PTEN, STK11, and TP53 also confer breast cancer risk. Understanding the functional significance of hereditary mutations has opened new paths for breast cancer prevention and is uncovering promising treatment strategies.
Collapse
Affiliation(s)
- Inês Godet
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, USA.,Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, USA
| | - Daniele M Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, USA.,Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, USA
| |
Collapse
|
42
|
Oncolytic viruses: emerging options for the treatment of breast cancer. Med Oncol 2017; 34:43. [PMID: 28185165 DOI: 10.1007/s12032-017-0899-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/02/2017] [Indexed: 01/05/2023]
Abstract
Breast cancer (BC) is the most common type of cancer among women and is the second most common cause of cancer-related deaths, following lung cancer. Severe toxicity associated with a long-term use of BC chemo- and radiotherapy makes it essential to look for newer therapeutics. Additionally, molecular heterogeneity at both intratumoral and intertumoral levels among BC subtypes is known to result in a differential response to standard therapeutics. Oncolytic viruses (OVs) have emerged as one of the most promising treatment options for BC. Many preclinical and clinical studies have shown that OVs are effective in treating BC, both as a single therapeutic agent and as a part of combination therapies. Combination therapies involving multimodal therapeutics including OVs are becoming popular as they allow to achieve the synergistic therapeutic effects, while minimizing the associated toxicities. Here, we review the OVs for BC therapy in preclinical studies and in clinical trials, both as a monotherapy and as part of a combination therapy. We also briefly discuss the potential therapeutic targets for BC, as these are likely to be critical for the development of new OVs.
Collapse
|
43
|
Abstract
Intrinsically disordered proteins and regions (IDPs and IDRs) are involved in a wide range of cellular functions and they often facilitate interactions with RNAs, DNAs, and proteins. Although many computational methods can predict IDPs and IDRs in protein sequences, only a few methods predict their functions and these functions primarily concern protein binding. We describe how to use the first computational method DisoRDPbind for high-throughput prediction of multiple functions of disordered regions. Our method predicts the RNA-, DNA-, and protein-binding residues located in IDRs in the input protein sequences. DisoRDPbind provides accurate predictions and is sufficiently fast to make predictions for full genomes. Our method is implemented as a user-friendly webserver that is freely available at http://biomine.ece.ualberta.ca/DisoRDPbind/ . We overview our predictor, discuss how to run the webserver, and show how to interpret the corresponding results. We also demonstrate the utility of our method based on two case studies, human BRCA1 protein that binds various proteins and DNA, and yeast 60S ribosomal protein L4 that interacts with proteins and RNA.
Collapse
|
44
|
Xia L, Wang XR, Wang XL, Liu SH, Ding XW, Chen GQ, Lu Y. A Novel Role for Pyruvate Kinase M2 as a Corepressor for P53 during the DNA Damage Response in Human Tumor Cells. J Biol Chem 2016; 291:26138-26150. [PMID: 27810895 DOI: 10.1074/jbc.m116.737056] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 10/17/2016] [Indexed: 01/07/2023] Open
Abstract
The pyruvate kinase (PK) is a rate-limiting glycolytic enzyme catalyzing the dephosphorylation of phosphoenolpyruvate to pyruvate, yielding one molecule of ATP. The M2 isoform of PK (PKM2) is predominantly expressed in normal proliferating cells and tumors, and both metabolic and non-metabolic activities for the enzyme in promoting tumor cell proliferation have been identified. However, the exact roles of PKM2 in tumor initiation, growth and maintenance are not yet fully understood. Using immunoprecipitation-coupled LC-MS/MS in MCF7 cells exposed to DNA-damaging agent, we report that the nuclear PKM2 interacts directly with P53 protein, a critical safeguard for genome stability. Specifically, PKM2 inhibits P53-dependent transactivation of the P21 gene by preventing P53 binding to the P21 promoter, leading to a nonstop G1 phase. As a result, PKM2 expression provides a growth advantage for tumor cells in the presence of a DNA damage stimulus. In addition, PKM2 interferes with phosphorylation of P53 at serine 15, known to stimulate P53 activity by the ATM serine/threonine kinase. These findings reveal a new role for PKM2 in modulating the DNA damage response and illustrate a novel mechanism of PKM2 participating in tumorigenesis.
Collapse
Affiliation(s)
- Li Xia
- From the Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China and
| | - Xin-Ran Wang
- From the Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China and
| | - Xiao-Ling Wang
- From the Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China and
| | - Su-Hui Liu
- From the Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China and
| | - Xiao-Wei Ding
- From the Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China and
| | - Guo-Qiang Chen
- From the Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China and .,the Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and SJTU-SM, Shanghai 200025, China
| | - Ying Lu
- From the Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China and
| |
Collapse
|
45
|
Lo PK, Zhang Y, Wolfson B, Gernapudi R, Yao Y, Duru N, Zhou Q. Dysregulation of the BRCA1/long non-coding RNA NEAT1 signaling axis contributes to breast tumorigenesis. Oncotarget 2016; 7:65067-65089. [PMID: 27556296 PMCID: PMC5323139 DOI: 10.18632/oncotarget.11364] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/10/2016] [Indexed: 01/15/2023] Open
Abstract
Dysregulation of long non-codng RNA (lncRNA) expression has been found to contribute to tumorigenesis. However, the roles of lncRNAs in BRCA1-related breast cancer remain largely unknown. In this study, we delineate the role of the novel BRCA1/lncRNA NEAT1 signaling axis in breast tumorigenesis. BRCA1 inhibits NEAT1 expression potentially through binding to its genomic binding site upstream of the NEAT1 gene. BRCA1 deficiency in human normal/cancerous breast cells and mouse mammary glands leads to NEAT1 overexpression. Our studies show that NEAT1 upregulation resulting from BRCA1 deficiency stimulates in vitro and in vivo breast tumorigenicity. We have further identified molecular mediators downstream of the BRCA1/NEAT1 axis. NEAT1 epigenetically silences miR-129-5p expression by promoting the DNA methylation of the CpG island in the miR-129 gene. Silencing of miR-129-5p expression by NEAT1 results in upregulation of WNT4 expression, a target of miR-129-5p, which leads to activation of oncogenic WNT signaling. Our functional studies indicate that this NEAT1/miR-129-5p/WNT4 axis contributes to the tumorigenic effects of BRCA1 deficiency. Finally our in silico expression correlation analysis suggests the existence of the BRCA1/NEAT1/miR-129-5p axis in breast cancer. Our findings, taken together, suggest that the dysregulation of the BRCA1/NEAT1/miR-129-5p/WNT4 signaling axis is involved in promoting breast tumorigenesis.
Collapse
Affiliation(s)
- Pang-Kuo Lo
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yongshu Zhang
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Benjamin Wolfson
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ramkishore Gernapudi
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yuan Yao
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nadire Duru
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Qun Zhou
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
46
|
Abou-Kandil A, Eisa N, Jabareen A, Huleihel M. Differential effects of HTLV-1 Tax oncoprotein on the different estrogen-induced-ER α-mediated transcriptional activities. Cell Cycle 2016; 15:2626-2635. [PMID: 27420286 PMCID: PMC5053584 DOI: 10.1080/15384101.2016.1208871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 12/25/2022] Open
Abstract
The activated estrogen (E2) receptor α (ERα) is a potent transcription factor that is involved in the activation of various genes by 2 different pathways; a classical and non-classical. In classical pathway, ERα binds directly to E2-responsive elements (EREs) located in the appropriate genes promoters and stimulates their transcription. However, in non-classical pathway, the ERα can indirectly bind with promoters and enhance their activity. For instance, ERα activates BRCA1 expression by interacting with jun/fos complex bound to the AP-1 site in BRCA1 promoter. Interference with the expression and/or functions of BRCA1, leads to high risk of breast or/and ovarian cancer. HTLV-1Tax was found to strongly inhibit BRCA1 expression by preventing the binding of E2-ERα complex to BRCA1 promoter. Here we examined Tax effect on ERα induced activation of genes by the classical pathway by testing its influence on E2-induced expression of ERE promoter-driven luciferase reporter (ERE-Luc). Our findings showed that E2 profoundly stimulated this reporter expression and that HTLV-1Tax significantly induced this stimulation. This result is highly interesting because in our previous study Tax was found to strongly block the E2-ERα-mediated activation of BRCA1 expression. ERα was found to produce a big complex by recruiting various cofactors in the nucleus before binding to the ERE region. We also found that only part of the reqruited cofactors are required for the transcriptional activity of ERα complex. Chip assay revealed that the binding of Tax to the ERα complex, did not interfere with its link to ERE region.
Collapse
Affiliation(s)
- Ammar Abou-Kandil
- a Shraga Segal Department of Microbiology and Immunology , Faculty of Health Sciences, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Nora Eisa
- a Shraga Segal Department of Microbiology and Immunology , Faculty of Health Sciences, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Azhar Jabareen
- a Shraga Segal Department of Microbiology and Immunology , Faculty of Health Sciences, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Mahmoud Huleihel
- a Shraga Segal Department of Microbiology and Immunology , Faculty of Health Sciences, Ben Gurion University of the Negev , Beer Sheva , Israel
| |
Collapse
|
47
|
Ma H, Song T, Wang T, Wang S. Influence of Human p53 on Plant Development. PLoS One 2016; 11:e0162840. [PMID: 27648563 PMCID: PMC5029891 DOI: 10.1371/journal.pone.0162840] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/29/2016] [Indexed: 11/19/2022] Open
Abstract
Mammalian p53 is a super tumor suppressor and plays a key role in guarding genome from DNA damage. However, p53 has not been found in plants which do not bear cancer although they constantly expose to ionizing radiation of ultraviolet light. Here we introduced p53 into the model plant Arabidopsis and examined p53-conferred phenotype in plant. Most strikingly, p53 caused early senescence and fasciation. In plants, fasciation has been shown as a result of the elevated homologous DNA recombination. Consistently, a reporter with overlapping segments of the GUS gene (1445) showed that the frequency of homologous recombination was highly induced in p53-transgenic plants. In contrast to p53, SUPPRESSOR OF NPR1-1 INDUCIBLE 1 (SNI1), as a negative regulator of homologous recombination in plants, is not present in mammals. Comet assay and clonogenic survival assay demonstrated that SNI1 inhibited DNA damage repair caused by either ionizing radiation or hydroxyurea in human osteosarcoma U2OS cancer cells. RAD51D is a recombinase in homologous recombination and functions downstream of SNI1 in plants. Interestingly, p53 rendered the sni1 mutants madly branching of inflorescence, a phenotype of fasciation, whereas rad51d mutant fully suppressed the p53-induced phenotype, indicating that human p53 action in plant is mediated by the SNI1-RAD51D signaling pathway. The reciprocal species-swap tests of p53 and SNI1 in human and Arabidopsis manifest that these species-specific proteins play a common role in homologous recombination across kingdoms of animals and plants.
Collapse
Affiliation(s)
- Huimin Ma
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Teng Song
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Tianhua Wang
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shui Wang
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
- * E-mail:
| |
Collapse
|
48
|
Kim MC, Choi JE, Lee SJ, Bae YK. Coexistent Loss of the Expressions of BRCA1 and p53 Predicts Poor Prognosis in Triple-Negative Breast Cancer. Ann Surg Oncol 2016; 23:3524-3530. [PMID: 27278204 DOI: 10.1245/s10434-016-5307-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND To investigate the prognostic significance of altered breast cancer susceptibility gene 1 (BRCA1) and p53 expression in triple-negative breast cancer (TNBC). METHODS Immunohistochemical expression of BRCA1 and p53 was examined in the tumor tissues of 465 TNBC cases and relations were sought with clinicopathological features and patient survival. RESULTS Loss of BRCA1 expression was found in 29.5% (137/465) of TNBCs. Positive expression of p53 was observed in 49.9% (232/465). Patients with loss of BRCA1 expression had a tendency to have higher rate of lymph node metastasis (p = 0.075). An association between p53 expression and high histological grade was observed (p = 0.039). TNBC patients with loss of BRCA1 expression had a tendency to have poorer overall survival (OS) than those positive for BRCA1 (p = 0.09). TNBC patients with positive p53 expression showed better OS than those with p53 negativity (p = 0.001). In terms of combined expression patterns, significantly poorer overall survival (OS) was observed for BRCA1-negative/p53-negative TNBCs and best OS for BRCA1-positive/p53-positive TNBCs (p = 0.005). CONCLUSIONS Combined expression patterns of BRCA1 and p53 could serve as useful prognostic markers in TNBC.
Collapse
Affiliation(s)
- Min Chong Kim
- Department of Pathology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Jung Eun Choi
- Department of Surgery, Yeungnam University College of Medicine, Daegu, South Korea
| | - Soo Jung Lee
- Department of Surgery, Yeungnam University College of Medicine, Daegu, South Korea
| | - Young Kyung Bae
- Department of Pathology, Yeungnam University College of Medicine, Daegu, South Korea.
| |
Collapse
|
49
|
Zhang W, Luo J, Chen F, Yang F, Song W, Zhu A, Guan X. BRCA1 regulates PIG3-mediated apoptosis in a p53-dependent manner. Oncotarget 2016; 6:7608-18. [PMID: 25797244 PMCID: PMC4480703 DOI: 10.18632/oncotarget.3263] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 01/31/2015] [Indexed: 11/25/2022] Open
Abstract
BRCA1 plays a key role in the regulation of p53-dependent target gene transcription activation. Meanwhile, the p53 inducible gene 3 (PIG3) is a downstream target of p53 and is involved in p53-initiated apoptosis. However, little is known about whether BRCA1 can regulate PIG3-mediated apoptosis. Using a tissue microarray containing 149 breast cancer patient samples, we found that BRCA1 and PIG3 expression status were significantly positively correlated (r = 0.678, P < 0.001) and identified a significant positive correlation between high expression of BRCA1 and/or PIG3 and overall survival (OS). Moreover, we reveal that overexpression of BRCA1 significantly increased expression of PIG3 in cells with intact p53, whereas no increase in PIG3 was observed in p53-null MDA-MB-157 cells and p53-depleted HCT116p53−/− cells. Meanwhile, ectopic expression of BRCA1 could not lead to an increase expression level of prohibitin (PHB), which we have previously identified to induce PIG3-mediated apoptosis. Finally, ChIP analysis revealed that PHB can bind to the PIG3 promoter and activate PIG3 transcription independent of p53, although p53 presence did enhance this process. Taken together, our findings suggest that BRCA1 regulates PIG3-mediated apoptosis in a p53-dependent manner, and that PIG3 expression is associated with a better OS in breast cancer patients.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Jiayan Luo
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Fengxia Chen
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Fang Yang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Wei Song
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University, Guangzhou 510282, China
| | - Aiyu Zhu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University, Guangzhou 510282, China
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.,Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
50
|
Zhu J, Zhao C, Zhuang T, Jonsson P, Sinha I, Williams C, Strömblad S, Dahlman-Wright K. RING finger protein 31 promotes p53 degradation in breast cancer cells. Oncogene 2015; 35:1955-64. [PMID: 26148235 PMCID: PMC4833873 DOI: 10.1038/onc.2015.260] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 12/31/2022]
Abstract
The atypical E3 ubiquitin ligase RNF31 is highly expressed in human breast cancer, the most frequent neoplastic lethality among women. Here, RNF31 depletion in breast cancer cells in combination with global gene expression profiling revealed p53 (TP53) signaling as a potential RNF31 target. Interestingly, RNF31 decreased p53 stability, whereas depletion of RNF31 in breast cancer cells caused cell cycle arrest and cisplatin-induced apoptosis in a p53-dependent manner. Furthermore, RNF31 associated with the p53/MDM2 complex and facilitated p53 polyubiquitination and degradation by stabilizing MDM2, suggesting a molecular mechanism by which RNF31 regulates cell death. Analysis of publically available clinical data sets displayed a negative correlation between RNF31 and p53 target genes, including IGFBP3 and BTG1, consistent with RNF31 regulating p53 function in vivo as well. Together, our findings suggest RNF31 as a potential therapeutic target to restore p53 function in breast cancer.
Collapse
Affiliation(s)
- J Zhu
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - C Zhao
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - T Zhuang
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - P Jonsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - I Sinha
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - C Williams
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.,SciLifeLab, Department of Proteomics and Nanotechnology, The Royal Institute of Technology-KTH, Solna, Sweden
| | - S Strömblad
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - K Dahlman-Wright
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,SciLifeLab, Science for Life Laboratory, Solna, Sweden
| |
Collapse
|