1
|
Dai D, Li C, Xia H, Qi C, Lyu M, Yao Z, Zhang F, Zhu Y, Qi M, Cao X. SVIL promotes ovarian cancer progression and epithelial-mesenchymal transition under hypoxic conditions through the TGF-β/Smad pathway. Gynecol Oncol 2024; 190:167-178. [PMID: 39197416 DOI: 10.1016/j.ygyno.2024.07.688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/18/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
OBJECTIVE Ovarian cancer is the malignant tumor with the highest mortality rate in gynecology. We aimed to identify novel genes that promote ovarian cancer progression and epithelial-mesenchymal transition under hypoxic conditions. METHODS We screened SVIL as a hypoxia-associated target in ovarian cancer and explored the related molecular mechanisms. We assessed the effects of SVIL on ovarian cancer progression and metastasis in clinical samples and cellular hypoxia models. Further, we investigated the relevant pathways of SVIL and confirmed the effects of SVIL on ovarian cancer progression by using nude mouse in situ tumor models. RESULTS We found that SVIL was significantly highly expressed in the hypoxic environment of ovarian cancer, and SVIL expression correlated with patient prognosis.CCK8, Wound-healing assay, Transwell assay, Western Blot, and apoptosis assays revealed that knockdown of SVIL inhibited the activation of the TGFβ1/smad2/3 pathway, which attenuated the progression and epithelial-mesenchymal transition(EMT) of ovarian cancer and alleviated cisplatin resistance by increasing cisplatin-induced apoptosis. Furthermore, in a nude mouse ovarian cancer in situ model, we found that the knockdown of SVIL significantly inhibited tumor growth and metastasis. CONCLUSION SVIL highly expressed in the hypoxic microenvironment can increase ovarian cancer progression and cisplatin resistance by activating TGFβ1/smad2/3 pathway. Our study demonstrated that SVIL may be a novel target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Dongfang Dai
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - Congzhu Li
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China.
| | - Hongping Xia
- Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University & School of Chemistry and Chemical Engineering, Nanjing 210009, China; The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu 241000, China.
| | - Chenxue Qi
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China; Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China; Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University & School of Chemistry and Chemical Engineering, Nanjing 210009, China; The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu 241000, China
| | - Mengmeng Lyu
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Zhipeng Yao
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu 241000, China
| | - Fan Zhang
- Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University & School of Chemistry and Chemical Engineering, Nanjing 210009, China; The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu 241000, China
| | - Yan Zhu
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Min Qi
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu 241000, China
| | - Xiaoxiang Cao
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu 241000, China
| |
Collapse
|
2
|
Yoon JH, Bae E, Nagafuchi Y, Sudo K, Han JS, Park SH, Nakae S, Yamashita T, Ju JH, Matsumoto I, Sumida T, Miyazawa K, Kato M, Kuroda M, Lee IK, Fujio K, Mamura M. Repression of SMAD3 by STAT3 and c-Ski induces conventional dendritic cell differentiation. Life Sci Alliance 2024; 7:e201900581. [PMID: 38960622 PMCID: PMC11222659 DOI: 10.26508/lsa.201900581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
A pleiotropic immunoregulatory cytokine, TGF-β, signals via the receptor-regulated SMADs: SMAD2 and SMAD3, which are constitutively expressed in normal cells. Here, we show that selective repression of SMAD3 induces cDC differentiation from the CD115+ common DC progenitor (CDP). SMAD3 was expressed in haematopoietic cells including the macrophage DC progenitor. However, SMAD3 was specifically down-regulated in CD115+ CDPs, SiglecH- pre-DCs, and cDCs, whereas SMAD2 remained constitutive. SMAD3-deficient mice showed a significant increase in cDCs, SiglecH- pre-DCs, and CD115+ CDPs compared with the littermate control. SMAD3 repressed the mRNA expression of FLT3 and the cDC-related genes: IRF4 and ID2. We found that one of the SMAD transcriptional corepressors, c-SKI, cooperated with phosphorylated STAT3 at Y705 and S727 to repress the transcription of SMAD3 to induce cDC differentiation. These data indicate that STAT3 and c-Ski induce cDC differentiation by repressing SMAD3: the repressor of the cDC-related genes during the developmental stage between the macrophage DC progenitor and CD115+ CDP.
Collapse
Affiliation(s)
- Jeong-Hwan Yoon
- https://ror.org/04qn0xg47 Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
- https://ror.org/00k5j5c86 Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
- Shin-Young Medical Institute, Chiba, Japan
- https://ror.org/025h1m602 Institute for the 3Rs, Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Eunjin Bae
- https://ror.org/00k5j5c86 Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
- https://ror.org/03mc8zn46 Department of Companion Health, Yeonsung University, Anyang, Republic of Korea
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuo Nagafuchi
- https://ror.org/057zh3y96 Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuko Sudo
- https://ror.org/00k5j5c86 Animal Research Center, Tokyo Medical University, Tokyo, Japan
| | - Jin Soo Han
- https://ror.org/025h1m602 Institute for the 3Rs, Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Susumu Nakae
- https://ror.org/03t78wx29 Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tadashi Yamashita
- Laboratory of Veterinary Biochemistry, Azabu University School of Veterinary Medicine, Sagamihara, Japan
| | - Ji Hyeon Ju
- Department of Rheumatology, Catholic University of Korea, Seoul St. Mary Hospital, Seoul, Republic of Korea
| | - Isao Matsumoto
- Department of Internal Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, University of Tsukuba, Tsukuba, Japan
| | - Keiji Miyazawa
- https://ror.org/059x21724 Departments of Biochemistry, University of Yamanashi, Yamanashi, Japan
| | - Mitsuyasu Kato
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masahiko Kuroda
- https://ror.org/00k5j5c86 Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - In-Kyu Lee
- https://ror.org/04qn0xg47 Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Keishi Fujio
- https://ror.org/057zh3y96 Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mizuko Mamura
- https://ror.org/04qn0xg47 Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
- Shin-Young Medical Institute, Chiba, Japan
- https://ror.org/00k5j5c86 Department of Advanced Nucleic Acid Medicine, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
3
|
Hamlin RE, Pienkos SM, Chan L, Stabile MA, Pinedo K, Rao M, Grant P, Bonilla H, Holubar M, Singh U, Jacobson KB, Jagannathan P, Maldonado Y, Holmes SP, Subramanian A, Blish CA. Sex differences and immune correlates of Long COVID development, persistence, and resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599612. [PMID: 38948732 PMCID: PMC11212991 DOI: 10.1101/2024.06.18.599612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Sex differences have been observed in acute COVID-19 and Long COVID (LC) outcomes, with greater disease severity and mortality during acute infection in males and a greater proportion of females developing LC. We hypothesized that sex-specific immune dysregulation contributes to the pathogenesis of LC. To investigate the immunologic underpinnings of LC development and persistence, we used single-cell transcriptomics, single-cell proteomics, and plasma proteomics on blood samples obtained during acute SARS-CoV-2 infection and at 3 and 12 months post-infection in a cohort of 45 patients who either developed LC or recovered. Several sex-specific immune pathways were associated with LC. Specifically, males who would develop LC at 3 months had widespread increases in TGF-β signaling during acute infection in proliferating NK cells. Females who would develop LC demonstrated increased expression of XIST, an RNA gene implicated in autoimmunity, and increased IL1 signaling in monocytes at 12 months post infection. Several immune features of LC were also conserved across sexes. Both males and females with LC had reduced co-stimulatory signaling from monocytes and broad upregulation of NF-κB transcription factors. In both sexes, those with persistent LC demonstrated increased LAG3, a marker of T cell exhaustion, reduced ETS1 transcription factor expression across lymphocyte subsets, and elevated intracellular IL-4 levels in T cell subsets, suggesting that ETS1 alterations may drive an aberrantly elevated Th2-like response in LC. Altogether, this study describes multiple innate and adaptive immune correlates of LC, some of which differ by sex, and offers insights toward the pursuit of tailored therapeutics.
Collapse
Affiliation(s)
- Rebecca E. Hamlin
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Shaun M. Pienkos
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Leslie Chan
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
- Stanford Immunology Program, Stanford University School of Medicine; Stanford, CA, USA
| | - Mikayla A. Stabile
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Kassandra Pinedo
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Mallika Rao
- Stanford Center for Clinical Research, Stanford University; Stanford, CA, USA
| | - Philip Grant
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Hector Bonilla
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Marisa Holubar
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Upinder Singh
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine; Stanford, CA, USA
| | - Karen B. Jacobson
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Prasanna Jagannathan
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine; Stanford, CA, USA
| | - Yvonne Maldonado
- Department of Pediatrics, Stanford University School of Medicine; Stanford, CA, USA
| | - Susan P. Holmes
- Department of Statistics, Stanford University; Stanford, CA, USA
| | - Aruna Subramanian
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Catherine A. Blish
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine; Stanford, CA, USA
- Chan Zuckerberg Biohub; San Francisco, CA, USA
| |
Collapse
|
4
|
Tang Y, Du E, Wang G, Qin F, Meng Z, Dai L, Wang Y, Ren S. A negative feedback loop centered on SMAD3 expression in transforming growth factor β1-induced corneal myofibroblast differentiation. Exp Eye Res 2023; 236:109654. [PMID: 37734427 DOI: 10.1016/j.exer.2023.109654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
SMAD3 downregulation is documented in transforming growth factor β1 (TGF-β1)-induced corneal fibroblasts differentiation to myofibroblasts ("fibroTOmyoDiff") or corneal wound healing. However, the exact regulatory mechanism of TGF-β1/SMAD3 pathway in this context remains unclear. Here, we investigated the role and related mechanism of SMAD3 down-regulation in TGF-β1-induced human corneal fibroTOmyoDiff. By detecting expression changes of SMAD family during this process, we demonstrated that SMAD3 protein expression was dramatically decreased in the process and the decrease occurred mainly in SMAD3 gene transcription. Furthermore, SMAD3 overexpression using lentivirus infection and knockdown using sgRNA lentivirus infection or siRNAs revealed that SMAD3 overexpression enhanced TGF-β1-induced corneal fibroTOmyoDiff and vice versa. In addition, specific siRNAs and inhibitors targeting particular signaling pathway were used to figure out the intracellular signaling pathway regulating SMAD3, and the result showed that the decease of SMAD3 induced by TGF-β1 stimulation in human corneal fibroblasts (HCFs) was strikingly prevented by SMAD4 knockdown or p38 signaling inhibitor SB203580 treatment. Collectively, these results demonstrate that, in TGF-β1 induced corneal fibroTOmyoDiff, down-regulation of SMAD3 expression regulated by SMAD4 and p38 signaling pathways forms a negative feedback loop of TGFβ signaling to avoid excessive activation of the signaling, which suggest that SMAD3 may be a key target for corneal fibrosis treatment.
Collapse
Affiliation(s)
- Yunlan Tang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Enming Du
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Gang Wang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Fangyuan Qin
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Zhihong Meng
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Lijuan Dai
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Yiqiang Wang
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| | - Shengwei Ren
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
5
|
Villapol S, Janatpour ZC, Affram KO, Symes AJ. The Renin Angiotensin System as a Therapeutic Target in Traumatic Brain Injury. Neurotherapeutics 2023; 20:1565-1591. [PMID: 37759139 PMCID: PMC10684482 DOI: 10.1007/s13311-023-01435-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a major public health problem, with limited pharmacological options available beyond symptomatic relief. The renin angiotensin system (RAS) is primarily known as a systemic endocrine regulatory system, with major roles controlling blood pressure and fluid homeostasis. Drugs that target the RAS are used to treat hypertension, heart failure and kidney disorders. They have now been used chronically by millions of people and have a favorable safety profile. In addition to the systemic RAS, it is now appreciated that many different organ systems, including the brain, have their own local RAS. The major ligand of the classic RAS, Angiotensin II (Ang II) acts predominantly through the Ang II Type 1 receptor (AT1R), leading to vasoconstriction, inflammation, and heightened oxidative stress. These processes can exacerbate brain injuries. Ang II receptor blockers (ARBs) are AT1R antagonists. They have been shown in several preclinical studies to enhance recovery from TBI in rodents through improvements in molecular, cellular and behavioral correlates of injury. ARBs are now under consideration for clinical trials in TBI. Several different RAS peptides that signal through receptors distinct from the AT1R, are also potential therapeutic targets for TBI. The counter regulatory RAS pathway has actions that oppose those stimulated by AT1R signaling. This alternative pathway has many beneficial effects on cells in the central nervous system, bringing about vasodilation, and having anti-inflammatory and anti-oxidative stress actions. Stimulation of this pathway also has potential therapeutic value for the treatment of TBI. This comprehensive review will provide an overview of the various components of the RAS, with a focus on their direct relevance to TBI pathology. It will explore different therapeutic agents that modulate this system and assess their potential efficacy in treating TBI patients.
Collapse
Affiliation(s)
- Sonia Villapol
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
| | - Zachary C Janatpour
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Kwame O Affram
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Aviva J Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
6
|
Yang L, Wan N, Gong F, Wang X, Feng L, Liu G. Transcription factors and potential therapeutic targets for pulmonary hypertension. Front Cell Dev Biol 2023; 11:1132060. [PMID: 37009479 PMCID: PMC10064017 DOI: 10.3389/fcell.2023.1132060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Pulmonary hypertension (PH) is a refractory and fatal disease characterized by excessive pulmonary arterial cell remodeling. Uncontrolled proliferation and hypertrophy of pulmonary arterial smooth muscle cells (PASMCs), dysfunction of pulmonary arterial endothelial cells (PAECs), and abnormal perivascular infiltration of immune cells result in pulmonary arterial remodeling, followed by increased pulmonary vascular resistance and pulmonary pressure. Although various drugs targeting nitric oxide, endothelin-1 and prostacyclin pathways have been used in clinical settings, the mortality of pulmonary hypertension remains high. Multiple molecular abnormalities have been implicated in pulmonary hypertension, changes in numerous transcription factors have been identified as key regulators in pulmonary hypertension, and a role for pulmonary vascular remodeling has been highlighted. This review consolidates evidence linking transcription factors and their molecular mechanisms, from pulmonary vascular intima PAECs, vascular media PASMCs, and pulmonary arterial adventitia fibroblasts to pulmonary inflammatory cells. These findings will improve the understanding of particularly interactions between transcription factor-mediated cellular signaling pathways and identify novel therapies for pulmonary hypertension.
Collapse
Affiliation(s)
- Liu Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Naifu Wan
- Department of Vascular & Cardiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fanpeng Gong
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xianfeng Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Guizhu Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Guizhu Liu,
| |
Collapse
|
7
|
A probabilistic Boolean model on hair follicle cell fate regulation by TGF-β. Biophys J 2022; 121:2638-2652. [PMID: 35714600 DOI: 10.1016/j.bpj.2022.05.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
Hair follicles (HFs) are mini skin organs that undergo cyclic growth. Various signals regulate HF cell fate decisions jointly. Recent experimental results suggest that transforming growth factor beta (TGF-β) exhibits a dual role in HF cell fate regulation that can be either anti- or pro-apoptosis. To understand the underlying mechanisms of HF cell fate control, we develop a novel probabilistic Boolean network (pBN) model on the HF epithelial cell gene regulation dynamics. First, the model is derived from literature, then refined using single-cell RNA sequencing data. Using the model, we both explore the mechanisms underlying HF cell fate decisions and make predictions that could potentially guide future experiments: 1) we propose that a threshold-like switch in the TGF-β strength may necessitate the dual roles of TGF-β in either activating apoptosis or cell proliferation, in cooperation with Bmp and tumor necrosis factor (TNF) and at different stages of a follicle growth cycle; 2) our model shows concordance with the high-activator-low-inhibitor theory of anagen initiation; 3) we predict that TNF may be more effective in catagen initiation than TGF-β, and they may cooperate in a two-step fashion; 4) finally, predictions of gene knockout and overexpression reveal the roles in HF cell fate regulations of each gene. Attractor and motif analysis from the associated Boolean networks reveal the relations between the topological structure of the gene regulation network and the cell fate regulation mechanism. A discrete spatial model equipped with the pBN illustrates how TGF-β and TNF cooperate in initiating and driving the apoptosis wave during catagen.
Collapse
|
8
|
Prince GMSH, Yang TY, Lin H, Chen MC. Mechanistic insight of cyclin-dependent kinase 5 in modulating lung cancer growth. CHINESE J PHYSIOL 2019; 62:231-240. [PMID: 31793458 DOI: 10.4103/cjp.cjp_67_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Lung harbors the growth of primary and secondary tumors. Even though numerous factors regulate the complex signal transduction and cytoskeletal remodeling toward the progression of lung cancer, cyclin-dependent kinase 5 (Cdk5), a previously known kinase in the central nervous system, has raised much attention in the recent years. Patients with aberrant Cdk5 expression also lead to poor survival. Cdk5 has already been employed in various cellular processes which shape the fate of cancer. In lung cancer, Cdk5 mainly regulates tumor suppressor genes, carcinogenesis, cytoskeletal remodeling, and immune checkpoints. Inhibiting Cdk5 by using drugs, siRNA or CRISP-Cas9 system has rendered crucial therapeutic advantage in the combat against lung cancer. Thus, the relation of Cdk5 to lung cancer needs to be addressed in detail. In this review, we will discuss various cellular events modulated by Cdk5 and we will go further into their underlying mechanism in lung cancer.
Collapse
Affiliation(s)
| | - Tsung-Ying Yang
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ho Lin
- Department of Life Sciences; Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Mei-Chih Chen
- Department of Nursing, Asia University; Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
9
|
Zabini D, Granton E, Hu Y, Miranda MZ, Weichelt U, Breuils Bonnet S, Bonnet S, Morrell NW, Connelly KA, Provencher S, Ghanim B, Klepetko W, Olschewski A, Kapus A, Kuebler WM. Loss of SMAD3 Promotes Vascular Remodeling in Pulmonary Arterial Hypertension via MRTF Disinhibition. Am J Respir Crit Care Med 2019; 197:244-260. [PMID: 29095649 DOI: 10.1164/rccm.201702-0386oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Vascular remodeling in pulmonary arterial hypertension (PAH) results from smooth muscle cell hypertrophy and proliferation of vascular cells. Loss of BMPR-II (bone morphogenetic protein receptor 2) signaling and increased signaling via TGF-β (transforming growth factor β) and its downstream mediators SMAD (small body size [a C. elegans protein] mothers against decapentaplegic [a Drosophila protein family])-2/3 has been proposed to drive lung vascular remodeling; yet, proteomic analyses indicate a loss of SMAD3 in PAH. OBJECTIVES We proposed that SMAD3 may be dysregulated in PAH and that loss of SMAD3 may present a pathophysiological master switch by disinhibiting its interaction partner, MRTF (myocardin-related transcription factor), which drives muscle protein expression. METHODS SMAD3 levels were measured in lungs from PAH patients, rats treated either with Sugen/hypoxia or monocrotaline (MCT), and in mice carrying a BMPR2 mutation. In vitro, effects of SMAD3 or BMPR2 silencing or SMAD3 overexpression on cell proliferation or smooth muscle hypertrophy were assessed. In vivo, the therapeutic and prophylactic potential of CCG1423, an inhibitor of MRTF, was investigated in Sugen/hypoxia rats. MEASUREMENTS AND MAIN RESULTS SMAD3 was downregulated in lungs of patients with PAH and in pulmonary arteries of three independent PAH animal models. TGF-β treatment replicated the loss of SMAD3 in human pulmonary artery smooth muscle cells (huPASMCs) and human pulmonary artery endothelial cells. SMAD3 silencing increased proliferation and migration in huPASMCs and human pulmonary artery endothelial cells. Coimmunoprecipitation revealed reduced interaction of MRTF with SMAD3 in TGF-β-treated huPASMCs and pulmonary arteries of PAH animal models. In huPASMCs, loss of SMAD3 or BMPR-II increased smooth muscle actin expression, which was attenuated by MRTF inhibition. Conversely, SMAD3 overexpression prevented TGF-β-induced activation of an MRTF reporter and reduced actin stress fibers in BMPR2-silenced huPASMCs. MRTF inhibition attenuated PAH and lung vascular remodeling in Sugen/hypoxia rats. CONCLUSIONS Loss of SMAD3 presents a novel pathomechanism in PAH that promotes vascular cell proliferation and-via MRTF disinhibition-hypertrophy of huPASMCs, thereby reconciling the parallel induction of a synthetic and contractile huPASMC phenotype.
Collapse
Affiliation(s)
- Diana Zabini
- 1 Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,2 Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Elise Granton
- 1 Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Yijie Hu
- 1 Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Maria Zena Miranda
- 1 Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Ulrike Weichelt
- 3 Department of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sandra Breuils Bonnet
- 4 Pulmonary Hypertension Group of the Institute of Cardiology and Pulmonology, Laval University, Quebec City, Québec, Canada
| | - Sébastien Bonnet
- 4 Pulmonary Hypertension Group of the Institute of Cardiology and Pulmonology, Laval University, Quebec City, Québec, Canada
| | - Nicholas W Morrell
- 5 Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Kim A Connelly
- 1 Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Steeve Provencher
- 4 Pulmonary Hypertension Group of the Institute of Cardiology and Pulmonology, Laval University, Quebec City, Québec, Canada
| | - Bahil Ghanim
- 6 Department of Thoracic Surgery, Medical University, Vienna, Austria; and
| | - Walter Klepetko
- 6 Department of Thoracic Surgery, Medical University, Vienna, Austria; and
| | - Andrea Olschewski
- 2 Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Andras Kapus
- 1 Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,7 Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Wolfgang M Kuebler
- 1 Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,3 Department of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,7 Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Miura R, Yokoi A, Matsumoto T, Oguri Y, Hashimura M, Tochimoto M, Kajita S, Saegusa M. Nodal induces apoptosis and inhibits proliferation in ovarian endometriosis-clear cell carcinoma lesions. BMC Cancer 2019; 19:308. [PMID: 30943930 PMCID: PMC6448249 DOI: 10.1186/s12885-019-5539-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 03/28/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Expression of Nodal, a member of the TGF-β superfamily, is commonly absent in differentiated tissues, while its re-expression occurs in a variety of human malignancy. However, little is known about its involvement in ovarian tumorigenesis. Herein, we focused on the functional roles of Nodal in ovarian endometriosis-carcinoma lesions. METHODS Regulation and function of Nodal and its associated molecules, including Smad2, GSK-3β, and several cell kinetics-related molecules, were assessed using clinical samples consisting of 108 ovarian carcinomas and 33 endometriotic lesions, as well as ES-2 (ovarian clear cell carcinoma; OCCCa) and Ishikawa (endometrial carcinoma) cell lines. RESULTS Nodal expression was significantly higher in endometriosis and OCCCa lesions as compared to that of non-OCCCas, with positive correlations to phosphorylated forms of both Smad2 (pSmad2) and GSK-3β. When compared to endometriotic lesions, the expression of Nodal and pSmad2 was significantly decreased in OCCCa. Treatment of Ishikawa cells with TGF-β1 resulted in transcriptional upregulation of Nodal, along with increased pSmad2 expression, while inhibition of GSK-3β also induced an increase in Nodal expression at the posttranslational level. Both ES-2 and Ishikawa cells stably overexpressing Nodal had increased susceptibility to apoptosis in response to treatment with cisplatin and doxorubicin, respectively, together with higher cleaved caspase-3 expression and decreased Bcl2/Bax ratio. Moreover, the stable Nodal-overexpressing cells showed reduced cell proliferation, along with increased expression of p27kip1 and p21waf1. In clinical samples, a significantly higher number of apoptotic cells and lower Ki-67 labeling indices were observed in Nodal-positive as compared to Nodal-negative OCCCa. CONCLUSIONS These findings suggest that Nodal is a multifunctional cytokine involved in the modulation of cell kinetics in ovarian endometriosis-OCCCa lesions.
Collapse
Affiliation(s)
- Rinako Miura
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374 Japan
| | - Ako Yokoi
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374 Japan
| | - Toshihide Matsumoto
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374 Japan
| | - Yasuko Oguri
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374 Japan
| | - Miki Hashimura
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374 Japan
| | - Masataka Tochimoto
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374 Japan
| | - Sabine Kajita
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374 Japan
| | - Makoto Saegusa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374 Japan
| |
Collapse
|
11
|
Butrous G. Schistosome infection and its effect on pulmonary circulation. Glob Cardiol Sci Pract 2019; 2019:5. [PMID: 31024947 PMCID: PMC6472693 DOI: 10.21542/gcsp.2019.5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
Schistosomiasis is the most common parasitic disease associated with pulmonary hypertension. It induces remodelling via complex inflammatory processes, which eventually produce the clinical manifestation of pulmonary hypertension. The pulmonary hypertension shows clinical signs and symptoms that are not distinguishable from other forms of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Ghazwan Butrous
- Professor of Cardiopulmonary Sciences, Medway School of Pharmacy, University of Kent, UK and University of Greenwich, Central Ave, Gillingham, Chatham ME4 4BF, Kent, UK
| |
Collapse
|
12
|
Jiang X. Silencing of heart and neural crest derivatives expressed transcript 2 attenuates transforming growth factor-β1-enhanced apoptosis of human bronchial epithelial cells. Oncol Lett 2018; 16:4997-5005. [PMID: 30250565 PMCID: PMC6144912 DOI: 10.3892/ol.2018.9299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/22/2018] [Indexed: 01/10/2023] Open
Abstract
Human bronchial epithelial (HBE) cells form the first protective barrier of the airway to protect patients from pulmonary diseases. The present study was performed to illustrate the mechanism underlying the effect of silencing heart and neural crest derivatives expressed transcript 2 (HAND2) on attenuating the transforming growth factor (TGF)-β1-enhanced apoptosis of HBE cells. TGF-β1 (10 µg/ml) was applied to HBE cells, and the HBE cells were transfected with small interfering RNA targeting HAND2 or were transfected with non-specific sequence. Subsequently, cell proliferation was measured using a Cell Counting kit-8 assay, whereas cell cycle and apoptosis status were measured using a flow cytometer. Reverse transcription-quantitative polymerase chain reaction and western blot analyses were performed to detect the expression levels of cell cycle- and apoptosis-related factors. Western blot analysis was also used to detect the phosphorylation levels of extracellular signal-regulated kinase (ERK), P38 and c-Jun-N-terminal kinase (JNK) of mitogen-activated protein kinase (MAPK) pathways. The results showed that TGF-β1 decreased HBE cell proliferation ability, arrested cell cycle at the G2 phase and promoted cell apoptosis with statistical significance. The expression levels of P21 and Cyclin D1 were inhibited, and those of caspase-3, caspase-8 and caspase-9 were promoted by TGF-β1. The phosphorylation levels of ERK, P38 and JNK were increased by TGF-β1. HAND2-silencing significantly alleviated the above functions of TGF-β1 on the HBE cells. In conclusion, the silencing of HAND2 attenuated the TGF-β1-stimulated apoptosis of HBE cells through regulating cell cycle, apoptosis-related factors and ERK/P38/JNK MAPK pathways. This may provide a novel treatment strategy for pulmonary disease, with HAND2 as the novel gene target.
Collapse
Affiliation(s)
- Xiaohui Jiang
- Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
13
|
Wang Y, He H, Liyanarachchi S, Genutis LK, Li W, Yu L, Phay JE, Shen R, Brock P, de la Chapelle A. The role of SMAD3 in the genetic predisposition to papillary thyroid carcinoma. Genet Med 2018; 20:927-935. [PMID: 29300379 DOI: 10.1038/gim.2017.224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/25/2017] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To identify and characterize the functional variants, regulatory gene networks, and potential binding targets of SMAD3 in the 15q22 thyroid cancer risk locus. METHODS We performed linkage disequilibrium (LD) and haplotype analyses to fine map the 15q22 locus. Luciferase reporter assays were applied to evaluate the regulatory effects of the candidate variants. Knockdown by small interfering RNA, microarray analysis, chromatin immunoprecipitation (ChIP) and quantitative real-time polymerase chain reaction assays were performed to reveal the regulatory gene network and identify its binding targets. RESULTS We report a 25.6-kb haplotype within SMAD3 containing numerous single-nucleotide polymorphisms (SNPs) in high LD. SNPs rs17293632 and rs4562997 were identified as functional variants of SMAD3 by luciferase assays within the LD region. These variants regulate SMAD3 transcription in an allele-specific manner through enhancer elements in introns of SMAD3. Knockdown of SMAD3 in thyroid cancer cell lines revealed its regulatory gene network including two upregulated genes, SPRY4 and SPRY4-IT1. Sequence analysis and ChIP assays validated the actual binding of SMAD3 protein to multiple SMAD binding element sites in the region upstream of SPRY4. CONCLUSION Our data provide a functional annotation of the 15q22 thyroid cancer risk locus.
Collapse
Affiliation(s)
- Yanqiang Wang
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Huiling He
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Sandya Liyanarachchi
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Luke K Genutis
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Wei Li
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, USA.,Department of Biomedical Informatics, The Ohio State University, Ohio, Columbus, USA
| | - John E Phay
- Department of Surgery, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Rulong Shen
- Department of Pathology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Pamela Brock
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Albert de la Chapelle
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
14
|
Abstract
The connection between genetic variation and drug response has long been explored to facilitate the optimization and personalization of cancer therapy. Crucial to the identification of drug response related genetic features is the ability to separate indirect correlations from direct correlations across abundant datasets with large number of variables. Here we analyzed proteomic and pharmacogenomic data in cancer tissues and cell lines using a global statistical model connecting protein pairs, genes and anti-cancer drugs. We estimated this model using direct coupling analysis (DCA), a powerful statistical inference method that has been successfully applied to protein sequence data to extract evolutionary signals that provide insights on protein structure, folding and interactions. We used Direct Information (DI) as a metric of connectivity between proteins as well as gene-drug pairs. We were able to infer important interactions observed in cancer-related pathways from proteomic data and predict potential connectivities in cancer networks. We also identified known and potential connections for anti-cancer drugs and gene mutations using DI in pharmacogenomic data. Our findings suggest that gene-drug connections predicted with direct couplings can be used as a reliable guide to cancer therapy and expand our understanding of the effects of gene alterations on drug efficacies.
Collapse
|
15
|
Hiwatashi N, Benedict PA, Dion GR, Bing R, Kraja I, Amin MR, Branski RC. SMAD3 expression and regulation of fibroplasia in vocal fold injury. Laryngoscope 2017; 127:E308-E316. [PMID: 28543554 DOI: 10.1002/lary.26648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Recent reports highlight the efficacy of small interfering RNA (siRNA) targeting SMAD3 to regulate transforming growth factor β (TGF-β)-mediated fibroplasia in vocal fold fibroblasts. The current study sought to investigate SMAD3 expression during wound healing in vivo and quantify the downstream transcriptional events associated with SMAD3 knockdown in vitro. STUDY DESIGN In vivo and in vitro. METHODS Unilateral vocal fold injury was created in a rabbit model. SMAD3 and SMAD7 mRNA expression was quantified at 1 hour and 1, 3, 7, 14, 30, 60, and 90 days following injury. In vitro, multi-gene analysis technology was employed in our immortalized human vocal-fold fibroblast cell line following TGF-β1 stimulation ± SMAD3 knockdown across time points. RESULTS SMAD3 mRNA expression increased following injury; upregulation was significant at 3 and 7 days compared to control (both P < 0.001). SMAD7 mRNA was also upregulated at 3, 7, and 14 days (P = 0.02, P < 0.001, and P < 0.001, respectively). In vitro, SMAD3 knockdown reduced the expression of multiple profibrotic, TGF-β signaling, and extracellular matrix metabolism genes at 6 and 24 hours following TGF-β1 stimulation. CONCLUSION Cumulatively, these data support SMAD3 as a potential master regulator of TGF-β-mediated fibrosis. SMAD3 transcription peaked 7 days following injury. Multi-gene analysis indicated that the therapeutic effectiveness of SMAD3 knockdown may be related to regulation of downstream mediators of fibroplasia and altered TGF-β signaling. LEVEL OF EVIDENCE NA. Laryngoscope, 127:E308-E316, 2017.
Collapse
Affiliation(s)
- Nao Hiwatashi
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A
| | - Peter A Benedict
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A
| | - Gregory R Dion
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A
| | - Renjie Bing
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A
| | - Iv Kraja
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A
| | - Milan R Amin
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A
| | - Ryan C Branski
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A
| |
Collapse
|
16
|
Ding Q, Subramanian I, Luckhardt TR, Che P, Waghray M, Zhao XK, Bone N, Kurundkar AR, Hecker L, Hu M, Zhou Y, Horowitz JC, Vittal R, Thannickal VJ. Focal adhesion kinase signaling determines the fate of lung epithelial cells in response to TGF-β. Am J Physiol Lung Cell Mol Physiol 2017; 312:L926-L935. [PMID: 28360109 DOI: 10.1152/ajplung.00121.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 03/15/2017] [Accepted: 03/24/2017] [Indexed: 01/13/2023] Open
Abstract
Alveolar epithelial cell (AEC) injury and apoptosis are prominent pathological features of idiopathic pulmonary fibrosis (IPF). There is evidence of AEC plasticity in lung injury repair response and in IPF. In this report, we explore the role of focal adhesion kinase (FAK) signaling in determining the fate of lung epithelial cells in response to transforming growth factor-β1 (TGF-β1). Rat type II alveolar epithelial cells (RLE-6TN) were treated with or without TGF-β1, and the expressions of mesenchymal markers, phenotype, and function were analyzed. Pharmacological protein kinase inhibitors were utilized to screen for SMAD-dependent and -independent pathways. SMAD and FAK signaling was analyzed using siRNA knockdown, inhibitors, and expression of a mutant construct of FAK. Apoptosis was measured using cleaved caspase-3 and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. TGF-β1 induced the acquisition of mesenchymal markers, including α-smooth muscle actin, in RLE-6TN cells and enhanced the contraction of three-dimensional collagen gels. This phenotypical transition or plasticity, epithelial-myofibroblast plasticity (EMP), is dependent on SMAD3 and FAK signaling. FAK activation was found to be dependent on ALK5/SMAD3 signaling. We observed that TGF-β1 induces both EMP and apoptosis in the same cell culture system but not in the same cell. While blockade of SMAD signaling inhibited EMP, it had a minimal effect on apoptosis; in contrast, inhibition of FAK signaling markedly shifted to an apoptotic fate. The data support that FAK activation determines whether AECs undergo EMP vs. apoptosis in response to TGF-β1 stimulation. TGF-β1-induced EMP is FAK- dependent, whereas TGF-β1-induced apoptosis is favored when FAK signaling is inhibited.
Collapse
Affiliation(s)
- Qiang Ding
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama;
| | - Indhu Subramanian
- Division of Pulmonary, Allergy, and Critical Care Medicine, Alameda Health System, Oakland, California
| | - Tracy R Luckhardt
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Pulin Che
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Meghna Waghray
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Xue-Ke Zhao
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama.,Department of Infectious Diseases, Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China; and
| | - Nathaniel Bone
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Ashish R Kurundkar
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Louise Hecker
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Meng Hu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Yong Zhou
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Ragini Vittal
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| |
Collapse
|
17
|
Guo X, Hutcheon AEK, Tran JA, Zieske JD. TGF-β-target genes are differentially regulated in corneal epithelial cells and fibroblasts. ACTA ACUST UNITED AC 2017. [PMID: 28649665 DOI: 10.15761/nfo.1000151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Transforming growth factor-beta (TGF-β) activates the canonical Smad pathway, which includes the Smad family of proteins and SARA (Smad Anchor for Receptor Activation) and other less understood pathways, including one involving p38MAPK. The goal of the current research was to determine if corneal epithelial cells and fibroblasts used the classical or alternative TGF-β-signaling pathways. To examine this question, we made use of Trx-SARA, which inhibits native SARA, thus blocking the Smad pathway. METHODS A human corneal epithelial cell line (HCE-TJ), and stromal fibroblasts (HCF) were infected with retroviruses (RTV) containing either Trx-SARA or Trx-GA (a control plasmid). The effect of Trx-SARA on thrombospondin-1 (TSP-1) expression in both cell types, p15ink4b expression in HCE-TJ, and cellular fibronectin (cFN) expression in HCF was determined. In addition, the effect of p38MAPK inhibitor on TSP-1 and p15ink4b were examined. RESULTS In HCE-TJ with TGF-β1, TSP-1-protein levels increased and peaked at 24 hours. Trx-SARA reduced TSP-1 expression in HCE-TJ, but had no effect on p15ink4b. With HCF, Trx-SARA failed to reduce TSP-1 expression; however, cFN expression decreased and proliferation was inhibited. By blocking the p38MAPK pathway, TSP-1 expression was reduced in HCF and p15ink4b expression was decreased in HCE-TJ. CONCLUSIONS Surprisingly, TSP-1 was regulated through the Smad pathway in HCE-TJ and the p38MAPK pathway in HCF. The p38MAPK pathway also induced p15ink4b in HCE-TJ. Our results indicate that not all TGF-β-target proteins require the Smad pathway, and it may be possible to block certain TGF-β-target proteins without blocking the expression of all the TGF-β-target proteins.
Collapse
Affiliation(s)
- Xiaoqing Guo
- The Schepens Eye Research Institute/Massachusetts Eye and Ear and the Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Audrey E K Hutcheon
- The Schepens Eye Research Institute/Massachusetts Eye and Ear and the Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jennifer A Tran
- The Schepens Eye Research Institute/Massachusetts Eye and Ear and the Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - James D Zieske
- The Schepens Eye Research Institute/Massachusetts Eye and Ear and the Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Sari E, Bakar B, Dincel GC, Budak Yildiran FA. Effects of DMSO on a rabbit ear hypertrophic scar model: A controlled randomized experimental study. J Plast Reconstr Aesthet Surg 2017; 70:509-517. [PMID: 28216321 DOI: 10.1016/j.bjps.2017.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/21/2016] [Accepted: 01/04/2017] [Indexed: 02/07/2023]
Abstract
Dimethyl sulfoxide (DMSO) is an anti-inflammatory, antibacterial, analgesic drug widely used to treat several diseases as reported in the literature. It has a detractive effect on collagen deposition in the abnormal tissue. This study aimed to investigate the possible therapeutic effects of DMSO on hypertrophic scar formation in rabbits. Twenty-four New Zealand male albino rabbits were randomly divided into four groups: control, sham, DMSO, and TRA (triamcinolone acetonide). Except the control group, punch biopsy defects were created on each animal's right ear. Following the hypertrophic scar formation on day 28, intralesional DMSO and triamcinolone acetonide were administered once a week for 4 weeks into these scars of the DMSO and TRA groups, respectively. No therapeutic agent was administered to the control and sham groups. One week after the last injection, ear samples were collected for histopathological, immunohistochemical, and real-time polymerase chain reaction gene expression analyses. Histopathological examination revealed that the epithelium in the DMSO group was thicker than that in the control and TRA groups, but thinner than that in the sham group. Connective tissue thickness and vascularity level of the sham group were higher than those of the control, DMSO, and TRA groups. The collagen type I immunoreactivity level of the sham and TRA groups was higher than those of the control and DMSO groups. The collagen type III immunoreactivity level was higher in the sham group than in all other groups. Collagen type I/type III immunoreactivity ratios were lower in the DMSO group. The alignment of collagen fibers was normal in the DMSO group, but was irregular in the sham and TRA groups. The collagen type I gene expression levels of the DMSO and TRA groups were lower than that of the sham group. Collagen type III and IFN-γ mRNA expression levels were almost similar among the groups. TGF-1β mRNA expression levels were higher in the DMSO and TRA groups than in the control and sham groups. On the basis of the results, it can be concluded that intralesional administration of DMSO decreases hypertrophic scar formation easily and safely.
Collapse
Affiliation(s)
- Elif Sari
- Kirikkale University Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Kirikkale, Turkey.
| | - Bulent Bakar
- Kirikkale University Faculty of Medicine, Department of Neurosurgery, Kirikkale, Turkey
| | - Gungor Cagdas Dincel
- Aksaray University, Eskil Vocational High School, Laboratory and Veterinary Science, Aksaray, Turkey
| | - Fatma Azize Budak Yildiran
- Kirikkale University, Vocational High School of Health Services, Department of Medical Services and Techniques, Kirikkale, Turkey
| |
Collapse
|
19
|
Makino Y, Yoon JH, Bae E, Kato M, Miyazawa K, Ohira T, Ikeda N, Kuroda M, Mamura M. Repression of Smad3 by Stat3 and c-Ski/SnoN induces gefitinib resistance in lung adenocarcinoma. Biochem Biophys Res Commun 2017; 484:269-277. [PMID: 28115165 DOI: 10.1016/j.bbrc.2017.01.093] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 01/14/2023]
Abstract
Cancer-associated inflammation develops resistance to the epidermal growth-factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in non-small cell lung cancers (NSCLCs) harboring oncogenic EGFR mutations. Stat3-mediated interleukin (IL)-6 signaling and Smad-mediated transforming growth factor-β (TGF-β) signaling pathways play crucial regulatory roles in cancer-associated inflammation. However, mechanisms how these pathways regulate sensitivity and resistance to EGFR-TKI in NSCLCs remain largely undetermined. Here we show that signal transducer and activator of transcription (Stat)3 represses Smad3 in synergy with the potent negative regulators of TGF-β signaling, c-Ski and SnoN, whereby renders gefitinib-sensitive HCC827 cells resistant. We found that IL-6 signaling via phosphorylated Stat3 induced gefitinib resistance as repressing transcription of Smad3, whereas TGF-β enhanced gefitinib sensitivity as activating transcription of Smad3 in HCC827 cells with gefitinib-sensitizing EGFR mutation. Promoter analyses showed that Stat3 synergized with c-Ski/SnoN to repress Smad2/3/4-induced transcription of the Smad3 gene. Smad3 was found to be an apoptosis inducer, which upregulated pro-apoptotic genes such as caspase-3 and downregulated anti-apoptotic genes such as Bcl-2. Our results suggest that derepression of Smad3 can be a therapeutic strategy to prevent gefitinib-resistance in NSCLCs with gefitinib-sensitizing EGFR mutation.
Collapse
Affiliation(s)
- Yojiro Makino
- Department of Surgery, Tokyo Medical University, Tokyo, Japan
| | - Jeong-Hwan Yoon
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan; Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Eunjin Bae
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Mitsuyasu Kato
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Keiji Miyazawa
- Departments of Biochemistry, University of Yamanashi, Yamanashi, Japan
| | - Tatsuo Ohira
- Department of Surgery, Tokyo Medical University, Tokyo, Japan
| | - Norihiko Ikeda
- Department of Surgery, Tokyo Medical University, Tokyo, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Mizuko Mamura
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan; Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea; Physician, Student and Researcher Support Center, Tokyo Medical University, Tokyo, Japan.
| |
Collapse
|
20
|
Kurundkar A, Thannickal VJ. Redox mechanisms in age-related lung fibrosis. Redox Biol 2016; 9:67-76. [PMID: 27394680 PMCID: PMC4943089 DOI: 10.1016/j.redox.2016.06.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 12/12/2022] Open
Abstract
Redox signaling and oxidative stress are associated with tissue fibrosis and aging. Aging is recognized as a major risk factor for fibrotic diseases involving multiple organ systems, including that of the lung. A number of oxidant generating enzymes are upregulated while antioxidant defenses are deficient with aging and cellular senescence, leading to redox imbalance and oxidative stress. However, the precise mechanisms by which redox signaling and oxidative stress contribute to the pathogenesis of lung fibrosis are not well understood. Tissue repair is a highly regulated process that involves the interactions of several cell types, including epithelial cells, fibroblasts and inflammatory cells. Fibrosis may develop when these interactions are dysregulated with the acquisition of pro-fibrotic cellular phenotypes. In this review, we explore the roles of redox mechanisms that promote and perpetuate fibrosis in the context of cellular senescence and aging.
Collapse
Affiliation(s)
- Ashish Kurundkar
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
21
|
Warsinske HC, Wheaton AK, Kim KK, Linderman JJ, Moore BB, Kirschner DE. Computational Modeling Predicts Simultaneous Targeting of Fibroblasts and Epithelial Cells Is Necessary for Treatment of Pulmonary Fibrosis. Front Pharmacol 2016; 7:183. [PMID: 27445819 PMCID: PMC4917547 DOI: 10.3389/fphar.2016.00183] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/10/2016] [Indexed: 11/13/2022] Open
Abstract
Pulmonary fibrosis is pathologic remodeling of lung tissue that can result in difficulty breathing, reduced quality of life, and a poor prognosis for patients. Fibrosis occurs as a result of insult to lung tissue, though mechanisms of this response are not well-characterized. The disease is driven in part by dysregulation of fibroblast proliferation and differentiation into myofibroblast cells, as well as pro-fibrotic mediator-driven epithelial cell apoptosis. The most well-characterized pro-fibrotic mediator associated with pulmonary fibrosis is TGF-β1. Excessive synthesis of, and sensitivity to, pro-fibrotic mediators as well as insufficient production of and sensitivity to anti-fibrotic mediators has been credited with enabling fibroblast accumulation. Available treatments neither halt nor reverse lung damage. In this study we have two aims: to identify molecular and cellular scale mechanisms driving fibroblast proliferation and differentiation as well as epithelial cell survival in the context of fibrosis, and to predict therapeutic targets and strategies. We combine in vitro studies with a multi-scale hybrid agent-based computational model that describes fibroblasts and epithelial cells in co-culture. Within this model TGF-β1 represents a pro-fibrotic mediator and we include detailed dynamics of TGF-β1 receptor ligand signaling in fibroblasts. PGE2 represents an anti-fibrotic mediator. Using uncertainty and sensitivity analysis we identify TGF-β1 synthesis, TGF-β1 activation, and PGE2 synthesis among the key mechanisms contributing to fibrotic outcomes. We further demonstrate that intervention strategies combining potential therapeutics targeting both fibroblast regulation and epithelial cell survival can promote healthy tissue repair better than individual strategies. Combinations of existing drugs and compounds may provide significant improvements to the current standard of care for pulmonary fibrosis. Thus, a two-hit therapeutic intervention strategy may prove necessary to halt and reverse disease dynamics.
Collapse
Affiliation(s)
- Hayley C. Warsinske
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Amanda K. Wheaton
- Department of Internal Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Kevin K. Kim
- Department of Internal Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | | | - Bethany B. Moore
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Denise E. Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, USA
| |
Collapse
|
22
|
Guo X, Hutcheon AEK, Zieske JD. Molecular insights on the effect of TGF-β1/-β3 in human corneal fibroblasts. Exp Eye Res 2016; 146:233-241. [PMID: 26992778 DOI: 10.1016/j.exer.2016.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/10/2016] [Accepted: 03/12/2016] [Indexed: 01/01/2023]
Abstract
Transforming growth factor β (TGF-β) plays a critical role in wound healing and the pathogenesis of fibrosis (scarring). Three isoforms of TGF-β have been identified in mammals. Previous studies have shown that the addition of TGF-β1 (T1) or -β2 (T2) to human corneal fibroblasts (HCF) cultured in a 3-dimensional construct resulted in a fibrotic matrix, while the addition of TGF-β3 (T3) resulted in the production of enhanced non-fibrotic matrix as compared to control (Vitamin C [VitC] only). In the current investigation, we undertook the molecular comparison of fibrosis-related gene expression in T1 or T3-treated HCF to gain further insights into the regulation and roles of these two isoforms on the fibrotic response. HCF were cultured in 100 mm dishes in basic medium (Eagles minimum essential medium [EMEM] with 10% fetal bovine serum [FBS]). At 70-80% confluency, cells were exposed to basic medium with 0.5 mM 2-O-α-d-glucopyranosyl-l-ascorbic acid (VitC) ± 2 ng/ml of T1 or T3. After 4 h or 3 days, cells were harvested, and mRNA or protein was isolated. Fibrosis related mRNA levels were assayed using a commercial qRT-PCR Array. Selected proteins were examined using Western blotting (WB). Experiments were performed 6 times for the qRT-PCR and 4 times for WB for each condition. qRT-PCR results showed that most of the fibrosis-related genes were up or downregulated in HCF exposed to T1 or T3 as compared with VitC control. At 4 h, only Smad7 expression was significantly altered in T3-treated HCF, compared to T1, and at 3 days, five genes were altered. WB confirmed that T1 significantly decreased Smad7 expression compared to T3 and control, and that the expression of thrombospondin-1 in T3-stimulated HCF was enhanced compared to T1-treated cells. Finally, both T1 and T3 decreased Smad3 expression dramatically at both time points. At early time points, T1 and T3 have similar effects on expression of fibrosis related genes; however, with a longer exposure, an increasing number of genes were differentially expressed. Interestingly, most of the differentially expressed gene products are secreted by the cells and may be related to the modulation of extracellular matrix.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Schepens Eye Research Institute/MEE and Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Audrey E K Hutcheon
- Schepens Eye Research Institute/MEE and Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - James D Zieske
- Schepens Eye Research Institute/MEE and Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Abstract
The mechanisms or causes of pancreatic β-cell death as well as impaired insulin secretion, which are the principal events of diabetic etiopathology, are largely unknown. Diabetic complications are known to be associated with abnormal plasma lipid profile, mainly elevated level of cholesterol and free fatty acids. However, in recent years, elevated plasma cholesterol has been implicated as a primary modulator of pancreatic β-cell functions as well as death. High-cholesterol diet in animal models or excess cholesterol in pancreatic β-cell causes transporter desensitization and results in morphometric changes in insulin granules. Moreover, cholesterol is also held responsible to cause oxidative stress, mitochondrial dysfunction, and activation of proapoptotic markers leading to β-cell death. The present review focuses on the pathways and molecularevents that occur in the β-cell under the influence of excess cholesterol that hampers the basal physiology of the cell leading to the progression of diabetes.
Collapse
|
24
|
Katakawa Y, Funaba M, Murakami M. Smad8/9 Is Regulated Through the BMP Pathway. J Cell Biochem 2016; 117:1788-96. [DOI: 10.1002/jcb.25478] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 01/04/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Yuko Katakawa
- Laboratory of Molecular Biology; Azabu University School of Veterinary Medicine; Sagamihara 252-5201 Japan
| | - Masayuki Funaba
- Division of Applied Biosciences; Graduate School of Agriculture; Kyoto University; Kyoto 606-8502 Japan
| | - Masaru Murakami
- Laboratory of Molecular Biology; Azabu University School of Veterinary Medicine; Sagamihara 252-5201 Japan
| |
Collapse
|
25
|
Zhang Y, Wang S, Liu S, Li C, Wang J. Role of Smad signaling in kidney disease. Int Urol Nephrol 2015; 47:1965-75. [DOI: 10.1007/s11255-015-1115-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/18/2015] [Indexed: 01/21/2023]
|
26
|
Chen H, Liao K, Cui-Zhao L, Qiang-Wen F, Feng-Zeng X, Ping-Wu F, Liang-Guo S, Juan-Chen Y. Cigarette smoke extract induces apoptosis of rat alveolar Type II cells via the PLTP/TGF-β1/Smad2 pathway. Int Immunopharmacol 2015; 28:707-14. [PMID: 26258626 DOI: 10.1016/j.intimp.2015.07.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/21/2015] [Accepted: 07/21/2015] [Indexed: 02/05/2023]
Abstract
Apoptosis of alveolar epithelial cells has been implicated in the pathogenesis of acute lung injury. Phospholipid transfer protein (PLTP) may play a role in apoptosis. In the present study, the effect of the novel function of PLTP in cigarette smoke extract (CSE)-induced apoptosis of alveolar epithelial cells and the possible mechanism were examined. Male Wistar rats were exposed to air and cigarette smoke (n=10/exposure) for 6h/day on 3 consecutive days, then the lungs were sectioned and examined. To investigate effects on alveolar epithelial cells, rat alveolar epithelial cells (RLE-6TN) were treated with different concentrations of CSE for various times. siRNA for PLTP was transfected into cells and an inhibitor of the transforming growth factor-β1 (TGF-β1) type I receptor was administered prior to CSE exposure. Apoptosis was measured, and mRNA expression of PLTP and TGF-β1 and protein levels of PLTP, TGF-β1, p-Smad2 and cleaved caspase-3 were analyzed. The results showed that apoptosis, as well as expression of PLTP, TGF-β1, p-Smad2 and cleaved caspase-3 were all significantly increased after CSE stimulation (P<0.05). Furthermore, the expression of TGF-β1, p-Smad2 and cleaved caspase-3 induced by CSE could be partly abrogated by knockdown of PLTP. The expression of PLTP showed no significant change as a result of TGF-β1 receptor inhibition, while cleaved caspase-3 showed a remarkable reduction. PLTP may act as an upstream signal molecule of the TGF-β1/Smad2 pathway and is likely to be involved in CSE-induced apoptosis of alveolar epithelial cells.
Collapse
Affiliation(s)
- Hong Chen
- Respiratory Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Ke Liao
- Respiratory Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Respiratory Department, Chengdu Seventh People's Hospital, Chengdu, China.
| | - Lv Cui-Zhao
- Drug Engineering Research Center of Chongqing Medical University, Chongqing, China.
| | - Fu Qiang-Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Xue Feng-Zeng
- Respiratory Department, The Third People's Hospital of Cheng Du, Cheng Du, China.
| | - Feng Ping-Wu
- Respiratory Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Shu Liang-Guo
- Respiratory Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Ya Juan-Chen
- Respiratory Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
Yang Z, Zhong L, Zhong S, Xian R, Yuan B. Adenovirus encoding Smad4 suppresses glioma cell proliferation and increases apoptosis through cell cycle arrest at G1 phase. Int Immunopharmacol 2015; 25:169-73. [DOI: 10.1016/j.intimp.2015.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/15/2015] [Accepted: 01/22/2015] [Indexed: 11/29/2022]
|
28
|
Wang X, Chu J, Wen C, Fu S, Qian Y, Wo Y, Wang C, Wang D. Functional characterization of TRAP1-like protein involved in modulating fibrotic processes mediated by TGF-β/Smad signaling in hypertrophic scar fibroblasts. Exp Cell Res 2015; 332:202-11. [DOI: 10.1016/j.yexcr.2015.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 01/23/2015] [Accepted: 01/24/2015] [Indexed: 10/24/2022]
|
29
|
Gordian E, Li J, Pevzner Y, Mediavilla-Varela M, Luddy K, Ohaegbulam K, Daniel KG, Haura EB, Muñoz-Antonia T. Transforming growth factor β signaling overcomes dasatinib resistance in lung cancer. PLoS One 2014; 9:e114131. [PMID: 25501935 PMCID: PMC4263601 DOI: 10.1371/journal.pone.0114131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 10/03/2014] [Indexed: 12/22/2022] Open
Abstract
Lung cancer is the second most common cancer and the leading cause of cancer-related deaths. Despite recent advances in the development of targeted therapies, patients with advanced disease remain incurable, mostly because metastatic non-small cell lung carcinomas (NSCLC) eventually become resistant to tyrosine kinase inhibitors (TKIs). Kinase inhibitors have the potential for target promiscuity because the kinase super family is the largest family of druggable genes that binds to a common substrate (ATP). As a result, TKIs often developed for a specific purpose have been found to act on other targets. Drug affinity chromatography has been used to show that dasatinib interacts with the TGFβ type I receptor (TβR-I), a serine-threonine kinase. To determine the potential biological relevance of this association, we studied the combined effects of dasatinib and TGFβ on lung cancer cell lines. We found that dasatinib treatment alone had very little effect; however, when NSCLC cell lines were treated with a combination of TGFβ and dasatinib, apoptosis was induced. Combined TGFβ-1 + dasatinib treatment had no effect on the activity of Smad2 or other non-canonical TGFβ intracellular mediators. Interestingly, combined TGFβ and dasatinib treatment resulted in a transient increase in p-Smad3 (seen after 3 hours). In addition, when NSCLC cells were treated with this combination, the pro-apoptotic protein BIM was up-regulated. Knockdown of the expression of Smad3 using Smad3 siRNA also resulted in a decrease in BIM protein, suggesting that TGFβ-1 + dasatinib-induced apoptosis is mediated by Smad3 regulation of BIM. Dasatinib is only effective in killing EGFR mutant cells, which is shown in only 10% of NSCLCs. Therefore, the observation that wild-type EGFR lung cancers can be manipulated to render them sensitive to killing by dasatinib could have important implications for devising innovative and potentially more efficacious treatment strategies for this disease.
Collapse
Affiliation(s)
- Edna Gordian
- Molecular Oncology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States of America
| | - Jiannong Li
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States of America
| | - Yuri Pevzner
- Chemical Biology Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States of America
| | - Melanie Mediavilla-Varela
- Immunology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States of America
| | - Kimberly Luddy
- Cancer Imaging & Metabolism Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States of America
| | - Kim Ohaegbulam
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, United States of America
| | - Kenyon G. Daniel
- Chemical Biology Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States of America
| | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States of America
| | - Teresita Muñoz-Antonia
- Molecular Oncology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States of America
- * E-mail:
| |
Collapse
|
30
|
Prasanphanich AF, Arencibia CA, Kemp ML. Redox processes inform multivariate transdifferentiation trajectories associated with TGFβ-induced epithelial-mesenchymal transition. Free Radic Biol Med 2014; 76:1-13. [PMID: 25088330 PMCID: PMC4254148 DOI: 10.1016/j.freeradbiomed.2014.07.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 07/16/2014] [Accepted: 07/24/2014] [Indexed: 12/12/2022]
Abstract
Phenotype reprogramming during transforming growth factor β (TGFβ)-induced epithelial-mesenchymal transition (EMT) is an extensive and dynamic process, orchestrated by the integration of biological signaling across multiple time scales. As part of the numerous transcriptional changes necessary for EMT, TGFβ-initiated Smad3 signaling results in remodeling of the redox environment and decreased nucleophilic tone. Because Smad3 itself is susceptible to attenuated activity through antioxidants, the possibility of a positive feedback loop exists, albeit the time scales on which these mechanisms operate are quite different. We hypothesized that the decreased nucleophilic tone acquired during EMT promotes Smad3 signaling, enhancing acquisition and stabilization of the mesenchymal phenotype. Previous findings supporting such a mechanism were characterized independent of each other; we sought to investigate these relationships within a singular experimental context. In this study, we characterized multivariate representations of phenotype as they evolved over time, specifically measuring expression of epithelial/mesenchymal differentiation, redox regulators, and Smad transcription factors. In-cell Western (ICW) assays were developed to evaluate multivariate phenotype states as they developed during EMT. Principal component analysis (PCA) extracted anticorrelations between phospho-Smad3 (pSmad3) and Smad2/Smad4, which reflected a compensatory up-regulation of Smad2 and Smad4 following cessation of TGFβ signaling. Measuring transcript expression following EMT, we identified down-regulation of numerous antioxidant genes concomitant with up-regulation of NADPH oxidase 4 (NOX4) and multiple mesenchymal phenotype markers. TGFβ treatment increased CM-H2DCF-DA oxidation, decreased H2O2 degradation rates, and increased glutathione redox potential. Our findings suggest that the decreased nucleophilic tone during EMT coincides with the acquisition of a mesenchymal phenotype over too long a time scale to enable enhanced Smad3 phosphorylation during initiation of EMT. We further challenged the mesenchymal phenotype following EMT through antioxidant and TGFβ inhibitor treatments, which failed to induce a mesenchymal-epithelial transition (MET). Our characterization of multivariate phenotype dynamics during EMT indicates that the decrease in nucleophilic tone occurs alongside EMT; however, maintenance of the mesenchymal phenotype following EMT is independent of both the nascent redox state and the continuous TGFβ signaling.
Collapse
Affiliation(s)
- Adam F Prasanphanich
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332-0363, USA
| | - C Andrew Arencibia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332-0363, USA
| | - Melissa L Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332-0363, USA.
| |
Collapse
|
31
|
Safaeian L, Abed A, Vaseghi G. The role of Bcl-2 family proteins in pulmonary fibrosis. Eur J Pharmacol 2014; 741:281-9. [PMID: 25058906 DOI: 10.1016/j.ejphar.2014.07.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 12/17/2022]
Abstract
Pulmonary fibrosis is characterized by epithelial injury, abnormal tissue repair, fibroproliferation and loss of pulmonary function as a result of a complex interaction of multiple cellular and molecular processes. There is accumulating evidence in support of a role for apoptosis in the pathogenesis of interstitial lung diseases. The Bcl-2 (B-cell lymphoma-2) family of proteins, which consists of antiapoptotic and pro-apoptotic members, is a critical regulator for apoptosis and development of pulmonary fibrosis. The association between Bcl-2 family members and various pathways and mediators has been also described in the pulmonary fibrosis. This article reviews the recent advances regarding the roles of Bcl-2 family as the apoptosis-regulatory factors in pulmonary fibrosis from human tissue studies, animal models, ex vivo and in vitro studies. Further understanding of apoptosis signaling regulation through Bcl-2 family proteins in the lung tissue may lead to better design of new therapeutic interventions for pulmonary fibrosis.
Collapse
Affiliation(s)
- Leila Safaeian
- Department of Pharmacology and Toxicology, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jarib Avenue, Isfahan, Iran.
| | - Alireza Abed
- Department of Pharmacology and Toxicology, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jarib Avenue, Isfahan, Iran
| | - Golnaz Vaseghi
- Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
32
|
Abnaof K, Mallela N, Walenda G, Meurer SK, Seré K, Lin Q, Smeets B, Hoffmann K, Wagner W, Zenke M, Weiskirchen R, Fröhlich H. TGF-β stimulation in human and murine cells reveals commonly affected biological processes and pathways at transcription level. BMC SYSTEMS BIOLOGY 2014; 8:55. [PMID: 24886091 PMCID: PMC4049504 DOI: 10.1186/1752-0509-8-55] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/06/2014] [Indexed: 01/03/2023]
Abstract
Background The TGF-β signaling pathway is a fundamental pathway in the living cell, which plays a key role in many central cellular processes. The complex and sometimes contradicting mechanisms by which TGF-β yields phenotypic effects are not yet completely understood. In this study we investigated and compared the transcriptional response profile of TGF-β1 stimulation in different cell types. For this purpose, extensive experiments are performed and time-course microarray data are generated in human and mouse parenchymal liver cells, human mesenchymal stromal cells and mouse hematopoietic progenitor cells at different time points. We applied a panel of bioinformatics methods on our data to uncover common patterns in the dynamic gene expression response in respective cells. Results Our analysis revealed a quite variable and multifaceted transcriptional response profile of TGF-β1 stimulation, which goes far beyond the well-characterized classical TGF-β1 signaling pathway. Nonetheless, we could identify several commonly affected processes and signaling pathways across cell types and species. In addition our analysis suggested an important role of the transcription factor EGR1, which appeared to have a conserved influence across cell-types and species. Validation via an independent dataset on A549 lung adenocarcinoma cells largely confirmed our findings. Network analysis suggested explanations, how TGF-β1 stimulation could lead to the observed effects. Conclusions The analysis of dynamical transcriptional response to TGF-β treatment experiments in different human and murine cell systems revealed commonly affected biological processes and pathways, which could be linked to TGF-β1 via network analysis. This helps to gain insights about TGF-β pathway activities in these cell systems and its conserved interactions between the species and tissue types.
Collapse
Affiliation(s)
- Khalid Abnaof
- Bonn-Aachen International Center for IT, University of Bonn, Dahlmannstr, 2, 53113 Bonn, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gruber R, Stähli A, Miron RJ, Bosshardt DD, Sculean A. Common target genes of palatal and gingival fibroblasts for EMD: the microarray approach. J Periodontal Res 2014; 50:103-12. [PMID: 24824040 DOI: 10.1111/jre.12186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Connective tissue grafts are frequently applied, together with Emdogain(®) , for root coverage. However, it is unknown whether fibroblasts from the gingiva and from the palate respond similarly to Emdogain. The aim of this study was therefore to evaluate the effect of Emdogain(®) on fibroblasts from palatal and gingival connective tissue using a genome-wide microarray approach. MATERIAL AND METHODS Human palatal and gingival fibroblasts were exposed to Emdogain(®) and RNA was subjected to microarray analysis followed by gene ontology screening with Database for Annotation, Visualization and Integrated Discovery functional annotation clustering, Kyoto Encyclopedia of Genes and Genomes pathway analysis and the Search Tool for the Retrieval of Interacting Genes/Proteins functional protein association network. Microarray results were confirmed by quantitative RT-PCR analysis. RESULTS The transcription levels of 106 genes were up-/down-regulated by at least five-fold in both gingival and palatal fibroblasts upon exposure to Emdogain(®) . Gene ontology screening assigned the respective genes into 118 biological processes, six cellular components, eight molecular functions and five pathways. Among the striking patterns observed were the changing expression of ligands targeting the transforming growth factor-beta and gp130 receptor family as well as the transition of mesenchymal epithelial cells. Moreover, Emdogain(®) caused changes in expression of receptors for chemokines, lipids and hormones, and for transcription factors such as SMAD3, peroxisome proliferator-activated receptor gamma and those of the ETS family. CONCLUSION The present data suggest that Emdogain(®) causes substantial alterations in gene expression, with similar patterns observed in palatal and gingival fibroblasts.
Collapse
Affiliation(s)
- R Gruber
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
34
|
Systemic revealing pharmacological signalling pathway networks in the hippocampus of ischaemia-reperfusion mice treated with baicalin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:630723. [PMID: 24381634 PMCID: PMC3870072 DOI: 10.1155/2013/630723] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/26/2013] [Indexed: 11/26/2022]
Abstract
Background. Baicalin (BA) exhibits ill understood neuroprotective, anti-inflammatory, and antioxidative effects in brain injury. Objective. To identify the differential network pathways associated with BA-related biological effects. Methods. MCAO-induced mice received BA 5 mg/Kg (BA group). Controls received vehicle only. Following ischaemia-reperfusion, ArrayTrack analysed the whole genome microarray of hippocampal genes, and MetaCore analysed differentially expressed genes. Results. Four reversing pathways were common to BA and controls, but only 6 were in the top 10 for BA. Three of the top 5 signalling pathways in controls were not observed in BA. BA treatment made absent 3 pathways of the top 5 signalling pathways from the top 5 in controls. There were 2 reversing pathways between controls and BA that showed altered gene expression. Controls had 6 networks associated with cerebral ischaemia. After BA treatment, 9 networks were associated with cerebral ischaemia. Enrichment analysis identified 10 significant biological processes in BA and controls. Of the 10 most significant molecular functions, 7 were common to BA and controls, and only 3 occurred in BA. BA and controls had 7 significant cellular components. Conclusions. This study showed that the clinical effectiveness of BA was based on the complementary effects of multiple pathways and networks.
Collapse
|
35
|
Transforming growth factor β regulates P-body formation through induction of the mRNA decay factor tristetraprolin. Mol Cell Biol 2013; 34:180-95. [PMID: 24190969 DOI: 10.1128/mcb.01020-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor β (TGF-β) is a potent growth regulator and tumor suppressor in normal intestinal epithelium. Likewise, epithelial cell growth is controlled by rapid decay of growth-related mRNAs mediated through 3' untranslated region (UTR) AU-rich element (ARE) motifs. We demonstrate that treatment of nontransformed intestinal epithelial cells with TGF-β inhibited ARE-mRNA expression. This effect of TGF-β was promoted through increased assembly of cytoplasmic RNA processing (P) bodies where ARE-mRNA localization was observed. P-body formation was dependent on TGF-β/Smad signaling, as Smad3 deletion abrogated P-body formation. In concert with increased P-body formation, TGF-β induced expression of the ARE-binding protein tristetraprolin (TTP), which colocalized to P bodies. TTP expression was necessary for TGF-β-dependent P-body formation and promoted growth inhibition by TGF-β. The significance of this was observed in vivo, where colonic epithelium deficient in TGF-β/Smad signaling or TTP expression showed attenuated P-body levels. These results provide new insight into TGF-β's antiproliferative properties and identify TGF-β as a novel mRNA stability regulator in intestinal epithelium through its ability to promote TTP expression and subsequent P-body formation.
Collapse
|
36
|
Ha Thi HT, Lim HS, Kim J, Kim YM, Kim HY, Hong S. Transcriptional and post-translational regulation of Bim is essential for TGF-β and TNF-α-induced apoptosis of gastric cancer cell. Biochim Biophys Acta Gen Subj 2013; 1830:3584-92. [DOI: 10.1016/j.bbagen.2013.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 03/04/2013] [Accepted: 03/07/2013] [Indexed: 12/14/2022]
|
37
|
Yue X, Lu J, Auduong L, Sides MD, Lasky JA. Overexpression of Sulf2 in idiopathic pulmonary fibrosis. Glycobiology 2013; 23:709-19. [PMID: 23418199 DOI: 10.1093/glycob/cwt010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previously, we have shown that heparan sulfate (HS) 6-O-endosulfatase 1 (Sulf1) is a transforming growth factor-β1 (TGF-β1)-responsive gene in normal human lung fibroblasts and functions as a negative feedback regulator of TGF-β1 and that TGF-β1 induces the expression of Sulf1 as well as that of the closely related Sulf2 in a murine model of pulmonary fibrosis. In this study, we focused on the role of Sulf2 in modulating TGF-β1 function and the development of pulmonary fibrosis. We found that Sulf2 mRNA was overexpressed in lung samples from human patients with idiopathic pulmonary fibrosis (IPF), and Sulf2 protein was specifically localized to the hyperplastic type II alveolar epithelial cells (AECs). In vitro, TGF-β1 induced the expression of Sulf2 with accompanied HS 6-O-desulfation in A549 cells, adenocarcinoma cells derived from the type II alveolar epithelium. Using small interference RNA to block Sulf2 expression, we observed a biphasic TGF-β1 response with early enhanced Smad activation, but eventually reduced TGF-β1 target gene expression in Sulf2 knockdown A549 cells compared with the control cells. To study the role of Sulf2 in normal type II AECs, we isolated primary type II cells from wild-type and Sulf2 knockout mice. We observed enhanced Smad activation as well as enhanced TGF-β1 target gene expression in Sulf2 knockout type II AECs compared with wild-type type II AECs. In conclusion, Sulf2 is overexpressed in IPF and may play a role in regulating TGF-β1 signaling in type II AECs.
Collapse
Affiliation(s)
- Xinping Yue
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | | | | | |
Collapse
|
38
|
Abstract
TGF-β (transforming growth factor-β) and BMP-7 (bone morphogenetic protein-7), two key members in the TGF-β superfamily, play important but diverse roles in CKDs (chronic kidney diseases). Both TGF-β and BMP-7 share similar downstream Smad signalling pathways, but counter-regulate each other to maintain the balance of their biological activities. During renal injury in CKDs, this balance is significantly altered because TGF-β signalling is up-regulated by inducing TGF-β1 and activating Smad3, whereas BMP-7 and its downstream Smad1/5/8 are down-regulated. In the context of renal fibrosis, Smad3 is pathogenic, whereas Smad2 and Smad7 are renoprotective. However, this counter-balancing mechanism is also altered because TGF-β1 induces Smurf2, a ubiquitin E3-ligase, to target Smad7 as well as Smad2 for degradation. Thus overexpression of renal Smad7 restores the balance of TGF-β/Smad signalling and has therapeutic effect on CKDs. Recent studies also found that Smad3 mediated renal fibrosis by up-regulating miR-21 (where miR represents microRNA) and miR-192, but down-regulating miR-29 and miR-200 families. Therefore restoring miR-29/miR-200 or suppressing miR-21/miR-192 is able to treat progressive renal fibrosis. Furthermore, activation of TGF-β/Smad signalling inhibits renal BMP-7 expression and BMP/Smad signalling. On the other hand, overexpression of renal BMP-7 is capable of inhibiting TGF-β/Smad3 signalling and protects the kidney from TGF-β-mediated renal injury. This counter-regulation not only expands our understanding of the causes of renal injury, but also suggests the therapeutic potential by targeting TGF-β/Smad signalling or restoring BMP-7 in CKDs. Taken together, the current understanding of the distinct roles and mechanisms of TGF-β and BMP-7 in CKDs implies that targeting the TGF-β/Smad pathway or restoring BMP-7 signalling may represent novel and effective therapies for CKDs.
Collapse
|
39
|
Lebrun JJ. The Dual Role of TGFβ in Human Cancer: From Tumor Suppression to Cancer Metastasis. ISRN MOLECULAR BIOLOGY 2012; 2012:381428. [PMID: 27340590 PMCID: PMC4899619 DOI: 10.5402/2012/381428] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/12/2012] [Indexed: 12/31/2022]
Abstract
The transforming growth factor-beta (TGFβ) superfamily encompasses widespread and evolutionarily conserved polypeptide growth factors that regulate and orchestrate growth and differentiation in all cell types and tissues. While they regulate asymmetric cell division and cell fate determination during early development and embryogenesis, TGFβ family members play a major regulatory role in hormonal and immune responses, cell growth, cell death and cell immortalization, bone formation, tissue remodeling and repair, and erythropoiesis throughout adult life. The biological and physiological functions of TGFβ, the founding member of this family, and its receptors are of central importance to human diseases, particularly cancer. By regulating cell growth, death, and immortalization, TGFβ signaling pathways exert tumor suppressor effects in normal cells and early carcinomas. Thus, it is not surprising that a high number of human tumors arise due to mutations or deletions in the genes coding for the various TGFβ signaling components. As tumors develop and progress, these protective and cytostatic effects of TGFβ are often lost. TGFβ signaling then switches to promote cancer progression, invasion, and tumor metastasis. The molecular mechanisms underlying this dual role of TGFβ in human cancer will be discussed in depth in this paper, and it will highlight the challenge and importance of developing novel therapeutic strategies specifically aimed at blocking the prometastatic arm of the TGFβ signaling pathway without affecting its tumor suppressive effects.
Collapse
Affiliation(s)
- Jean-Jacques Lebrun
- Division of Medical Oncology, Department of Medicine, Royal Victoria Hospital, McGill University Health Center, Montreal, QC, Canada H3A 1A1
| |
Collapse
|
40
|
Fang WB, Jokar I, Zou A, Lambert D, Dendukuri P, Cheng N. CCL2/CCR2 chemokine signaling coordinates survival and motility of breast cancer cells through Smad3 protein- and p42/44 mitogen-activated protein kinase (MAPK)-dependent mechanisms. J Biol Chem 2012; 287:36593-608. [PMID: 22927430 PMCID: PMC3476325 DOI: 10.1074/jbc.m112.365999] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 07/30/2012] [Indexed: 12/24/2022] Open
Abstract
Increased cell motility and survival are important hallmarks of metastatic tumor cells. However, the mechanisms that regulate the interplay between these cellular processes remain poorly understood. In these studies, we demonstrate that CCL2, a chemokine well known for regulating immune cell migration, plays an important role in signaling to breast cancer cells. We report that in a panel of mouse and human breast cancer cell lines CCL2 enhanced cell migration and survival associated with increased phosphorylation of Smad3 and p42/44MAPK proteins. The G protein-coupled receptor CCR2 was found to be elevated in breast cancers, correlating with CCL2 expression. RNA interference of CCR2 expression in breast cancer cells significantly inhibited CCL2-induced migration, survival, and phosphorylation of Smad3 and p42/44MAPK proteins. Disruption of Smad3 expression in mammary carcinoma cells blocked CCL2-induced cell survival and migration and partially reduced p42/44MAPK phosphorylation. Ablation of MAPK phosphorylation in Smad3-deficient cells with the MEK inhibitor U0126 further reduced cell survival but not migration. These data indicate that Smad3 signaling through MEK-p42/44MAPK regulates CCL2-induced cell motility and survival, whereas CCL2 induction of MEK-p42/44MAPK signaling independent of Smad3 functions as an alternative mechanism for cell survival. Furthermore, we show that CCL2-induced Smad3 signaling through MEK-p42/44MAPK regulates expression and activity of Rho GTPase to mediate CCL2-induced breast cancer cell motility and survival. With these studies, we characterize an important role for CCL2/CCR2 chemokine signaling in regulating the intrinsic relationships between breast cancer cell motility and survival with implications on the metastatic process.
Collapse
Affiliation(s)
- Wei Bin Fang
- From the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Iman Jokar
- From the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - An Zou
- From the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Diana Lambert
- From the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Prasanthi Dendukuri
- From the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Nikki Cheng
- From the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
41
|
Gahr SA, Weber GM, Rexroad CE. Identification and expression of Smads associated with TGF-β/activin/nodal signaling pathways in the rainbow trout (Oncorhynchus mykiss). FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:1233-1244. [PMID: 22290475 DOI: 10.1007/s10695-012-9611-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/19/2012] [Indexed: 05/31/2023]
Abstract
The Smad proteins are essential components of the TGF-β/activin/nodal family signaling pathway. We report the identification and expression of transcripts representing three receptor Smads (Smad2a, Smad2b, and Smad3), two common Smads (Smad4a and Smad4b), and one inhibitory Smad (Smad7). Phylogenetic analysis suggests this gene family evolved through the combination of ancient and more recent salmonid genome duplication events. Tissue distribution, embryonic expression, and expression in growth hormone (GH) treated fish were assessed by reverse transcription PCR or qPCR. All six Smad transcripts were ubiquitously expressed in adult tissues. We observed the highest expression of the receptor Smads in unfertilized eggs, generally decreasing during early embryonic development and slightly increasing around 11 days post-fertilization (dpf). Smad7 expression was low for most of embryonic development, with a dramatic increase at the onset of muscle development (6 dpf), and at hatch (24 dpf). Smad4 expression was low during early embryonic development and increased after 14 dpf. The increased expression of Smad4 and Smad7 during late embryonic development may indicate modulation of gene expression by GH axis, which initiates activity during late embryonic development. These data were supported by the modulation of these Smads in the gill filament, stomach, and muscle following a GH treatment. Additionally, these changes are concurrent with the modulation of expression of TGF-β family members. Most significantly, the increased expression of Smad7 in the muscle is simultaneous with increased expression of MSTN1A and not MSTN1B during both embryonic development and following GH treatment. These data indicate a promyogenic role for Smad7 as previously identified in other non-fish species.
Collapse
Affiliation(s)
- Scott A Gahr
- Biology Department, St. Vincent College, 300 Fraser Purchase Rd., Latrobe, PA 15650, USA.
| | | | | |
Collapse
|
42
|
Samanta D, Gonzalez AL, Nagathihalli N, Ye F, Carbone DP, Datta PK. Smoking attenuates transforming growth factor-β-mediated tumor suppression function through downregulation of Smad3 in lung cancer. Cancer Prev Res (Phila) 2012; 5:453-63. [PMID: 22232600 DOI: 10.1158/1940-6207.capr-11-0313] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Epidemiologic studies have shown that most cases of lung cancers (85%-90%) are directly attributable to cigarette smoking. Although much information has been gained about the effects of cigarette smoking on various signaling pathways causing lung cancer, nothing is known about the effect of cigarette smoking on the TGF-β-induced tumor suppressor function in lung cancer. To address this issue, lung adenocarcinoma A549 and immortalized bronchial epithelial HPL1A cells were chronically treated with cigarette smoke condensate (CSC) and dimethyl sulfoxide (as a control) to mimic the conditions of long-term cigarette smoking. Prolonged exposure of these cells to CSC resulted in a decrease in Smad3 and Smad4 complex formation and TGF-β-mediated transcription due to reduced expression of Smad3. Long-term CSC treatment reduced apoptosis, increased cell viability, decreased TGF-β-mediated growth inhibition, and enhanced tumorigenicity. The decrease in apoptosis is due to the upregulation of Bcl-2, which is a downstream target of Smad3. Re-expression of Smad3 in the CSC-treated cells restored TGF-β signaling, increased apoptosis, and decreased cell viability and tumorigenicity. Withdrawal of CSC treatment resulted in the restoration of Smad3 expression, reduction in cell viability, and increased TGF-β-mediated growth inhibition. Expression of Smad3 is lower in lung tumors of current smokers than that observed in never-smokers. Collectively, these data provide evidence that cigarette smoking promotes tumorigenicity partly by abrogating TGF-β-mediated growth inhibition and apoptosis by reducing expression of Smad3.
Collapse
Affiliation(s)
- Debangshu Samanta
- Department of Surgery, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Members of the TGF-beta superfamily exhibit various biological activities, and perturbations of their signaling are linked to certain clinical disorders including cancer. The role of TGF-beta signaling as a tumor suppressor pathway is best illustrated by the presence of inactivating mutations in genes encoding TGF-beta receptors and Smads in human carcinomas. This perspective is further supported by studies of tumor development in mouse models after modulation of receptors and Smads. TGF-beta also controls processes such as cell invasion, immune regulation, and microenvironment alterations that cancer cells may exploit to their advantage for their progression. Consequently, the output of a TGF-beta response is highly situation dependent, across different tissues, and also in cancer in general. Understanding the mechanisms of TGF-beta superfamily signaling is thus important for the development of new ways to treat various types of cancer. This review focuses on recent advances in understanding the Smad dependent TGF-beta pathway as it relates to human carcinogenesis.
Collapse
Affiliation(s)
- Debangshu Samanta
- Departments of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Pran K. Datta
- Nashville Department of Veterans Affairs Medical Center, Nashville, TN
- Departments of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Surgery, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
44
|
Datta A, Scotton CJ, Chambers RC. Novel therapeutic approaches for pulmonary fibrosis. Br J Pharmacol 2011; 163:141-72. [PMID: 21265830 PMCID: PMC3085875 DOI: 10.1111/j.1476-5381.2011.01247.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/10/2011] [Accepted: 01/12/2011] [Indexed: 01/06/2023] Open
Abstract
Pulmonary fibrosis represents the end stage of a number of heterogeneous conditions and is, to a greater or lesser degree, the hallmark of the interstitial lung diseases. It is characterized by the excessive deposition of extracellular matrix proteins within the pulmonary interstitium leading to the obliteration of functional alveolar units and in many cases, respiratory failure. While a small number of interstitial lung diseases have known aetiologies, most are idiopathic in nature, and of these, idiopathic pulmonary fibrosis is the most common and carries with it an appalling prognosis - median survival from the time of diagnosis is less than 3 years. This reflects the lack of any effective therapy to modify the course of the disease, which in turn is indicative of our incomplete understanding of the pathogenesis of this condition. Current prevailing hypotheses focus on dysregulated epithelial-mesenchymal interactions promoting a cycle of continued epithelial cell injury and fibroblast activation leading to progressive fibrosis. However, it is likely that multiple abnormalities in a myriad of biological pathways affecting inflammation and wound repair - including matrix regulation, epithelial reconstitution, the coagulation cascade, neovascularization and antioxidant pathways - modulate this defective crosstalk and promote fibrogenesis. This review aims to offer a pathogenetic rationale behind current therapies, briefly outlining previous and ongoing clinical trials, but will focus on recent and exciting advancements in our understanding of the pathogenesis of idiopathic pulmonary fibrosis, which may ultimately lead to the development of novel and effective therapeutic interventions for this devastating condition.
Collapse
Affiliation(s)
- Arnab Datta
- Centre for Respiratory Research, University College London, Rayne Institute, UK
| | | | | |
Collapse
|
45
|
Baugé C, Cauvard O, Leclercq S, Galéra P, Boumédiene K. Modulation of transforming growth factor beta signalling pathway genes by transforming growth factor beta in human osteoarthritic chondrocytes: involvement of Sp1 in both early and late response cells to transforming growth factor beta. Arthritis Res Ther 2011; 13:R23. [PMID: 21324108 PMCID: PMC3241367 DOI: 10.1186/ar3247] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 01/06/2011] [Accepted: 02/15/2011] [Indexed: 12/21/2022] Open
Abstract
Introduction Transforming growth factor beta (TGFβ) plays a central role in morphogenesis, growth, and cell differentiation. This cytokine is particularly important in cartilage where it regulates cell proliferation and extracellular matrix synthesis. While the action of TGFβ on chondrocyte metabolism has been extensively catalogued, the modulation of specific genes that function as mediators of TGFβ signalling is poorly defined. In the current study, elements of the Smad component of the TGFβ intracellular signalling system and TGFβ receptors were characterised in human chondrocytes upon TGFβ1 treatment. Methods Human articular chondrocytes were incubated with TGFβ1. Then, mRNA and protein levels of TGFβ receptors and Smads were analysed by RT-PCR and western blot analysis. The role of specific protein 1 (Sp1) was investigated by gain and loss of function (inhibitor, siRNA, expression vector). Results We showed that TGFβ1 regulates mRNA levels of its own receptors, and of Smad3 and Smad7. It modulates TGFβ receptors post-transcriptionally by affecting their mRNA stability, but does not change the Smad-3 and Smad-7 mRNA half-life span, suggesting a potential transcriptional effect on these genes. Moreover, the transcriptional factor Sp1, which is downregulated by TGFβ1, is involved in the repression of both TGFβ receptors but not in the modulation of Smad3 and Smad7. Interestingly, Sp1 ectopic expression permitted also to maintain a similar expression pattern to early response to TGFβ at 24 hours of treatment. It restored the induction of Sox9 and COL2A1 and blocked the late response (repression of aggrecan, induction of COL1A1 and COL10A1). Conclusions These data help to better understand the negative feedback loop in the TGFβ signalling system, and enlighten an interesting role of Sp1 to regulate TGFβ response.
Collapse
Affiliation(s)
- Catherine Baugé
- Laboratory of Extracellular Matrix and Pathology, Université Caen, IFR ICORE 146, Esplanade de la Paix, 14032 Caen cedex, France.
| | | | | | | | | |
Collapse
|
46
|
Zhang Y, Bao YL, Yang MT, Wu Y, Yu CL, Huang YX, Sun Y, Zheng LH, Li YX. Activin A induces SLC5A8 expression through the Smad3 signaling pathway in human colon cancer RKO cells. Int J Biochem Cell Biol 2010; 42:1964-72. [DOI: 10.1016/j.biocel.2010.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 08/04/2010] [Accepted: 08/16/2010] [Indexed: 10/19/2022]
|
47
|
Abstract
Transforming growth factor beta (TGFβ) is a key regulator of epithelial cell proliferation, immune function and angiogenesis. Because TGFβ signaling maintains epithelial homeostasis, dysregulated TGFβ signaling is common in many malignancies, including head and neck squamous cell carcinoma (HNSCC). Defective TGFβ signaling in epithelial cells causes hyperproliferation, reduced apoptosis and increased genomic instability, and the compensatory increase in TGFβ production by tumor epithelial cells with TGFβ signaling defects further promotes tumor growth and metastases by increasing angiogenesis and inflammation in tumor stromal cells. Here, we review the mouse models that we used to study TGFβ signaling in HNSCC.
Collapse
|
48
|
Abstract
The signaling pathway mediated by transforming growth factor-beta (TGF-beta) participates in various biologic processes, including cell growth, differentiation, angiogenesis, apoptosis, and extracellular matrix remodeling. In the context of cancer, TGF-beta signaling can inhibit tumor growth in early-stage tumors. However, in late-stage tumors, the very same pathway promotes tumor invasiveness and metastasis. This paradoxical effect is mediated through similar to mothers against decapentaplegic or Smad protein dependent and independent mechanisms and provides an opportunity for targeted cancer therapy. This review summarizes the molecular process of TGF-beta signaling and the changes in inhibitory Smads that contribute to lung cancer progression. We also present current approaches for rational therapies that target the TGF-beta signaling pathway in cancer.
Collapse
|
49
|
Masszi A, Speight P, Charbonney E, Lodyga M, Nakano H, Szászi K, Kapus A. Fate-determining mechanisms in epithelial-myofibroblast transition: major inhibitory role for Smad3. ACTA ACUST UNITED AC 2010; 188:383-99. [PMID: 20123992 PMCID: PMC2819691 DOI: 10.1083/jcb.200906155] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Smad3 inhibits activation of the smooth muscle actin promoter and functions as a timer for myogenic programming in the epithelium. Epithelial–myofibroblast (MF) transition (EMyT) is a critical process in organ fibrosis, leading to α–smooth muscle actin (SMA) expression in the epithelium. The mechanism underlying the activation of this myogenic program is unknown. We have shown previously that both injury to intercellular contacts and transforming growth factor β (TGF-β) are indispensable for SMA expression (two-hit model) and that contact disruption induces nuclear translocation of myocardin-related transcription factor (MRTF). Because the SMA promoter harbors both MRTF-responsive CC(A/T)-rich GG element (CArG) boxes and TGF-β–responsive Smad-binding elements, we hypothesized that the myogenic program is mobilized by a synergy between MRTF and Smad3. In this study, we show that the synergy between injury and TGF-β exclusively requires CArG elements. Surprisingly, Smad3 inhibits MRTF-driven activation of the SMA promoter, and Smad3 silencing renders injury sufficient to induce SMA expression. Furthermore, Smad3 is degraded under two-hit conditions, thereby liberating the myogenic program. Thus, Smad3 is a critical timer/delayer of MF commitment in the epithelium, and EMyT can be dissected into Smad3-promoted (mesenchymal) and Smad3-inhibited (myogenic) phases.
Collapse
Affiliation(s)
- András Masszi
- Keenan Research Centre, Li Ka Shing Knowledge Institute, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Güller MC, André J, Legrand A, Setterblad N, Mauviel A, Verrecchia F, Daniel F, Bernuau D. c-Fos accelerates hepatocyte conversion to a fibroblastoid phenotype through ERK-mediated upregulation of paxillin-Serine178 phosphorylation. Mol Carcinog 2009; 48:532-44. [PMID: 18973190 DOI: 10.1002/mc.20492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transforming growth factor beta (TGF-beta) exerts an important role in the late steps of carcinogenesis by cooperating with Ras to induce cell motility and tumor invasion. The transcription complex AP-1 has been implicated in the regulation of genes involved in motility and invasion, by mechanisms not yet delineated. We utilized a model of immortalized human hepatocytes (IHH) overexpressing c-Fos (IHH-Fos) or not (IHH-C) to investigate the role of c-Fos on cell motility in response to a prolonged treatment with TGF-beta, EGF or a combination of both. Cotreatment with EGF and TGF-beta, but neither cytokine alone, induced the conversion of hepatocytes to a fibroblastoid phenotype and increased their motility in Boyden chambers. EGF/TGF-beta cotreatment induced a higher effect on ERK phosphorylation compared to TGF-beta treatment alone. It also induced an increase in total and phosphorylated Ser(178) paxillin, a protein previously implicated in cell motility. This response was inhibited by two specific MEK inhibitors, indicating the involvement of the ERK pathway in paxillin activation. Overexpression of c-Fos correlated with increased cell scattering and motility, higher levels of ERK activation and phospho Ser(178) paxillin, increased levels of EGF receptor (EGF-R) mRNA and higher EGF-R phosphorylation levels following EGF/TGF-beta cotreatment. Conversely, siRNA-mediated invalidation of c-Fos delayed the appearance of fibroblastoid cells, decreased EGF-R mRNA and downregulated ERK and Ser(178) paxillin phosphorylations, indicating that c-Fos activates hepatocyte motility through an EGF-R/ERK/paxillin pathway. Since c-Fos is frequently overexpressed in hepatocarcinomas, this newly identified mechanism might be involved in the progression of hepatic tumors in vivo.
Collapse
Affiliation(s)
- Meryem C Güller
- INSERM U697, Université Paris 7 Denis Diderot, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|