1
|
Singh A, Malhotra L, Mishra A, Kundral S, Tiwari PK, Kumar S, Gururao H, Kaur P, Ethayathulla AS. The R337C mutation in the p53 oligomerization domain affects the regulatory domain and its ability to bind response elements: Evidence based on structural and biophysical studies. Arch Biochem Biophys 2025; 768:110381. [PMID: 40064360 DOI: 10.1016/j.abb.2025.110381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/07/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
The homotetrameric form of p53 is critical for performing essential functions like maintaining genomic stability and preventing uncontrolled cell proliferation. In part, these crucial functions are mediated by the p53 C-terminal region (CTR) containing the tetramerization/oligomerization domain (TD/OD) and regulatory domain (RD), responsible for maintaining the protein's oligomeric state and regulating its function. Mutations in the tetramerization domain reduce the transactivation potential and alter the transactivation specificity of p53. This study investigates the effect of high-frequency tetramerization missense mutation p53R337C on protein stability, oligomeric state, and its ability to bind the DNA response elements. For the first time using CD and FTIR spectroscopy, we have shown that the p53 regulatory domain (residues 363-393) and oligomerization domain (residues 327-355) possess a characteristic alpha helix secondary structure, which is enhanced upon binding to DNA, implicating stabilization of the domain. The mutation R337C in the OD impacts the secondary and tertiary structure of p53 CTR, leading to the loss of secondary structure and the formation of unstable tetramers, as shown by CD and DSC thermal studies. Surprisingly, the secondary structure of mutant p53 CTR partially stabilized upon binding to the DNA sequence. Our data suggests that the unstable p53R337C tetramer exhibits weaker binding to the DNA promoter sequence with decreased transcription activity, consistent with previous cell-based assays. Our study conclude that the loss of salt-bridge interactions between Arg337 and Asp352 in the intra-dimer of p53 leads to the formation of unstable tetramers, and the DNA-binding ability of the regulatory domain.
Collapse
Affiliation(s)
- Alankrita Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Lakshay Malhotra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India; Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, 110021, India
| | - Abhay Mishra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Simran Kundral
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Pawan Kumar Tiwari
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Hariprasad Gururao
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | |
Collapse
|
2
|
Löffler T, Krüger A, Zirak P, Winterhalder MJ, Müller AL, Fischbach A, Mangerich A, Zumbusch A. Influence of chain length and branching on poly(ADP-ribose)-protein interactions. Nucleic Acids Res 2023; 51:536-552. [PMID: 36625274 PMCID: PMC9881148 DOI: 10.1093/nar/gkac1235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/16/2022] [Accepted: 12/10/2022] [Indexed: 01/11/2023] Open
Abstract
Hundreds of proteins interact with poly(ADP-ribose) (PAR) via multiple PAR interaction motifs, thereby regulating their physico-chemical properties, sub-cellular localizations, enzymatic activities, or protein stability. Here, we present a targeted approach based on fluorescence correlation spectroscopy (FCS) to characterize potential structure-specific interactions of PAR molecules of defined chain length and branching with three prime PAR-binding proteins, the tumor suppressor protein p53, histone H1, and the histone chaperone APLF. Our study reveals complex and structure-specific PAR-protein interactions. Quantitative Kd values were determined and binding affinities for all three proteins were shown to be in the nanomolar range. We report PAR chain length dependent binding of p53 and H1, yet chain length independent binding of APLF. For all three PAR binders, we found a preference for linear over hyperbranched PAR. Importantly, protein- and PAR-structure-specific binding modes were revealed. Thus, while the H1-PAR interaction occurred largely on a bi-molecular 1:1 basis, p53-and potentially also APLF-can form complex multivalent PAR-protein structures. In conclusion, our study gives detailed and quantitative insight into PAR-protein interactions in a solution-based setting at near physiological buffer conditions. The results support the notion of protein and PAR-structure-specific binding modes that have evolved to fit the purpose of the respective biochemical functions and biological contexts.
Collapse
Affiliation(s)
| | | | - Peyman Zirak
- Department of Chemistry, Universität Konstanz, Konstanz D-78457, Germany
| | | | - Anna-Lena Müller
- Department of Chemistry, Universität Konstanz, Konstanz D-78457, Germany
| | - Arthur Fischbach
- Department of Biology, Universität Konstanz, Konstanz D-78457, Germany
| | - Aswin Mangerich
- To whom correspondence should be addressed. Tel: +49 33200 88 5301;
| | - Andreas Zumbusch
- Correspondence may also be addressed to Andreas Zumbusch. Tel: +49 7531 882027;
| |
Collapse
|
3
|
Kennedy BE, Giacomantonio M, Murphy JP, Cutler S, Sadek M, Konda P, Paulo JA, Pathak GP, Renkens SH, Grieve S, Pol J, Gygi SP, Richardson C, Gaston D, Reiman A, Kroemer G, Elnenaei MO, Gujar SA. NAD+ depletion enhances reovirus-induced oncolysis in multiple myeloma. Mol Ther Oncolytics 2022; 24:695-706. [PMID: 35284625 PMCID: PMC8904403 DOI: 10.1016/j.omto.2022.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/17/2022] [Indexed: 11/26/2022] Open
Abstract
Cancer cell energy metabolism plays an important role in dictating the efficacy of oncolysis by oncolytic viruses. To understand the role of multiple myeloma metabolism in reovirus oncolysis, we performed semi-targeted mass spectrometry-based metabolomics on 12 multiple myeloma cell lines and revealed a negative correlation between NAD+ levels and susceptibility to oncolysis. Likewise, a negative correlation was observed between the activity of the rate-limiting NAD+ synthesis enzyme NAMPT and oncolysis. Indeed, depletion of NAD+ levels by pharmacological inhibition of NAMPT using FK866 sensitized several myeloma cell lines to reovirus-induced killing. The myelomas that were most sensitive to this combination therapy expressed a functional p53 and had a metabolic and transcriptomic profile favoring mitochondrial metabolism over glycolysis, with the highest synergistic effect in KMS12 cells. Mechanistically, U-13C-labeled glucose flux, extracellular flux analysis, multiplex proteomics, and cell death assays revealed that the reovirus + FK866 combination caused mitochondrial dysfunction and energy depletion, leading to enhanced autophagic cell death in KMS12 cells. Finally, the combination of reovirus and NAD+ depletion achieved greater antitumor effects in KMS12 tumors in vivo and patient-derived CD138+ multiple myeloma cells. These findings identify NAD+ depletion as a potential combinatorial strategy to enhance the efficacy of oncolytic virus-based therapies in multiple myeloma.
Collapse
|
4
|
Yu Y, Dong X, Tang Y, Li L, Wei G. Mechanistic insight into the destabilization of p53TD tetramer by cancer-related R337H mutation: a molecular dynamics study. Phys Chem Chem Phys 2022; 24:5199-5210. [PMID: 35166747 DOI: 10.1039/d1cp05670k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The p53 protein is a tumor suppressor crucial for cell cycle and genome integrity. In a very large proportion of human cancers, p53 is frequently inactivated by mutations located in its DNA-binding domain (DBD). Some experimental studies reported that the inherited R337H mutation located in the p53 tetramerization domain (p53TD) can also result in destabilization of the p53 protein, and consequently lead to an organism prone to cancer setup. However, the underlying R337H mutation-induced structural destabilization mechanism is not well understood. Herein, we investigate the structural stability and dynamic property of the wild type p53TD tetramer and its cancer-related R337H mutant by performing multiple microsecond molecular dynamics simulations. It is found that R337H mutation destroys the R337-D352 hydrogen bonds, weakens the F341-F341 π-π stacking interaction and the hydrophobic interaction between aliphatic hydrocarbons of R337 and M340, leading to more solvent exposure of all the hydrophobic cores, and thus disrupting the structural integrity of the tetramer. Importantly, our simulations show for the first time that R337H mutation results in unfolding of the α-helix starting from the N-terminal region (residues 335RER(H)FEM340). Consistently, community network analyses reveal that R337H mutation reduces dynamical correlation and global connectivity of p53TD tetramer, which destabilizes the structure of the p53TD tetramer. This study provides the atomistic mechanism of R337H mutation-induced destabilization of p53TD tetramer, which might be helpful for in-depth understanding of the p53 loss-of-function mechanism.
Collapse
Affiliation(s)
- Yawei Yu
- Department of physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Xuewei Dong
- Department of physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Yiming Tang
- Department of physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Le Li
- Department of physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Guanghong Wei
- Department of physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
5
|
Annor GK, Elshabassy N, Lundine D, Conde DG, Xiao G, Ellison V, Bargonetti J. Oligomerization of Mutant p53 R273H is not Required for Gain-of-Function Chromatin Associated Activities. Front Cell Dev Biol 2021; 9:772315. [PMID: 34881245 PMCID: PMC8645790 DOI: 10.3389/fcell.2021.772315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/28/2021] [Indexed: 01/11/2023] Open
Abstract
The TP53 gene is often mutated in cancer, with missense mutations found in the central DNA binding domain, and less often in the C-terminal oligomerization domain (OD). These types of mutations are found in patients with the rare inherited cancer predisposition disorder called Li-Fraumeni syndrome. We previously found that mutant p53 (mtp53) R273H associates with replicating DNA and promotes the chromatin association of replication-associated proteins mini-chromosome maintenance 2 (MCM2), and poly ADP-ribose polymerase 1(PARP1). Herein, we created dual mutants in order to test if the oligomerization state of mtp53 R273H played a role in chromatin binding oncogenic gain-of-function (GOF) activities. We used site-directed mutagenesis to introduce point mutations in the OD in wild-type p53 (wtp53), and mtp53 R273H expressing plasmids. The glutaraldehyde crosslinking assay revealed that both wtp53 and mtp53 R273H formed predominantly tetramers, while the single OD mutant A347D, and the dual mtp53 R273H-A347D, formed predominantly dimers. The R337C, L344P, mtp53 R273H-R337C, and mtp53 R273H-L344P proteins formed predominantly monomers. Wtp53 was able to activate the cyclin-dependent kinase gene p21/waf and the p53 feedback regulator MDM2. As expected, the transactivation activity was lost for all the single mutants, as well as the mtp53 R273H-dual mutants. Importantly, mtp53 R273H and the dual oligomerization mutants, R273H-A347D, R273H-R337C, and R273H-L344P were able to interact with chromatin. Additionally, the dual oligomerization mutants, R273H-A347D, R273H-R337C, and R273H-L344P, maintained strong interactions with MCM2 and PARP1. Our findings suggest that while mtp53 R273H can form tetramers, tetramer formation is not required for the GOF associated chromatin interactions.
Collapse
Affiliation(s)
- George K. Annor
- The Department of Biological Sciences Hunter College, Belfer Research Building, City University of New York, New York, NY, United States
- The Graduate Center Biology and Biochemistry Programs of City University of New York, New York, NY, United States
| | - Nour Elshabassy
- The Department of Biological Sciences Hunter College, Belfer Research Building, City University of New York, New York, NY, United States
| | - Devon Lundine
- The Department of Biological Sciences Hunter College, Belfer Research Building, City University of New York, New York, NY, United States
- The Graduate Center Biology and Biochemistry Programs of City University of New York, New York, NY, United States
| | - Don-Gerard Conde
- The Department of Biological Sciences Hunter College, Belfer Research Building, City University of New York, New York, NY, United States
| | - Gu Xiao
- The Department of Biological Sciences Hunter College, Belfer Research Building, City University of New York, New York, NY, United States
| | - Viola Ellison
- The Department of Biological Sciences Hunter College, Belfer Research Building, City University of New York, New York, NY, United States
| | - Jill Bargonetti
- The Department of Biological Sciences Hunter College, Belfer Research Building, City University of New York, New York, NY, United States
- The Graduate Center Biology and Biochemistry Programs of City University of New York, New York, NY, United States
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York City, NY, United States
| |
Collapse
|
6
|
p53 mediates target gene association with nuclear speckles for amplified RNA expression. Mol Cell 2021; 81:1666-1681.e6. [PMID: 33823140 DOI: 10.1016/j.molcel.2021.03.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/05/2021] [Accepted: 03/03/2021] [Indexed: 01/01/2023]
Abstract
Nuclear speckles are prominent nuclear bodies that contain proteins and RNA involved in gene expression. Although links between nuclear speckles and gene activation are emerging, the mechanisms regulating association of genes with speckles are unclear. We find that speckle association of p53 target genes is driven by the p53 transcription factor. Focusing on p21, a key p53 target, we demonstrate that speckle association boosts expression by elevating nascent RNA amounts. p53-regulated speckle association did not depend on p53 transactivation functions but required an intact proline-rich domain and direct DNA binding, providing mechanisms within p53 for regulating gene-speckle association. Beyond p21, a substantial subset of p53 targets have p53-regulated speckle association. Strikingly, speckle-associating p53 targets are more robustly activated and occupy a distinct niche of p53 biology compared with non-speckle-associating p53 targets. Together, our findings illuminate regulated speckle association as a mechanism used by a transcription factor to boost gene expression.
Collapse
|
7
|
Friedel L, Loewer A. The guardian's choice: how p53 enables context-specific decision-making in individual cells. FEBS J 2021; 289:40-52. [PMID: 33590949 DOI: 10.1111/febs.15767] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 01/20/2023]
Abstract
p53 plays a central role in defending the genomic integrity of our cells. In response to genotoxic stress, this tumour suppressor orchestrates the expression of hundreds of target genes, which induce a variety of cellular outcomes ranging from damage repair to induction of apoptosis. In this review, we examine how the p53 response is regulated on several levels in individual cells to allow precise and context-specific fate decisions. We discuss that the p53 response is not only controlled by its canonical regulators but also controlled by interconnected signalling pathways that influence the dynamics of p53 accumulation upon damage and modulate its transcriptional activity at target gene promoters. Additionally, we consider how the p53 response is diversified through a variety of mechanisms at the promoter level and beyond to induce context-specific outcomes in individual cells. These layers of regulation allow p53 to react in a stimulus-specific manner and fine-tune its signalling according to the individual needs of a given cell, enabling it to take the right decision on survival or death.
Collapse
Affiliation(s)
- Laura Friedel
- Systems Biology of the Stress Response, Department of Biology, Technical University of Darmstadt, Germany
| | - Alexander Loewer
- Systems Biology of the Stress Response, Department of Biology, Technical University of Darmstadt, Germany
| |
Collapse
|
8
|
García‐Cano J, Sánchez‐Tena S, Sala‐Gaston J, Figueras A, Viñals F, Bartrons R, Ventura F, Rosa JL. Regulation of the MDM2-p53 pathway by the ubiquitin ligase HERC2. Mol Oncol 2020; 14:69-86. [PMID: 31665549 PMCID: PMC6944118 DOI: 10.1002/1878-0261.12592] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/30/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
Abstract
The p53 tumor suppressor protein is a transcription factor that plays a prominent role in protecting cells from malignant transformation. Protein levels of p53 and its transcriptional activity are tightly regulated by the ubiquitin E3 ligase MDM2, the gene expression of which is transcriptionally regulated by p53 in a negative feedback loop. The p53 protein is transcriptionally active as a tetramer, and this oligomerization state is modulated by a complex formed by NEURL4 and the ubiquitin E3 ligase HERC2. Here, we report that MDM2 forms a complex with oligomeric p53, HERC2, and NEURL4. HERC2 knockdown results in a decline in MDM2 protein levels without affecting its protein stability, as it reduces its mRNA expression by inhibition of its promoter activation. DNA damage induced by bleomycin dissociates MDM2 from the p53/HERC2/NEURL4 complex and increases the phosphorylation and acetylation of oligomeric p53 bound to HERC2 and NEURL4. Moreover, the MDM2 promoter, which contains p53-response elements, competes with HERC2 for binding of oligomeric, phosphorylated and acetylated p53. We integrate these findings in a model showing the pivotal role of HERC2 in p53-MDM2 loop regulation. Altogether, these new insights in p53 pathway regulation are of great interest in cancer and may provide new therapeutic targets.
Collapse
Affiliation(s)
- Jesús García‐Cano
- Departament de Ciències FisiològiquesInstitut d’Investigació de Bellvitge (IDIBELL)Universitat de Barcelona: Pavelló de GovernSpain
| | - Susana Sánchez‐Tena
- Departament de Ciències FisiològiquesInstitut d’Investigació de Bellvitge (IDIBELL)Universitat de Barcelona: Pavelló de GovernSpain
| | - Joan Sala‐Gaston
- Departament de Ciències FisiològiquesInstitut d’Investigació de Bellvitge (IDIBELL)Universitat de Barcelona: Pavelló de GovernSpain
| | - Agnès Figueras
- Departament de Ciències FisiològiquesInstitut d’Investigació de Bellvitge (IDIBELL)Universitat de Barcelona: Pavelló de GovernSpain
| | - Francesc Viñals
- Departament de Ciències FisiològiquesInstitut d’Investigació de Bellvitge (IDIBELL)Universitat de Barcelona: Pavelló de GovernSpain
| | - Ramon Bartrons
- Departament de Ciències FisiològiquesInstitut d’Investigació de Bellvitge (IDIBELL)Universitat de Barcelona: Pavelló de GovernSpain
| | - Francesc Ventura
- Departament de Ciències FisiològiquesInstitut d’Investigació de Bellvitge (IDIBELL)Universitat de Barcelona: Pavelló de GovernSpain
| | - Jose Luis Rosa
- Departament de Ciències FisiològiquesInstitut d’Investigació de Bellvitge (IDIBELL)Universitat de Barcelona: Pavelló de GovernSpain
| |
Collapse
|
9
|
Fischbach A, Krüger A, Hampp S, Assmann G, Rank L, Hufnagel M, Stöckl MT, Fischer JMF, Veith S, Rossatti P, Ganz M, Ferrando-May E, Hartwig A, Hauser K, Wiesmüller L, Bürkle A, Mangerich A. The C-terminal domain of p53 orchestrates the interplay between non-covalent and covalent poly(ADP-ribosyl)ation of p53 by PARP1. Nucleic Acids Res 2019; 46:804-822. [PMID: 29216372 PMCID: PMC5778597 DOI: 10.1093/nar/gkx1205] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/22/2017] [Indexed: 01/25/2023] Open
Abstract
The post-translational modification poly(ADP-ribosyl)ation (PARylation) plays key roles in genome maintenance and transcription. Both non-covalent poly(ADP-ribose) binding and covalent PARylation control protein functions, however, it is unknown how the two modes of modification crosstalk mechanistically. Employing the tumor suppressor p53 as a model substrate, this study provides detailed insights into the interplay between non-covalent and covalent PARylation and unravels its functional significance in the regulation of p53. We reveal that the multifunctional C-terminal domain (CTD) of p53 acts as the central hub in the PARylation-dependent regulation of p53. Specifically, p53 bound to auto-PARylated PARP1 via highly specific non–covalent PAR-CTD interaction, which conveyed target specificity for its covalent PARylation by PARP1. Strikingly, fusing the p53-CTD to a protein that is normally not PARylated, renders this a target for covalent PARylation as well. Functional studies revealed that the p53–PAR interaction had substantial implications on molecular and cellular levels. Thus, PAR significantly influenced the complex p53–DNA binding properties and controlled p53 functions, with major implications on the p53-dependent interactome, transcription, and replication-associated recombination. Remarkably, this mechanism potentially also applies to other PARylation targets, since a bioinformatics analysis revealed that CTD-like regions are highly enriched in the PARylated proteome.
Collapse
Affiliation(s)
- Arthur Fischbach
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Annika Krüger
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany.,Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Stephanie Hampp
- Department of Obstetrics and Gynaecology, University of Ulm, 89075 Ulm, Germany
| | - Greta Assmann
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Lisa Rank
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Matthias Hufnagel
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Martin T Stöckl
- Bioimaging Center, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Jan M F Fischer
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Sebastian Veith
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Research Training Group 1331, University of Konstanz, 78457 Konstanz, Germany
| | - Pascal Rossatti
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Magdalena Ganz
- Bioimaging Center, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Elisa Ferrando-May
- Bioimaging Center, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Karin Hauser
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynaecology, University of Ulm, 89075 Ulm, Germany
| | - Alexander Bürkle
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Aswin Mangerich
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
10
|
Hafner A, Bulyk ML, Jambhekar A, Lahav G. The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol 2019; 20:199-210. [DOI: 10.1038/s41580-019-0110-x] [Citation(s) in RCA: 452] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Wild-type p53 oligomerizes more efficiently than p53 hot-spot mutants and overcomes mutant p53 gain-of-function via a "dominant-positive" mechanism. Oncotarget 2018; 9:32063-32080. [PMID: 30174797 PMCID: PMC6112834 DOI: 10.18632/oncotarget.25944] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/21/2018] [Indexed: 12/24/2022] Open
Abstract
Human p53 protein acts as a transcription factor predominantly in a tetrameric form. Single residue changes, caused by hot-spot mutations of the TP53 gene in human cancer, transform wild-type (wt) p53 tumor suppressor proteins into potent oncoproteins - with gain-of-function, tumor-promoting activity. Oligomerization of p53 allows for a direct interplay between wt and mutant p53 proteins if both are present in the same cells - where a mutant p53's dominant-negative effect known to inactivate wt p53, co-exists with an opposite mechanism - a "dominant-positive" suppression of the mutant p53's gain-of-function activity by wt p53. In this study we determine the oligomerization efficiency of wt and mutant p53 in living cells using FRET-based assays and describe wt p53 to be more efficient than mutant p53 in entering p53 oligomers. The biased p53 oligomerization helps to interpret earlier reports of a low efficiency of the wt p53 inactivation via the dominant-negative effect, while it also implies that the "dominant-positive" effect may be more pronounced. Indeed, we show that at similar wt:mutant p53 concentrations in cells - the mutant p53 gain-of-function stimulation of gene transcription and cell migration is more efficiently inhibited than the wt p53's tumor-suppressive transactivation and suppression of cell migration. These results suggest that the frequent mutant p53 accumulation in human tumor cells does not only directly strengthen its gain-of-function activity, but also protects the oncogenic p53 mutants from the functional dominance of wt p53.
Collapse
|
12
|
De La Cruz-Herrera CF, Shire K, Siddiqi UZ, Frappier L. A genome-wide screen of Epstein-Barr virus proteins that modulate host SUMOylation identifies a SUMO E3 ligase conserved in herpesviruses. PLoS Pathog 2018; 14:e1007176. [PMID: 29979787 PMCID: PMC6051671 DOI: 10.1371/journal.ppat.1007176] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/18/2018] [Accepted: 06/22/2018] [Indexed: 12/30/2022] Open
Abstract
Many cellular processes pertinent for viral infection are regulated by the addition of small ubiquitin-like modifiers (SUMO) to key regulatory proteins, making SUMOylation an important mechanism by which viruses can commandeer cellular pathways. Epstein-Barr virus (EBV) is a master at manipulating of cellular processes, which enables life-long infection but can also lead to the induction of a variety of EBV-associated cancers. To identify new mechanisms by which EBV proteins alter cells, we screened a library of 51 EBV proteins for global effects on cellular SUMO1 and SUMO2 modifications (SUMOylation), identifying several proteins not previously known to manipulate this pathway. One EBV protein (BRLF1) globally induced the loss of SUMOylated proteins, in a proteasome-dependent manner, as well as the loss of promeylocytic leukemia nuclear bodies. However, unlike its homologue (Rta) in Kaposi's sarcoma associated herpesvirus, it did not appear to have ubiquitin ligase activity. In addition we identified the EBV SM protein as globally upregulating SUMOylation and showed that this activity was conserved in its homologues in herpes simplex virus 1 (HSV1 UL54/ICP27) and cytomegalovirus (CMV UL69). All three viral homologues were shown to bind SUMO and Ubc9 and to have E3 SUMO ligase activity in a purified system. These are the first SUMO E3 ligases discovered for EBV, HSV1 and CMV. Interestingly the homologues had different specificities for SUMO1 and SUMO2, with SM and UL69 preferentially binding SUMO1 and inducing SUMO1 modifications, and UL54 preferentially binding SUMO2 and inducing SUMO2 modifications. The results provide new insights into the function of this family of conserved herpesvirus proteins, and the conservation of this SUMO E3 ligase activity across diverse herpesviruses suggests the importance of this activity for herpesvirus infections.
Collapse
Affiliation(s)
| | - Kathy Shire
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Umama Z. Siddiqi
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
13
|
Du Z, Yu J, Li F, Deng L, Wu F, Huang X, Bergstrand J, Widengren J, Dong C, Ren J. In Situ Monitoring of p53 Protein and MDM2 Protein Interaction in Single Living Cells Using Single-Molecule Fluorescence Spectroscopy. Anal Chem 2018; 90:6144-6151. [DOI: 10.1021/acs.analchem.8b00473] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | | | | | | | | | | | - Jan Bergstrand
- Experimental Biomolecular
Physics, Department of Applied Physics, Royal Institute of Technology, Stockholm, 106 91, Sweden
| | - Jerker Widengren
- Experimental Biomolecular
Physics, Department of Applied Physics, Royal Institute of Technology, Stockholm, 106 91, Sweden
| | | | | |
Collapse
|
14
|
Billant O, Léon A, Le Guellec S, Friocourt G, Blondel M, Voisset C. The dominant-negative interplay between p53, p63 and p73: A family affair. Oncotarget 2018; 7:69549-69564. [PMID: 27589690 PMCID: PMC5342497 DOI: 10.18632/oncotarget.11774] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 07/10/2016] [Indexed: 12/15/2022] Open
Abstract
The tumor suppression activity of p53 is frequently impaired in cancers even when a wild-type copy of the gene is still present, suggesting that a dominant-negative effect is exerted by some of p53 mutants and isoforms. p63 and p73, which are related to p53, have also been reported to be subjected to a similar loss of function, suggesting that a dominant-negative interplay might happen between p53, p63 and p73. However, to which extent p53 hotspot mutants and isoforms of p53, p63 and p73 are able to interfere with the tumor suppressive activity of their siblings as well as the underlying mechanisms remain undeciphered. Using yeast, we showed that a dominant-negative effect is widely spread within the p53/p63/p73 family as all p53 loss-of-function hotspot mutants and several of the isoforms of p53 and p73 tested exhibit a dominant-negative potential. In addition, we found that this dominant-negative effect over p53 wild-type is based on tetramer poisoning through the formation of inactive hetero-tetramers and does not rely on a prion-like mechanism contrary to what has been previously suggested. We also showed that mutant p53-R175H gains the ability to inhibit p63 and p73 activity by a mechanism that is only partially based on tetramerization.
Collapse
Affiliation(s)
- Olivier Billant
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Alice Léon
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Solenn Le Guellec
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Gaëlle Friocourt
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Marc Blondel
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Cécile Voisset
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| |
Collapse
|
15
|
Cubillos-Rojas M, Schneider T, Hadjebi O, Pedrazza L, de Oliveira JR, Langa F, Guénet JL, Duran J, de Anta JM, Alcántara S, Ruiz R, Pérez-Villegas EM, Aguilar-Montilla FJ, Carrión ÁM, Armengol JA, Baple E, Crosby AH, Bartrons R, Ventura F, Rosa JL. The HERC2 ubiquitin ligase is essential for embryonic development and regulates motor coordination. Oncotarget 2018; 7:56083-56106. [PMID: 27528230 PMCID: PMC5302898 DOI: 10.18632/oncotarget.11270] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/01/2016] [Indexed: 01/22/2023] Open
Abstract
A mutation in the HERC2 gene has been linked to a severe neurodevelopmental disorder with similarities to the Angelman syndrome. This gene codifies a protein with ubiquitin ligase activity that regulates the activity of tumor protein p53 and is involved in important cellular processes such as DNA repair, cell cycle, cancer, and iron metabolism. Despite the critical role of HERC2 in these physiological and pathological processes, little is known about its relevance in vivo. Here, we described a mouse with targeted inactivation of the Herc2 gene. Homozygous mice were not viable. Distinct from other ubiquitin ligases that interact with p53, such as MDM2 or MDM4, p53 depletion did not rescue the lethality of homozygous mice. The HERC2 protein levels were reduced by approximately one-half in heterozygous mice. Consequently, HERC2 activities, including ubiquitin ligase and stimulation of p53 activity, were lower in heterozygous mice. A decrease in HERC2 activities was also observed in human skin fibroblasts from individuals with an Angelman-like syndrome that express an unstable mutant protein of HERC2. Behavioural analysis of heterozygous mice identified an impaired motor synchronization with normal neuromuscular function. This effect was not observed in p53 knockout mice, indicating that a mechanism independent of p53 activity is involved. Morphological analysis showed the presence of HERC2 in Purkinje cells and a specific loss of these neurons in the cerebella of heterozygous mice. In these animals, an increase of autophagosomes and lysosomes was observed. Our findings establish a crucial role of HERC2 in embryonic development and motor coordination.
Collapse
Affiliation(s)
- Monica Cubillos-Rojas
- Departament de Ciències Fisiològiques, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Taiane Schneider
- Departament de Ciències Fisiològiques, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ouadah Hadjebi
- Departament de Ciències Fisiològiques, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Leonardo Pedrazza
- Departament de Ciències Fisiològiques, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Francina Langa
- Département de Biologie du Développement, Institut Pasteur, Paris, France
| | - Jean-Louis Guénet
- Département de Biologie du Développement, Institut Pasteur, Paris, France
| | - Joan Duran
- Departament de Patologia i Terapèutica Experimental, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep Maria de Anta
- Departament de Patologia i Terapèutica Experimental, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Soledad Alcántara
- Departament de Patologia i Terapèutica Experimental, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rocio Ruiz
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain.,Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| | - Eva María Pérez-Villegas
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| | | | - Ángel M Carrión
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| | - Jose Angel Armengol
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| | - Emma Baple
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Wellcome Wolfson Centre, Exeter, UK
| | - Andrew H Crosby
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Wellcome Wolfson Centre, Exeter, UK
| | - Ramon Bartrons
- Departament de Ciències Fisiològiques, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
16
|
Oligomerization of the tetramerization domain of p53 probed by two- and three-color single-molecule FRET. Proc Natl Acad Sci U S A 2017; 114:E6812-E6821. [PMID: 28760960 DOI: 10.1073/pnas.1700357114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe a method that combines two- and three-color single-molecule FRET spectroscopy with 2D FRET efficiency-lifetime analysis to probe the oligomerization process of intrinsically disordered proteins. This method is applied to the oligomerization of the tetramerization domain (TD) of the tumor suppressor protein p53. TD exists as a monomer at subnanomolar concentrations and forms a dimer and a tetramer at higher concentrations. Because the dissociation constants of the dimer and tetramer are very close, as we determine in this paper, it is not possible to characterize different oligomeric species by ensemble methods, especially the dimer that cannot be readily separated. However, by using single-molecule FRET spectroscopy that includes measurements of fluorescence lifetime and two- and three-color FRET efficiencies with corrections for submillisecond acceptor blinking, we show that it is possible to obtain structural information for individual oligomers at equilibrium and to determine the dimerization kinetics. From these analyses, we show that the monomer is intrinsically disordered and that the dimer conformation is very similar to that of the tetramer but the C terminus of the dimer is more flexible.
Collapse
|
17
|
Cubillos-Rojas M, Schneider T, Bartrons R, Ventura F, Rosa JL. NEURL4 regulates the transcriptional activity of tumor suppressor protein p53 by modulating its oligomerization. Oncotarget 2017; 8:61824-61836. [PMID: 28977907 PMCID: PMC5617467 DOI: 10.18632/oncotarget.18699] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 05/22/2017] [Indexed: 01/23/2023] Open
Abstract
p53 is a transcription factor that regulates important cellular processes related to tumor suppression, including induction of senescence, apoptosis, and DNA repair as well as the inhibition of angiogenesis and cell migration. Therefore, it is critical to understand the molecular mechanism that regulates it. p53 tetramerization is a key step in its activation process and the regulation of this oligomerization, an important control point. The E3 ubiquitin ligase HERC2 controls the p53 transcriptional activity by regulation of its oligomerization state. HERC2-interacting proteins such as the adaptor-like protein with six neuralized domains NEURL4 are also candidates to regulate p53 activity. Here, we demonstrate the existence of an interaction network between NEURL4, HERC2 and p53 proteins. We report a functional interaction between NEURL4 and p53, involving the C-terminal region of p53 and the neuralized domains 3 and 4 of NEURL4. Through this interaction, NEURL4 regulates the transcriptional activity of p53. Thus, NEURL4 depletion reduced the transcriptional activity whereas NEURL4 overexpression increased it. In both cases, p53 stability was not affected. Although NEURL4 may interact with p53 independently of the E3 ubiquitin ligase HERC2, we observed that both proteins are needed to regulate the transcriptional activity of p53. Clonogenic assays confirmed the functional relevance of this interaction observing a decrease in cell growth by NEURL4 overexpression correlated to the increase of cellular cycle inhibitor p21 by p53 activation. Under these conditions, NEURL4 activated p53 oligomerization. All these findings identify NEURL4 as a novel regulator of the p53’s signaling.
Collapse
Affiliation(s)
- Monica Cubillos-Rojas
- Departament de Ciències Fisiològiques, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona E-08907, Spain
| | - Taiane Schneider
- Departament de Ciències Fisiològiques, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona E-08907, Spain
| | - Ramon Bartrons
- Departament de Ciències Fisiològiques, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona E-08907, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona E-08907, Spain
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona E-08907, Spain
| |
Collapse
|
18
|
Analysis of Protein Oligomerization by Electrophoresis. Methods Mol Biol 2016. [PMID: 27613048 DOI: 10.1007/978-1-4939-3756-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
A polypeptide chain can interact with other polypeptide chains and form stable and functional complexes called "oligomers." Frequently, biochemical analysis of these complexes is made difficult by their great size. Traditionally, size exclusion chromatography, immunoaffinity chromatography, or immunoprecipitation techniques have been used to isolate oligomers. Components of these oligomers are then further separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and identified by immunoblotting with specific antibodies. Although they are sensitive, these techniques are not easy to perform and reproduce. The use of Tris-acetate polyacrylamide gradient gel electrophoresis allows the simultaneous analysis of proteins in the mass range of 10-500 kDa. We have used this characteristic together with cross-linking reagents to analyze the oligomerization of endogenous proteins with a single electrophoretic gel. We demonstrate how the oligomerization of p53, the pyruvate kinase isoform M2, or the heat shock protein 27 can be studied with this system. We also show how this system is useful for studying the oligomerization of large proteins such as clathrin heavy chain or the tuberous sclerosis complex. Oligomerization analysis is dependent on the cross-linker used and its concentration. All of these features make this system a very helpful tool for the analysis of protein oligomerization.
Collapse
|
19
|
Rapamycin-induced oligomer formation system of FRB–FKBP fusion proteins. J Biosci Bioeng 2016; 122:40-6. [DOI: 10.1016/j.jbiosc.2015.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/25/2015] [Accepted: 12/03/2015] [Indexed: 11/20/2022]
|
20
|
Heterozygous p53(V172F) mutation in cisplatin-resistant human tumor cells promotes MDM4 recruitment and decreases stability and transactivity of p53. Oncogene 2016; 35:4798-806. [PMID: 26876197 PMCID: PMC5289310 DOI: 10.1038/onc.2016.12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 12/02/2015] [Accepted: 12/11/2015] [Indexed: 01/10/2023]
Abstract
Cisplatin is an important antitumor agent, but its clinical utility is often limited by multifactorial mechanism of resistance. Loss of tumor suppressor p53 function is a major mechanism that is affected by either mutation in the DNA-binding domain or dysregulation by overexpression of p53 inhibitors MDM2 and MDM4, which destabilize p53 by increasing its proteosomal degradation. In the present study, cisplatin-resistant 2780CP/Cl-16 ovarian tumor cells expressed a heterozygous, temperature-sensitive p53(V172F) mutation, which reduced p53 half-life by two- to threefold compared with homozygous wild-type (wt) p53 in parental A2780 cells. Although reduced p53 stability in 2780CP/Cl-16 cells was associated with moderate cellular overexpression of MDM2 or MDM4 (<1.5-fold), their binding to p53 was substantially enhanced (five- to eightfold). The analogous cisplatin-resistant 2780CP/Cl-24 cells, which express loss of p53 heterozygosity, retained the p53(V172F) mutation and high p53-MDM4 binding, but demonstrated lower p53-bound MDM2 that was associated with reduced p53 ubiquitination and enhanced p53 stability. The inference that p53 was unstable as a heteromeric p53(wt)/p53(V172F) complex was confirmed in 2780CP/Cl-24 cells transfected with wt p53 or multimer-inhibiting p53(L344P) mutant, and further supported by normalization of p53 stability in both resistant cell lines grown at the permissive temperature of 32.5 °C. Surprisingly, in 2780CP/Cl-16 and 2780CP/Cl-24 models, cisplatin-induced transactivity of p53 was attenuated at 37 °C, and this correlated with cisplatin resistance. However, downregulation of MDM2 or MDM4 by small interfering RNA in either resistant cell line induced p53 and restored p21 transactivation at 37 °C, as did cisplatin-induced DNA damage at 32.5 °C that coincided with reduced p53-MDM4 binding and cisplatin resistance. These results demonstrate that cisplatin-mediated p53(V172F) mutation regulates p53 stability at the normothermic temperature, but it is the increased recruitment of MDM4 by the homomeric or heteromeric mutant p53(V172F) complex that inhibits p53-dependent transactivation. This represents a novel cellular mechanism of p53 inhibition, and, thereby, induction of cisplatin resistance.
Collapse
|
21
|
Cubillos-Rojas M, Schneider T, Sánchez-Tena S, Bartrons R, Ventura F, Rosa JL. Tris-acetate polyacrylamide gradient gel electrophoresis for the analysis of protein oligomerization. Anal Bioanal Chem 2016; 408:1715-9. [PMID: 26753978 DOI: 10.1007/s00216-015-9283-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/15/2015] [Accepted: 12/18/2015] [Indexed: 11/24/2022]
Abstract
Here we report a new approach for studying protein oligomerization in cells using a single electrophoresis gel. We combined the use of a crosslinking reagent for sample preparation, such as glutaraldehyde, with the analysis of oligomers by Tris-acetate polyacrylamide gel electrophoresis. The use of a 3-15% Tris-acetate polyacrylamide gradient gel allows for the simultaneous analysis of proteins of masses ranging from 10 to 500 kDa. We showed the usefulness of this method for analyzing endogenous p53 oligomerization with high resolution and sensitivity in human cells. Oligomerization analysis was dependent on the crosslinker concentration used. We also showed that this method could be used to study the regulation of oligomerization. In all experiments, Tris-acetate polyacrylamide gel electrophoresis proved to be a robust, manageable, and cost- and time-efficient method that provided excellent results using a single gel. This approach can be easily extrapolated to the study of other oligomers. All of these features make this method a highly useful tool for the analysis of protein oligomerization.
Collapse
Affiliation(s)
- Monica Cubillos-Rojas
- Departament de Ciències Fisiològiques II, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Taiane Schneider
- Departament de Ciències Fisiològiques II, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Susana Sánchez-Tena
- Departament de Ciències Fisiològiques II, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ramon Bartrons
- Departament de Ciències Fisiològiques II, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques II, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques II, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, 08907 L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
22
|
Artificial regulation of p53 function by modulating its assembly. Biochem Biophys Res Commun 2015; 467:322-7. [DOI: 10.1016/j.bbrc.2015.09.162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 09/30/2015] [Indexed: 11/22/2022]
|
23
|
Gaglia G, Lahav G. Constant rate of p53 tetramerization in response to DNA damage controls the p53 response. Mol Syst Biol 2014; 10:753. [PMID: 25344068 PMCID: PMC4299375 DOI: 10.15252/msb.20145168] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The dynamics of the tumor suppressor protein p53 have been previously investigated in single
cells using fluorescently tagged p53. Such approach reports on the total abundance of p53 but does
not provide a measure for functional p53. We used fluorescent protein-fragment complementation assay
(PCA) to quantify in single cells the dynamics of p53 tetramers, the functional units of p53. We
found that while total p53 increases proportionally to the input strength, p53 tetramers are formed
in cells at a constant rate. This breaks the linear input–output relation and dampens the p53
response. Disruption of the p53-binding protein ARC led to a dose-dependent rate of tetramers
formation, resulting in enhanced tetramerization and induction of p53 target genes. Our work
suggests that constraining the p53 response in face of variable inputs may protect cells from
committing to terminal outcomes and highlights the importance of quantifying the active form of
signaling molecules in single cells. Quantification of the dynamics of p53 tetramers in single cells using a fluorescent
protein-fragment complementation assay reveals that, while total p53 increases proportionally to the
DNA damage strength, p53 tetramers are formed at a constant rate.
Collapse
Affiliation(s)
- Giorgio Gaglia
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Galit Lahav
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
ArhGAP30 promotes p53 acetylation and function in colorectal cancer. Nat Commun 2014; 5:4735. [PMID: 25156493 DOI: 10.1038/ncomms5735] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/17/2014] [Indexed: 12/16/2022] Open
Abstract
Covalent modification adding acetyl groups to the C terminus of the p53 protein has been suggested to be required for its functional activation as a tumour suppressor. However, it remains largely unknown how p53 acetylation is deregulated in colorectal cancer (CRC), which is the third most commonly diagnosed cancer worldwide. Here we show that ArhGAP30, a Rho GTPase-activating protein, is a pivotal regulator for p53 acetylation and functional activation in CRC. ArhGAP30 binds to p53 C-terminal domain and P300, facilitating P300-mediated acetylation of p53 at lysine 382. ArhGAP30 expression is required for p53 activation upon DNA damage stress, and the level of ArhGAP30 correlates with p53 acetylation and functional activation in CRC tissues. Moreover, low level of ArhGAP30 expression associates with poor survival of CRC patients. In summary, ArhGAP30 is required for p53 acetylation and functional activation in CRC, and the expression of ArhGAP30 is a potential prognostic marker for CRC.
Collapse
|
25
|
Cubillos-Rojas M, Amair-Pinedo F, Peiró-Jordán R, Bartrons R, Ventura F, Rosa JL. The E3 ubiquitin protein ligase HERC2 modulates the activity of tumor protein p53 by regulating its oligomerization. J Biol Chem 2014; 289:14782-95. [PMID: 24722987 DOI: 10.1074/jbc.m113.527978] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor p53 is a transcription factor that coordinates the cellular response to several kinds of stress. p53 inactivation is an important step in tumor progression. Oligomerization of p53 is critical for its posttranslational modification and its ability to regulate the transcription of target genes necessary to inhibit tumor growth. Here we report that the HECT E3 ubiquitin ligase HERC2 interacts with p53. This interaction involves the CPH domain of HERC2 (a conserved domain within Cul7, PARC, and HERC2 proteins) and the last 43 amino acid residues of p53. Through this interaction, HERC2 regulates p53 activity. RNA interference experiments showed how HERC2 depletion reduces the transcriptional activity of p53 without affecting its stability. This regulation of p53 activity by HERC2 is independent of proteasome or MDM2 activity. Under these conditions, up-regulation of cell growth and increased focus formation were observed, showing the functional relevance of the HERC2-p53 interaction. This interaction was maintained after DNA damage caused by the chemotherapeutic drug bleomycin. In these stressed cells, p53 phosphorylation was not impaired by HERC2 knockdown. Interestingly, p53 mutations that affect its tetramerization domain disrupted the HERC2-p53 interaction, suggesting a role for HERC2 in p53 oligomerization. This regulatory role was shown using cross-linking assays. Thus, the inhibition of p53 activity after HERC2 depletion can be attributed to a reduction in p53 oligomerization. Ectopic expression of HERC2 (residues 2292-2923) confirmed these observations. Together, these results identify HERC2 as a novel regulator of p53 signaling.
Collapse
Affiliation(s)
- Monica Cubillos-Rojas
- From the Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Fabiola Amair-Pinedo
- From the Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Roser Peiró-Jordán
- From the Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Ramon Bartrons
- From the Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Francesc Ventura
- From the Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Jose Luis Rosa
- From the Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| |
Collapse
|
26
|
Abstract
The design of a broad-spectrum cancer drug would provide enormous clinical benefits to treat cancer patients. Most of cancerous cells have a mutation in the p53 gene that results in an inactive mutant p53 protein. For this reason, p53 is a prime target for the development of a broad-spectrum cancer drug. To provide the atomic information to rationally design a drug to recover p53 activity is the main goal of the structural studies on mutant p53. We review three mechanisms that influence p53 activity and provide information about how reactivation of mutant p53 can be achieved: stabilization of the active conformation of the DNA-binding domain of the protein, suppression of missense mutations in the DNA-binding domain by a second-site mutation, and increased transactivation.
Collapse
Affiliation(s)
- Hector Viadiu
- Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, D.F., Mexico,
| | | | | |
Collapse
|
27
|
Activation and control of p53 tetramerization in individual living cells. Proc Natl Acad Sci U S A 2013; 110:15497-501. [PMID: 24006363 DOI: 10.1073/pnas.1311126110] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homo-oligomerization is found in many biological systems and has been extensively studied in vitro. However, our ability to quantify and understand oligomerization processes in cells is still limited. We used fluorescence correlation spectroscopy and mathematical modeling to measure the dynamics of the tetramers formed by the tumor suppressor protein p53 in single living cells. Previous in vitro studies suggested that in basal conditions all p53 molecules are bound in dimers. We found that in resting cells p53 is present in a mix of oligomeric states with a large cell-to-cell variation. After DNA damage, p53 molecules in all cells rapidly assemble into tetramers before p53 protein levels increase. We developed a model to understand the connection between p53 accumulation and tetramerization. We found that the rapid increase in p53 tetramers requires a combination of active tetramerization and protein stabilization, however tetramerization alone is sufficient to activate p53 transcriptional targets. This suggests triggering tetramerization as a mechanism for activating the p53 pathway in cancer cells. Many other transcription factors homo-oligomerize, and our approach provides a unique way for probing the dynamics and functional consequences of oligomerization.
Collapse
|
28
|
Two co-existing germline mutations P53 V157D and PMS2 R20Q promote tumorigenesis in a familial cancer syndrome. Cancer Lett 2013; 342:36-42. [PMID: 23981578 DOI: 10.1016/j.canlet.2013.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 07/08/2013] [Accepted: 08/18/2013] [Indexed: 10/26/2022]
Abstract
Germline mutations are responsible for familial cancer syndromes which account for approximately 5-10% of all types of cancers. These mutations mainly occur at tumor suppressor genes or genome stability genes, such as DNA repair genes. Here we have identified a cancer predisposition family, in which eight members were inflicted with a wide spectrum of cancer including one diagnosed with lung cancer at 22years old. Sequencing analysis of tumor samples as well as histologically normal specimens identified two germline mutations co-existing in the familial cancer syndrome, the mutation of tumor suppressor gene P53 V157D and mismatch repair gene PMS2 R20Q. We further demonstrate that P53 V157D and/or PMS2 R20Q mutant promotes lung cancer cell proliferation. These two mutants are capable of promoting colony formation in soft agar as well as tumor formation in transgenic drosophila system. Collectively, these data have uncovered the important role of co-existing germline P53 and PMS2 mutations in the familial cancer syndrome development.
Collapse
|
29
|
Wang M, Xu RM, Thompson PR. Substrate specificity, processivity, and kinetic mechanism of protein arginine methyltransferase 5. Biochemistry 2013; 52:5430-40. [PMID: 23866019 DOI: 10.1021/bi4005123] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein arginine methyltransferases (PRMTs) have emerged as attractive therapeutic targets for heart disease and cancers. PRMT5 is a particularly interesting target because it is overexpressed in blood, breast, colon, and stomach cancers and promotes cell survival in the face of DNA damaging agents. As the only known member of the PRMT enzyme family to catalyze the formation of mono- and symmetrically dimethylated arginine residues, PRMT5 is also mechanistically unique. As a part of a program to characterize the mechanisms and regulation of the PRMTs and develop chemical probes targeting these enzymes, we characterized the substrate specificity, processivity, and kinetic mechanism of bacterially expressed Caenorhabditis elegans PRMT5 (cPRMT5). In this report, we demonstrate that distal positively charged residues contribute to substrate binding in a synergistic fashion. Additionally, we show that cPRMT5 catalyzes symmetric dimethylation in a distributive fashion. Finally, the results of initial velocity, product, and dead-end inhibition studies indicate that cPRMT5 uses a rapid equilibrium random mechanism with dead-end EAP and EBQ complexes. In total, these studies will guide PRMT5 inhibitor development and lay the foundation for studying how the activity of this medically relevant enzyme is regulated.
Collapse
Affiliation(s)
- Min Wang
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | | | | |
Collapse
|
30
|
England B, Huang T, Karsy M. Current understanding of the role and targeting of tumor suppressor p53 in glioblastoma multiforme. Tumour Biol 2013; 34:2063-74. [PMID: 23737287 DOI: 10.1007/s13277-013-0871-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 05/15/2013] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignancy in the brain and confers a uniformly poor prognosis. Despite decades of research on the topic, limited progress has been made to improve the poor survival associated with this disease. GBM arises de novo (primary GBM) or via dedifferentiation of lower grade glioma (secondary GBM). While distinct mutations are predominant in each subtype, alterations of tumor suppressor p53 are the most common, seen in 25-30 % of primary GBM and 60-70 % of secondary GBM. Various roles of p53 that protect against neoplastic transformation include modulation of cell cycle, DNA repair, apoptosis, senescence, angiogenesis, and metabolism, resulting in an extremely complex signaling network. Mutations of p53 in GBM are most common in the DNA-binding domain, namely within six hotspot mutation sites (codons 175, 245, 248, 249, 273, and 282). These alterations generally result in loss-of-function, gain-of-function, and dominant-negative mutational effects for p53, however, the distinct effect of these mutation types in GBM pathogenesis remain unclear. Signaling alterations downstream from p53 (e.g., MDM2, MDM4, INK4/ARF), p53 isoforms (e.g., p63, p73), and microRNAs (e.g., miR-34) also play critical roles in modulating the p53 pathway. Despite novel mouse models of GBM showing that p53 combined with other mutation generate tumors de novo, the role of p53 as a molecular marker of GBM remains controversial with most studies failing to show an association with prognosis. Regarding treatment in GBM, p53 targeted-gene therapy and vaccinations have reached phase I clinical trials while therapeutic drugs are still in preclinical development. This review aims to discuss the most recent findings regarding the impact of p53 mutations on GBM pathogenesis, prognosis, and treatment.
Collapse
Affiliation(s)
- Bryant England
- Department of Neurosurgery, New York Medical College, Valhalla, NY 10595, USA
| | | | | |
Collapse
|
31
|
Xu J, Zhou X, Wang J, Li Z, Kong X, Qian J, Hu Y, Fang JY. RhoGAPs attenuate cell proliferation by direct interaction with p53 tetramerization domain. Cell Rep 2013; 3:1526-38. [PMID: 23684608 DOI: 10.1016/j.celrep.2013.04.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 03/13/2013] [Accepted: 04/21/2013] [Indexed: 12/15/2022] Open
Abstract
Many Rho GTPase activation proteins (RhoGAPs) are deleted or downregulated in cancers, but the functional consequences are still unclear. Here, we show that the RhoGAP ArhGAP11A induces cell-cycle arrest and apoptosis by binding to the tumor suppressor p53. The RhoGAP domain of ArhGAP11A binds to the tetramerization domain of p53, but not to its family members p63 or p73. The interaction stabilizes the tetrameric conformation of p53 and enhances its DNA-binding activity, thereby inducing cell-cycle arrest and apoptosis. Upon DNA damage stress, ArhGAP11A accumulates in the nucleus and interacts with p53, whereas knockdown of ArhGAP11A partially blocks p53 transcriptional activity. These findings explain why RhoGAPs are frequently deleted in cancers and suggest that the RhoGAP family sits at the crossroads between the cell-migration and proliferation pathways.
Collapse
Affiliation(s)
- Jie Xu
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institute for Digestive Diseases, Shanghai Jiao-Tong University School of Medicine, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, 145 Middle Shandong Road, Shanghai 200001, China.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Poon GMK. Quantitative analysis of affinity enhancement by noncovalently oligomeric ligands. Anal Biochem 2012; 433:19-27. [PMID: 23068040 DOI: 10.1016/j.ab.2012.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/30/2012] [Accepted: 10/03/2012] [Indexed: 11/16/2022]
Abstract
Designed ligands that self-assemble noncovalently via an independent oligomerization domain have demonstrated enhancement in affinity for a variety of chemical and biological targets. To better understand the thermodynamic linkage between enhanced receptor binding and self-assembly, we have developed linkage models for the three commonly encountered types of noncovalently oligomeric ligands: homofunctional oligomeric ligands, heterodimeric ligands that target a single receptor, and bispecific ligands that crosslink noninteracting receptors. Expressions and numerical approaches for exact analysis as a function of total ligand concentrations are provided. We apply the linkage models to the binding data for two published noncovalently oligomeric ligands: one targeting a small molecule (phosphocholine) and the other targeting a soluble protein (tumor necrosis factor α). The linkage models provide a quantitative measure of the potential and realized enhancement in affinity that could inform and guide design optimization efforts, and they reveal physical insight that would elude model-free analysis. Incorporation of the linkage models, therefore, is expected to be valuable in the rational engineering of noncovalently oligomeric ligands.
Collapse
Affiliation(s)
- Gregory M K Poon
- Department of Pharmaceutical Sciences, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
33
|
Gu B, Zhu WG. Surf the post-translational modification network of p53 regulation. Int J Biol Sci 2012; 8:672-84. [PMID: 22606048 PMCID: PMC3354625 DOI: 10.7150/ijbs.4283] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 05/07/2012] [Indexed: 02/07/2023] Open
Abstract
Among the human genome, p53 is one of the first tumor suppressor genes to be discovered. It has a wide range of functions covering cell cycle control, apoptosis, genome integrity maintenance, metabolism, fertility, cellular reprogramming and autophagy. Although different possible underlying mechanisms for p53 regulation have been proposed for decades, none of them is conclusive. While much literature focuses on the importance of individual post-translational modifications, further explorations indicate a new layer of p53 coordination through the interplay of the modifications, which builds up a complex 'network'. This review focuses on the necessity, characteristics and mechanisms of the crosstalk among post-translational modifications and its effects on the precise and selective behavior of p53.
Collapse
Affiliation(s)
- Bo Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | | |
Collapse
|
34
|
Pinto EM, Ribeiro RC, Figueiredo BC, Zambetti GP. TP53-Associated Pediatric Malignancies. Genes Cancer 2011; 2:485-90. [PMID: 21779516 DOI: 10.1177/1947601911409745] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Although the majority of pediatric malignancies express wild-type p53, it is well established that germline TP53 mutations or functional inactivation of this pathway by other means contribute to childhood cancer. Epidemiology studies have revealed the existence of diverse inherited mutant TP53 alleles that display different levels of tumor suppressor activity, which correlate with cancer risk in terms of penetrance, age of onset, and tumor types. In this monograph, the authors describe those childhood cancers associated with functional inactivation of TP53 focusing on adrenocortical carcinoma as a model for tissues that are highly sensitive to loss of p53 activity.
Collapse
Affiliation(s)
- Emilia M Pinto
- International Outreach Program, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | | |
Collapse
|
35
|
Versatility of PRMT5-induced methylation in growth control and development. Trends Biochem Sci 2011; 36:633-41. [PMID: 21975038 DOI: 10.1016/j.tibs.2011.09.001] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 01/03/2023]
Abstract
Arginine methylation governs important cellular processes that impact growth and proliferation, as well as differentiation and development. Through their ability to catalyze symmetric or asymmetric methylation of histone and non-histone proteins, members of the protein arginine methyltransferase (PRMT) family regulate chromatin structure and expression of a wide spectrum of target genes. Unlike other PRMTs, PRMT5 works in concert with a variety of cellular proteins including ATP-dependent chromatin remodelers and co-repressors to induce epigenetic silencing. Recent work also implicates PRMT5 in the control of growth-promoting and pro-survival pathways, which demonstrates its versatility as an enzyme involved in both epigenetic regulation of anti-cancer target genes and organelle biogenesis. These studies not only provide insight into the molecular mechanisms by which PRMT5 contributes to growth control, but also justify therapeutic targeting of PRMT5.
Collapse
|
36
|
Chung J, Grant RI, Kaplan DR, Irwin MS. Special AT-rich binding protein-2 (SATB2) differentially affects disease-causing p63 mutant proteins. J Biol Chem 2011; 286:40671-80. [PMID: 21965674 DOI: 10.1074/jbc.m111.271189] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p63, a p53 family member, is critical for proper skin and limb development and directly regulates gene expression in the ectoderm. Mice lacking p63 exhibit skin and craniofacial defects including cleft palate. In humans p63 mutations are associated with several distinct developmental syndromes. p63 sterile-α-motif domain, AEC (ankyloblepharon-ectodermal dysplasia-clefting)-associated mutations are associated with a high prevalence of orofacial clefting disorders, which are less common in EEC (ectrodactyly-ectodermal dysplasia-clefting) patients with DNA binding domain p63 mutations. However, the mechanisms by which these mutations differentially influence p63 function remain unclear, and interactions with other proteins implicated in craniofacial development have not been identified. Here, we show that AEC p63 mutations affect the ability of the p63 protein to interact with special AT-rich binding protein-2 (SATB2), which has recently also been implicated in the development of cleft palate. p63 and SATB2 are co-expressed early in development in the ectoderm of the first and second branchial arches, two essential sites where signaling is required for craniofacial patterning. SATB2 attenuates p63-mediated gene expression of perp (p53 apoptosis effector related to PMP-22), a critical downstream target gene during development, and specifically decreases p63 perp promoter binding. Interestingly, AEC but not EEC p63 mutations affect the ability of p63 to interact with SATB2 and the inhibitory effects of SATB2 on p63 transactivation of perp are most pronounced for AEC-associated p63 mutations. Our findings reveal a novel gain-of-function property of AEC-causing p63 mutations and identify SATB2 as the first p63 binding partner that differentially influences AEC and EEC p63 mutant proteins.
Collapse
Affiliation(s)
- Jacky Chung
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
37
|
Xu J, Reumers J, Couceiro JR, De Smet F, Gallardo R, Rudyak S, Cornelis A, Rozenski J, Zwolinska A, Marine JC, Lambrechts D, Suh YA, Rousseau F, Schymkowitz J. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat Chem Biol 2011; 7:285-95. [PMID: 21445056 DOI: 10.1038/nchembio.546] [Citation(s) in RCA: 418] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 02/10/2011] [Indexed: 12/19/2022]
Abstract
Many p53 missense mutations possess dominant-negative activity and oncogenic gain of function. We report that for structurally destabilized p53 mutants, these effects result from mutant-induced coaggregation of wild-type p53 and its paralogs p63 and p73, thereby also inducing a heat-shock response. Aggregation of mutant p53 resulted from self-assembly of a conserved aggregation-nucleating sequence within the hydrophobic core of the DNA-binding domain, which becomes exposed after mutation. Suppressing the aggregation propensity of this sequence by mutagenesis abrogated gain of function and restored activity of wild-type p53 and its paralogs. In the p53 germline mutation database, tumors carrying aggregation-prone p53 mutations have a significantly lower frequency of wild-type allele loss as compared to tumors harboring nonaggregating mutations, suggesting a difference in clonal selection of aggregating mutants. Overall, our study reveals a novel disease mechanism for mutant p53 gain of function and suggests that, at least in some respects, cancer could be considered an aggregation-associated disease.
Collapse
Affiliation(s)
- Jie Xu
- Switch Laboratory, Flanders Institute for Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kamada R, Nomura T, Anderson CW, Sakaguchi K. Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation. J Biol Chem 2010; 286:252-8. [PMID: 20978130 DOI: 10.1074/jbc.m110.174698] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor p53, a 393-amino acid transcription factor, induces cell cycle arrest and apoptosis in response to genotoxic stress. Its inactivation via the mutation of its gene is a key step in tumor progression, and tetramer formation is critical for p53 post-translational modification and its ability to activate or repress the transcription of target genes vital in inhibiting tumor growth. About 50% of human tumors have TP53 gene mutations; most are missense ones that presumably lower the tumor suppressor activity of p53. In this study, we explored the effects of known tumor-derived missense mutations on the stability and oligomeric structure of p53; our comprehensive, quantitative analyses encompassed the tetramerization domain peptides representing 49 such substitutions in humans. Their effects on tetrameric structure were broad, and the stability of the mutant peptides varied widely (ΔT(m) = 4.8 ∼ -46.8 °C). Because formation of a tetrameric structure is critical for protein-protein interactions, DNA binding, and the post-translational modification of p53, a small destabilization of the tetrameric structure could result in dysfunction of tumor suppressor activity. We suggest that the threshold for loss of tumor suppressor activity in terms of the disruption of the tetrameric structure of p53 could be extremely low. However, other properties of the tetramerization domain, such as electrostatic surface potential and its ability to bind partner proteins, also may be important.
Collapse
Affiliation(s)
- Rui Kamada
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
39
|
Adenovirus E1B 55-kilodalton protein is a p53-SUMO1 E3 ligase that represses p53 and stimulates its nuclear export through interactions with promyelocytic leukemia nuclear bodies. J Virol 2010; 84:12210-25. [PMID: 20861261 DOI: 10.1128/jvi.01442-10] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oncogenic transformation by adenovirus E1A and E1B-55K requires E1B-55K inhibition of p53 activity to prevent E1A-induced apoptosis. During viral infection, E1B-55K and E4orf6 substitute for the substrate-binding subunits of the host cell cullin 5 class of ubiquitin ligases, resulting in p53 polyubiquitinylation and proteasomal degradation. Here we show that E1B-55K alone also functions as an E3 SUMO1-p53 ligase. Fluorescence microscopy studies showed that E1B-55K alone, in the absence of other viral proteins, causes p53 to colocalize with E1B-55K in promyelocytic leukemia (PML) nuclear bodies, nuclear domains with a high concentration of sumoylated proteins. Photobleaching experiments with live cells revealed that E1B-55K tethering of p53 in PML nuclear bodies decreases the in vivo nuclear mobility of p53 nearly 2 orders of magnitude. E1B-55K-induced p53 sumoylation contributes to maximal inhibition of p53 function since mutation of the major p53 sumoylation site decreases E1B-55K-induced p53 sumoylation, tethering in PML nuclear bodies, and E1B-55K inhibition of p53 activity. Mutation of the E1B-55K sumoylation site greatly inhibits E1B-55K association with PML nuclear bodies and the p53 nuclear export to cytoplasmic aggresomes observed in E1A-E1B-transformed cells. Purified E1B-55K and p53 form high-molecular-weight complexes potentially through the formation of a network of E1B-55K dimers bound to the N termini of p53 tetramers. In support of this model, a p53 mutation that prevents tetramer formation greatly reduces E1B-55K-induced tethering in PML nuclear bodies and p53 nuclear export. These data indicate that E1B-55K's association with PML nuclear bodies inactivates p53 by first sequestering it in PML nuclear bodies and then greatly facilitating its nuclear export.
Collapse
|
40
|
Malcikova J, Tichy B, Damborsky J, Kabathova J, Trbusek M, Mayer J, Pospisilova S. Analysis of the DNA-binding activity of p53 mutants using functional protein microarrays and its relationship to transcriptional activation. Biol Chem 2010; 391:197-205. [PMID: 20128691 DOI: 10.1515/bc.2010.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sequence-specific DNA binding is the key function through which tumor suppressor p53 exerts transactivation of the downstream target genes, often being impaired in cancer cells by mutations in the TP53 gene. Functional protein microarray technology enables a high-throughput parallel analysis of protein properties within one experiment under the same conditions. Using an array approach, we analyzed the DNA binding activity of wild type p53 protein and of 49 variants. Our results show significant differences in the binding properties between the p53 mutants. The C-terminal mutant R337C displayed the highest DNA binding activity on the array. However, the same mutant showed only a partial activation in the reporter gene assay and almost no activation of downstream target genes after transfection of expression vector into cells lacking endogenous p53. These observations demonstrate that DNA binding itself is not sufficient for activating the p53 target genes in at least some of the p53 mutants and, therefore, in vitro studies might not always reflect in vivo conditions.
Collapse
Affiliation(s)
- Jitka Malcikova
- Center of Molecular Biology and Gene Therapy, Department of Internal Medicine - Hematooncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni 9, CZ-625 00 Brno, Czech Republic
| | - Boris Tichy
- Center of Molecular Biology and Gene Therapy, Department of Internal Medicine - Hematooncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni 9, CZ-625 00 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Institute of Experimental Biology and National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5/A4, CZ-625 00 Brno, Czech Republic
| | - Jitka Kabathova
- Center of Molecular Biology and Gene Therapy, Department of Internal Medicine - Hematooncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni 9, CZ-625 00 Brno, Czech Republic
| | - Martin Trbusek
- Center of Molecular Biology and Gene Therapy, Department of Internal Medicine - Hematooncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni 9, CZ-625 00 Brno, Czech Republic
| | - Jiri Mayer
- Center of Molecular Biology and Gene Therapy, Department of Internal Medicine - Hematooncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni 9, CZ-625 00 Brno, Czech Republic
| | - Sarka Pospisilova
- Center of Molecular Biology and Gene Therapy, Department of Internal Medicine - Hematooncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni 9, CZ-625 00 Brno, Czech Republic
| |
Collapse
|
41
|
Jordan JJ, Inga A, Conway K, Edmiston S, Carey LA, Wu L, Resnick MA. Altered-function p53 missense mutations identified in breast cancers can have subtle effects on transactivation. Mol Cancer Res 2010; 8:701-16. [PMID: 20407015 DOI: 10.1158/1541-7786.mcr-09-0442] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mutations of the sequence-specific master regulator p53 that alter transactivation function from promoter response elements (RE) could result in changes in the strength of gene activation or spectra of genes regulated. Such mutations in this tumor suppressor might lead to dramatic phenotypic changes and diversification of cell responses to stress. We have determined "functional fingerprints" of sporadic breast cancer-related p53 mutants, many of which are also associated with familial cancer proneness such as the Li-Fraumeni syndrome and germline BRCA1/2 mutant-associated cancers. The ability of p53, wild-type and mutants, to transactivate from 11 human target REs has been assessed at variable expression levels using a cellular, isogenomic yeast model system that allows for the rapid analysis of p53 function using a qualitative and a quantitative reporter. Among 50 missense mutants, 29 were classified as loss of function. The remaining 21 retained transactivation toward at least one RE. At high levels of galactose-induced p53 expression, 12 of 21 mutants that retain transactivation seemed similar to wild-type. When the level of galactose was reduced, transactivation defects could be revealed, suggesting that some breast cancer-related mutants can have subtle changes in transcription. These findings have been compared with clinical data from an ongoing neoadjuvant chemotherapy treatment trial for locally advanced breast tumors. The functional and nonfunctional missense mutations may distinguish tumors in terms of demographics, appearance, and relapse, implying that heterogeneity in the functionality of specific p53 mutations could affect clinical behavior and outcome.
Collapse
Affiliation(s)
- Jennifer J Jordan
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Lubin DJ, Butler JS, Loh SN. Folding of tetrameric p53: oligomerization and tumorigenic mutations induce misfolding and loss of function. J Mol Biol 2009; 395:705-16. [PMID: 19913028 DOI: 10.1016/j.jmb.2009.11.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 10/29/2009] [Accepted: 11/05/2009] [Indexed: 10/20/2022]
Abstract
The physiologically active form of p53 consists of a tetramer of four identical 393-amino-acid subunits associated via their tetramerization domains (TDs; residues 325-355). One in two human tumors contains a point mutation in the DNA binding domain (DBD) of p53 (residues 94-312). Most existing studies on the effects of these mutations on p53 structure and function have been carried out on the isolated DBD fragment, which is monomeric. Recent structural evidence, however, suggests that DBDs may interact with each other in full-length tetrameric forms of p53. Here, we investigate the effects of tumorigenic DBD mutations on the folding of p53 in its tetrameric form. We employ the construct consisting of DBD and TD (amino acids 94-360). We characterize the stability and conformational state of the tumorigenic DBD mutants R248Q, R249S, and R282Q using equilibrium denaturation and functional assays. Destabilizing mutations cause DBD to misfold when it is part of the p53 tetramer, but not when it is monomeric. This conformation is populated under moderately destabilizing conditions (10 degrees C in 2 M urea, and at physiological temperature in the absence of denaturant). Under those same conditions, it is not present in the isolated DBD fragment or in the presence of the TD mutation L344P, which abolishes tetramerization. Misfolding appears to involve intramolecular DBD-DBD association within a single tetrameric molecule. This association is promoted by destabilization of DBD (caused by mutation or elevated temperature) and by the high local DBD concentration enforced by tetramerization of TD. Disrupting the nonnative DBD-DBD interaction or transiently inhibiting tetramerization and allowing p53 to fold as a monomer may be potential strategies for pharmacological intervention in cancer.
Collapse
Affiliation(s)
- David J Lubin
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | | | |
Collapse
|
43
|
Zhao Y, Chen XQ, Du JZ. Cellular adaptation to hypoxia and p53 transcription regulation. J Zhejiang Univ Sci B 2009; 10:404-10. [PMID: 19434769 DOI: 10.1631/jzus.b0820293] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tumor suppressor p53 is the most frequently mutated gene in human tumors. Meanwhile, under stress conditions, p53 also acts as a transcription factor, regulating the expression of a series of target genes to maintain the integrity of genome. The target genes of p53 can be classified into genes regulating cell cycle arrest, genes involved in apoptosis, and genes inhibiting angiogenesis. p53 protein contains a transactivation domain, a sequence-specific DNA binding domain, a tetramerization domain, a non-specific DNA binding domain that recognizes damaged DNA, and a later identified proline-rich domain. Under stress, p53 proteins accumulate and are activated through two mechanisms. One, involving ataxia telangiectasia-mutated protein (ATM), is that the interaction between p53 and its down-regulation factor murine double minute 2 (MDM2) decreases, leading to p53 phosphorylation on Ser15, as determined by the post-translational mechanism; the other holds that p53 increases and is activated through the binding of ribosomal protein L26 (RPL26) or nucleolin to p53 mRNA 5( untranslated region (UTR), regulating p53 translation. Under hypoxia, p53 decreases transactivation and increases transrepression. The mutations outside the DNA binding domain of p53 also contribute to tumor progress, so further studies on p53 should also be focused on this direction. The subterranean blind mole rat Spalax in Israel is a good model for hypoxia-adaptation. The p53 of Spalax mutated in residue 172 and residue 207 from arginine to lysine, conferring it the ability to survive hypoxic conditions. This model indicates that p53 acts as a master gene of diversity formation during evolution.
Collapse
Affiliation(s)
- Yang Zhao
- Lab of Neurobiology and Physiology, Department of Physiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | | | | |
Collapse
|
44
|
Conformational detection of p53's oligomeric state by FlAsH Fluorescence. Biochem Biophys Res Commun 2009; 384:66-70. [PMID: 19393630 DOI: 10.1016/j.bbrc.2009.04.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 04/16/2009] [Indexed: 12/24/2022]
Abstract
The p53 tumor suppressor protein is a critical checkpoint in prevention of tumor formation, and the function of p53 is dependent on proper formation of the active tetramer. In vitro studies have shown that p53 binds DNA most efficiently as a tetramer, though inactive p53 is predicted to be monomeric in vivo. We demonstrate that FlAsH binding can be used to distinguish between oligomeric states of p53, providing a potential tool to explore p53 oligomerization in vivo. The FlAsH tetra-cysteine binding motif has been incorporated along the dimer and tetramer interfaces in the p53 tetramerization domain to create reporters for the dimeric and tetrameric states of p53, though the geometry of the four cysteines is critical for efficient FlAsH binding. Furthermore, we demonstrate that FlAsH binding can be used to monitor tetramer formation in real-time. These results demonstrate the potential for using FlAsH fluorescence to monitor protein-protein interactions in vivo.
Collapse
|
45
|
Imagawa T, Terai T, Yamada Y, Kamada R, Sakaguchi K. Evaluation of transcriptional activity of p53 in individual living mammalian cells. Anal Biochem 2009; 387:249-56. [PMID: 19454241 DOI: 10.1016/j.ab.2009.01.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Revised: 01/17/2009] [Accepted: 01/17/2009] [Indexed: 01/10/2023]
Abstract
To estimate the transcriptional activity of p53 in individual living mammalian cells, we constructed the enhanced green fluorescent protein-red fluorescent protein (EGFP-DsRed) reporter system with the EGFP-p53 expression vector and the reporter plasmid, which carried a p53-dependent promoter. The expression level and transcriptional activity of EGFP-p53 were determined simultaneously by green and red fluorescence signals, respectively. In this system, we could target only the cells expressing p53 at endogenous levels, as observed in UV- or adriamycin-stimulated A549 cells. Using this system, we investigated the transcriptional activity of mutant p53s in tetramerization domain. Transcriptional activities were nearly abolished by seven mutations and significantly reduced in several mutant p53s. However, under overexpression conditions, the latter mutant p53s showed activity similar to that observed in wild-type p53. These results indicated the importance of physiological concentration for p53 proteins in cells so as to analyze their activities. Fluorescence intensity distribution analysis indicated that the mutant p53s lacking transcriptional activity presented as monomer forms in the cellular extract. In most of the mutant p53s, the decrease in transcriptional activity correlated with an increase in the fraction of monomers. This reporter system can be used for estimating the transcriptional activity of mutant p53s without contribution of the cells overexpressing p53.
Collapse
Affiliation(s)
- Toshiaki Imagawa
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | | | | | | | | |
Collapse
|
46
|
Ahn J, Byeon IJL, Byeon CH, Gronenborn AM. Insight into the structural basis of pro- and antiapoptotic p53 modulation by ASPP proteins. J Biol Chem 2009; 284:13812-13822. [PMID: 19246451 DOI: 10.1074/jbc.m808821200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
p53-dependent apoptosis is modulated by the ASPP family of proteins (apoptosis-stimulating proteins of p53; also called ankyrin repeat-, Src homology 3 domain-, and Pro-rich region-containing proteins). Its three known members, ASPP1, ASPP2, and iASPP, were previously found to interact with p53, influencing the apoptotic response of cells without affecting p53-induced cell cycle arrest. More specifically, the bona fide tumor suppressors, ASPP1 and ASPP2, bind to the core domain of p53 and stimulate transcription of apoptotic genes, whereas oncogenic iASPP also binds to the p53 core domain but inhibits p53-dependent apoptosis. Although the general interaction regions are known, details of the interfaces for each p53-ASPP complex have not been evaluated. We undertook a comprehensive biophysical characterization of ASPP-p53 complex formation and mapped the binding interfaces by NMR. We found that the interaction interface on p53 for the proapoptotic protein ASPP2 is distinct from that for the antiapoptotic iASPP. ASPP2 primarily binds to the core domain of p53, whereas iASPP predominantly interacts with a linker region adjacent to the core domain. Our detailed structural analyses of the ASPP-p53 interactions provide insight into the structural basis of the differential behavior of pro- and antiapoptotic ASPP family members.
Collapse
Affiliation(s)
- Jinwoo Ahn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - In-Ja L Byeon
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Chang-Hyeock Byeon
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260.
| |
Collapse
|
47
|
Arginine methylation regulates the p53 response. Nat Cell Biol 2008; 10:1431-9. [PMID: 19011621 DOI: 10.1038/ncb1802] [Citation(s) in RCA: 360] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 09/08/2008] [Indexed: 12/13/2022]
Abstract
Activation of the p53 tumour suppressor protein in response to DNA damage leads to apoptosis or cell-cycle arrest. Enzymatic modifications are widely believed to affect and regulate p53 activity. We describe here a level of post-translational control that has an important functional consequence on the p53 response. We show that the protein arginine methyltransferase (PRMT) 5, as a co-factor in a DNA damage responsive co-activator complex that interacts with p53, is responsible for methylating p53. Arginine methylation is regulated during the p53 response and affects the target gene specificity of p53. Furthermore, PRMT5 depletion triggers p53-dependent apoptosis. Thus, methylation on arginine residues is an underlying mechanism of control during the p53 response.
Collapse
|
48
|
Jordan JJ, Menendez D, Inga A, Nourredine M, Bell D, Resnick MA. Noncanonical DNA motifs as transactivation targets by wild type and mutant p53. PLoS Genet 2008; 4:e1000104. [PMID: 18714371 PMCID: PMC2518093 DOI: 10.1371/journal.pgen.1000104] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Accepted: 05/22/2008] [Indexed: 12/31/2022] Open
Abstract
Sequence-specific binding by the human p53 master regulator is critical to its tumor suppressor activity in response to environmental stresses. p53 binds as a tetramer to two decameric half-sites separated by 0–13 nucleotides (nt), originally defined by the consensus RRRCWWGYYY (n = 0–13) RRRCWWGYYY. To better understand the role of sequence, organization, and level of p53 on transactivation at target response elements (REs) by wild type (WT) and mutant p53, we deconstructed the functional p53 canonical consensus sequence using budding yeast and human cell systems. Contrary to early reports on binding in vitro, small increases in distance between decamer half-sites greatly reduces p53 transactivation, as demonstrated for the natural TIGER RE. This was confirmed with human cell extracts using a newly developed, semi–in vitro microsphere binding assay. These results contrast with the synergistic increase in transactivation from a pair of weak, full-site REs in the MDM2 promoter that are separated by an evolutionary conserved 17 bp spacer. Surprisingly, there can be substantial transactivation at noncanonical ½-(a single decamer) and ¾-sites, some of which were originally classified as biologically relevant canonical consensus sequences including PIDD and Apaf-1. p53 family members p63 and p73 yielded similar results. Efficient transactivation from noncanonical elements requires tetrameric p53, and the presence of the carboxy terminal, non-specific DNA binding domain enhanced transactivation from noncanonical sequences. Our findings demonstrate that RE sequence, organization, and level of p53 can strongly impact p53-mediated transactivation, thereby changing the view of what constitutes a functional p53 target. Importantly, inclusion of ½- and ¾-site REs greatly expands the p53 master regulatory network. Within human cells, the tumor suppressor p53 is the central node of regulation required to elicit multiple biological responses that include cell cycle arrest and death in response to stress or DNA damage, where mutations in p53 are a hallmark of cancer. As a master regulatory gene, p53 controls the action of target genes within its network by directly interacting with a widely accepted consensus DNA binding sequence, composed of two decamer ½-sites that can be separated by up to 13 bases. While mismatches from consensus sequence are frequent, the canonical consensus sequence places a limitation upon the organization and number of target genes within the p53 transcriptional network. Using yeast and human cell systems, our goal was to further understand how the DNA sequence, DNA organization, and level of p53 expression might influence the inclusion of genes within the p53 regulatory network. We found that increases in spacer beyond a few bases greatly reduce responsiveness to p53. Importantly, we established that p53 can function from noncanonical sequences comprising only a decamer ½-site or a ¾-site. These findings further define and expand the universe of potential downstream target genes which may be regulated by p53 and bring further diversity into the p53 regulatory network.
Collapse
Affiliation(s)
- Jennifer J. Jordan
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Daniel Menendez
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, United States of America
| | - Alberto Inga
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, United States of America
- Unit of Molecular Mutagenesis and DNA Repair, National Institute for Cancer Research, IST, Genoa, Italy
| | - Maher Nourredine
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, United States of America
| | - Douglas Bell
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, United States of America
| | - Michael A. Resnick
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
49
|
Abstract
The p53 tumor suppressor-signaling pathway is inactivated in most human cancers. Depending on how p53 is targeted during tumorigenesis impacts whether partial or full tumor suppressor activity is lost. The degree of remaining p53 activity, if any, intuitively impacts the tumor phenotype. This review focuses on recent findings from human cancer studies and genetically engineered mouse models to highlight a p53 functional "gradient effect" and its clinical implications.
Collapse
Affiliation(s)
- Gerard P Zambetti
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| |
Collapse
|
50
|
Foo RSY, Nam YJ, Ostreicher MJ, Metzl MD, Whelan RS, Peng CF, Ashton AW, Fu W, Mani K, Chin SF, Provenzano E, Ellis I, Figg N, Pinder S, Bennett MR, Caldas C, Kitsis RN. Regulation of p53 tetramerization and nuclear export by ARC. Proc Natl Acad Sci U S A 2007; 104:20826-31. [PMID: 18087040 PMCID: PMC2409226 DOI: 10.1073/pnas.0710017104] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Indexed: 11/18/2022] Open
Abstract
Inactivation of the transcription factor p53 is central to carcinogenesis. Yet only approximately one-half of cancers have p53 loss-of-function mutations. Here, we demonstrate a mechanism for p53 inactivation by apoptosis repressor with caspase recruitment domain (ARC), a protein induced in multiple cancer cells. The direct binding in the nucleus of ARC to the p53 tetramerization domain inhibits p53 tetramerization. This exposes a nuclear export signal in p53, triggering Crm1-dependent relocation of p53 to the cytoplasm. Knockdown of endogenous ARC in breast cancer cells results in spontaneous tetramerization of endogenous p53, accumulation of p53 in the nucleus, and activation of endogenous p53 target genes. In primary human breast cancers with nuclear ARC, p53 is almost always WT. Conversely, nearly all breast cancers with mutant p53 lack nuclear ARC. We conclude that nuclear ARC is induced in cancer cells and negatively regulates p53.
Collapse
Affiliation(s)
- Roger S.-Y. Foo
- *Departments of Medicine and Cell Biology, Cardiovascular Research Center, and Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Departments of Medicine
| | - Young-Jae Nam
- *Departments of Medicine and Cell Biology, Cardiovascular Research Center, and Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Marc Jason Ostreicher
- *Departments of Medicine and Cell Biology, Cardiovascular Research Center, and Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Mark D. Metzl
- *Departments of Medicine and Cell Biology, Cardiovascular Research Center, and Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Russell S. Whelan
- *Departments of Medicine and Cell Biology, Cardiovascular Research Center, and Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Chang-Fu Peng
- *Departments of Medicine and Cell Biology, Cardiovascular Research Center, and Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Anthony W. Ashton
- *Departments of Medicine and Cell Biology, Cardiovascular Research Center, and Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Weimin Fu
- *Departments of Medicine and Cell Biology, Cardiovascular Research Center, and Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Kartik Mani
- *Departments of Medicine and Cell Biology, Cardiovascular Research Center, and Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | - Elena Provenzano
- Pathology, University of Cambridge, Cambridge CB2 2QQ, United Kingdom; and
| | - Ian Ellis
- Department of Histopathology, Nottingham City Hospital, Nottingham NG5 1PB, United Kingdom
| | | | - Sarah Pinder
- Pathology, University of Cambridge, Cambridge CB2 2QQ, United Kingdom; and
| | | | | | - Richard N. Kitsis
- *Departments of Medicine and Cell Biology, Cardiovascular Research Center, and Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|