1
|
Chen YC, Hsieh HH, Chang HC, Wang HC, Lin WJ, Lin JJ. CDC25B induces cellular senescence and correlates with tumor suppression in a p53-dependent manner. J Biol Chem 2021; 296:100564. [PMID: 33745968 PMCID: PMC8054198 DOI: 10.1016/j.jbc.2021.100564] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 01/13/2023] Open
Abstract
The phosphatase cell division cycle 25B (Cdc25B) regulates cell cycle progression. Increased Cdc25B levels are often detected in cancer cell lines and human cancers and have been implicated in contributing to tumor growth, potentially by providing cancer cells with the ability to bypass checkpoint controls. However, the specific mechanism by which increased Cdc25B impacts tumor progression is not clear. Here we analyzed The Cancer Genome Atlas (TCGA) database and found that patients with high CDC25B expression had the expected poor survival. However, we also found that high CDC25B expression had a p53-dependent tumor suppressive effect in lung cancer and possibly several other cancer types. Looking in more detail at the tumor suppressive function of Cdc25B, we found that increased Cdc25B expression caused inhibition of cell growth in human normal fibroblasts. This effect was not due to alteration of specific cell cycle stage or inhibition of apoptosis, nor by induction of the DNA damage response. Instead, increased CDC25B expression led cells into senescence. We also found that p53 was required to induce senescence, which might explain the p53-dependent tumor suppressive function of Cdc25B. Mechanistically, we found that the Cdc25B phosphatase activity was required to induce senescence. Further analysis also found that Cdc25B stabilized p53 through binding and dephosphorylating p53. Together, this study identified a tumor-suppressive function of Cdc25B that is mediated through a p53-dependent senescence pathway.
Collapse
Affiliation(s)
- Ying-Chieh Chen
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Hsi-Hsien Hsieh
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Hsi-Chi Chang
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Hsin-Chiao Wang
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wey-Jinq Lin
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan.
| | - Jing-Jer Lin
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
2
|
Cairns J, Ly RC, Niu N, Kalari KR, Carlson EE, Wang L. CDC25B partners with PP2A to induce AMPK activation and tumor suppression in triple negative breast cancer. NAR Cancer 2020; 2:zcaa039. [PMID: 33385163 PMCID: PMC7751685 DOI: 10.1093/narcan/zcaa039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/28/2022] Open
Abstract
Cell division cycle 25 (CDC25) dual specificity phosphatases positively regulate the cell cycle by activating cyclin-dependent kinase/cyclin complexes. Here, we demonstrate that in addition to its role in cell cycle regulation, CDC25B functions as a regulator of protein phosphatase 2A (PP2A), a major cellular Ser/Thr phosphatase, through its direct interaction with PP2A catalytic subunit. Importantly, CDC25B alters the regulation of AMP-activated protein kinase signaling (AMPK) by PP2A, increasing AMPK activity by inhibiting PP2A to dephosphorylate AMPK. CDC25B depletion leads to metformin resistance by inhibiting metformin-induced AMPK activation. Furthermore, dual inhibition of CDC25B and PP2A further inhibits growth of 3D organoids isolated from patient derived xenograft model of breast cancer compared to CDC25B inhibition alone. Our study identifies CDC25B as a regulator of PP2A, and uncovers a mechanism of controlling the activity of a key energy metabolism marker, AMPK.
Collapse
Affiliation(s)
- Junmei Cairns
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Reynold C Ly
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nifang Niu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Krishna R Kalari
- Division of Biostatistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Erin E Carlson
- Division of Biostatistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Liewei Wang
- To whom correspondence should be addressed. Tel: +1 507 284 5264; Fax: +1 507 284 4455;
| |
Collapse
|
3
|
Pardella E, Pranzini E, Leo A, Taddei ML, Paoli P, Raugei G. Oncogenic Tyrosine Phosphatases: Novel Therapeutic Targets for Melanoma Treatment. Cancers (Basel) 2020; 12:E2799. [PMID: 33003469 PMCID: PMC7599540 DOI: 10.3390/cancers12102799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Despite a large number of therapeutic options available, malignant melanoma remains a highly fatal disease, especially in its metastatic forms. The oncogenic role of protein tyrosine phosphatases (PTPs) is becoming increasingly clear, paving the way for novel antitumor treatments based on their inhibition. In this review, we present the oncogenic PTPs contributing to melanoma progression and we provide, where available, a description of new inhibitory strategies designed against these enzymes and possibly useful in melanoma treatment. Considering the relevance of the immune infiltrate in supporting melanoma progression, we also focus on the role of PTPs in modulating immune cell activity, identifying interesting therapeutic options that may support the currently applied immunomodulating approaches. Collectively, this information highlights the value of going further in the development of new strategies targeting oncogenic PTPs to improve the efficacy of melanoma treatment.
Collapse
Affiliation(s)
- Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Angela Leo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Giovanni Raugei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| |
Collapse
|
4
|
Bona AB, Calcagno DQ, Ribeiro HF, Muniz JAPC, Pinto GR, Rocha CAM, Lacreta Junior ACC, de Assumpção PP, Herranz JAR, Burbano RR. Menadione reduces CDC25B expression and promotes tumor shrinkage in gastric cancer. Therap Adv Gastroenterol 2020; 13:1756284819895435. [PMID: 35392297 PMCID: PMC8981514 DOI: 10.1177/1756284819895435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/26/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Gastric cancer is one of the most incident types of cancer worldwide and presents high mortality rates and poor prognosis. MYC oncogene overexpression is a key event in gastric carcinogenesis and it is known that its protein positively regulates CDC25B expression which, in turn, plays an essential role in the cell division cycle progression. Menadione is a synthetic form of vitamin K that acts as a specific inhibitor of the CDC25 family of phosphatases. METHODS To better understand the menadione mechanism of action in gastric cancer, we evaluated its molecular and cellular effects in cell lines and in Sapajus apella, nonhuman primates from the new world which had gastric carcinogenesis induced by N-Methyl-N-nitrosourea. We tested CDC25B expression by western blot and RT-qPCR. In-vitro assays include proliferation, migration, invasion and flow cytometry to analyze cell cycle arrest. In in-vivo experiments, in addition to the expression analyses, we followed the preneoplastic lesions and the tumor progression by ultrasonography, endoscopy, biopsies, histopathology and immunohistochemistry. RESULTS Our tests demonstrated menadione reducing CDC25B expression in vivo and in vitro. It was able to reduce migration, invasion and proliferation rates, and induce cell cycle arrest in gastric cancer cell lines. Moreover, our in-vivo experiments demonstrated menadione inhibiting tumor development and progression. CONCLUSIONS We suggest this compound may be an important ally of chemotherapeutics in the treatment of gastric cancer. In addition, CDC25B has proven to be an effective target for investigation and development of new therapeutic strategies for this malignancy.
Collapse
Affiliation(s)
| | - Danielle Queiroz Calcagno
- Oncology Research Nucleus, University Hospital
João de Barros Barreto, Federal University of Pará, Belém, Brazil
| | - Helem Ferreira Ribeiro
- Center of Biological and Health Sciences,
Department of Biomedicine, University of Amazon, Belém, Brazil
| | | | | | | | | | - Paulo Pimentel de Assumpção
- Oncology Research Nucleus, University Hospital
João de Barros Barreto, Federal University of Pará, Belém, Brazil
| | | | | |
Collapse
|
5
|
Meng G, Zheng M, Wang M, Tong J, Ge W, Zhang J, Zheng A, Li J, Gao L, Li J. Design and synthesis of new potent PTP1B inhibitors with the skeleton of 2-substituted imino-3-substituted-5-heteroarylidene-1,3-thiazolidine-4-one: Part I. Eur J Med Chem 2016; 122:756-769. [PMID: 27526040 DOI: 10.1016/j.ejmech.2016.05.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/26/2016] [Accepted: 05/26/2016] [Indexed: 11/19/2022]
Abstract
A new series of 2-substituted imino-3-substituted-5- heteroarylidene-1,3-thiazolidine-4-ones as the potent bidentate PTP1B inhibitors were designed and synthesized in this paper. All of the new compounds were characterized and identified by spectra analysis. The biological screening test against PTP1B showed that some of these compounds have the positive inhibitory activity against PTP1B. The activity of the compounds with 5-substituted pyrrole on 5-postion of 1,3-thiazolidine-4-one are more potent than that of those compounds with 5-substituted pyridine group. Compound 14b, 14h and 14i showed IC50 values of 8.66 μM, 6.83 μM and 6.09 μM against PTP1B, respectively. Docking analysis of these active compounds with PTP1B showed the possible interaction modes of these biheterocyclic compounds with the active sites of PTP1B. The inhibition tests against oncogenetic CDC25B were also conducted on this set of compounds to evaluate the selectivity and possible anti-neoplastic activity. Compound 14b also showed the lowest IC50 of 1.66 μM against CDC25B among all the possible inhibitors, including 14g, 14h, 14i and 15c. Some pharmacological parameters including VolSurf, steric and electric descriptors of all the compounds were calculated to give some hints about the relative relationship with the biological activity. The result of this study might give some light on designing the possible anti-cancer drugs targeting at phosphatases. The most active compound 14i might be used as the lead compound for further structure modification of the new low molecular weight PTP1B inhibitors with the N-containing heterocyclic skeleton.
Collapse
Affiliation(s)
- Ge Meng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China.
| | - Meilin Zheng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Mei Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Jing Tong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Weijuan Ge
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Jiehe Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Aqun Zheng
- School of Science, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Lixin Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| |
Collapse
|
6
|
Phosphatases and kinases regulating CDC25 activity in the cell cycle: clinical implications of CDC25 overexpression and potential treatment strategies. Mol Cell Biochem 2016; 416:33-46. [PMID: 27038604 DOI: 10.1007/s11010-016-2693-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 03/24/2016] [Indexed: 10/22/2022]
Abstract
Alterations in the cell-cycle regulatory genes result in uncontrolled cell proliferation leading to several disease conditions. Cyclin-dependent kinases (CDK) and their regulatory subunit, cyclins, are essential proteins in cell-cycle progression. The activity of CDK is regulated by a series of phosphorylation and dephosphorylation at different amino acid residues. Cell Division Cycle-25 (CDC25) plays an important role in transitions between cell-cycle phases by dephosphorylating and activating CDKs. CDC25B and CDC25C play a major role in G2/M progression, whereas CDC25A assists in G1/S transition. Different isomers of CDC25 expressions are upregulated in various clinicopathological situations. Overexpression of CDC25A deregulates G1/S and G2/M events, including the G2 checkpoint. CDC25B has oncogenic properties. Binding to the 14-3-3 proteins regulates the activity and localization of CDC25B. CDC25C is predominantly a nuclear protein in mammalian cells. At the G2/M transition, mitotic activation of CDC25C protein occurs by its dissociation from 14-3-3 proteins along with its phosphorylation at multiple sites within its N-terminal domain. In this article, we critically reviewed the biology of the activation/deactivation of CDC25 by kinases/phosphatases to maintain the level of CDK-cyclin activities and thus the genomic stability, clinical implications due to dysregulation of CDC25, and potential role of CDC25 inhibitors in diseases.
Collapse
|
7
|
|
8
|
He RJ, Yu ZH, Zhang RY, Zhang ZY. Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin 2014; 35:1227-46. [PMID: 25220640 DOI: 10.1038/aps.2014.80] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/31/2014] [Indexed: 12/17/2022] Open
Abstract
Protein tyrosine phosphorylation is a key regulatory process in virtually all aspects of cellular functions. Dysregulation of protein tyrosine phosphorylation is a major cause of human diseases, such as cancers, diabetes, autoimmune disorders, and neurological diseases. Indeed, protein tyrosine phosphorylation-mediated signaling events offer ample therapeutic targets, and drug discovery efforts to date have brought over two dozen kinase inhibitors to the clinic. Accordingly, protein tyrosine phosphatases (PTPs) are considered next-generation drug targets. For instance, PTP1B is a well-known targets of type 2 diabetes and obesity, and recent studies indicate that it is also a promising target for breast cancer. SHP2 is a bona-fide oncoprotein, mutations of which cause juvenile myelomonocytic leukemia, acute myeloid leukemia, and solid tumors. In addition, LYP is strongly associated with type 1 diabetes and many other autoimmune diseases. This review summarizes recent findings on several highly recognized PTP family drug targets, including PTP1B, Src homology phosphotyrosyl phosphatase 2(SHP2), lymphoid-specific tyrosine phosphatase (LYP), CD45, Fas associated phosphatase-1 (FAP-1), striatal enriched tyrosine phosphatases (STEP), mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1), phosphatases of regenerating liver-1 (PRL), low molecular weight PTPs (LMWPTP), and CDC25. Given that there are over 100 family members, we hope this review will serve as a road map for innovative drug discovery targeting PTPs.
Collapse
|
9
|
Zhang J, Ji FJ, Gu Y, Zhang XY, Qiao SX. Chalcones derivatives as potent Cell division cycle 25B phosphatase inhibitors. Pharmacol Rep 2014; 66:515-9. [PMID: 24905533 DOI: 10.1016/j.pharep.2013.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/31/2013] [Accepted: 08/20/2013] [Indexed: 10/25/2022]
Abstract
To discover novel cell division cycle 25 (CDC25) B inhibitors and elucidate the mechanisms of inhibition in cancer cells. Nineteen 2'-hydroxy-4'-isoprenyloxychalcone derivatives (a-s) were evaluated the inhibition CDC25B activity. The enzymatic activities of the CDC25B catalytic domain were determined by monitoring the dephosphorylation of OMFP. Cell growth inhibition was detected by MTT assay. The results showed that sixteen compounds significantly inhibited cycle 25B phosphatase in vitro. Among, three compounds k, r and s had the best inhibition activity and significantly inhibited CDC25B with inhibition rates against CDC25B of 99.95%, 99.75%, and 97.77%, respectively, which is similar to the reference drugs Na3VO4 (98%). Cytotoxic activity assays showed compounds k and r are the potent against HCT116, HeLa, and A549 cells, moreover, compound k delayed the potent tumor inhibitory activity in a colo205 xenograft model in vivo.
Collapse
Affiliation(s)
- Jian Zhang
- Department of General Surgery, The Second Hospital, Jilin University, Changchun City, PR China
| | - Fu-Jian Ji
- Department of General Surgery, The Second Hospital, Jilin University, Changchun City, PR China
| | - Ye Gu
- Department of General Surgery, The Second Hospital, Jilin University, Changchun City, PR China
| | - Xin-Yao Zhang
- School of Public Health, Jilin University, Changchun City, PR China
| | - Shi-Xing Qiao
- Department of General Surgery, The Second Hospital, Jilin University, Changchun City, PR China.
| |
Collapse
|
10
|
Yang G, Goltsov AA, Ren C, Kurosaka S, Edamura K, Logothetis R, DeMayo FJ, Troncoso P, Blando J, DiGiovanni J, Thompson TC. Caveolin-1 upregulation contributes to c-Myc-induced high-grade prostatic intraepithelial neoplasia and prostate cancer. Mol Cancer Res 2011; 10:218-29. [PMID: 22144662 DOI: 10.1158/1541-7786.mcr-11-0451] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previously we reported caveolin-1 (Cav-1) overexpression in prostate cancer cells and showed that it promotes prostate cancer progression. Here, we report that Cav-1 was overexpressed in 41.7% (15 of 36) of human high-grade prostatic intraepithelial neoplasia (HGPIN) specimens obtained during radical prostatectomies. Positive correlations exist between Cav-1-positive (Cav-1(+)) HGPIN and Cav-1(+) primary prostate cancer (rho = 0.655, P < 0.0001) and between Cav-1 and c-Myc expression in HGPIN (rho = 0.41, P = 0.032). To determine whether Cav-1 cooperates with c-Myc in development of premalignant lesions and prostate cancer in vivo, we generated transgenic mice with c-Myc overexpression driven by the ARR(2)PB promoter. In this ARR(2)PB-c-myc model, Cav-1 overexpression was found in mouse PIN (mPIN) lesions and prostate cancer cells and was associated with a significantly higher ratio of proliferative to apoptotic labeling in mPIN lesions than in the Cav-1-negative epithelia adjacent to those lesions (10.02 vs. 4.34; P = 0.007). Cav-1 overexpression was also associated with increased levels of P-Akt and VEGF-A, which were previously associated with Cav-1-induced prostate cancer cell survival and positive feedback regulation of cellular Cav-1 levels, respectively. In multiple prostate cancer cell lines, Cav-1 protein (but not mRNA) was induced by c-Myc transfection, whereas VEGF siRNA transfection abrogated c-Myc-induced Cav-1 overexpression, suggesting a c-Myc-VEGF-Cav-1 signaling axis. Overall, our results suggest that Cav-1 is associated with c-Myc in the development of HGPIN and prostate cancer. Furthermore, Cav-1 overexpression in HGPIN is potentially a biomarker for early identification of patients who tend to develop Cav-1(+) primary prostate cancer.
Collapse
Affiliation(s)
- Guang Yang
- Department of Genitourinary Medical Oncology-Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Uchida S, Watanabe N, Kudo Y, Yoshioka K, Matsunaga T, Ishizaka Y, Nakagama H, Poon RYC, Yamashita K. SCFβTrCP mediates stress-activated MAPK-induced Cdc25B degradation. J Cell Sci 2011; 124:2816-25. [DOI: 10.1242/jcs.083931] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cdc25A, which is one of the three mammalian CDK-activating Cdc25 protein phosphatases (Cdc25A, B and C), is degraded through SCFβTrCP-mediated ubiquitylation following genomic insult; however, the regulation of the stability of the other two Cdc25 proteins is not well understood. Previously, we showed that Cdc25B is primarily degraded by cellular stresses that activate stress-activated MAPKs, such as Jun NH2-terminal kinase (JNK) and p38. Here, we report that Cdc25B was ubiquitylated by SCFβTrCP E3 ligase upon phosphorylation at two Ser residues in the βTrCP-binding-motif-like sequence D94AGLCMDSPSP104. Point mutation of these Ser residues to alanine (Ala) abolished the JNK-induced ubiquitylation by SCFβTrCP, and point mutation of DAG to AAG or DAA eradicated both βTrCP binding and ubiquitylation. Further analysis of the mode of βTrCP binding to this region revealed that the PEST-like sequence from E82SS to D94AG is crucially involved in both the βTrCP binding and ubiquitylation of Cdc25B. Furthermore, the phospho-mimetic replacement of all 10 Ser residues in the E82SS to SPSP104 region with Asp resulted in βTrCP binding. Collectively, these results indicate that stress-induced Cdc25B ubiquitylation by SCFβTrCP requires the phosphorylation of S101PS103P in the βTrCP-binding-motif-like and adjacent PEST-like sequences.
Collapse
Affiliation(s)
- Sanae Uchida
- Venture Business Laboratory, Center for Innovation, Kanazawa University, Kakuma, Kanazawa 920-1192, Ishikawa, Japan
| | - Nobumoto Watanabe
- Chemical Library Validation Team, Chemical Biology Core Facility, Chemical Biology Department, RIKEN ASI, Wako 351-0198, Saitama, Japan
| | - Yasusei Kudo
- Department of Oral Maxillofacial Pathobiology, Division of Frontier Medical Science, Graduate School of Medical Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Katsuji Yoshioka
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kakuma, Kanazawa 920-1192, Ishikawa, Japan
| | - Tsukasa Matsunaga
- Division of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma, Kanazawa 920-1192, Ishikawa, Japan
| | - Yukihito Ishizaka
- Division of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Hitoshi Nakagama
- Early Oncogenesis Research Project, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Randy Y. C. Poon
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Katsumi Yamashita
- Division of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma, Kanazawa 920-1192, Ishikawa, Japan
| |
Collapse
|
12
|
Jung KH, Das ND, Park JH, Lee HT, Choi MR, Chung MK, Park KS, Jung MH, Lee BC, Choi IG, Chai YG. Effects of acute ethanol treatment on NCCIT cells and NCCIT cell-derived embryoid bodies (EBs). Toxicol In Vitro 2010; 24:1696-704. [DOI: 10.1016/j.tiv.2010.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/08/2010] [Accepted: 05/21/2010] [Indexed: 12/25/2022]
|
13
|
Watanabe M, Yang G, Cao G, Tahir SA, Naruishi K, Tabata KI, Fattah EA, Rajagopalan K, Timme TL, Park S, Kurosaka S, Edamura K, Tanimoto R, Demayo FJ, Goltsov AA, Thompson TC. Functional analysis of secreted caveolin-1 in mouse models of prostate cancer progression. Mol Cancer Res 2009; 7:1446-55. [PMID: 19737975 DOI: 10.1158/1541-7786.mcr-09-0071] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previously, we reported that caveolin-1 (cav-1) is overexpressed in metastatic prostate cancer and that virulent prostate cancer cells secrete biologically active cav-1. We also showed that cav-1 expression leads to prosurvival activities through maintenance of activated Akt and that cav-1 is taken up by other cav-1-negative tumor cells and/or endothelial cells, leading to stimulation of angiogenic activities through PI-3-K-Akt-eNOS signaling. To analyze the functional consequences of cav-1 overexpression on the development and progression of prostate cancer in vivo, we generated PBcav-1 transgenic mice. Adult male PBcav-1 mice showed significantly increased prostatic wet weight and higher incidence of epithelial hyperplasia compared with nontransgenic littermates. Increased immunostaining for cav-1, proliferative cell nuclear antigen, P-Akt, and reduced nuclear p27(Kip1) staining occurred in PBcav-1 hyperplastic prostatic lesions. PBcav-1 mice showed increased resistance to castration-induced prostatic regression and elevated serum cav-1 levels compared with nontransgenic littermates. Intraprostatic injection of androgen-sensitive, cav-1-secreting RM-9 mouse prostate cancer cells resulted in tumors that were larger in PBcav-1 mice than in nontransgenic littermates (P = 0.04). Tail vein inoculation of RM-9 cells produced significantly more experimental lung metastases in PBcav-1 males than in nontransgenic male littermates (P = 0.001), and in cav-1(+/+) mice than in cav-1(-/-) mice (P = 0.041). Combination treatment with surgical castration and systemic cav-1 antibody dramatically reduced the number of experimental metastases. These experimental data suggest a causal association of secreted cav-1 and prostate cancer growth and progression.
Collapse
Affiliation(s)
- Masami Watanabe
- Scott Department of Urology, Baylor College of Medicine, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
LGH00031, a novel ortho-quinonoid inhibitor of cell division cycle 25B, inhibits human cancer cells via ROS generation. Acta Pharmacol Sin 2009; 30:1359-68. [PMID: 19730430 DOI: 10.1038/aps.2009.131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AIM To discover novel cell division cycle 25 (CDC25) B inhibitors and elucidate the mechanisms of inhibition in cancer cells. METHODS Cell growth inhibition was detected by MTT assay, the cell cycle was analyzed by flow cytometry, and protein expression and phosphorylation was examined by Western blot analysis. RESULTS LGH00031 inhibited CDC25B irreversibly in vitro in a dose-dependent manner, and impaired the proliferation of tumor cell lines. In synchronized HeLa cells, LGH00031 delayed the cell cycle progression at the G(2)/M phase. LGH00031 increased cyclin-dependent kinase 1 (CDK1) tyrosine 15 phosphorylation and cyclin B1 protein level. The activity of LGH00031 against CDC25B in vitro relied on the existence of 1,4-dithiothreitol (DTT) or dihydrolipoic acid and oxygen. The oxygen free radical scavenger catalase and superoxide dismutase reduced the inactivation of CDC25 by LGH00031, confirming that reactive oxygen species (ROS) mediate the inactivation process in vitro. LGH00031 accelerated cellular ROS production in a dose-dependent manner, and N-acetyl cysteine (NAC) markedly decreased the ROS production induced by LGH00031. Correspondingly, the LGH00031-induced decrease in cell viability and cell cycle arrest, cyclin B1 protein level, and phosphorylation of CDK1 tyrosine 15 were also rescued by NAC that decreased ROS production. CONCLUSION The activity of LGH00031 at the molecular and cellular level is mediated by ROS.
Collapse
|
15
|
Liu S, Umezu-Goto M, Murph M, Lu Y, Liu W, Zhang F, Yu S, Stephens LC, Cui X, Murrow G, Coombes K, Muller W, Hung MC, Perou CM, Lee AV, Fang X, Mills GB. Expression of autotaxin and lysophosphatidic acid receptors increases mammary tumorigenesis, invasion, and metastases. Cancer Cell 2009; 15:539-50. [PMID: 19477432 PMCID: PMC4157573 DOI: 10.1016/j.ccr.2009.03.027] [Citation(s) in RCA: 308] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 01/05/2009] [Accepted: 03/26/2009] [Indexed: 02/06/2023]
Abstract
Lysophosphatidic acid (LPA) acts through high-affinity G protein-coupled receptors to mediate a plethora of physiological and pathological activities associated with tumorigenesis. LPA receptors and autotaxin (ATX/LysoPLD), the primary enzyme producing LPA, are aberrantly expressed in multiple cancer lineages. However, the role of ATX and LPA receptors in the initiation and progression of breast cancer has not been evaluated. We demonstrate that expression of ATX or each edg family LPA receptor in mammary epithelium of transgenic mice is sufficient to induce a high frequency of late-onset, estrogen receptor (ER)-positive, invasive, and metastatic mammary cancer. Thus, ATX and LPA receptors can contribute to the initiation and progression of breast cancer.
Collapse
MESH Headings
- Adenocarcinoma/metabolism
- Adenocarcinoma/secondary
- Animals
- Carcinoma, Adenosquamous/metabolism
- Carcinoma, Adenosquamous/pathology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cloning, Molecular
- Female
- Humans
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Lymphatic Metastasis
- Male
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Transgenic
- Multienzyme Complexes/genetics
- Multienzyme Complexes/metabolism
- Neoplasm Invasiveness
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/pathology
- Phosphodiesterase I/genetics
- Phosphodiesterase I/metabolism
- Phosphoric Diester Hydrolases
- Pyrophosphatases/genetics
- Pyrophosphatases/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Lysophosphatidic Acid/genetics
- Receptors, Lysophosphatidic Acid/physiology
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Shuying Liu
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Makiko Umezu-Goto
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Mandi Murph
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Yiling Lu
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Wenbin Liu
- Department of Bioinformatics and Computational Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Fan Zhang
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Shuangxing Yu
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - L. Clifton Stephens
- Department of Veterinary Medicine & Surgery, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaojiang Cui
- Lester and Sue Smith Breast Center, Baylor College of Medicine; Houston, TX 77030, USA
- Department of Molecular Oncology, John Wayne Cancer Institute Saint John's Health Center, Santa Monica, CA 90404, USA
| | - George Murrow
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin Coombes
- Department of Bioinformatics and Computational Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrian V. Lee
- Lester and Sue Smith Breast Center, Baylor College of Medicine; Houston, TX 77030, USA
| | - Xianjun Fang
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Gordon B. Mills
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: Dr. Gordon B. Mills, Department of Systems Biology, M D Anderson Cancer Center 1515 Holcombe Blvd., Houston, TX 77030, USA, , Tel (713) 563-4200, Fax (713) 563-4235
| |
Collapse
|
16
|
Radisky DC, Hartmann LC. Mammary involution and breast cancer risk: transgenic models and clinical studies. J Mammary Gland Biol Neoplasia 2009; 14:181-91. [PMID: 19404726 PMCID: PMC2693781 DOI: 10.1007/s10911-009-9123-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 04/16/2009] [Indexed: 12/15/2022] Open
Abstract
Postlactational involution is the process following weaning during which the mammary gland undergoes massive cell death and tissue remodeling as it returns to the pre-pregnant state. Lobular involution is the process by which the breast epithelial tissue is gradually lost with aging of the mammary gland. While postlactational involution and lobular involution are distinct processes, recent studies have indicated that both are related to breast cancer development. Experiments using a variety of rodent models, as well as observations in human populations, suggest that deregulation of postlactational involution may act to facilitate tumor formation. By contrast, new human studies show that completion of lobular involution protects against subsequent breast cancer incidence.
Collapse
Affiliation(s)
- Derek C. Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224 USA
| | | |
Collapse
|
17
|
|
18
|
Kiyokawa H, Ray D. In vivo roles of CDC25 phosphatases: biological insight into the anti-cancer therapeutic targets. Anticancer Agents Med Chem 2009; 8:832-6. [PMID: 19075565 DOI: 10.2174/187152008786847693] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CDC25 phosphatases are not only rate-limiting activators of cyclin-dependent kinases (CDKs) but also important targets of the CHK1/CHK2-mediated checkpoint pathway. Each isoform of the mammalian CDC25 family seems to exert unique biological functions. CDC25A is a critical regulator for both G1-S and G2-M transitions and essential for embryonic cell proliferation after the blastocyst stage. CDC25B is dispensable for embryogenesis but required for meiotic progression of oocytes in a manner analogous to Drosophila Twine or C. elegans cdc-25.1. Moreover, CDC25A and CDC25B appear to regulate different events or stages of mitosis. CDC25B may mediate the activation of CDK1/Cyclin B at the centrosome during prophase, while CDC25A may be required for the subsequent full activation of nuclear CDK1/Cyclin B. CDC25C is dispensable for both mitotic and meiotic divisions, although it is highly regulated during the processes. Excessive levels of CDC25A and CDC25B are often observed in various human cancer tissues. Deregulated expression of these phosphatases allows cells to overcome DNA damage-induced checkpoint, leading to genomic instability. Studies using mouse models demonstrated that deregulated expression of CDC25A significantly promotes RAS- or NEU-induced mammary tumor development with chromosomal aberrations, whereas decreased CDC25A expression in heterozygous knockout mice delays tumorigenesis. These biological properties of CDC25 phosphatases provide significant insight into the pathobiology of cancer and scientific foundation for anti-CDC25 therapeutic intervention.
Collapse
Affiliation(s)
- Hiroaki Kiyokawa
- Department of Molecular Pharmacology and Biological Chemistry, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
19
|
Brezak MC, Valette A, Quaranta M, Contour-Galcera MO, Jullien D, Lavergne O, Frongia C, Bigg D, Kasprzyk PG, Prevost GP, Ducommun B. IRC-083864, a novel bis quinone inhibitor of CDC25 phosphatases active against human cancer cells. Int J Cancer 2009; 124:1449-56. [PMID: 19065668 DOI: 10.1002/ijc.24080] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CDC25 phosphatases are key actors in cyclin-dependent kinases activation whose role is essential at various stages of the cell cycle. CDC25 expression is upregulated in a number of human cancers. CDC25 phosphatases are therefore thought to represent promising novel targets in cancer therapy. Here, we report the identification and the characterization of IRC-083864, an original bis-quinone moiety that is a potent and selective inhibitor of CDC25 phosphatases in the low nanomolar range. IRC-083864 inhibits cell proliferation of a number of cell lines, regardless of their resistance to other drugs. It irreversibly inhibits cell proliferation and cell cycle progression and prevents entry into mitosis. In addition, it inhibits the growth of HCT-116 tumor spheroids with induction of p21 and apoptosis. Finally, IRC-083864 reduced tumor growth in mice with established human prostatic and pancreatic tumor xenografts. This study describes a novel compound, which merits further study as a potential anticancer agent.
Collapse
|
20
|
Fernandez-Valdivia R, Mukherjee A, Ying Y, Li J, Paquet M, DeMayo FJ, Lydon JP. The RANKL signaling axis is sufficient to elicit ductal side-branching and alveologenesis in the mammary gland of the virgin mouse. Dev Biol 2009; 328:127-39. [PMID: 19298785 DOI: 10.1016/j.ydbio.2009.01.019] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Revised: 01/09/2009] [Accepted: 01/12/2009] [Indexed: 12/21/2022]
Abstract
Receptor of Activated NF-kappaB Ligand (RANKL) is implicated as one of a number of effector molecules that mediate progesterone and prolactin signaling in the murine mammary epithelium. Using a mouse transgenic approach, we demonstrate that installation of the RANKL signaling axis into the mammary epithelium results in precocious ductal side-branching and alveologenesis in the virgin animal. These morphological changes occur due to RANKL-induced mammary epithelial proliferation, which is accompanied by increases in expression of activated NF-kB and cyclin D1. With age, prolonged RANKL exposure elicits limited mammary epithelial hyperplasia. While these transgenics exhibit RANKL-induced salivary gland adenocarcinomas, palpable mammary tumors are not observed due to RANKL-suppression of its own signaling receptor (RANK) in the mammary epithelium. Together, these studies reveal not only that the RANKL signaling axis can program many of the normal epithelial changes attributed to progesterone and prolactin action in the normal mammary gland during early pregnancy, but underscore the necessity for tight control of this signaling molecule to avoid unwarranted developmental changes that could lead to mammary hyperplasia in later life.
Collapse
Affiliation(s)
- Rodrigo Fernandez-Valdivia
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Varmeh S, Manfredi JJ. Inappropriate activation of cyclin-dependent kinases by the phosphatase Cdc25b results in premature mitotic entry and triggers a p53-dependent checkpoint. J Biol Chem 2009; 284:9475-88. [PMID: 19136558 DOI: 10.1074/jbc.m900037200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dual specificity phosphatase Cdc25B is capable of inhibiting cellular proliferation, and this occurs in a manner dependent upon its catalytic activity. Here it is shown that this is accompanied by inappropriate cyclin-dependent kinase activation and premature mitotic entry, leading to both p53-dependent and independent checkpoints. Forced expression of Cdc25B inappropriately up-regulated the activity of Cdk1 and Cdk2, by reducing levels of inhibitory phosphorylation. In cells lacking p14ARF, p53 is induced, and components of the ATM and ATR pathways are activated. Cdc25B triggers cell cycle arrest in the G(1) and G(2) phases that is p53- and p21-dependent and is inhibited by caffeine. Cdc25B also causes cells with an S phase DNA content to enter mitosis prematurely in a p53-independent manner. Synchronization of cells with aphidicolin results in these cells undergoing apoptosis. Thus, inappropriate cell cycle progression and premature mitotic entry via dysregulation of cyclin-dependent kinases results in activation of both p53-dependent and independent responses. Because Cdc25B is known to have oncogenic activity, this provides insight into the multistep nature of cancer development and why there is p53 loss during tumorigenesis.
Collapse
Affiliation(s)
- Shohreh Varmeh
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
22
|
Bakan A, Lazo JS, Wipf P, Brummond KM, Bahar I. Toward a molecular understanding of the interaction of dual specificity phosphatases with substrates: insights from structure-based modeling and high throughput screening. Curr Med Chem 2008; 15:2536-44. [PMID: 18855677 PMCID: PMC2764859 DOI: 10.2174/092986708785909003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dual-specificity phosphatases (DSPs) are important, but poorly understood, cell signaling enzymes that remove phosphate groups from tyrosine and serine/threonine residues on their substrate. Deregulation of DSPs has been implicated in cancer, obesity, diabetes, inflammation, and Alzheimer's disease. Due to their biological and biomedical significance, DSPs have increasingly become the subject of drug discovery high-throughput screening (HTS) and focused compound library development efforts. Progress in identifying selective and potent DSP inhibitors has, however, been restricted by the lack of sufficient structural data on inhibitor-bound DSPs. The shallow, almost flat, substrate binding sites in DSPs have been a major factor in hampering the rational design and the experimental development of active site inhibitors. Recent experimental and virtual HTS studies, as well as advances in molecular modeling, provide new insights into the potential mechanisms for substrate recognition and binding by this important class of enzymes. We present herein an overview of the progress, along with a brief description of applications to two types of DSPs: Cdc25 and MAP kinase phosphatase (MKP) family members. In particular, we focus on combined computational and experimental efforts for designing Cdc25B and MKP-1 inhibitors and understanding their mechanisms of interactions with their target proteins. These studies emphasize the utility of developing computational models and methods that meet the two major challenges currently faced in structure-based in silico design of lead compounds: the conformational flexibility of the target protein and the entropic contribution to the selection and stabilization of particular bound conformers.
Collapse
Affiliation(s)
- Ahmet Bakan
- Department of Computational Biology, School of Medicine, University of Pittsburgh, 3064 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
23
|
Feng X, Wang LN, Zhou YY, Yu HP, Shen Q, Zang Y, Zhou YB, Li JY, Zhang HX, Li J. Discovery and characterization of a novel inhibitor of CDC25B, LGH00045. Acta Pharmacol Sin 2008; 29:1268-74. [PMID: 18817634 DOI: 10.1111/j.1745-7254.2008.00841.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
AIM Cell division cycle 25 (CDC25) phosphatases have recently been considered as potential targets for the development of new cancer therapeutic agents. We aimed to discover novel CDC25B inhibitors in the present study. METHODS A molecular level high-throughput screening (HTS) assay was set up to screen a set of 48000 pure compounds. RESULTS HTS, whose average Z' factor is 0.55, was finished and LGH00045, a mixed-type CDC25B inhibitor with a novel structure and relative selectivity for protein tyrosine phosphatases, was identified. Furthermore, LGH00045 impaired the proliferation of tumor cells and increased cyclin-dependent kinase 1 inhibitory tyrosine phosphorylation. In synchronized HeLa cells, LGH00045 delayed cell cycle progression at the G2-M transition. CONCLUSION LGH00045, a novel CDC25B inhibitor identified through HTS, showed good inhibition on the proliferation of tumor cells and affected the cell cycle progression, which makes it a good hit for further structure modification.
Collapse
Affiliation(s)
- Xu Feng
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Marcotte R, Muller WJ. Signal transduction in transgenic mouse models of human breast cancer--implications for human breast cancer. J Mammary Gland Biol Neoplasia 2008; 13:323-35. [PMID: 18651209 DOI: 10.1007/s10911-008-9087-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 07/04/2008] [Indexed: 12/31/2022] Open
Abstract
The advent of genetically engineered mouse models (GEMs) of human breast cancer, have provided important insight into molecular basis or human breast cancer. This review will focus on two of the most extensively studied mouse models for human breast cancer involving mammary gland specific expression of the polyoma middle T (PyV MT) antigen and of the ErbB2. In addition, this review will discuss past and recent advances in understanding relative contribution of the signaling pathways in tumor induction and metastasis by these potent mammary oncogenes.
Collapse
Affiliation(s)
- Richard Marcotte
- Molecular Oncology Group, Royal Victoria Hospital, room H5.21, 687 Pine Avenue West, Montreal, QC, Canada H3A 1A1
| | | |
Collapse
|
25
|
Abstract
Protein tyrosine phosphorylation plays a major role in cellular signaling. The level of tyrosine phosphorylation is controlled by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Disturbance of the normal balance between PTK and PTP activity results in aberrant tyrosine phosphorylation, which has been linked to the etiology of several human diseases, including cancer. A number of PTPs have been implicated in oncogenesis and tumor progression and therefore are potential drug targets for cancer chemotherapy. These include PTP1B, which may augment signaling downstream of HER2/Neu; SHP2, which is the first oncogene in the PTP superfamily and is essential for growth factor-mediated signaling; the Cdc25 phosphatases, which are positive regulators of cell cycle progression; and the phosphatase of regenerating liver (PRL) phosphatases, which promote tumor metastases. As PTPs have emerged as drug targets for cancer, a number of strategies are currently been explored for the identification of various classes of PTP inhibitors. These efforts have resulted many potent, and in some cases selective, inhibitors for PTP1B, SHP2, Cdc25 and PRL phosphatases. Structural information derived from these compounds serves as a solid foundation upon which novel anti-cancer agents targeted to these PTPs can be developed.
Collapse
|
26
|
Yan X, Chua MS, He J, So SK. Small interfering RNA targeting CDC25B inhibits liver tumor growth in vitro and in vivo. Mol Cancer 2008; 7:19. [PMID: 18269767 PMCID: PMC2276234 DOI: 10.1186/1476-4598-7-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 02/12/2008] [Indexed: 01/09/2023] Open
Abstract
Background Using gene expression profiling, we previously identified CDC25B to be significantly highly expressed in hepatocellular carcinoma (HCC) compared to non-tumor liver. CDC25B is a cell cycle-activating phosphatase that positively regulates the activity of cyclin-dependent kinases, and is over-expressed in a variety of human malignancies. In this study, we validated the over-expression of CDC25B in HCC, and further investigated its potential as a therapeutic target for the management of HCC. Results Quantitative real-time polymerase chain reaction and immunohistochemical staining of patient samples confirmed the significant over-expression of CDC25B in HCC compared to non-tumor liver samples (P < 0.001). Thus, intefering with the expression and activity of CDC25B may be a potential way to intervene with HCC progression. We used RNA interference to study the biological effects of silencing CDC25B expression in HCC cell lines (Hep3B and Hep40), in order to validate its potential as a therapeutic target. Using small oligo siRNAs targeting the coding region of CDC25B, we effectively suppressed CDC25B expression by up to 90%. This was associatetd with significant reductions in cell growth rate, cell migration and invasion through the matrigel membrane, and caused significant cell cycle delay at the G2 phase. Finally, suppression of CDC25B significantly slowed the growth of Hep40 xenografts in nude mice. Conclusion Our data provide evidence that the inhibition of CDC25B expression and activity lead to suppression of tumor cell growth and motility, and may therefore be a feasible approach in the clinical management of HCC.
Collapse
Affiliation(s)
- Xinrui Yan
- Asian Liver Center, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
27
|
Srivastava SK, Bansal P, Oguri T, Lazo JS, Singh SV. Cell division cycle 25B phosphatase is essential for benzo(a)pyrene-7,8-Diol-9,10-epoxide induced neoplastic transformation. Cancer Res 2007; 67:9150-7. [PMID: 17909020 DOI: 10.1158/0008-5472.can-07-0025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cell division cycle 25B (Cdc25B) phosphatase controls entry into mitosis and regulates recovery from G2-M checkpoint-induced arrest. In the present study, we show that exposure of diploid mouse embryonic fibroblasts (MEF) to the ultimate carcinogen anti-benzo(a)pyrene (BP)-7,8-diol-9,10-epoxide (anti-BPDE) resulted in a concentration- and time-dependent increase in Cdc25B protein levels. Chronic exposure of wild-type (Cdc25B+/+) MEFs to anti-BPDE (0.1 micromol/L) caused neoplastic transformation characterized by colony formation in culture and tumor production in nude mice. In contrast, the Cdc25B null MEFs were resistant to anti-BPDE-induced transformation. Furthermore, a carcinogenic dose of the parent hydrocarbon (BP) increased Cdc25B protein levels in the target organ, lung. The biological importance of elevated Cdc25B levels was documented by the early reentry into mitosis of cells overexpressing ectopic Cdc25B levels even in the presence of DNA damage following anti-BPDE exposure, whereas control cells resumed only after DNA damage was repaired. We conclude that Cdc25B has an essential role in anti-BPDE-induced neoplastic transformation, including regulation of cell cycle resumption in the presence of DNA damage.
Collapse
Affiliation(s)
- Sanjay K Srivastava
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | |
Collapse
|
28
|
Boldrini L, Gisfredi S, Ursino S, Lucchi M, Mussi A, Fontanini G. CDC25B: relationship with angiogenesis and prognosis in non–small cell lung carcinoma. Hum Pathol 2007; 38:1563-8. [PMID: 17651784 DOI: 10.1016/j.humpath.2007.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 03/09/2007] [Accepted: 03/12/2007] [Indexed: 12/21/2022]
Abstract
The CDC25 phosphatases are cell cycle regulators known to play an important role in cancer cell growth. Increased expression of CDC25B has been reported in tumors of different tissue origins, including non-small cell lung carcinoma (NSCLC). We analyzed primary tumors and corresponding healthy lung tissues from 177 patients with NSCLC for relative expression levels of CDC25B by reverse transcription-polymerase chain reaction, with the dual aims of investigating the relationships between CDC25B expression and angiogenesis as well as prognosis. Eighty-one (45.76%) of the 177 patients with NSCLC overexpressed the CDC25B gene; there was no significant difference in CDC25B expression among sex, age, T or N status, or clinical stages of NSCLC. Concerning the possible involvement of CDC25B in angiogenesis, high expression of CDC25B correlated with positive expression of endothelin-1 (chi(2) test; P = .0002), one of the major angiogenic factors in NSCLC. A significant association was also found with the number of intratumoral microvessels (chi(2) test; P = .03). Statistical analysis of survival data revealed that elevated CDC25B expression was significantly associated with shorter survival in terms of both overall survival and disease-free interval (P = .04 for both), maintaining its independent prognostic role in a Cox proportional hazards model (P = .009). A rich and varied engagement of many cellular pathways could cause or maintain a cancer; our study may offer insights into these mechanisms in lung cancer, suggesting that CDC25B might play an important role in the angiogenic process and in determining the prognosis of patients with NSCLC.
Collapse
Affiliation(s)
- Laura Boldrini
- Department of Surgery, University of Pisa, 56126 Pisa, Italy.
| | | | | | | | | | | |
Collapse
|
29
|
Ray D, Terao Y, Nimbalkar D, Hirai H, Osmundson EC, Zou X, Franks R, Christov K, Kiyokawa H. Hemizygous disruption of Cdc25A inhibits cellular transformation and mammary tumorigenesis in mice. Cancer Res 2007; 67:6605-11. [PMID: 17638870 DOI: 10.1158/0008-5472.can-06-4815] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CDC25A phosphatase activates multiple cyclin-dependent kinases (CDK) during cell cycle progression. Inactivation of CDC25A by ubiquitin-mediated degradation is a major mechanism of DNA damage-induced S-G(2) checkpoint. Although increased CDC25A expression has been reported in various human cancer tissues, it remains unclear whether CDC25A activation is a critical rate-limiting step of carcinogenesis. To assess the role for CDC25A in cell cycle control and carcinogenesis, we used a Cdc25A-null mouse strain we recently generated. Whereas Cdc25A(-/-) mice exhibit early embryonic lethality, Cdc25A(+/-) mice show no appreciable developmental defect. Cdc25A(+/-) mouse embryonic fibroblasts (MEF) exhibit normal kinetics of cell cycle progression at early passages, modestly enhanced G(2) checkpoint response to DNA damage, and shortened proliferative life span, compared with wild-type MEFs. Importantly, Cdc25A(+/-) MEFs are significantly resistant to malignant transformation induced by coexpression of H-ras(V12) and a dominant negative p53 mutant. The rate-limiting role for CDC25A in transformation is further supported by decreased transformation efficiency in MCF-10A human mammary epithelial cells stably expressing CDC25A small interfering RNA. Consistently, Cdc25A(+/-) mice show substantially prolonged latency in mammary tumorigenesis induced by MMTV-H-ras or MMTV-neu transgene, whereas MMTV-myc-induced tumorigenesis is not significantly affected by Cdc25A heterozygosity. Mammary tissues of Cdc25A(+/-);MMTV-neu mice before tumor development display less proliferative response to the oncogene with increased tyrosine phosphorylation of CDK1/2, but show no significant change in apoptosis. These results suggest that Cdc25A plays a rate-limiting role in transformation and tumor initiation mediated by ras activation.
Collapse
Affiliation(s)
- Dipankar Ray
- Department of Molecular Pharmacology and Biological Chemistry, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 E. Superior Street, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Cell division cycle 25 (CDC25) phosphatases regulate key transitions between cell cycle phases during normal cell division, and in the event of DNA damage they are key targets of the checkpoint machinery that ensures genetic stability. Taking only this into consideration, it is not surprising that CDC25 overexpression has been reported in a significant number of human cancers. However, in light of the significant body of evidence detailing the stringent complexity with which CDC25 activities are regulated, the significance of CDC25 overexpression in a subset of cancers and its association with poor prognosis are proving difficult to assess. We will focus on the roles of CDC25 phosphatases in both normal and abnormal cell proliferation, provide a critical assessment of the current data on CDC25 overexpression in cancer, and discuss both current and future therapeutic strategies for targeting CDC25 activity in cancer treatment.
Collapse
Affiliation(s)
- Rose Boutros
- LBCMCP-CNRS UMR5088, IFR109 Institut d'Exploration Fonctionnelle des Génomes, University of Toulouse, 118 route de Narbonne, 31062 Toulouse, France
| | | | | |
Collapse
|
31
|
Pecha J, Ankrapp D, Jiang C, Tang W, Hoshino I, Bruck K, Wagner KU, Xiao H. Deletion of Tip30 leads to rapid immortalization of murine mammary epithelial cells and ductal hyperplasia in the mammary gland. Oncogene 2007; 26:7423-31. [PMID: 17533366 DOI: 10.1038/sj.onc.1210548] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transformation of mammary epithelial cells (MECs) from the normal to the neoplastic stage requires the dysregulation of tumor suppressor genes and proto-oncogenes. Tip30 is a tumor suppressor that can inhibit estrogen receptor-mediated transcription in MECs, but its role in MEC proliferation remains unknown. Here, we show that deleting the Tip30 gene leads to ductal hyperplasia in mouse mammary glands early in life and extensive mammary hyperplasia with age. Tip30(-/-) mammary glands transplanted into wild-type mammary fat pads also display mammary trees with extensive ductal hyperplasia. Strikingly, Tip30 deletion promotes proliferation of primary MECs and results in rapid immortalization of MECs in vitro relative to wild-type cells. Gene array analysis identified significant increases in the expression of mammary epithelial growth factors Wisp2 and Igf-1 in Tip30(-/-) cells. Knockdown of either Wisp2 or Igf-1 using short interfering RNA dramatically inhibited proliferation of Tip30(-/-) cells. Together, these results suggest that Tip30 is an intrinsic and negative regulator of MEC proliferation partly through the inhibition of Wisp2 and Igf-1 expression, and its absence in the mammary gland may predispose MECs to neoplastic transformation.
Collapse
MESH Headings
- Acetyltransferases/deficiency
- Acetyltransferases/genetics
- Animals
- Cell Growth Processes/genetics
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Epithelial Cells/pathology
- Female
- Gene Deletion
- Genes, Tumor Suppressor
- Hyperplasia
- Insulin-Like Growth Factor I/biosynthesis
- Insulin-Like Growth Factor I/genetics
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Glands, Animal/transplantation
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Small Interfering/biosynthesis
- RNA, Small Interfering/genetics
- Repressor Proteins/biosynthesis
- Repressor Proteins/genetics
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Tumor Suppressor Proteins/deficiency
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
- J Pecha
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Contour-Galcera MO, Sidhu A, Prévost G, Bigg D, Ducommun B. What's new on CDC25 phosphatase inhibitors. Pharmacol Ther 2007; 115:1-12. [PMID: 17531323 DOI: 10.1016/j.pharmthera.2007.03.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 03/26/2007] [Indexed: 11/30/2022]
Abstract
The CDC25 phosphatases are key regulators of cell cycle progression and play a central role in the checkpoint response to DNA damage. Their inhibition may therefore represent a promising therapeutic approach in oncology, and small molecule design strategies are currently leading to the identification of various classes of CDC25 inhibitors. Most structures developed so far are quinonoid-based compounds, but also phosphate surrogates or electrophilic entities. Considering the characteristics of the highly conserved active sites of the enzymes, many mechanisms of action have been proposed for these inhibitors. Quinonoid compounds may oxidize the catalytic site cysteine, but can also be considered as Michaël acceptors capable of reacting with the activated thiolate or other electrophilic entities. Phosphate surrogates are thought to interfere with the arginine residue, leading to reversible enzyme inhibition. But some inhibitors can combine in the same molecule several of these mechanisms, thus by fitting into the active site of the enzyme through one part of the molecule and bringing the reactive moiety in close proximity to the catalytic cysteine. This review summarizes novel classes of inhibitors that show specificity for the CDC25s over other phosphatases, cause cell proliferation inhibition and cell cycle arrest in vitro but also, for several of them, inhibition of xenografted tumoral cell growth in vivo. These promising results confirm the interest of the inhibition of CDC25 phosphatases as an anticancer therapeutic strategy.
Collapse
|
33
|
Ray D, Terao Y, Fuhrken PG, Ma ZQ, DeMayo FJ, Christov K, Heerema NA, Franks R, Tsai SY, Papoutsakis ET, Kiyokawa H. Deregulated CDC25A expression promotes mammary tumorigenesis with genomic instability. Cancer Res 2007; 67:984-91. [PMID: 17283130 DOI: 10.1158/0008-5472.can-06-3927] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Checkpoint pathways help cells maintain genomic integrity, delaying cell cycle progression in response to various risks of fidelity, such as genotoxic stresses, compromised DNA replication, and impaired spindle control. Cancer cells frequently exhibit genomic instability, and recent studies showed that checkpoint pathways are likely to serve as a tumor-suppressive barrier in vivo. The cell cycle-promoting phosphatase CDC25A is an activator of cyclin-dependent kinases and one of the downstream targets for the CHK1-mediated checkpoint pathway. Whereas CDC25A overexpression is observed in various human cancer tissues, it has not been determined whether deregulated CDC25A expression triggers or promotes tumorigenesis in vivo. Here, we show that transgenic expression of CDC25A cooperates markedly with oncogenic ras or neu in murine mammary tumorigenesis. MMTV-CDC25A transgenic mice exhibit alveolar hyperplasia in the mammary tissue but do not develop spontaneous mammary tumors. The MMTV-CDC25A transgene markedly shortens latency of tumorigenesis in MMTV-ras mice. The MMTV-CDC25A transgene also accelerates tumor growth in MMTV-neu mice with apparent cell cycle miscoordination. CDC25A-overexpressing tumors, which invade more aggressively, exhibit various chromosomal aberrations on fragile regions, including the mouse counterpart of human 1p31-36, according to array-based comparative genomic hybridization and karyotyping. The chromosomal aberrations account for substantial changes in gene expression profile rendered by transgenic expression of CDC25A, including down-regulation of Trp73. These data indicate that deregulated control of cellular CDC25A levels leads to in vivo genomic instability, which cooperates with the neu-ras oncogenic pathway in mammary tumorigenesis.
Collapse
Affiliation(s)
- Dipankar Ray
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Dearth RK, Cui X, Kim HJ, Kuiatse I, Lawrence NA, Zhang X, Divisova J, Britton OL, Mohsin S, Allred DC, Hadsell DL, Lee AV. Mammary tumorigenesis and metastasis caused by overexpression of insulin receptor substrate 1 (IRS-1) or IRS-2. Mol Cell Biol 2006; 26:9302-14. [PMID: 17030631 PMCID: PMC1698542 DOI: 10.1128/mcb.00260-06] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Insulin receptor substrates (IRSs) are signaling adaptors that play a major role in the metabolic and mitogenic actions of insulin and insulin-like growth factors. Reports have recently noted increased levels, or activity, of IRSs in many human cancers, and some have linked this to poor patient prognosis. We found that overexpressed IRS-1 was constitutively phosphorylated in vitro and in vivo and that transgenic mice overexpressing IRS-1 or IRS-2 in the mammary gland showed progressive mammary hyperplasia, tumorigenesis, and metastasis. Tumors showed extensive squamous differentiation, a phenotype commonly seen with activation of the canonical beta-catenin signaling pathway. Consistent with this, IRSs were found to bind beta-catenin in vitro and in vivo. IRS-induced tumorigenesis is unique, given that the IRSs are signaling adaptors with no intrinsic kinase activity, and this supports a growing literature indicating a role for IRSs in cancer. This study defines IRSs as oncogene proteins in vivo and provides new models to develop inhibitors against IRSs for anticancer therapy.
Collapse
Affiliation(s)
- Robert K Dearth
- Breast Cancer, Baylor College of Medicine and Methodist Hospital, Department of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
van Rossum AGSH, van Bragt MPA, Schuuring-Scholtes E, van der Ploeg JCM, van Krieken JHJM, Kluin PM, Schuuring E. Transgenic mice with mammary gland targeted expression of human cortactin do not develop (pre-malignant) breast tumors: studies in MMTV-cortactin and MMTV-cortactin/-cyclin D1 bitransgenic mice. BMC Cancer 2006; 6:58. [PMID: 16536875 PMCID: PMC1450299 DOI: 10.1186/1471-2407-6-58] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 03/14/2006] [Indexed: 01/01/2023] Open
Abstract
Background In human breast cancers, amplification of chromosome 11q13 correlates with lymph node metastasis and increased mortality. To date, two genes located within this amplicon, CCND1 and EMS1, were considered to act as oncogenes, because overexpression of both proteins, respectively cyclin D1 and cortactin, correlated well with 11q13 amplification. Cyclin D1 is involved in cell cycle regulation and the F-actin-binding protein cortactin in cytoskeletal dynamics and cell migration. To study the role of cortactin in mammary gland tumorigenesis, we examined mouse mammary tumor virus (MMTV)-cortactin transgenic mice and MMTV-cortactin/-MMTV-cyclin D1 bitransgenic mice. Methods MMTV-cortactin transgenic mice were generated and intercrossed with previously described MMTV-cyclin D1 transgenic mice. Immunohistochemical, Northern and Western blot analyses were performed to study the expression of human transgene cortactin during mammary gland development and in mammary tumors. For tumor incidence studies, forced-bred, multiparous mice were used to enhance transgene expression in the mammary gland. Microscopical examination was performed using haematoxylin and eosin staining. Results Mammary gland tumors arose stochastically (incidence 21%) with a mean age of onset at 100 weeks. This incidence, however, did not exceed that of aged-matched control FVB/N mice (38%), which unexpectedly, also developed spontaneous mammary gland tumors. We mimicked 11q13 amplification by generating MMTV-cortactin/-MMTV-cyclin D1 bitransgenic mice but did not observe any synergistic effect of cortactin on cyclin D1-induced mammary hyperplasias or carcinomas, nor development of distant metastasis. Conclusion From this study, we conclude that development of (pre-malignant) breast tumors in either wild type or MMTV-cyclin D1 mice was not augmented due to mammary gland targeted overexpression of human cortactin.
Collapse
Affiliation(s)
- Agnes GSH van Rossum
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Maaike PA van Bragt
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Ellen Schuuring-Scholtes
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Jan CM van der Ploeg
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Johan HJM van Krieken
- Department of Pathology, Radboud University Nijmegen Medical Centre, Geert Grooteplein-Zuid 10, 6500 HB, Nijmegen, The Netherlands
| | - Philip M Kluin
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
- Department of Pathology, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Ed Schuuring
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
- Department of Pathology, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
36
|
Kim KR, Kwon JL, Kim JS, No Z, Kim HR, Cheon HG. EK-6136 (3-methyl-4-(O-methyl-oximino)-1-phenylpyrazolin-5-one): A novel Cdc25B inhibitor with antiproliferative activity. Eur J Pharmacol 2005; 528:37-42. [PMID: 16324698 DOI: 10.1016/j.ejphar.2005.10.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Accepted: 10/18/2005] [Indexed: 11/27/2022]
Abstract
Cdc25B is a dual specific phosphatase, which plays a pivotal role in the activation of cell-cycle-dependent kinase 1 (Cdk1). A novel Cdc25B inhibitor, EK-6136, was identified by high throughput screening (HTS) using compounds from Korea Chemical Bank and examined for its biological effects. EK-6136 inhibited Cdc25B with an IC50 of 6.4+/-1.5 microM. EK-6136 showed selectivity against several phosphatases including PTP-1B, CD45, Cdc25A, PP1, VHR and Yop. In the inhibition kinetic study, EK-6136 displayed a mixed inhibition pattern with a Ki value of 7.8+/-1.2 microM. Consistent with in vitro results, EK-6136 inhibited the proliferation of MCF-7 (human breast carcinoma), HT-29 (human colorectal adenocarcinoma) and A549 (lung carcinoma) cells with increased Cdk-1 phosphorylation. Herein, we propose that EK-6136 is an active HTS hit as a Cdc25B inhibitor with antiproliferative activity, and can be used for the design of more potent and selective antiproliferative agents.
Collapse
Affiliation(s)
- Kwang-Rok Kim
- Laboratory of Molecular Pharmacology and Physiology, Medicinal Science Division, Korea Research Institute of Chemical Technology, Jang-Dong 100, Yusung-Gu, TaeJon 305-343, South Korea
| | | | | | | | | | | |
Collapse
|
37
|
Ducruet AP, Vogt A, Wipf P, Lazo JS. DUAL SPECIFICITY PROTEIN PHOSPHATASES: Therapeutic Targets for Cancer and Alzheimer's Disease. Annu Rev Pharmacol Toxicol 2005; 45:725-50. [PMID: 15822194 DOI: 10.1146/annurev.pharmtox.45.120403.100040] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The complete sequencing of the human genome is generating many novel targets for drug discovery. Understanding the pathophysiological roles of these putative targets and assessing their suitability for therapeutic intervention has become the major hurdle for drug discovery efforts. The dual-specificity phosphatases (DSPases), which dephosphorylate serine, threonine, and tyrosine residues in the same protein substrate, have important roles in multiple signaling pathways and appear to be deregulated in cancer and Alzheimer's disease. We examine the potential of DSPases as new molecular therapeutic targets for the treatment of human disease.
Collapse
Affiliation(s)
- Alexander P Ducruet
- Department of Pharmacology, the Combinatorial Chemistry Center and the Fiske Drug Discovery Laboratory, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
38
|
Fernández-Valdivia R, Zhang Y, Pai S, Metzker ML, Schumacher A. l7Rn6 encodes a novel protein required for clara cell function in mouse lung development. Genetics 2005; 172:389-99. [PMID: 16157679 PMCID: PMC1456166 DOI: 10.1534/genetics.105.048736] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The highly secretory Clara cells play a pivotal role in protecting the lung against inflammation and oxidative stress. This study reports the positional cloning of a novel protein required for Clara cell physiology in mouse lung development. The perinatal lethal N-ethyl-N-nitrosourea-induced l7Rn6(4234SB) allele contained a nonsense mutation in the previously hypothetical gene NM_026304 on chromosome 7. Whereas l7Rn6 mRNA levels were indistinguishable from wild type, l7Rn6(4234SB) homozygotes exhibited decreased expression of the truncated protein, suggesting protein instability. During late gestation, l7Rn6 was widely expressed in the cytoplasm of lung epithelial cells, whereas perinatal expression was restricted to the bronchiolar epithelium. Homozygosity for the l7Rn6(4234SB) allele did not affect early steps in lung patterning, growth, or cellular differentiation. Rather, mutant lungs demonstrated severe emphysematous enlargement of the distal respiratory sacs at birth. Clara cell pathophysiology was evident from decreased cytoplasmic CCSP and SP-B protein levels, enlargement and disorganization of the Golgi complex, and formation of aberrant vesicular structures. Additional support for a role in the secretory pathway derived from l7Rn6 localization to the endoplasmic reticulum. Thus, l7Rn6 represents a novel protein required for organization and/or function of the secretory apparatus in Clara cells in mouse lung.
Collapse
|
39
|
Abstract
The Cdc25 phosphatases are essential for cell-cycle control in eukaryotes under normal conditions and in response to DNA damage via checkpoint controls. Recent evidence indicates direct control of the Cdc25s, and therefore the cell cycle, in response to changes in cellular redox status. These redox changes may originate intracellularly from mitochondrial leakage or in response to specific external triggers leading to production of reactive oxygen species (ROS). This review shows that the known chemistry and biology of the Cdc25s favor a direct role for these phosphatases in temporarily blocking cell-cycle progression until favorable reducing conditions are restored. First, the Cdc25s contain a highly reactive cysteine at the active site that can react directly with ROS, leading to enzyme inactivation. Second, the ROS-inactivated form of Cdc25 is expected to prevent cell-cycle progression based on precedent from cellular responses to DNA damage. Third, ROS-mediated oxidation of the Cdc25s leads to an intramolecular disulfide that is readily reversible by the cellular reductant thioredoxin. Finally, in vivo data supporting a direct role for the Cdc25s in redox regulation are considered.
Collapse
Affiliation(s)
- Johannes Rudolph
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
40
|
Novel 3-Methyl-4-(O-substituted-oximino)-pyrazolin-5-ones as a Potent Inhibitors of Cdc25B Phosphatase. B KOREAN CHEM SOC 2004. [DOI: 10.5012/bkcs.2004.25.8.1121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Abstract
The Cdc25 phosphatases function as key regulators of the cell cycle during normal eukaryotic cell division and as mediators of the checkpoint response in cells with DNA damage. The role of Cdc25s in cancer has become increasingly evident in recent years. More than 20 studies of patient samples from diverse cancers show significant overexpression of Cdc25 with frequent correlation to clinical outcome. Recent screening and design efforts have yielded novel classes of inhibitors that show specificity for the Cdc25s over other phosphatases and cause cell cycle arrest in vivo. Herein we provide a single source for those interested in the cellular functions of Cdc25 in cell cycle progression, its role in the progress of cancer and survival of cancer patients, and recent efforts in the design of specific inhibitors.
Collapse
Affiliation(s)
- K Kristjánsdóttir
- Departments of Biochemistry and Chemistry, Duke University Medical Center, LSRC Building, Room C125, Durham, North Carolina 27710, USA
| | | |
Collapse
|
42
|
Uchida S, Kuma A, Ohtsubo M, Shimura M, Hirata M, Nakagama H, Matsunaga T, Ishizaka Y, Yamashita K. Binding of 14-3-3beta but not 14-3-3sigma controls the cytoplasmic localization of CDC25B: binding site preferences of 14-3-3 subtypes and the subcellular localization of CDC25B. J Cell Sci 2004; 117:3011-20. [PMID: 15173315 DOI: 10.1242/jcs.01086] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dual specificity phosphatase CDC25B positively controls the G2-M transition by activating CDK1/cyclin B. The binding of 14-3-3 to CDC25B has been shown to regulate the subcellular redistribution of CDC25B from the nucleus to the cytoplasm and may be correlated with the G2 checkpoint. We used a FLAG-tagged version of CDC25B to study the differences among the binding sites for the 14-3-3 subtypes, 14-3-3beta, 14-3-3epsilon and 14-3-3sigma, and the relationship between subtype binding and the subcellular localization of CDC25B. All three subtypes were found to bind to CDC25B. Site-directed mutagenesis studies revealed that 14-3-3beta bound exclusively near serine-309 of CDC25B1, which is within a potential consensus motif for 14-3-3 binding. By contrast, 14-3-3sigma bound preferentially to a site around serine-216, and the presence of serine-137 and -309 enhanced the binding. In addition to these binding-site differences, we found that the binding of 14-3-3beta drove CDC25B to the cytoplasm and that mutation of serine-309 to alanine completely abolished the cytoplasmic localization of CDC25B. However, co-expression of 14-3-3sigma and CDC25B did not affect the subcellular localization of CDC25B. Furthermore, serine-309 of CDC25B was sufficient to produce its cytoplasmic distribution with co-expression of 14-3-3beta, even when other putative 14-3-3 binding sites were mutated. 14-3-3epsilon resembled 14-3-3beta with regard to its binding to CDC25B and the control of CDC25B subcellular localization. The results of the present study indicate that two 14-3-3 subtypes can control the subcellular localization of CDC25B by binding to a specific site and that 14-3-3sigma has effects on CDC25B other than the control of its subcellular localization.
Collapse
Affiliation(s)
- Sanae Uchida
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Brezak MC, Quaranta M, Mondésert O, Galcera MO, Lavergne O, Alby F, Cazales M, Baldin V, Thurieau C, Harnett J, Lanco C, Kasprzyk PG, Prevost GP, Ducommun B. A Novel Synthetic Inhibitor of CDC25 Phosphatases. Cancer Res 2004; 64:3320-5. [PMID: 15126376 DOI: 10.1158/0008-5472.can-03-3984] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CDC25 dual-specificity phosphatases are essential regulators that dephosphorylate and activate cyclin-dependent kinase/cyclin complexes at key transitions of the cell cycle. CDC25 activity is currently considered to be an interesting target for the development of new antiproliferative agents. Here we report the identification of a new CDC25 inhibitor and the characterization of its effects at the molecular and cellular levels, and in animal models. BN82002 inhibits the phosphatase activity of recombinant human CDC25A, B, and C in vitro. It impairs the proliferation of tumoral cell lines and increases cyclin-dependent kinase 1 inhibitory tyrosine phosphorylation. In synchronized HeLa cells, BN82002 delays cell cycle progression at G1-S, in S phase and at the G2-M transition. In contrast, BN82002 arrests U2OS cell cycle mostly in the G1 phase. Selectivity of this inhibitor is demonstrated: (a) by the reversion of the mitotic-inducing effect observed in HeLa cells upon CDC25B overexpression; and (b) by the partial reversion of cell cycle arrest in U2OS expressing CDC25. We also show that BN82002 reduces growth rate of human tumor xenografts in athymic nude mice. BN82002 is a original CDC25 inhibitor that is active both in cell and animal models. This greatly reinforces the interest in CDC25 as an anticancer target.
Collapse
|
44
|
Bäurle S, Blume T, Günther J, Henschel D, Hillig RC, Husemann M, Mengel A, Parchmann C, Schmid E, Skuballa W. Design and synthesis of macrocyclic inhibitors of phosphatase Cdc25B. Bioorg Med Chem Lett 2004; 14:1673-7. [PMID: 15026048 DOI: 10.1016/j.bmcl.2004.01.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 01/19/2004] [Accepted: 01/21/2004] [Indexed: 11/22/2022]
Abstract
Based on molecular modeling studies, macrocyclic inhibitors of phosphatase cdc25B were synthetically derived from steroids. A preliminary SAR for this new template was elaborated. A series of compounds shows inhibition of cdc25B in the low micromolar range and good selectivity versus other phosphatases. The compounds did not show a significant antiproliferative effect in MaTu or HaCaT cells.
Collapse
Affiliation(s)
- Stefan Bäurle
- Schering AG, Research Center Europe, D-13342 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Uchida S, Ohtsubo M, Shimura M, Hirata M, Nakagama H, Matsunaga T, Yoshida M, Ishizaka Y, Yamashita K. Nuclear export signal in CDC25B. Biochem Biophys Res Commun 2004; 316:226-32. [PMID: 15003534 DOI: 10.1016/j.bbrc.2004.02.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2004] [Indexed: 11/25/2022]
Abstract
CDC25B is a dual-specificity phosphatase that activates CDK1/cyclin B. The nuclear exclusion of CDC25B is controlled by the binding of 14-3-3 to the nuclear export signal (NES) of CDC25B, which was reported to be amino acids H28 to L40 in the N-terminal region of CDC25B. In studying the subcellular localization of CDC25B, we found a functional NES at V52 to L65, the sequence of which is VTTLTQTMHDLAGL, where bold letters are leucine or hydrophobic amino acids frequently seen in an NES. The deletion of this NES sequence caused the mutant protein to locate exclusively in nuclei, while NES-fused GFP was detected in the cytoplasm. Moreover, the introduction of point mutations at some of the critical amino acids impaired cytoplasmic localization. Treatment with leptomycin B, a potent inhibitor of CRM1/exportin1, disrupted the cytoplasmic localization of both Flag-tagged CDC25B and NES-fused GFP. From these results, we concluded that the sequence we found is a bona fide NES of CDC25B.
Collapse
Affiliation(s)
- Sanae Uchida
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, General Education Hall, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The traditional role of the Cdc25 family of dual-specificity phosphatases is to activate cyclin-dependent kinases (CDKs) to enable progression through the cell cycle. This chapter reports that in addition to its cell cycle role, Cdc25B functions as a novel steroid receptor coactivator (SRC). When overexpressed in transgenic mammary glands, Cdc25B can up-regulate the expression of two estrogen receptor (ER)-target genes: cyclin D1 and Lactoferrin. In addition, when coexpressed with ER, Cdc25B can coactivate an ER-dependent reporter in the presence of estradiol. The coactivation of Cdc25B can be extended to the glucocorticoid receptor (GR), progesterone receptor (PR), and androgen receptor (AR). Because of the respective importance of ER and AR in breast and prostate cancer, this chapter focuses on the coactivation of both receptors by Cdc25B. We demonstrate that Cdc25B can interact directly with these nuclear receptors, recruit and enhance the activity of histone acetyltransferases (HATs), and potentiate cell-free transcription independent of its cell cycle regulatory function. Furthermore, because Cdc25B is up-regulated in highgrade and poorly differentiated prostate tumors, which are likely transiting from the hormone-dependent to hormone-independent state, we hypothesize that the coactivation of AR by Cdc25B may induce genes responsible for this progression. Taken together, it is highly conceivable that Cdc25B can promote neoplasia by its two disparate functions of (1) coactivation to induce higher levels of expression of steroid receptor target genes and (2) its role of activating CDKs to deregulate progression of the cell cycle, DNA replication, and mitosis.
Collapse
Affiliation(s)
- Steven S Chua
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
47
|
Tepera SB, McCrea PD, Rosen JM. A beta-catenin survival signal is required for normal lobular development in the mammary gland. J Cell Sci 2003; 116:1137-49. [PMID: 12584256 DOI: 10.1242/jcs.00334] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Wnt (wingless) family of secreted glycoproteins initiates a signalling pathway implicated in the regulation of both normal mouse mammary gland development and tumorigenesis. Multiple Wnt signals ultimately converge on the multifunctional protein beta-catenin to activate the transcription of target genes. Although beta-catenin plays a crucial role in canonical Wnt signalling, it also functions in epithelial cell-cell adhesion at the adherens junctions. This study was designed to isolate beta-catenin's signalling function from its role in adherence during mouse mammary gland development. A transgenic dominant-negative beta-catenin chimera (beta-eng), which retains normal protein-binding properties of wild-type beta-catenin but lacks its C-terminal signalling domain, was expressed preferentially in the mammary gland. Thus, beta-eng inhibits the signalling capacity of endogenous beta-catenin, while preserving normal cell-cell adhesion properties. Analysis of the mammary gland in transgenic mice revealed a severe inhibition of lobuloalveolar development and a failure of the mice to nurse their young. Expression of beta-eng resulted in an induction of apoptosis both in transgenic mice and in retrovirally transduced HC11 cells. Thus, endogenous beta-catenin expression appears to be required to provide a survival signal in mammary epithelial cells, which can be suppressed by transgenic expression of beta-eng. Comparison of the timing of transgene expression with the transgenic phenotype suggested a model in which beta-catenin's survival signal is required in lobular progenitors that later differentiate into lobuloalveolar clusters. This study illustrates the importance of beta-catenin signalling in mammary lobuloalveolar development.
Collapse
Affiliation(s)
- Stacey B Tepera
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
48
|
Ngan ESW, Hashimoto Y, Ma ZQ, Tsai MJ, Tsai SY. Overexpression of Cdc25B, an androgen receptor coactivator, in prostate cancer. Oncogene 2003; 22:734-9. [PMID: 12569365 DOI: 10.1038/sj.onc.1206121] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cdc25B is a dual-specific phosphatase that mediates cell cycle progression by activating the cyclin-dependent kinases. It has been shown to possess oncogenic potential. To elucidate its potential contribution to human prostate cancer development, the expression profile of Cdc25B protein in human patients was analysed by immunohistocytochemistry. Cdc25B is frequently overexpressed in human prostate cancer tissues (29 of 30; 97%). In addition, the overexpression is more profound in the tumors of high combined Gleason scores and in late stages. Subsequently, we demonstrated that Cdc25B acts as a coactivator for AR in a hormone-dependent manner in the prostate cancer cell line, LNCaP. This coactivator function, surprisingly, is independent of its cell cycle functions. Cdc25B, on the other hand, directly interacts with AR as evidenced in GST-pull down and mammalian two-hybrid assays. In addition, it is also able to enhance AR-mediated transcription in synergy with other coactivators, including CREB-binding protein (CBP) and p300/CBP associated factor. Therefore, upregulation of Cdc25B in human prostate cancer and its interplay with AR may contribute to prostate cancer development.
Collapse
Affiliation(s)
- Elly S W Ngan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
49
|
Kavanaugh CJ, Desai KV, Calvo A, Brown PH, Couldrey C, Lubet R, Green JE. Pre-clinical applications of transgenic mouse mammary cancer models. Transgenic Res 2002; 11:617-33. [PMID: 12509137 DOI: 10.1023/a:1021159705363] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Breast cancer is a leading cause of cancer morbidity and mortality. Given that the majority of human breast cancers appear to be due to non-genetic factors, identifying agents and mechanisms of prevention is key to lowering the incidence of cancer. Genetically engineered mouse models of mammary cancer have been important in elucidating molecular pathways and signaling events associated with the initiation, promotion, and the progression of cancer. Since several transgenic mammary models of human breast cancer progress through well-defined cancer stages, they are useful pre-clinical systems to test the efficacy of chemopreventive and chemotherapeutic agents. This review outlines several oncogenic pathways through which mammary cancer can be induced in transgenic models and describes several types of preventive and therapeutic agents that have been tested in transgenic models of mammary cancer. The effectiveness of farnesyl inhibitors, aromatase inhibitors, differentiating agents, polyamine inhibitors, anti-angiogenic inhibitors, and immunotherapeutic compounds including vaccines have been evaluated in reducing mammary cancer and tumor progression in transgenic models.
Collapse
Affiliation(s)
- C J Kavanaugh
- Laboratory of Cellular Regulation and Carcinogenesis, National Cancer Institute, Building 41, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Melkun E, Pilione M, Paulson RF. A naturally occurring point substitution in Cdc25A, and not Fv2/Stk, is associated with altered cell-cycle status of early erythroid progenitor cells. Blood 2002; 100:3804-11. [PMID: 12411323 DOI: 10.1182/blood.v100.10.3804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Friend virus susceptibility gene 2 (Fv2) controls the polyclonal expansion of infected cells that occurs early during Friend erythroleukemia virus infection. Fv2 has recently been shown to encode a truncated form of the Stk receptor tyrosine kinase (Sf-Stk). This observation, coupled with earlier work, suggested that Sf-Stk drives the expansion of infected cells by forming a complex with the Friend virus envelope glycoprotein, gp55, and the erythropoietin receptor. Fv2 has also been implicated in the control of cell cycling in early erythroid progenitors (erythroid blast-forming units [BFU-Es]). Mouse strains that are homozygous for the resistant allele of Fv2 (Fv2(rr)) have few actively cycling BFU-Es. In this report, we demonstrate that the control of BFU-E cycling is encoded by a gene linked to, but distinct from, Fv2, and suggest that this gene is the dual-specific protein phosphatase Cdc25A, which regulates the G1- to S-phase transition of the cell cycle. We show that a naturally occurring allele of Cdc25A, which increases Cdc25A phosphatase activity and promotes cell-cycle progression, segregates in mouse strains that exhibit high levels of BFU-E cell cycling. In wild-type mice, this allele of Cdc25A does not overtly affect erythropoiesis; however, when this allele is combined with a mutation of the Kit receptor (Kit(WV)), the anemia of the mice is enhanced. Furthermore, overexpression of Cdc25A in bone marrow cells causes a defect in the BFU-E colony formation. These results suggest that proper regulation of the cell cycle through Cdc25A is required for normal erythropoiesis.
Collapse
Affiliation(s)
- Edward Melkun
- Department of Veterinary Science, The Schreyer's Honors College, and the Graduate Program in Biochemistry, Microbiology and Molecular Biology, Pennsylvania State University, University Park 16802, USA
| | | | | |
Collapse
|