1
|
Wu RCC, Cho WL. Cloning and characterization of microbial activated Aedes aegypti MEK4 (AaMEK4): influences of noncatalytic domains on enzymatic activity. INSECT MOLECULAR BIOLOGY 2014; 23:644-655. [PMID: 25039995 DOI: 10.1111/imb.12116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Protein kinases are known to be involved in a number of signal transduction cascades. Both the stress-activated Jun N-terminal kinase (JNK) and mitogen-activated protein kinase (MAPK) p38 pathways have been shown to correlate with the insect immune response to microbial infection. MAP kinase kinase 4 (MEK4) is an upstream kinase of JNK and p38 kinase. The cDNA of AaMEK4 was cloned and characterized. AaMEK4 was activated by microbial lysates of Gram-positive, Gram-negative bacteria and yeast. The conserved lysine (K112 ) and the putative phosphorylation sites (S238 and T242 ) were shown to be important for kinase activity by site-directed mutagenesis. A common MAPK docking site (MAPK_dsA) was found and in addition, a new nearby docking site, MAPK_dsB, was identified in the N-terminal noncatalytic domain of AaMEK4. MAPK_dsB was shown to be a unique element in the MEK4 family. In this study, both MAPK_dsA and _dsB were demonstrated to be important to AaMEK4 enzymatic activity for the downstream protein kinase, Aap38.
Collapse
Affiliation(s)
- R C-C Wu
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei City, Taiwan
| | | |
Collapse
|
2
|
Sun Q, Han C, Liu L, Wang Y, Deng H, Bai L, Jiang T. Crystal structure and functional implication of the RUN domain of human NESCA. Protein Cell 2012; 3:609-17. [PMID: 22821014 PMCID: PMC4875354 DOI: 10.1007/s13238-012-2052-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022] Open
Abstract
NESCA, a newly discovered signaling adapter protein in the NGF-pathway, contains a RUN domain at its N-terminus. Here we report the crystal structure of the NESCA RUN domain determined at 2.0-Å resolution. The overall fold of the NESCA RUN domain comprises nine helices, resembling the RUN domain of RPIPx and the RUN1 domain of Rab6IP1. However, compared to the other RUN domains, the RUN domain of NESCA has significantly different surface electrostatic distributions at the putative GTPase-interacting interface. We demonstrate that the RUN domain of NESCA can bind H-Ras, a downstream signaling molecule of TrkA, with high affinity. Moreover, NESCA RUN can directly interact with TrkA. These results provide new insights into how NESCA participates in the NGF-TrkA signaling pathway.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/chemistry
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Amino Acid Sequence
- Binding Sites
- Crystallography, X-Ray
- Gene Expression
- Guanine Nucleotide Exchange Factors
- Humans
- Models, Molecular
- Molecular Sequence Data
- Nerve Growth Factor/chemistry
- Nerve Growth Factor/genetics
- Nerve Growth Factor/metabolism
- Oncogene Protein p21(ras)/chemistry
- Oncogene Protein p21(ras)/genetics
- Oncogene Protein p21(ras)/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Receptor, trkA/chemistry
- Receptor, trkA/genetics
- Receptor, trkA/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Signal Transduction
- rab GTP-Binding Proteins/chemistry
Collapse
Affiliation(s)
- Qifan Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
- Graduate University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Chuanhui Han
- Graduate University of Chinese Academy of Sciences, Beijing, 100039 China
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Lan Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
- Graduate University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Yizhi Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
- Graduate University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Hongyu Deng
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Lin Bai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Tao Jiang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
3
|
Zhang Y, Wang YG, Zhang Q, Liu XJ, Liu X, Jiao L, Zhu W, Zhang ZH, Zhao XL, He C. Interaction of Mint2 with TrkA is involved in regulation of nerve growth factor-induced neurite outgrowth. J Biol Chem 2009; 284:12469-79. [PMID: 19265194 DOI: 10.1074/jbc.m809214200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
TrkA receptor signaling is essential for nerve growth factor (NGF)-induced survival and differentiation of sensory neurons. To identify possible effectors or regulators of TrkA signaling, yeast two-hybrid screening was performed using the intracellular domain of TrkA as bait. We identified muc18-1-interacting protein 2 (Mint2) as a novel TrkA-binding protein and found that the phosphotyrosine binding domain of Mint2 interacted with TrkA in a phosphorylation- and ligand-independent fashion. Coimmunoprecipitation assays showed that endogenous TrkA interacted with Mint2 in rat tissue homogenates, and immunohistochemical evidence revealed that Mint2 and TrkA colocalized in rat dorsal root ganglion neurons. Furthermore, Mint2 overexpression inhibited NGF-induced neurite outgrowth in both PC12 and cultured dorsal root ganglion neurons, whereas inhibition of Mint2 expression by RNA interference facilitated NGF-induced neurite outgrowth. Moreover, Mint2 was found to promote the retention of TrkA in the Golgi apparatus and inhibit its surface sorting. Taken together, our data provide evidence that Mint2 is a novel TrkA-regulating protein that affects NGF-induced neurite outgrowth, possibly through a mechanism involving retention of TrkA in the Golgi apparatus.
Collapse
Affiliation(s)
- Yong Zhang
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Semaphorin3A regulates axon growth independently of growth cone repulsion via modulation of TrkA signaling. Cell Signal 2008; 20:467-79. [DOI: 10.1016/j.cellsig.2007.10.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 10/23/2007] [Accepted: 10/29/2007] [Indexed: 01/19/2023]
|
5
|
Donatello S, Fiorino A, Degl'Innocenti D, Alberti L, Miranda C, Gorla L, Bongarzone I, Rizzetti MG, Pierotti MA, Borrello MG. SH2B1beta adaptor is a key enhancer of RET tyrosine kinase signaling. Oncogene 2007; 26:6546-59. [PMID: 17471236 DOI: 10.1038/sj.onc.1210480] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The RET gene encodes two main isoforms of a receptor tyrosine kinase (RTK) implicated in various human diseases. Activating germ-line point mutations are responsible for multiple endocrine neoplasia type 2-associated medullary thyroid carcinomas, inactivating germ-line mutations for Hirschsprung's disease, while somatic rearrangements (RET/PTCs) are specific to papillary thyroid carcinomas. SH2B1beta, a member of the SH2B adaptors family, and binding partner for several RTKs, has been recently described to interact with proto-RET. Here, we show that both RET isoforms and its oncogenic derivatives bind to SH2B1beta through the SRC homology 2 (SH2) domain and a kinase activity-dependent mechanism. As a result, RET phosphorylates SH2B1beta, which in turn enhances its autophosphorylation, kinase activity, and downstream signaling. RET tyrosine residues 905 and 981 are important determinants for functional binding of the adaptor, as removal of both autophosphorylation sites displaces its recruitment. Binding of SH2B1beta appears to protect RET from dephosphorylation by protein tyrosine phosphatases, and might represent a likely mechanism contributing to its upregulation. Thus, overexpression of SH2B1beta, by enhancing phosphorylation/activation of RET transducers, potentiates the cellular differentiation and the neoplastic transformation thereby induced, and counteracts the action of RET inhibitors. Overall, our results identify SH2B1beta as a key enhancer of RET physiologic and pathologic activities.
Collapse
Affiliation(s)
- S Donatello
- Department of Experimental Oncology, Research Unit no. 3, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Cushing P, Bhalla R, Johnson AM, Rushlow WJ, Meakin SO, Belliveau DJ. Nerve growth factor increases connexin43 phosphorylation and gap junctional intercellular communication. J Neurosci Res 2006; 82:788-801. [PMID: 16302187 DOI: 10.1002/jnr.20689] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The function of gap junctions is regulated by the phosphorylation state of their connexin subunits. Numerous growth factors are known to regulate connexin phosphorylation; however, the effect of nerve growth factor on gap junction function is not understood. The phosphorylation of connexin subunits is a key event during many aspects of the lifecycle of a connexin, including open/close states, assembly/trafficking, and degradation, and thus affects the functionality of the channel. PC12 cells infected with connexin43 (Cx43) retrovirus were used as a neuronal model to characterize the signal transduction pathways activated by nerve growth factor (NGF) that potentially affect the functional state of Cx43. Immunoblot analysis demonstrated that Cx43 and the mitogen-activated protein kinase (MAPK), ERK-1/2, were phosphorylated in response to TrkA activation via NGF and that phosphorylation could be prevented by treatment with the MEK-1/2 inhibitor U0126. The effects of NGF on gap junction intercellular communication were examined by monitoring fluorescence recovery after photobleaching PC12-Cx43 cells preloaded with calcein. Fluorescence recovery in the photobleached area increased after NGF treatment and decreased when pretreated with the MEK-1/2 inhibitor U0126. These data are the first to show a direct signaling link between neurotrophins and the phosphorylation of connexin proteins through the MAPK pathway resulting in increased gap junctional intercellular communication. Neurotrophic regulation of connexin activity provides a novel mechanism of regulating intercellular communication between neurons during nervous system development and repair.
Collapse
Affiliation(s)
- Paul Cushing
- Department of Anatomy and Cell Biology, Faculty of Medicine and Dentistry, The University of Western Ontario, London, Canada
| | | | | | | | | | | |
Collapse
|
7
|
Oh JE, Karlmark KR, Shin JH, Pollak A, Freilinger A, Hengstschläger M, Lubec G. Differentiation of neuroblastoma cell line N1E-115 involves several signaling cascades. Neurochem Res 2005; 30:333-48. [PMID: 16018577 DOI: 10.1007/s11064-005-2607-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
No systematic searches for differential expression of signaling proteins (SP) in undifferentiated vs. differentiated cell lineages were published and herein we used protein profiling for this purpose. The NIE-115 cell line was cultivated and an aliquot was differentiated with dimethylsulfoxide (DMSO), that is known to lead to a neuronal phenotype. Cell lysates were prepared, run on two-dimensional gel electrophoresis followed by MALDI-TOF-TOF identification of proteins and maps of identified SPs were generated. Seven SPs were comparable, 27 SPs: GTP-binding/Ras-related proteins, kinases, growth factors, calcium binding proteins, phosphatase-related proteins were observed in differentiated NIE-115 cells and eight SPs of the groups mentioned above were observed in undifferentiated cells only. Switching-on/off of several individual SPs from different signaling cascades during the differentiation process is a key to understand mechanisms involved. The findings reported herein are challenging in vitro and in vivo studies to confirm a functional role for deranged SPs.
Collapse
Affiliation(s)
- Ji-eun Oh
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, A 1090, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
8
|
Liu HY, MacDonald JIS, Hryciw T, Li C, Meakin SO. Human Tumorous Imaginal Disc 1 (TID1) Associates with Trk Receptor Tyrosine Kinases and Regulates Neurite Outgrowth in nnr5-TrkA Cells. J Biol Chem 2005; 280:19461-71. [PMID: 15753086 DOI: 10.1074/jbc.m500313200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human tumorous imaginal disc 1 (TID1) proteins including TID1(L) and TID1(S), members of the DnaJ domain protein family, are involved in multiple intracellular signaling pathways such as apoptosis induction, cell proliferation, and survival. Here we report that TID1 associates with the Trk receptor tyrosine kinases and regulates nerve growth factor (NGF)-induced neurite outgrowth in PC12-derived nnr5 cells. Binding assays and transfection studies showed that the carboxyl-terminal end of TID1 (residues 224-429) bound to Trk at the activation loop (Tyr(P)(683)-Tyr(684)(P)(684) in rat TrkA) and that TID1 was tyrosine phosphorylated by Trk both in yeast and in transfected cells. Moreover endogenous TID1 was also tyrosine phosphorylated by and co-immunoprecipitated with Trk in neurotrophin-stimulated primary rat hippocampal neurons. Overexpression studies showed that both TID1(L) and TID1(S) significantly facilitated NGF-induced neurite outgrowth in TrkA-expressing nnr5 cells possibly through a mechanism involving increased activation of mitogen-activated protein kinase. Consistently knockdown of endogenous TID1, mediated with specific short hairpin RNA, significantly reduced NGF-induced neurite growth in nnr5-TrkA cells. These data provide the first evidence that TID1 is a novel intracellular adaptor that interacts with the Trk receptor tyrosine kinases in an activity-dependent manner to facilitate Trk-dependent intracellular signaling.
Collapse
Affiliation(s)
- Hui-Yu Liu
- Cell Biology Group, Robarts Research Institute, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
9
|
Robinson KN, Manto K, Buchsbaum RJ, MacDonald JIS, Meakin SO. Neurotrophin-dependent tyrosine phosphorylation of Ras guanine-releasing factor 1 and associated neurite outgrowth is dependent on the HIKE domain of TrkA. J Biol Chem 2004; 280:225-35. [PMID: 15513915 DOI: 10.1074/jbc.m410454200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ras guanine-releasing factor 1 (RasGrf1), a guanine nucleotide exchange factor for members of the Ras and Rho family of GTPases, is highly expressed in the brain. It is regulated by two separate mechanisms, calcium regulation through interaction with its calcium/calmodulin-binding IQ domain and serine and tyrosine phosphorylation. RasGrf1 is activated downstream of G-protein-coupled receptors and the non-receptor tyrosine kinases, Src and Ack1. Previously, we demonstrated a novel interaction between the intracellular domain of the nerve growth factor-regulated TrkA receptor tyrosine kinase and an N-terminal fragment of RasGrf1. We now show that RasGrf1 is phosphorylated and interacts with TrkA, -B, and -C in co-transfection studies. This interaction and phosphorylation of RasGrf1 is dependent on the HIKE domain of TrkA (a region shown to interact with pleckstrin homology domains) but not on any of the phosphotyrosine residues that act as docking sites for intracellular signaling molecules such as Shc and FRS-2. The PH1 domain alone of RasGrf1 is sufficient for phosphorylation by the TrkA receptor. A potential role for Trk activation of RasGrf1 is suggested through transfection studies in PC12 cells in which RasGrf1 significantly increases neurite outgrowth at low doses of neurotrophin stimulation. Notably, this neurite outgrowth is dependent on an intact HIKE domain, as nnr5-S10 cells expressing a TrkA HIKE domain mutant do not exhibit potentiated neurite outgrowth in the presence of RasGrf1. These studies identify RasGrf1 as a novel target of neurotrophin activation and suggest an additional pathway whereby neurotrophin-stimulated neurite outgrowth may be regulated.
Collapse
Affiliation(s)
- Kim N Robinson
- Laboratory of Neural Signaling, The Robarts Research Institute, London, Ontario N6A 5K8, Canada
| | | | | | | | | |
Collapse
|
10
|
Gryz EA, Meakin SO. Acidic substitution of the activation loop tyrosines in TrkA supports nerve growth factor-dependent, but not nerve growth factor-independent, differentiation and cell cycle arrest in the human neuroblastoma cell line, SY5Y. Oncogene 2003; 22:8774-85. [PMID: 14647472 DOI: 10.1038/sj.onc.1206890] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
TrkA is the receptor tyrosine kinase (RTK) for nerve growth factor (NGF) and stimulates NGF-dependent cell survival and differentiation in primary neurons and also differentiation of neuroblastomas and apoptosis of medulloblastomas. We have previously shown that aspartic acid and glutamic acid substitution (AspGlu and GluAsp) of the activation loop tyrosines in TrkA (Tyr(683) and Tyr(684)) supports NGF-independent neuritogenesis and cell survival in PC12 cell-derived nnr5 cells. In this study, the AspGlu and GluAsp mutant Trks have been analysed for their ability to support NGF-independent and NGF-dependent neuritogenesis, proliferation and cell signalling in the human neuroblastoma cell line, SY5Y. We find that the AspGlu and GluAsp mutant Trks support NGF-dependent, but not NGF-independent, autophosphorylation, neuritogenic responses and/or inhibit cell cycle progression. The NGF-dependent neuritogenic responses are lower for the mutant Trks (approximately 30-60% for AspGlu and 50-60% for GluAsp), relative to wild-type TrkA. While both the AspGlu and GluAsp mutant Trks support NGF-dependent transient phosphorylation of Shc, PLCgamma-1, AKT, FRS2, SH2B as well as prolonged MAP kinase activation, the GluAsp mutant induces stronger NGF-dependent tyrosine phosphorylation of FRS2 and SH2B, as well as a stronger reduction in bromodeoxyuridine (BrdU) incorporation. Collectively, these data suggest that neither absolute levels of receptor autophosphorylation, high levels of TrkA expression nor the activation of a specific signalling pathway is dominant and absolutely essential for neuritogenesis and cell cycle arrest of SY5Y cells.
Collapse
Affiliation(s)
- Ela A Gryz
- Laboratory of Neural Signalling, Cell Biology Group, The Robarts Research Institute, 100 Perth Drive, London, Ontario, Canada N6A 5K8
| | | |
Collapse
|
11
|
Jullien J, Guili V, Derrington EA, Darlix JL, Reichardt LF, Rudkin BB. Trafficking of TrkA-green fluorescent protein chimerae during nerve growth factor-induced differentiation. J Biol Chem 2003; 278:8706-16. [PMID: 12438306 PMCID: PMC2849666 DOI: 10.1074/jbc.m202401200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A chimera of the nerve growth factor (NGF) receptor, TrkA, and green fluorescent protein (GFP) was engineered by expressing GFP in phase with the carboxyl terminus of TrkA. TrkA-GFP becomes phosphorylated on tyrosine residues in response to NGF and is capable of initiating signaling cascades leading to prolonged MAPK activation and differentiation in PC12 nnr5 cells. TrkA constructs, progressively truncated in the carboxyl-terminal domain, were prepared as GFP chimerae in order to identify which part of the receptor intracellular domain is involved in its trafficking. Immunofluorescence observations show that TrkA-GFP is found mainly in cell surface membrane ruffles and in endosomes. Biochemical analysis indicated that the cytoplasmic domain of TrkA is not necessary for correct maturation and cell surface translocation of the receptor. An antibody against the extracellular domain of TrkA (RTA) was used as ligand to stimulate internalization and phosphorylation of TrkA. Co-localization studies with anti-phosphorylated TrkA antibodies support a role for such complexes in the propagation of signaling from the cell surface, resulting in the activation of TrkA in areas of the endosome devoid of receptor-ligand complexes. Confocal time-lapse analysis reveals that the TrkA-GFP chimera shows highly dynamic trafficking between the cell surface and internal locations. TrkA-positive vesicles were estimated to move 0.46 +/- 0.09 microm/s anterograde and 0.48 +/- 0.07 microm/s retrograde. This approach and the fidelity of the biochemical properties of the TrkA-GFP demonstrate that real-time visualization of trafficking of tyrosine kinase receptors in the presence or absence of the ligand is feasible.
Collapse
Affiliation(s)
- Jérôme Jullien
- Differentiation and Cell Cycle Group, Laboratoire de Biologie Moleculaire et Cellulaire, UMR 5665 CNRS, Ecole Normale Supérieure de Lyon
| | - Vincent Guili
- Differentiation and Cell Cycle Group, Laboratoire de Biologie Moleculaire et Cellulaire, UMR 5665 CNRS, Ecole Normale Supérieure de Lyon
| | - Edmund A. Derrington
- LaboRetro, INSERM U412, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
| | - Jean-Luc Darlix
- LaboRetro, INSERM U412, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
| | - Louis F. Reichardt
- Howard Hughes Medical Institute, University of California, San Francisco, California 94143
| | - Brian B. Rudkin
- Differentiation and Cell Cycle Group, Laboratoire de Biologie Moleculaire et Cellulaire, UMR 5665 CNRS, Ecole Normale Supérieure de Lyon
- To whom correspondence should be addressed. Tel.: 334-72-72-81-96; Fax: 334-72-72-80-80; E-mail:
| |
Collapse
|
12
|
Kao S, Jaiswal RK, Kolch W, Landreth GE. Identification of the mechanisms regulating the differential activation of the mapk cascade by epidermal growth factor and nerve growth factor in PC12 cells. J Biol Chem 2001; 276:18169-77. [PMID: 11278445 DOI: 10.1074/jbc.m008870200] [Citation(s) in RCA: 295] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In PC12 cells, epidermal growth factor (EGF) transiently stimulates the mitogen-activated protein (MAP) kinases, ERK1 and ERK2, and provokes cellular proliferation. In contrast, nerve growth factor (NGF) stimulation leads to the sustained activation of the MAPKs and subsequently to neuronal differentiation. It has been shown that both the magnitude and longevity of MAPK activation governs the nature of the cellular response. The activations of MAPKs are dependent upon two distinct small G-proteins, Ras and Rap1, that link the growth factor receptors to the MAPK cascade by activating c-Raf and B-Raf, respectively. We found that Ras was transiently stimulated upon both EGF and NGF treatment of PC12 cells. However, EGF transiently activated Rap1, whereas NGF stimulated prolonged Rap1 activation. The activation of the ERKs was due almost exclusively (>90%) to the action of B-Raf. The transient activation of the MAPKs by EGF was a consequence of the formation of a short lived complex assembling on the EGF receptor itself, composed of Crk, C3G, Rap1, and B-Raf. In contrast, NGF stimulation of the cells resulted in the phosphorylation of FRS2. FRS2 scaffolded the assembly of a stable complex of Crk, C3G, Rap1, and B-Raf resulting in the prolonged activation of the MAPKs. Together, these data provide a signaling link between growth factor receptors and MAPK activation and a mechanistic explanation of the differential MAPK kinetics exhibited by these growth factors.
Collapse
Affiliation(s)
- S Kao
- Department of Neurosciences and the Alzheimer Research Laboratory, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
13
|
MacDonald JI, Gryz EA, Kubu CJ, Verdi JM, Meakin SO. Direct binding of the signaling adapter protein Grb2 to the activation loop tyrosines on the nerve growth factor receptor tyrosine kinase, TrkA. J Biol Chem 2000; 275:18225-33. [PMID: 10748052 DOI: 10.1074/jbc.m001862200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We demonstrate that the signaling adapter, Grb2, binds directly to the neurotrophin receptor tyrosine kinase, TrkA. Grb2 binding to TrkA is independent of Shc, FRS-2, phospholipase Cgamma-1, rAPS, and SH2B and is observed in in vitro binding assays, yeast two-hybrid assays, and in co-immunoprecipitation assays. Grb2 binding to TrkA is mediated by the central SH2 domain, requires a kinase-active TrkA, and is phosphotyrosine-dependent. By analyzing a series of rat TrkA mutants, we demonstrate that Grb2 binds to the carboxyl-terminal residue, Tyr(794), as well as to the activation loop tyrosines, Tyr(683) and Tyr(684). By using acidic amino acid substitutions of the activation loop tyrosines on TrkA, we can stimulate constitutive kinase activity and TrkA-Shc interactions but, importantly, abolish TrkA/Grb2 binding. Thus, in addition to providing the first evidence of direct Grb2 binding to the neurotrophin receptor, TrkA, these data provide the first direct evidence that the activation loop tyrosines of a receptor tyrosine kinase, in addition to their essential role in kinase activation, also serve a direct role in the recruitment of intracellular signaling molecules.
Collapse
Affiliation(s)
- J I MacDonald
- John P. Robarts Research Institute, Neurodegeneration Group, 100 Perth Drive, London, Ontario N6A 5K8, Canada
| | | | | | | | | |
Collapse
|