1
|
Substitution of Thr572 to Ala in mouse c-Myb attenuates progression of early erythroid differentiation. Sci Rep 2020; 10:14381. [PMID: 32873855 PMCID: PMC7463259 DOI: 10.1038/s41598-020-71267-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 06/02/2020] [Indexed: 11/09/2022] Open
Abstract
The expression level of transcription factor c-Myb oscillates during hematopoiesis. Fbw7 promotes ubiquitin-mediated degradation of c-Myb, which is dependent on phosphorylation of Thr572. To investigate the physiological relevance of Fbw7-mediated c-Myb degradation, we generated mutant mice carrying c-Myb-T572A (TA). Homozygous mutant (TA/TA) mice exhibited a reduction in the number of peripheral red blood cells and diminished erythroblasts in bone marrow, presumably as a result of failure during erythroblast differentiation. We found that c-Myb high-expressing cells converged in the Lin-CD71+ fraction, and the expression of c-Myb was higher in TA/TA mice than in wild-type mice. Moreover, TA/TA mice had an increased proportion of the CD71+ subset in Lin- cells. The c-Myb level in the Lin-CD71+ subset showed three peaks, and the individual c-Myb level was positively correlated with that of c-Kit, a marker of undifferentiated cells. Ultimately, the proportion of c-Mybhi subgroup was significantly increased in TA/TA mice compared with wild-type mice. These results indicate that a delay in reduction of c-Myb protein during an early stage of erythroid differentiation creates its obstacle in TA/TA mice. In this study, we showed the T572-dependent downregulation of c-Myb protein is required for proper differentiation in early-stage erythroblasts, suggesting the in vivo significance of Fbw7-mediated c-Myb degradation.
Collapse
|
2
|
Kim D, You E, Jeong J, Ko P, Kim JW, Rhee S. DDR2 controls the epithelial-mesenchymal-transition-related gene expression via c-Myb acetylation upon matrix stiffening. Sci Rep 2017; 7:6847. [PMID: 28754957 PMCID: PMC5533734 DOI: 10.1038/s41598-017-07126-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 06/23/2017] [Indexed: 02/03/2023] Open
Abstract
Increasing matrix stiffness caused by the extracellular matrix (ECM) deposition surrounding cancer cells is accompanied by epithelial-mesenchymal transition (EMT). Here, we show that expression levels of EMT marker genes along with discoidin domain receptor 2 (DDR2) can increase upon matrix stiffening. DDR2 silencing by short hairpin RNA downregulated EMT markers. Promoter analysis and chromatin immunoprecipitation revealed that c-Myb and LEF1 may be responsible for DDR2 induction during cell culture on a stiff matrix. Mechanistically, c-Myb acetylation by p300, which is upregulated on the stiff matrix, seems to be necessary for the c-Myb-and-LEF1-mediated DDR2 expression. Finally, we found that the c-Myb-DDR2 axis is crucial for lung cancer cell line proliferation and expression of EMT marker genes in a stiff environment. Thus, our results suggest that DDR2 regulation by p300 expression and/or c-Myb acetylation upon matrix stiffening may be necessary for regulation of EMT and invasiveness of lung cancer cells.
Collapse
Affiliation(s)
- Daehwan Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eunae You
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jangho Jeong
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Panseon Ko
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
3
|
Bies J, Sramko M, Wolff L. Stress-induced phosphorylation of Thr486 in c-Myb by p38 mitogen-activated protein kinases attenuates conjugation of SUMO-2/3. J Biol Chem 2013; 288:36983-93. [PMID: 24257756 DOI: 10.1074/jbc.m113.500264] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
c-Myb plays an essential role in regulation of properly balanced hematopoiesis through transcriptional regulation of genes directly controlling cellular processes such as proliferation, differentiation, and apoptosis. The transcriptional activity and protein levels of c-Myb are strictly controlled through post-translational modifications such as phosphorylation, acetylation, ubiquitination, and SUMOylation. Conjugation of small ubiquitin-like modifier (SUMO) proteins has been shown to suppress the transcriptional activity of c-Myb. SUMO-1 modifies c-Myb under physiological conditions, whereas SUMO-2/3 conjugation was reported in cells under stress. Because stress also activates several cellular protein kinases, we investigated whether phosphorylation of c-Myb changes in stressed cells and whether a mutual interplay exists between phosphorylation and SUMOylation of c-Myb. Here we show that several types of environmental stress induce a rapid change in c-Myb phosphorylation. Interestingly, the phosphorylation of Thr(486), located in close proximity to SUMOylation site Lys(499) of c-Myb, is detected preferentially in nonSUMOylated protein and has a negative effect on stress-induced SUMOylation of c-Myb. Stress-activated p38 MAPKs phosphorylate Thr(486) in c-Myb, attenuate its SUMOylation, and increase its proteolytic turnover. Stressed cells expressing a phosphorylation-deficient T486A mutant demonstrate decreased expression of c-Myb target genes Bcl-2 and Bcl-xL and accelerated apoptosis because of increased SUMOylation of the mutant protein. These results suggest that phosphorylation-dependent modulation of c-Myb SUMOylation may be important for proper response of cells to stress. In summary, we have identified a novel regulatory interplay between phosphorylation and SUMOylation of c-Myb that regulates its activity in stressed cells.
Collapse
Affiliation(s)
- Juraj Bies
- From the Laboratory of Cellular Oncology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
4
|
Corrigan-Curay J, Cohen-Haguenauer O, O'Reilly M, Ross SR, Fan H, Rosenberg N, Somia N, King N, Friedmann T, Dunbar C, Aiuti A, Naldini L, Baum C, von Kalle C, Kiem HP, Montini E, Bushman F, Sorrentino BP, Carrondo M, Malech H, Gahrton G, Shapiro R, Wolff L, Rosenthal E, Jambou R, Zaia J, Kohn DB. Challenges in vector and trial design using retroviral vectors for long-term gene correction in hematopoietic stem cell gene therapy. Mol Ther 2012; 20:1084-94. [PMID: 22652996 DOI: 10.1038/mt.2012.93] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
5
|
Quintana AM, Zhou YE, Pena JJ, O'Rourke JP, Ness SA. Dramatic repositioning of c-Myb to different promoters during the cell cycle observed by combining cell sorting with chromatin immunoprecipitation. PLoS One 2011; 6:e17362. [PMID: 21364958 PMCID: PMC3043100 DOI: 10.1371/journal.pone.0017362] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 02/01/2011] [Indexed: 02/05/2023] Open
Abstract
The c-Myb transcription factor is a critical regulator of proliferation and stem cell differentiation, and mutated alleles of c-Myb are oncogenic, but little is known about changes in c-Myb activity during the cell cycle. To map the association of c-Myb with specific target genes during the cell cycle, we developed a novel Fix-Sort-ChIP approach, in which asynchronously growing cells were fixed with formaldehyde, stained with Hoechst 33342 and separated into different cell cycle fractions by flow sorting, then processed for chromatin immunoprecipitation (ChIP) assays. We found that c-Myb actively repositions, binding to some genes only in specific cell cycle phases. In addition, the specificity of c-Myb is dramatically different in small subpopulations of cells, for example cells in the G2/M phase of the cell cycle, than in the bulk population. The repositioning of c-Myb during the cell cycle is not due to changes in its expression and also occurs with ectopically expressed, epitope-tagged versions of c-Myb. The repositioning occurs in established cell lines, in primary human CD34+ hematopoietic progenitors and in primary human acute myeloid leukemia cells. The combination of fixation, sorting and ChIP analysis sheds new light on the dynamic nature of gene regulation during the cell cycle and provides a new type of tool for the analysis of gene regulation in small subsets of cells, such as cells in a specific phase of the cell cycle.
Collapse
Affiliation(s)
- Anita M. Quintana
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Ye E. Zhou
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Janeth J. Pena
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - John P. O'Rourke
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Scott A. Ness
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
6
|
Quintana AM, Liu F, O'Rourke JP, Ness SA. Identification and regulation of c-Myb target genes in MCF-7 cells. BMC Cancer 2011; 11:30. [PMID: 21205319 PMCID: PMC3038977 DOI: 10.1186/1471-2407-11-30] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 01/25/2011] [Indexed: 12/18/2022] Open
Abstract
Background The c-Myb transcription factor regulates differentiation and proliferation in hematopoietic cells, stem cells and epithelial cells. Although oncogenic versions of c-Myb were first associated with leukemias, over expression or rearrangement of the c-myb gene is common in several types of solid tumors, including breast cancers. Expression of the c-myb gene in human breast cancer cells is dependent on estrogen stimulation, but little is known about the activities of the c-Myb protein or what genes it regulates in estrogen-stimulated cells. Methods We used chromatin immunoprecipitation coupled with whole genome promoter tiling microarrays to identify endogenous c-Myb target genes in human MCF-7 breast cancer cells and characterized the activity of c-Myb at a panel of target genes during different stages of estrogen deprivation and stimulation. Results By using different antibodies and different growth conditions, the c-Myb protein was found associated with over 10,000 promoters in MCF-7 cells, including many genes that encode cell cycle regulators or transcription factors and more than 60 genes that encode microRNAs. Several previously identified c-Myb target genes were identified, including CCNB1, MYC and CXCR4 and novel targets such as JUN, KLF4, NANOG and SND1. By studying a panel of these targets to validate the results, we found that estradiol stimulation triggered the association of c-Myb with promoters and that association correlated with increased target gene expression. We studied one target gene, CXCR4, in detail, showing that c-Myb associated with the CXCR4 gene promoter and activated a CXCR4 reporter gene in transfection assays. Conclusions Our results show that c-Myb associates with a surprisingly large number of promoters in human cells. The results also suggest that estradiol stimulation leads to large-scale, genome-wide changes in c-Myb activity and subsequent changes in gene expression in human breast cancer cells.
Collapse
Affiliation(s)
- Anita M Quintana
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | | | | | | |
Collapse
|
7
|
Zhou Y, Ness SA. Myb proteins: angels and demons in normal and transformed cells. Front Biosci (Landmark Ed) 2011; 16:1109-31. [PMID: 21196221 DOI: 10.2741/3738] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A key regulator of proliferation, differentiation and cell fate, the c-Myb transcription factor regulates the expression of hundreds of genes and is in turn regulated by numerous pathways and protein interactions. However, the most unique feature of c-Myb is that it can be converted into an oncogenic transforming protein through a few mutations that completely change its activity and specificity. The c-Myb protein is a myriad of interactions and activities rolled up in a protein that controls proliferation and differentiation in many different cell types. Here we discuss the background and recent progress that have led to a better understanding of this complex protein, and outline the questions that have yet to be answered.
Collapse
Affiliation(s)
- Ye Zhou
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | | |
Collapse
|
8
|
Kitagawa K, Kotake Y, Hiramatsu Y, Liu N, Suzuki S, Nakamura S, Kikuchi A, Kitagawa M. GSK3 regulates the expressions of human and mouse c-Myb via different mechanisms. Cell Div 2010; 5:27. [PMID: 21092141 PMCID: PMC3001421 DOI: 10.1186/1747-1028-5-27] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/21/2010] [Indexed: 11/10/2022] Open
Abstract
Background c-Myb is expressed at high levels in immature progenitors of all the hematopoietic lineages. It is associated with the regulation of proliferation, differentiation and survival of erythroid, myeloid and lymphoid cells, but decreases during the terminal differentiation to mature blood cells. The cellular level of c-Myb is controlled by not only transcriptional regulation but also ubiquitin-dependent proteolysis. We recently reported that mouse c-Myb protein is controlled by ubiquitin-dependent degradation by SCF-Fbw7 E3 ligase via glycogen synthase kinase 3 (GSK3)-mediated phosphorylation of Thr-572 in a Cdc4 phosphodegron (CPD)-dependent manner. However, this critical threonine residue is not conserved in human c-Myb. In this study, we investigated whether GSK3 is involved in the regulatory mechanism for human c-Myb expression. Results Human c-Myb was degraded by ubiquitin-dependent degradation via SCF-Fbw7. Human Fbw7 ubiquitylated not only human c-Myb but also mouse c-Myb, whereas mouse Fbw7 ubiquitylated mouse c-Myb but not human c-Myb. Human Fbw7 mutants with mutations of arginine residues important for recognition of the CPD still ubiquitylated human c-Myb. These data strongly suggest that human Fbw7 ubiquitylates human c-Myb in a CPD-independent manner. Mutations of the putative GSK3 phosphorylation sites in human c-Myb did not affect the Fbw7-dependent ubiquitylation of human c-Myb. Neither chemical inhibitors nor a siRNA for GSK3β affected the stability of human c-Myb. However, depletion of GSK3β upregulated the transcription of human c-Myb, resulting in transcriptional suppression of γ-globin, one of the c-Myb target genes. Conclusions The present observations suggest that human Fbw7 ubiquitylates human c-Myb in a CPD-independent manner, whereas mouse Fbw7 ubiquitylates human c-Myb in a CPD-dependent manner. Moreover, GSK3 negatively regulates the transcriptional expression of human c-Myb but does not promote Fbw7-dependent degradation of human c-Myb protein. Inactivation of GSK3 as well as mutations of Fbw7 may be causes of the enhanced c-Myb expression observed in leukemia cells. We conclude that expression levels of human and mouse c-Myb are regulated via different mechanisms.
Collapse
Affiliation(s)
- Kyoko Kitagawa
- Department of Biochemistry 1, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kitagawa K, Hiramatsu Y, Uchida C, Isobe T, Hattori T, Oda T, Shibata K, Nakamura S, Kikuchi A, Kitagawa M. Fbw7 promotes ubiquitin-dependent degradation of c-Myb: involvement of GSK3-mediated phosphorylation of Thr-572 in mouse c-Myb. Oncogene 2009; 28:2393-405. [PMID: 19421138 DOI: 10.1038/onc.2009.111] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Expression of oncoprotein c-Myb oscillates during hematopoiesis and hematological malignancies. Its quantity is not only regulated through transcriptional control but also through the ubiquitin-proteasome pathway, accompanied by phosphorylation, although the mechanisms are poorly understood. In this report, we tried to identify an E3 ubiquitin ligase, which targets c-Myb for ubiquitin-dependent degradation. We found that an F-box protein, Fbw7, interacted with c-Myb, which is mutated in numerous cancers. Fbw7 facilitated ubiquitylation and degradation of c-Myb in intact cells. Moreover, depletion of Fbw7 by RNA interference delayed turnover and increased the abundance of c-Myb in myeloid leukemia cells concomitantly, and suppressed the transcriptional level of gamma-globin, which receives transcriptional repression from c-Myb. In addition, we analysed sites required for both ubiquitylation and degradation of c-Myb. We found that Thr-572 is critical for Fbw7-mediated ubiquitylation in mouse c-Myb using site-directed mutagenesis. Fbw7 recognized the phosphorylation of Thr-572, which was mediated by glycogen synthase kinase 3 (GSK3). In consequence, the c-Myb protein was markedly stabilized by the substitution of Thr-572 to Ala. These observations suggest that SCF(Fbw7) ubiquitin ligase regulates phosphorylation-dependent degradation of c-Myb protein.
Collapse
Affiliation(s)
- K Kitagawa
- Department of Biochemistry 1, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Singh R, Winn LM. The effects of 1,4-benzoquinone on c-Myb and topoisomerase II in K-562 cells. Mutat Res 2008; 645:33-38. [PMID: 18778717 DOI: 10.1016/j.mrfmmm.2008.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 08/05/2008] [Accepted: 08/08/2008] [Indexed: 05/26/2023]
Abstract
Exposure to benzene, a ubiquitous environmental pollutant, has been linked to leukemia, although the mechanism of benzene-initiated leukemogenesis remains unclear. Benzene can be bioactivated to toxic metabolites such as 1,4 benzoquinone (BQ), which can alter signaling pathways and affect chromosomal integrity. BQ has been shown to increase the activity of c-Myb, which is an important transcription factor involved in hematopoiesis, cell proliferation, and cell differentiation. The c-Myb protein has also been shown to increase topoisomerase IIalpha (Topo IIalpha) promoter activity specifically in cell lines with hematopoietic origin. Topo IIalpha is a critical nuclear enzyme that removes torsional strain by cleaving, untangling and religating double-stranded DNA. Since Topo IIalpha mediates DNA strand breaks, aberrant Topo IIalpha activity or increased protein levels may increase the formation of DNA strand breaks, leaving the cell susceptible to mutational events. We hypothesized that BQ can increase c-Myb activity, which in turn increases Topo IIalpha promoter activity resulting in increased DNA strand breaks. Using luciferase reporter assays in K-562 cells we demonstrated that BQ (25 and 37microM) exposure caused an increase in c-Myb activity after 24h. Contradictory to previous findings, overexpression of exogenous c-Myb or a polypeptide consisting of c-Myb's DNA binding domain (DBD), which competitively inhibits the binding of endogenous c-Myb to DNA, did not affect Topo IIalpha promoter activity. However, BQ (37microM for 24h) exposure caused a significant increase in Topo IIalpha promoter activity, which could be blocked by the overexpression of the DBD polypeptide, suggesting that BQ exposure increases Topo IIalpha promoter activity through the c-Myb signaling pathway.
Collapse
Affiliation(s)
- Roopam Singh
- Department of Pharmacology and Toxicology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
11
|
Abstract
The transcription factor MYB has a key role as a regulator of stem and progenitor cells in the bone marrow, colonic crypts and a neurogenic region of the adult brain. It is in these compartments that a deficit in MYB activity leads to severe or lethal phenotypes. As was predicted from its leukaemogenicity in several animal species, MYB has now been identified as an oncogene that is involved in some human leukaemias. Moreover, recent evidence has strengthened the case that MYB is activated in colon and breast cancer: a block to MYB expression is overcome by mutation of the regulatory machinery in the former disease and by oestrogen receptor-alpha (ERalpha) in the latter.
Collapse
Affiliation(s)
- Robert G Ramsay
- Peter MacCallum Cancer Centre, St Andrew's Place, Melbourne, Victoria 3002, Australia
| | | |
Collapse
|
12
|
p38MAPKδ controls c-Myb degradation in response to stress. Blood Cells Mol Dis 2008; 40:388-94. [DOI: 10.1016/j.bcmd.2007.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 09/21/2007] [Indexed: 11/24/2022]
|
13
|
Mertz JA, Kobayashi R, Dudley JP. ALY is a common coactivator of RUNX1 and c-Myb on the type B leukemogenic virus enhancer. J Virol 2007; 81:3503-13. [PMID: 17229714 PMCID: PMC1866045 DOI: 10.1128/jvi.02253-06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type B leukemogenic virus (TBLV), a mouse mammary tumor virus (MMTV) variant, often induces T-cell leukemias and lymphomas by c-myc activation following viral DNA integration. Transfection assays using a c-myc reporter plasmid indicated that the TBLV long terminal repeat (LTR) enhancer is necessary for T-cell-specific increases in basal reporter activity. The sequence requirements for this effect were studied using mutations of the 62-bp enhancer region in an MMTV LTR reporter vector. Deletion of a nuclear factor A-binding site dramatically reduced reporter activity in Jurkat T cells. However, a 41-bp enhancer missing the RUNX1 site still retained minimal enhancer function. DNA affinity purification using a TBLV enhancer oligomer containing the RUNX1 binding site followed by mass spectrometry resulted in the identification of ALY. Subsequent experiments focused on the reconstitution of enhancer activity in epithelial cells. ALY overexpression synergized with RUNX1B on TBLV enhancer activity, and synergism required the RUNX1B-binding site. A predicted c-Myb binding site in the enhancer was confirmed after c-myb overexpression elevated TBLV LTR reporter activity, and overexpression of c-Myb and RUNX1B together showed additive effects on reporter gene levels. ALY also synergized with c-Myb, and coimmunoprecipitation experiments demonstrated an interaction between ALY and c-Myb. These experiments suggest a central role for ALY in T-cell enhancer function and oncogene activation.
Collapse
Affiliation(s)
- Jennifer A Mertz
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, One University Station, A5000 24th Street and Speedway, ESB 226, Austin, TX 78712-0162, USA
| | | | | |
Collapse
|
14
|
Lei W, Rushton JJ, Davis LM, Liu F, Ness SA. Positive and negative determinants of target gene specificity in myb transcription factors. J Biol Chem 2004; 279:29519-27. [PMID: 15105423 DOI: 10.1074/jbc.m403133200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The A-Myb and c-Myb transcription factors share a highly conserved DNA-binding domain and activate the same promoters in reporter gene assays. However, the two proteins have distinct biological activities, and expressing them individually in human cells leads to the activation of distinct sets of endogenous genes, suggesting that each protein has a unique transcriptional specificity. Here, the structural and functional features of the Myb proteins were compared, using assays of endogenous gene expression to measure changes in specificity. When the Myb proteins were tested in different cell types, they activated unique and nearly nonoverlapping sets of genes in each cellular context. Deletion and domain swap experiments identified small, discreet positive and negative elements in A-Myb and c-Myb that were required for the regulation of specific genes, such as DHRS2, DSIPI, and mim-1. The results suggest that individual functional elements in the transcriptional activation domains are responsible for activating specific cellular genes in a context-specific manner. The results also have important implications for interpreting results from reporter gene assays, which fail to detect the differences in activity identified through endogenous gene assays, and fusion protein constructs that alter the transcriptional activation domains and the activities of the Myb proteins.
Collapse
Affiliation(s)
- Wanli Lei
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131-0001, USA
| | | | | | | | | |
Collapse
|
15
|
Bashir T, Pagano M. Aberrant ubiquitin-mediated proteolysis of cell cycle regulatory proteins and oncogenesis. Adv Cancer Res 2003; 88:101-44. [PMID: 12665054 DOI: 10.1016/s0065-230x(03)88305-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ubiquitin pathway plays a central role in the regulation of cell growth and cell proliferation by controlling the abundance of key cell cycle proteins. Increasing evidence indicates that unscheduled proteolysis of many cell cycle regulators contributes significantly to tumorigenesis and is indeed found in many types of human cancers. Aberrant proteolysis with oncogenic potential is elicited by two major mechanisms: defective degradation of positive cell cycle regulators (i.e., proto-oncoproteins) and enhanced degradation of negative cell cycle regulators (i.e., tumor suppressor proteins). In many cases, increased protein stability is a result of mutations in the substrate that prevent the recognition of the protein by the ubiquitin-mediated degradation machinery. Alternatively, the specific recognition proteins mediating ubiquitination (ubiquitin ligases) are not expressed or harbor mutations rendering them inactive. In contrast, the overexpression of a ubiquitin ligase may result in the enhanced degradation of a negative cell cycle regulator. This chapter aims to review the involvement of the ubiquitin pathway in the scheduled destruction of some important cell cycle regulators and to discuss the implications of their aberrant degradation for the development of cancer.
Collapse
Affiliation(s)
- Tarig Bashir
- Department of Pathology and NYU Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
16
|
Srivastava J, Procyk KJ, Iturrioz X, Parker PJ. Phosphorylation is required for PMA- and cell-cycle-induced degradation of protein kinase Cdelta. Biochem J 2002; 368:349-55. [PMID: 12207561 PMCID: PMC1222988 DOI: 10.1042/bj20020737] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2002] [Revised: 08/19/2002] [Accepted: 09/04/2002] [Indexed: 11/17/2022]
Abstract
Classical and novel protein kinase C (PKC) isoforms are down-regulated as a result of chronic activation by certain tumour promoters and physiological stimuli; however, the mechanisms leading to down-regulation are not fully understood. In the present study, we have studied the PMA ('TPA')-induced degradation of PKCdelta in NIH 3T3 cells under culture conditions where PKCdelta displays cell-cycle-dependent down-regulation. In contrast with previous studies, a hyperphosphorylated form of this PKC isoform, promoted by calyculin A, was rapidly degraded in PMA-treated cells. Similarly, the presence of calyculin A enhanced the down-regulation of PKCdelta observed on G(1)/S-phase progression through the cell cycle. Analysis of phosphorylation-site mutants indicated that the T-loop Thr(505) phosphorylation site was critical for induced degradation.
Collapse
Affiliation(s)
- Jyoti Srivastava
- Protein Phosphorylation Laboratory, Cancer Research UK London Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, U.K
| | | | | | | |
Collapse
|
17
|
Tang T, Arbiser JL, Brandt SJ. Phosphorylation by mitogen-activated protein kinase mediates the hypoxia-induced turnover of the TAL1/SCL transcription factor in endothelial cells. J Biol Chem 2002; 277:18365-72. [PMID: 11904294 DOI: 10.1074/jbc.m109812200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The basic helix-loop-helix transcription factor TAL1 (or SCL), originally identified from its involvement by a chromosomal rearrangement in T-cell acute lymphoblastic leukemia, is required for hematopoietic development. TAL1 also has a critical role in embryonic vascular remodeling and is expressed in endothelial cells postnatally, although little is known about its function or regulation in this cell type. We report here that the important proangiogenic stimulus hypoxia stimulates phosphorylation, ubiquitination, and proteasomal breakdown of TAL1 in endothelial cells. Tryptic phosphopeptide mapping and chemical inhibitor studies showed that hypoxia induced the mitogen-activated protein kinase-mediated phosphorylation of a single serine residue, Ser(122), in the protein, and site-directed mutagenesis demonstrated that Ser(122) phosphorylation was necessary for hypoxic acceleration of TAL1 turnover in an immortalized murine endothelial cell line. Finally, whereas TAL1 expression was detected in endothelial cells from both large and small vessels, hypoxia-induced TAL1 turnover was observed only in microvascular endothelial cells. Besides their implications for TAL1 function in angiogenic processes, these results demonstrate that a protein kinase(s) important for mitogenic signaling is also utilized in hypoxic endothelial cells to target a transcription factor for destruction.
Collapse
Affiliation(s)
- Tong Tang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
18
|
Bies J, Markus J, Wolff L. Covalent attachment of the SUMO-1 protein to the negative regulatory domain of the c-Myb transcription factor modifies its stability and transactivation capacity. J Biol Chem 2002; 277:8999-9009. [PMID: 11779867 DOI: 10.1074/jbc.m110453200] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor c-Myb is subject to several types of post-translational modifications, including phosphorylation, acetylation, and ubiquitination. These modifications regulate the transcription and transforming activity as well as the proteolytic stability of c-Myb. Here we report the covalent modification of c-Myb with the small ubiquitin-related protein SUMO-1. Mutational analysis identified two major sumolation sites (Lys(499) and Lys(523)) in the negative regulatory domain. Interestingly, the single mutation K523R completely abolished modification of c-Myb with SUMO-1, suggesting that sumolation of Lys(523) is required for modification of other lysines in c-Myb. In accordance with this observation, we found that the SUMO-1-conjugating enzyme Ubc9 interacted only with a region surrounding Lys(523) (also called the PEST/EVES motif). Experiments aimed at determining the proteolytic stability of sumolated and unmodified forms of c-Myb revealed that at least two covalently attached SUMO-1 molecules dramatically increased the stability of c-Myb. However, mutations of the SUMO-1 modification sites did not alter its stability, suggesting that a mechanism(s) other than competition of ubiquitin and SUMO-1 for the same lysine is involved in the stabilization of sumolated c-Myb protein. Finally, the K523R mutant of c-Myb, entirely deficient in sumolation, was shown to have an increased transactivation capacity on a Myb-responsive promoter, suggesting that SUMO-1 negatively regulates the transactivation function of c-Myb. Thus, modification of c-Myb with SUMO-1 represents a novel mechanism through which the negative regulatory domain can exert its suppressing activity on c-Myb transactivation capacity.
Collapse
Affiliation(s)
- Juraj Bies
- Department of Molecular Virology, Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava, Slovakia.
| | | | | |
Collapse
|
19
|
Li G, Harton JA, Zhu X, Ting JP. Downregulation of CIITA function by protein kinase a (PKA)-mediated phosphorylation: mechanism of prostaglandin E, cyclic AMP, and PKA inhibition of class II major histocompatibility complex expression in monocytic lines. Mol Cell Biol 2001; 21:4626-35. [PMID: 11416140 PMCID: PMC87128 DOI: 10.1128/mcb.21.14.4626-4635.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prostaglandins, pleiotropic immune modulators that induce protein kinase A (PKA), inhibit gamma interferon induction of class II major histocompatibility complex (MHC) genes. We show that phosphorylation of CIITA by PKA accounts for this inhibition. Treatment with prostaglandin E or 8-bromo-cyclic AMP or transfection with PKA inhibits the activity of CIITA in both mouse and human monocytic cell lines. This inhibition is independent of other transcription factors for the class II MHC promoter. These same treatments also greatly reduced the induction of class II MHC mRNA by CIITA. PKA phosphorylation sites were identified using site-directed mutagenesis and phosphoamino acid analysis. Phosphorylation at CIITA serines 834 and 1050 accounts for the inhibitory effects of PKA on CIITA-driven class II MHC transcription. This is the first demonstration that the posttranslational modification of CIITA mediates inhibition of class II MHC transcription.
Collapse
Affiliation(s)
- G Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | |
Collapse
|
20
|
Cures A, House C, Kanei-Ishii C, Kemp B, Ramsay RG. Constitutive c-Myb amino-terminal phosphorylation and DNA binding activity uncoupled during entry and passage through the cell cycle. Oncogene 2001; 20:1784-92. [PMID: 11313925 DOI: 10.1038/sj.onc.1204345] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2000] [Revised: 02/01/2001] [Accepted: 02/05/2001] [Indexed: 12/28/2022]
Abstract
The c-myb gene encodes a transcription factor that is central to hematopoietic cell growth. Phosphorylation of c-Myb by casein kinase 2 (CK2) at serines 11 and 12 has been variously implicated in the regulation of DNA binding. However, it is unclear when c-Myb phosphorylation at serines 11 and 12 occurs during the cell cycle and how this is regulated. We generated specific antisera that recognize phosphoserines 11 and 12 of c-Myb. C-Myb protein levels, extent of CK2 phosphorylation and DNA binding were then monitored following mitogenic stimulus and passage through the cell cycle in normal peripheral T-cells and the T leukemia cell line CCRF-CEM. We found that endogenous c-Myb is constitutively phosphorylated at serines 11 and 12. The amount of phosphorylated c-Myb correlates with DNA binding activity in cycling CEM cells but not upon entry of T-cells into the cell cycle. Exogenous expression of c-Myb with substitutions of serines 11 and 12 with glutamic acid or alanine had no effect on the transactivation of a c-Myb responsive reporter. These data strongly suggest that c-Myb is constitutively phosphorylated on serines 11 and 12 by CK2 or like activity and is not regulated during the cell cycle.
Collapse
Affiliation(s)
- A Cures
- Trescowthick Research Laboratories, Peter MacCallum Cancer Institute, Melbourne, Vic. Australia
| | | | | | | | | |
Collapse
|
21
|
Bies J, Feiková S, Markus J, Wolff L. Phosphorylation-dependent conformation and proteolytic stability of c-Myb. Blood Cells Mol Dis 2001; 27:422-8. [PMID: 11259165 DOI: 10.1006/bcmd.2001.0400] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The c-Myb oncoprotein is a critical regulator of hematopoietic cell proliferation and differentiation. Normal c-Myb is rapidly degraded by the ubiquitin-26S proteasome pathway, and instability determinants have been localized within the negative regulatory domain in the carboxyl terminus. Our recent work has shown that, in myeloid cells, inhibition of cellular Ser/Thr protein phosphatases with okadaic acid (OA) causes a rapid increase in c-Myb phosphorylation and 26S proteasome-dependent breakdown [J. Bies, S. Feikova, D. P. Bottaro, and L. Wolff (2000) Oncogene 19, 2846-2854]. Furthermore, phosphoamino acid analyses revealed that the increase in phosphorylation was mainly on threonine residues. Here we investigated the ability of c-Myb to bind DNA following phosphorylation. Our results suggest that the hyperphosphorylated form of c-Myb binds to DNA with affinity very similar to the hypophosphorylated form. Therefore, the increased proteolytic instability of the former cannot be explained by a difference in DNA-binding capacity. Conformational changes in the carboxyl terminus were proposed previously to be a consequence of phosphorylation because we observed phosphorylation-induced alterations in gel electrophoresis mobilities and alterations in recognition by specific monoclonal antibodies. Further support for this notion has come from this study, in which we have detected new degradation products in electrophoretic mobility shift assays, as well as an increased rate of in vitro proteolysis, following OA treatment. We speculate that these alterations in the conformation of the negative regulatory domain expose epitopes on the surface of c-Myb, which in turn can serve as recognition signal(s) for ubiquitin-26S proteasome proteolytic machinery.
Collapse
Affiliation(s)
- J Bies
- Laboratory of Molecular Virology, Slovak Academy of Sciences, Bratislava, 833 92, Slovakia.
| | | | | | | |
Collapse
|
22
|
Gual P, Giordano S, Anguissola S, Parker PJ, Comoglio PM. Gab1 phosphorylation: a novel mechanism for negative regulation of HGF receptor signaling. Oncogene 2001; 20:156-66. [PMID: 11313945 DOI: 10.1038/sj.onc.1204047] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2000] [Revised: 10/20/2000] [Accepted: 10/23/2000] [Indexed: 02/07/2023]
Abstract
Signal transduction by HGF receptor, the tyrosine kinase encoded by the MET oncogene, switches on a genetic program called 'invasive growth' inducing epithelial cell dissociation, migration, growth, and ultimately leading to differentiation into branched tubular structures. Sustained tyrosine phosphorylation of the downstream adaptor protein Gab1 is required for the HGF response. Here we show that serine/threonine phosphorylation of Gab1 provides a control mechanism for negative regulation. Treatment with okadaic acid, a potent inhibitor of the serine/threonine protein phosphatases PP1 and PP2A, was followed by activation of a number of serine/threonine kinases, hyper-phosphorylation in serine and threonine of Gab1 and severe inhibition of the HGF-induced biological responses. Under these conditions, Gab1 was found to be concomitantly hypo-phosphorylated in tyrosine, and thus endowed with reduced ability to recruit SH2 containing signal transducers such as PI3 kinase. Among the serine-threonine kinases activated by PP1 and PP2A inhibition, we found that PKC-alpha and PKC-beta1 are required for negative regulation of Gab1. These data provide a novel negative mechanism for the HGF receptor signaling pathways and highlight a potentially useful target for inhibitors of invasive growth.
Collapse
Affiliation(s)
- P Gual
- Institute for Cancer Research and Treatment (IRCC), University of Torino Medical School, Str. Prov. 142, Km 3.95, 10060 Candiolo, Italy
| | | | | | | | | |
Collapse
|
23
|
Chen J, Shpall RL, Meyerdierks A, Hagemeier M, Böttger EC, Naumovski L. Interferon-inducible Myc/STAT-interacting protein Nmi associates with IFP 35 into a high molecular mass complex and inhibits proteasome-mediated degradation of IFP 35. J Biol Chem 2000; 275:36278-84. [PMID: 10950963 DOI: 10.1074/jbc.m006975200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nmi is an interferon (IFN)-inducible protein homologous to IFN-inducible protein IFP 35. The homology consists of a novel Nmi/IFP 35 domain (NID) of 90-92 amino acids that is repeated in tandem in each protein and mediates Nmi-Nmi protein interactions and subcellular localization. In a yeast two-hybrid screen with a fragment of Nmi protein containing both NIDs, we identified an interaction between Nmi and IFP 35. Deletion derivatives of the proteins indicate that both NIDs are required for the interaction between Nmi and IFP 35. In mammalian cells, Nmi and IFP 35 co-immunoprecipitate and co-localize in large cytoplasmic speckles. Nmi and IFP 35 proteins associate into a high molecular mass complex of 300-400 kDa as determined by native gel electrophoresis and gel filtration. The association of Nmi and IFP 35 into a complex can be demonstrated in multiple cell lines and is not dependent on treatment with IFN. Short term and long term cultures of transfected HEK293 cells suggest that Nmi and IFP 35 proteins stabilize each other through complex formation. IFP 35 appears to be more labile because Nmi was stable in the absence of IFP 35, whereas IFP 35 was degraded in the absence of Nmi. A deletion analysis revealed that Nmi must interact with IFP 35 to prevent its degradation and that the amino terminus of Nmi is required, but not sufficient, for this function. Inhibition of the proteasome, but not other proteases, led to increased levels of IFP 35. Thus, we have shown that Nmi and IFP 35 associate into a protein complex, that IFP 35 is degraded in a proteasome-mediated process, and that a novel function of Nmi is to prevent IFP 35 degradation. The stabilization of IFP 35 by Nmi may serve to amplify the physiologic effects of IFNs.
Collapse
Affiliation(s)
- J Chen
- Department of Pediatrics, Division of Hematology/Oncology, Stanford Medical Center, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|