1
|
Kogan V, Molodtsov I, Fleyshman DI, Leontieva OV, Koman IE, Gudkov AV. The reconstruction of evolutionary dynamics of processed pseudogenes indicates deep silencing of "retrobiome" in naked mole rat. Proc Natl Acad Sci U S A 2024; 121:e2313581121. [PMID: 39467133 DOI: 10.1073/pnas.2313581121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/02/2024] [Indexed: 10/30/2024] Open
Abstract
Approximately half of mammalian genomes are occupied by retrotransposons, highly repetitive interspersed genetic elements expanded through the mechanism of reverse transcription. The evolution of this "retrobiome" involved a series of explosive amplifications, presumably associated with high mutation rates, interspersed with periods of silencing. A by-product of retrotransposon activity is the formation of processed pseudogenes (PPGs)-intron-less, promoter-less DNA copies of messenger RNA (mRNA). We examined the proportion of PPGs with varying degrees of deviation from their ancestor mRNAs as an indicator of the intensity of retrotranspositions at different times in the past. Our analysis revealed a high proportion of "young'' (recently acquired) PPGs in the DNA of mice and rats, indicating significant retrobiome activity during the recent evolution of these species. The ongoing process of new PPG entries in mouse germ line DNA was confirmed by identifying diversity in PPG content within the single strain of mice, C57BL/6. In contrast, the highly abundant PPGs of the naked mole rat (NMR) exhibited substantial deviation from their mRNAs, with a near-complete lack of PPGs without mutations, indicative of the silencing of the retrobiome in the most recent evolutionary past, preceded by a period of high activity. This distinctive feature of the NMR genome was confirmed through the analysis of a broad range of mammalian species. The peculiar evolutionary dynamics of PPGs in the NMR, an organism with exceptional longevity and resistance to cancer, may reflect the role played by the retrobiome in aging and cancer.
Collapse
Affiliation(s)
- Valeria Kogan
- Institute for Personalized and Translational Medicine, Adelson School of Medicine, Ariel University, Ariel 4070000, Israel
| | - Ivan Molodtsov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| | - Daria I Fleyshman
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| | - Olga V Leontieva
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| | - Igor E Koman
- Institute for Personalized and Translational Medicine, Adelson School of Medicine, Ariel University, Ariel 4070000, Israel
| | - Andrei V Gudkov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| |
Collapse
|
2
|
Martínez-Sánchez M, Hernandez-Monge J, Rangel M, Olivares-Illana V. Retinoblastoma: from discovery to clinical management. FEBS J 2021; 289:4371-4382. [PMID: 34042282 DOI: 10.1111/febs.16035] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 01/02/2023]
Abstract
The retinoblastoma gene (RB1) was the first tumour suppressor cloned; the role of its protein product (RB) as the principal driver of the G1 checkpoint in cell cycle control has been extensively studied. However, many other RB functions are continuously reported. Its role in senescence, DNA repair and apoptosis, among others, is indications of the significance of RB in a vast network of cellular interactions, explaining why RB loss or its malfunction is one of the leading causes of a large number of paediatric and adult cancers. RB was first reported in retinoblastoma, a common intraocular malignancy in the paediatric population worldwide. Currently, its diagnosis is clinical, and in nondeveloped countries, where the incidence is higher, it is performed in advanced stages of the disease, compromising the integrity of the eye and the patient's life. Even though new treatments are being continuously developed, enucleation is still a major choice due to the late disease stage diagnosis and treatments costs. Research into biomarkers is our best option to improve the chances of good results in the treatment and hopes of patients' good quality of life. Here, we recapitulated the history of the disease and the first treatments to put the advances in its clinical management into perspective. We also review the different functions of the protein and the progress in the search for biomarkers. It is clear that there is still a long way to go, but we should offer these children and their families a better way to deal with the disease with the community's effort.
Collapse
Affiliation(s)
- Mayra Martínez-Sánchez
- Laboratorio de Interacciones Biomoleculares y Cancer, Instituto de Física, Universidad Autónoma de San Luis Potosí, Mexico
| | - Jesús Hernandez-Monge
- Catedra CONACyT - Laboratorio de Biomarcadores Moleculares, Instituto de Física, Universidad Autónoma de San Luis Potosí, Mexico
| | - Martha Rangel
- Departamento de Oftalmología. Hospital Central "Ignacio Morones Prieto", San Luis Potosí, Mexico
| | - Vanesa Olivares-Illana
- Laboratorio de Interacciones Biomoleculares y Cancer, Instituto de Física, Universidad Autónoma de San Luis Potosí, Mexico
| |
Collapse
|
3
|
Ma L, Huang Y, Zhang F, Gao DS, Sun N, Ren J, Xia S, Li J, Peng X, Yu L, Jiang BC, Yan M. MMP24 Contributes to Neuropathic Pain in an FTO-Dependent Manner in the Spinal Cord Neurons. Front Pharmacol 2021; 12:673831. [PMID: 33995105 PMCID: PMC8118694 DOI: 10.3389/fphar.2021.673831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/06/2021] [Indexed: 12/04/2022] Open
Abstract
Nerve injury-induced gene expression change in the spinal cord is critical for neuropathic pain genesis. RNA N6-methyladenosine (m6A) modification represents an additional layer of gene regulation. We showed that spinal nerve ligation (SNL) upregulated the expression of matrix metallopeptidase 24 (MMP24) protein, but not Mmp24 mRNA, in the spinal cord neurons. Blocking the SNL-induced upregulation of spinal MMP24 attenuated local neuron sensitization, neuropathic pain development and maintenance. Conversely, mimicking MMP24 increase promoted the spinal ERK activation and produced evoked nociceptive hypersensitivity. Methylated RNA Immunoprecipitation Sequencing (MeRIP-seq) and RNA Immunoprecipitation (RIP) assay indicated the decreased m6A enrichment in the Mmp24 mRNA under neuropathic pain condition. Moreover, fat-mass and obesity-associated protein (FTO) was colocalized with MMP24 in spinal neurons and shown increased binding to the Mmp24 mRNA in the spinal cord after SNL. Overexpression or suppression of FTO correlates with promotion or inhibition of MMP24 expression in cultured spinal cord neurons. In conclusion, SNL promoted the m6A eraser FTO binding to the Mmp24 mRNA, which subsequently facilitated the translation of MMP24 in the spinal cord, and ultimately contributed to neuropathic pain genesis.
Collapse
Affiliation(s)
- Longfei Ma
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyuxin Huang
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Fengjiang Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Dave Schwinn Gao
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Na Sun
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jinxuan Ren
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Suyun Xia
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Li
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Peng
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lina Yu
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Bao-Chun Jiang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Min Yan
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Zocchi L, Mehta A, Wu SC, Wu J, Gu Y, Wang J, Suh S, Spitale RC, Benavente CA. Chromatin remodeling protein HELLS is critical for retinoblastoma tumor initiation and progression. Oncogenesis 2020; 9:25. [PMID: 32071286 PMCID: PMC7028996 DOI: 10.1038/s41389-020-0210-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/08/2023] Open
Abstract
Retinoblastoma is an aggressive childhood cancer of the developing retina that initiates by biallelic RB1 gene inactivation. Tumor progression in retinoblastoma is driven by epigenetics, as retinoblastoma genomes are stable, but the mechanism(s) that drive these epigenetic changes remain unknown. Lymphoid-specific helicase (HELLS) protein is an epigenetic modifier directly regulated by the RB/E2F pathway. In this study, we used novel genetically engineered mouse models to investigate the role of HELLS during retinal development and tumorigenesis. Our results indicate that Hells-null retinal progenitor cells divide, undergo cell-fate specification, and give rise to fully laminated retinae with minor bipolar cells defects, but normal retinal function. Despite the apparent nonessential role of HELLS in retinal development, failure to transcriptionally repress Hells during retinal terminal differentiation due to retinoblastoma (RB) family loss significantly contributes to retinal tumorigenesis. Loss of HELLS drastically reduced ectopic division of differentiating cells in Rb1/p107-null retinae, significantly decreased the incidence of retinoblastoma, delayed tumor progression, and increased overall survival. Despite its role in heterochromatin formation, we found no evidence that Hells loss directly affected chromatin accessibility in the retina but functioned as transcriptional co-activator of E2F3, decreasing expression of cell cycle genes. We propose that HELLS is a critical downstream mediator of E2F-dependent ectopic proliferation in RB-null retinae. Together with the nontoxic effect of HELLS loss in the developing retina, our results suggest that HELLS and its downstream pathways could serve as potential therapeutic targets for retinoblastoma.
Collapse
Affiliation(s)
- Loredana Zocchi
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Aditi Mehta
- Pediatric Hematology and Pediatric Oncology, Children's Hospital of Orange County, Orange, CA, 92868, USA.,Department of Graduate Medical Education, University of California, Irvine, CA, 92697, USA
| | - Stephanie C Wu
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, CA, 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, 92697, USA
| | - Yijun Gu
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Jingtian Wang
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Susie Suh
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.,Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Claudia A Benavente
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA. .,Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA. .,Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
5
|
Expression and purification of the recombinant full-length retinoblastoma protein and characterisation of its interaction with the oncoprotein HDM2. Protein Expr Purif 2019; 162:62-66. [DOI: 10.1016/j.pep.2019.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/29/2019] [Indexed: 01/11/2023]
|
6
|
Biggar KK, Storey KB. The evaluation of anoxia responsive E2F DNA binding activity in the red eared slider turtle, Trachemys scripta elegans. PeerJ 2018; 6:e4755. [PMID: 29770276 PMCID: PMC5951122 DOI: 10.7717/peerj.4755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/23/2018] [Indexed: 11/20/2022] Open
Abstract
In many cases, the DNA-binding activity of a transcription factor does not change, while its transcriptional activity is greatly influenced by the make-up of bound proteins. In this study, we assessed the protein composition and DNA-binding ability of the E2F transcription factor complex to provide insight into cell cycle control in an anoxia tolerant turtle through the use of a modified ELISA protocol. This modification also permits the use of custom DNA probes that are tailored to a specific DNA binding region, introducing the ability to design capture probes for non-model organisms. Through the use of EMSA and ELISA DNA binding assays, we have successfully determined the in vitro DNA binding activity and complex dynamics of the Rb/E2F cell cycle regulatory mechanisms in an anoxic turtle, Trachemys scripta elegans. Repressive cell cycle proteins (E2F4, Rb, HDAC4 and Suv39H1) were found to significantly increase at E2F DNA-binding sites upon anoxic exposure in anoxic turtle liver. The lack of p130 involvement in the E2F DNA-bound complex indicates that anoxic turtle liver may maintain G1 arrest for the duration of stress survival.
Collapse
Affiliation(s)
- Kyle K Biggar
- Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Kenneth B Storey
- Institute of Biochemistry, Depts of Biology and Chemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Wojtala M, Macierzyńska-Piotrowska E, Rybaczek D, Pirola L, Balcerczyk A. Pharmacological and transcriptional inhibition of the G9a histone methyltransferase suppresses proliferation and modulates redox homeostasis in human microvascular endothelial cells. Pharmacol Res 2018; 128:252-263. [DOI: 10.1016/j.phrs.2017.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/27/2017] [Accepted: 10/26/2017] [Indexed: 12/25/2022]
|
8
|
Carr SM, Munro S, Sagum CA, Fedorov O, Bedford MT, La Thangue NB. Tudor-domain protein PHF20L1 reads lysine methylated retinoblastoma tumour suppressor protein. Cell Death Differ 2017; 24:2139-2149. [PMID: 28841214 PMCID: PMC5686351 DOI: 10.1038/cdd.2017.135] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 12/30/2022] Open
Abstract
The retinoblastoma tumour suppressor protein (pRb) classically functions to regulate early cell cycle progression where it acts to enforce a number of checkpoints in response to cellular stress and DNA damage. Methylation at lysine (K) 810, which occurs within a critical CDK phosphorylation site and antagonises a CDK-dependent phosphorylation event at the neighbouring S807 residue, acts to hold pRb in the hypo-phosphorylated growth-suppressing state. This is mediated in part by the recruitment of the reader protein 53BP1 to di-methylated K810, which allows pRb activity to be effectively integrated with the DNA damage response. Here, we report the surprising observation that an additional methylation-dependent interaction occurs at K810, but rather than the di-methyl mark, it is selective for the mono-methyl K810 mark. Binding of the mono-methyl PHF20L1 reader to methylated pRb occurs on E2F target genes, where it acts to mediate an additional level of control by recruiting the MOF acetyltransferase complex to E2F target genes. Significantly, we find that the interplay between PHF20L1 and mono-methyl pRb is important for maintaining the integrity of a pRb-dependent G1-S-phase checkpoint. Our results highlight the distinct roles that methyl-lysine readers have in regulating the biological activity of pRb.
Collapse
Affiliation(s)
- Simon M Carr
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| | - Shonagh Munro
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| | - Cari A Sagum
- Department of Molecular Carcinogenesis, The University of Texas, MD Anderson Cancer Center, Smithville, TX 77030, USA
| | - Oleg Fedorov
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium Oxford, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| | - Mark T Bedford
- Department of Molecular Carcinogenesis, The University of Texas, MD Anderson Cancer Center, Smithville, TX 77030, USA
| | - Nicholas B La Thangue
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| |
Collapse
|
9
|
Meng F, Li X, Ren H, Qian J. In Vivo Detection and Analysis of Rb Protein SUMOylation in Human Cells. J Vis Exp 2017. [PMID: 29155755 DOI: 10.3791/56096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The post-translational modifications of proteins are critical for the proper regulation of intracellular signal transduction. Among these modifications, small ubiquitin-related modifier (SUMO) is a ubiquitin-like protein that is covalently attached to the lysine residues of a variety of target proteins to regulate cellular processes, such as gene transcription, DNA repair, protein interaction and degradation, subcellular transport, and signal transduction. The most common approach to detecting protein SUMOylation is based on the expression and purification of recombinant tagged proteins in bacteria, allowing for an in vitro biochemical reaction which is simple and suitable for addressing mechanistic questions. However, due to the complexity of the process of SUMOylation in vivo, it is more challenging to detect and analyze protein SUMOylation in cells, especially when under endogenous conditions. A recent study by the authors of this paper revealed that endogenous retinoblastoma (Rb) protein, a tumor suppressor that is vital to the negative regulation of the cell cycle progression, is specifically SUMOylated at the early G1 phase. This paper describes a protocol for the detection and analysis of Rb SUMOylation under both endogenous and exogenous conditions in human cells. This protocol is appropriate for the phenotypical and functional investigation of the SUMO-modification of Rb, as well as many other SUMO-targeted proteins, in human cells.
Collapse
Affiliation(s)
- Fengxi Meng
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University
| | - Xiaofeng Li
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University
| | - Hui Ren
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University
| | - Jiang Qian
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University;
| |
Collapse
|
10
|
Tonnessen-Murray CA, Lozano G, Jackson JG. The Regulation of Cellular Functions by the p53 Protein: Cellular Senescence. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026112. [PMID: 27881444 DOI: 10.1101/cshperspect.a026112] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Transformed cells have properties that allow them to survive and proliferate inappropriately. These characteristics often arise as a result of mutations caused by DNA damage. p53 suppresses transformation by removing the proliferative or survival capacity of cells with DNA damage or inappropriate cell-cycle progression. Cellular senescence, marked by morphological and gene expression changes, is a critical component of p53-mediated tumor suppression. In response to stress, p53 can facilitate an arrest and senescence program in cells exposed to stresses such as DNA damage and oncogene activation, preventing transformation. Senescent cells are evident in precancerous adenoma-type lesions, whereas proliferating, malignant tumors have bypassed senescence, either by p53 mutation or inactivation of the p53 pathway by other means. Tumors that have retained wild-type p53 often show a p53-mediated senescence response to chemotherapy. This response is actually detrimental in some tumor types, as senescent cells can drive relapse by persisting and producing cytokines and chemokines through an acquired secretory phenotype.
Collapse
Affiliation(s)
- Crystal A Tonnessen-Murray
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, Louisiana 70112
| | - Guillermina Lozano
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - James G Jackson
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, Louisiana 70112
| |
Collapse
|
11
|
Roles of pRB in the Regulation of Nucleosome and Chromatin Structures. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5959721. [PMID: 28101510 PMCID: PMC5215604 DOI: 10.1155/2016/5959721] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/08/2016] [Indexed: 01/31/2023]
Abstract
Retinoblastoma protein (pRB) interacts with E2F and other protein factors to play a pivotal role in regulating the expression of target genes that induce cell cycle arrest, apoptosis, and differentiation. pRB controls the local promoter activity and has the ability to change the structure of nucleosomes and/or chromosomes via histone modification, epigenetic changes, chromatin remodeling, and chromosome organization. Functional inactivation of pRB perturbs these cellular events and causes dysregulated cell growth and chromosome instability, which are hallmarks of cancer cells. The role of pRB in regulation of nucleosome/chromatin structures has been shown to link to tumor suppression. This review focuses on the ability of pRB to control nucleosome/chromatin structures via physical interactions with histone modifiers and chromatin factors and describes cancer therapies based on targeting these protein factors.
Collapse
|
12
|
Hernández-Monge J, Rousset-Roman AB, Medina-Medina I, Olivares-Illana V. Dual function of MDM2 and MDMX toward the tumor suppressors p53 and RB. Genes Cancer 2016; 7:278-287. [PMID: 28050229 PMCID: PMC5115168 DOI: 10.18632/genesandcancer.120] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The orchestrated crosstalk between the retinoblastoma (RB) and p53 pathways contributes to preserving proper homeostasis within the cell. The deregulation of one or both pathways is a common factor in the development of most types of human cancer. The proto-oncoproteins MDMX and MDM2 are the main regulators of the well- known tumor suppressor p53 protein. Under normal conditions, MDM2 and MDMX inhibit p53, either via repression of its transcriptional activity by protein-protein interaction, or via polyubiquitination as a result of MDM2-E3 ubiquitin ligase activity, for which MDM2 needs to dimerize with MDMX. Under genotoxic stress conditions, both become positive regulators of p53. The ATM-dependent phosphorylation of MDM2 and MDMX allow them to bind p53 mRNA, these interactions promote p53 translation. MDM2 and MDMX are also being revealed as effective regulators of the RB protein. MDM2 is able to degrade RB by two different mechanisms, that is, by ubiquitin dependent and independent pathways. MDMX enhances the ability of MDM2 to bind and degrade RB protein. However, MDMX also seems to stabilize RB through interaction and competition with MDM2. Here, we will contextualize the findings that suggest that the MDM2 and MDMX proteins have a dual function on both p53 and RB.
Collapse
Affiliation(s)
- Jesús Hernández-Monge
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av Manuel Nava No 6 Zona Universitaria CP 78290. SLP, México
| | - Adriana Berenice Rousset-Roman
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av Manuel Nava No 6 Zona Universitaria CP 78290. SLP, México
| | - Ixaura Medina-Medina
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av Manuel Nava No 6 Zona Universitaria CP 78290. SLP, México
| | - Vanesa Olivares-Illana
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av Manuel Nava No 6 Zona Universitaria CP 78290. SLP, México
| |
Collapse
|
13
|
Benavente CA, Finkelstein D, Johnson DA, Marine JC, Ashery-Padan R, Dyer MA. Chromatin remodelers HELLS and UHRF1 mediate the epigenetic deregulation of genes that drive retinoblastoma tumor progression. Oncotarget 2015; 5:9594-608. [PMID: 25338120 PMCID: PMC4259422 DOI: 10.18632/oncotarget.2468] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/06/2014] [Indexed: 12/14/2022] Open
Abstract
The retinoblastoma (Rb) family of proteins are key regulators of cell cycle exit during development and their deregulation is associated with cancer. Rb is critical for normal retinal development and germline mutations lead to retinoblastoma making retinae an attractive system to study Rb family signaling. Rb coordinates proliferation and differentiation through the E2f family of transcription factors, a critical interaction for the role of Rb in retinal development and tumorigenesis. However, whether the roles of the different E2fs are interchangeable in controlling development and tumorigenesis in the retina or if they have selective functions remains unknown. In this study, we found that E2f family members play distinct roles in the development and tumorigenesis. In Rb;p107-deficient retinae, E2f1 and E2f3 inactivation rescued tumor formation but only E2f1 rescued the retinal development phenotype. This allowed the identification of key target genes for Rb/E2f family signaling contributing to tumorigenesis and those contributing to developmental defects. We found that Sox4 and Sox11 genes contribute to the developmental phenotype and Hells and Uhrf1 contribute to tumorigenesis. Using orthotopic human xenografts, we validated that upregulation of HELLS and UHRF1 is essential for the tumor phenotype. Also, these epigenetic regulators are important for the regulation of SYK.
Collapse
Affiliation(s)
- Claudia A Benavente
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dianna A Johnson
- Department of Ophtalmology, The University of Tennessee Health Science Center, Memphis, TN, USA. Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for the Biology of Disease, VIB, Leuven, Belgium
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Tel-Aviv University, Tel Aviv, Israel
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA. Department of Human Molecular Genetics and Biochemistry, Tel-Aviv University, Tel Aviv, Israel. Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
14
|
Bischof O, Martínez-Zamudio RI. MicroRNAs and lncRNAs in senescence: A re-view. IUBMB Life 2015; 67:255-67. [PMID: 25990945 PMCID: PMC5008183 DOI: 10.1002/iub.1373] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/16/2015] [Indexed: 12/12/2022]
Abstract
Cellular senescence is a stress response to a variety of extrinsic and intrinsic insults that cause genomic or epigenomic perturbations. It is now widely recognized as a potent tumor suppressor mechanism as well as a biological process impacting aging and organismal development. Like other cell fate decisions, senescence is executed and maintained by an intricate network of transcription factors (TFs), chromatin modifiers, and noncoding RNAs (ncRNAs). Altogether, these factors cooperate to implement the gene expression program that initiates and sustains the senescent phenotype. In the context of senescence, microRNAs (miRs) and long ncRNAs have been found to play regulatory roles at both the transcriptional and post‐transcriptional levels. In this review, we discuss recent developments in the field and point toward future research directions to gain a better understanding of ncRNAs in senescence. © 2015 IUBMB Life, 67(4):255–267, 2015
Collapse
Affiliation(s)
- Oliver Bischof
- Institut Pasteur, Laboratory of Nuclear Organization and Oncogenesis, Department of Cell Biology and Infection, Paris, France.,INSERM, U993, Paris, France
| | - Ricardo Iván Martínez-Zamudio
- Institut Pasteur, Laboratory of Nuclear Organization and Oncogenesis, Department of Cell Biology and Infection, Paris, France.,INSERM, U993, Paris, France
| |
Collapse
|
15
|
Benavente CA, McEvoy JD, Finkelstein D, Wei L, Kang G, Wang YD, Neale G, Ragsdale S, Valentine V, Bahrami A, Temirov J, Pounds S, Zhang J, Dyer MA. Cross-species genomic and epigenomic landscape of retinoblastoma. Oncotarget 2014; 4:844-59. [PMID: 23765217 PMCID: PMC3757242 DOI: 10.18632/oncotarget.1051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Genetically engineered mouse models (GEMMs) of human cancer are important for advancing our understanding of tumor initiation and progression as well as for testing novel therapeutics. Retinoblastoma is a childhood cancer of the developing retina that initiates with biallelic inactivation of the RB1 gene. GEMMs faithfully recapitulate the histopathology, molecular, cellular, morphometric, neuroanatomical and neurochemical features of human retinoblastoma. In this study, we analyzed the genomic and epigenomic landscape of murine retinoblastoma and compared them to human retinoblastomas to gain insight into shared mechanisms of tumor progression across species. Similar to human retinoblastoma, mouse tumors have low rates of single nucleotide variations. However, mouse retinoblastomas have higher rates of aneuploidy and regional and focal copy number changes that vary depending on the genetic lesions that initiate tumorigenesis in the developing murine retina. Furthermore, the epigenetic landscape in mouse retinoblastoma was significantly different from human tumors and some pathways that are candidates for molecular targeted therapy for human retinoblastoma such as SYK or MCL1 are not deregulated in GEMMs. Taken together, these data suggest there are important differences between mouse and human retinoblastomas with respect to the mechanism of tumor progression and those differences can have significant implications for translational research to test the efficacy of novel therapies for this devastating childhood cancer.
Collapse
Affiliation(s)
- Claudia A Benavente
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
NLRR1 Enhances EGF-Mediated MYCN Induction in Neuroblastoma and Accelerates Tumor Growth In Vivo. Cancer Res 2012; 72:4587-96. [DOI: 10.1158/0008-5472.can-12-0943] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Nijwening JH, Geutjes EJ, Bernards R, Beijersbergen RL. The histone demethylase Jarid1b (Kdm5b) is a novel component of the Rb pathway and associates with E2f-target genes in MEFs during senescence. PLoS One 2011; 6:e25235. [PMID: 21980403 PMCID: PMC3181323 DOI: 10.1371/journal.pone.0025235] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 08/29/2011] [Indexed: 12/12/2022] Open
Abstract
Senescence is a robust cell cycle arrest controlled by the p53 and Rb pathways that acts as an important barrier to tumorigenesis. Senescence is associated with profound alterations in gene expression, including stable suppression of E2f-target genes by heterochromatin formation. Some of these changes in chromatin composition are orchestrated by Rb. In complex with E2f, Rb recruits chromatin modifying enzymes to E2f target genes, leading to their transcriptional repression. To identify novel chromatin remodeling enzymes that specifically function in the Rb pathway, we used a functional genetic screening model for bypass of senescence in murine cells. We identified the H3K4-demethylase Jarid1b as novel component of the Rb pathway in this screening model. We find that depletion of Jarid1b phenocopies knockdown of Rb1 and that Jarid1b associates with E2f-target genes during cellular senescence. These results suggest a role for Jarid1b in Rb-mediated repression of cell cycle genes during senescence.
Collapse
Affiliation(s)
- Jeroen H. Nijwening
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ernst-Jan Geutjes
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rene Bernards
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Roderick L. Beijersbergen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
18
|
Hashmi S, Zhang J, Siddiqui SS, Parhar RS, Bakheet R, Al-Mohanna F. Partner in fat metabolism: role of KLFs in fat burning and reproductive behavior. 3 Biotech 2011; 1:59-72. [PMID: 22582147 PMCID: PMC3339616 DOI: 10.1007/s13205-011-0016-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/28/2011] [Indexed: 12/16/2022] Open
Abstract
The abnormalities caused by excess fat accumulation can result in pathological conditions which are linked to several interrelated diseases, such as cardiovascular disease and obesity. This set of conditions, known as metabolic syndrome, is a global pandemic of enormous medical, economic, and social concern affecting a significant portion of the world’s population. Although genetics, physiology and environmental components play a major role in the onset of disease caused by excessive fat accumulation, little is known about how or to what extent each of these factors contributes to it. The worm, Caenorhabditis elegans offers an opportunity to study disease related to metabolic disorder in a developmental system that provides anatomical and genomic simplicity relative to the vertebrate animals and is an excellent eukaryotic genetic model which enable us to answer the questions concerning fat accumulation which remain unresolved. The stored triglycerides (TG) provide the primary source of energy during periods of food deficiency. In nature, lipid stored as TGs are hydrolyzed into fatty acids which are broken down through β-oxidation to yield acetyl-CoA. Our recent study suggests that a member of C. elegans Krüppel-like factor, klf-3 regulates lipid metabolism by promoting FA β-oxidation and in parallel may contribute in normal reproduction and fecundity. Genetic and epigenetic factors that influence this pathway may have considerable impact on fat related diseases in human. Increasing number of studies suggest the role of mammalian KLFs in adipogenesis. This functional conservation should guide our further effort to explore C. elegans as a legitimate model system for studying the role of KLFs in many pathway components of lipid metabolism.
Collapse
Affiliation(s)
- Sarwar Hashmi
- Laboratory of Developmental Biology, Lindsley F. Kimball Research Institute, New York Blood Center, 310 East 67th Street, New York, NY 10065 USA
| | - Jun Zhang
- Laboratory of Developmental Biology, Lindsley F. Kimball Research Institute, New York Blood Center, 310 East 67th Street, New York, NY 10065 USA
| | - Shahid S. Siddiqui
- Section of Hematology/Oncology, Department of Medicine, Pritzker School of Medicine, University of Chicago Medical Center, Chicago, IL 60037 USA
| | - Ranjit S. Parhar
- Cell Biology-Cardiovascular Unit, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Razan Bakheet
- Cell Biology-Cardiovascular Unit, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Futwan Al-Mohanna
- Cell Biology-Cardiovascular Unit, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Johnston AJ, Gruissem W. Gametophyte differentiation and imprinting control in plants: Crosstalk between RBR and chromatin. Commun Integr Biol 2011; 2:144-6. [PMID: 19704913 DOI: 10.4161/cib.8319] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 12/29/2022] Open
Abstract
The Retinoblastoma (pRb) pathway has been implicated as a convergent regulatory unit in the control of cell cycle and disease. We have shown that a crosstalk between RETINOBLASTOMA RELATED (RBR), the Arabidopsis homologue of pRb, and the genes encoding proteins of the chromatin complexes involved in DNA or histone methylation, controls gametophytic and post-fertilization differentiation events and a subset of imprinting effects. We describe here a plausible model that incorporates several components of the plant Retinoblastoma pathway, thus offering a novel paradigm that merges the traditional cell cycle and the chromatin components in the control of cell differentiation and imprinting.
Collapse
Affiliation(s)
- Amal J Johnston
- Department of Biology; Plant Biotechnology; ETH Zurich; Zurich, Switzerland
| | | |
Collapse
|
20
|
Biggar KK, Storey KB. Perspectives in cell cycle regulation: lessons from an anoxic vertebrate. Curr Genomics 2011; 10:573-84. [PMID: 20514219 PMCID: PMC2817888 DOI: 10.2174/138920209789503905] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 08/04/2009] [Accepted: 08/06/2009] [Indexed: 01/07/2023] Open
Abstract
The ability of an animal, normally dependent on aerobic respiration, to suspend breathing and enter an anoxic state for long term survival is clearly a fascinating feat, and has been the focus of numerous biochemical studies. When anoxia tolerant turtles are faced with periods of oxygen deprivation, numerous physiological and biochemical alterations take place in order to facilitate vital reductions in ATP consumption. Such strategies include reversible post-translational modifications as well as the implementation of translation and transcription controls facilitating metabolic depression. Although it is clear that anoxic survival relies on the suppression of ATP consuming processes, the state of the cell cycle in anoxia tolerant vertebrates remain elusive. Several anoxia tolerant invertebrate and embryonic vertebrate models display cell cycle arrest when presented with anoxic stress. Despite this, the cell cycle has not yet been characterized for anoxia tolerant turtles. Understanding how vertebrates respond to anoxia can have important clinical implications. Uncontrollable cellular proliferation and hypoxic tumor progression are inescapably linked in vertebrate tissues. Consequentially, the molecular mechanisms controlling these processes have profound clinical consequences. This review article will discuss the theory of cell cycle arrest in anoxic vertebrates and more specifically, the control of the retinoblastoma pathway, the molecular markers of cell cycle arrest, the activation of checkpoint kinases, and the possibility of translational controls implemented by microRNAs.
Collapse
Affiliation(s)
- Kyle K Biggar
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | | |
Collapse
|
21
|
Saddic LA, West LE, Aslanian A, Yates JR, Rubin SM, Gozani O, Sage J. Methylation of the retinoblastoma tumor suppressor by SMYD2. J Biol Chem 2010; 285:37733-40. [PMID: 20870719 DOI: 10.1074/jbc.m110.137612] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The retinoblastoma tumor suppressor (RB) is a central cell cycle regulator and tumor suppressor. RB cellular functions are known to be regulated by a diversity of post-translational modifications such as phosphorylation and acetylation, raising the possibility that RB may also be methylated in cells. Here we demonstrate that RB can be methylated by SMYD2 at lysine 860, a highly conserved and novel site of modification. This methylation event occurs in vitro and in cells, and it is regulated during cell cycle progression, cellular differentiation, and in response to DNA damage. Furthermore, we show that RB monomethylation at lysine 860 provides a direct binding site for the methyl-binding domain of the transcriptional repressor L3MBTL1. These results support the idea that a code of post-translational modifications exists for RB and helps guide its functions in mammalian cells.
Collapse
Affiliation(s)
- Louis A Saddic
- Departments of Pediatrics, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Dosage-sensitive function of retinoblastoma related and convergent epigenetic control are required during the Arabidopsis life cycle. PLoS Genet 2010; 6:e1000988. [PMID: 20585548 PMCID: PMC2887464 DOI: 10.1371/journal.pgen.1000988] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 05/14/2010] [Indexed: 11/19/2022] Open
Abstract
The plant life cycle alternates between two distinct multi-cellular generations, the reduced gametophytes and the dominant sporophyte. Little is known about how generation-specific cell fate, differentiation, and development are controlled by the core regulators of the cell cycle. In Arabidopsis, RETINOBLASTOMA RELATED (RBR), an evolutionarily ancient cell cycle regulator, controls cell proliferation, differentiation, and regulation of a subset of Polycomb Repressive Complex 2 (PRC2) genes and METHYLTRANSFERASE 1 (MET1) in the male and female gametophytes, as well as cell fate establishment in the male gametophyte. Here we demonstrate that RBR is also essential for cell fate determination in the female gametophyte, as revealed by loss of cell-specific marker expression in all the gametophytic cells that lack RBR. Maintenance of genome integrity also requires RBR, because diploid plants heterozygous for rbr (rbr/RBR) produce an abnormal portion of triploid offspring, likely due to gametic genome duplication. While the sporophyte of the diploid mutant plants phenocopied wild type due to the haplosufficiency of RBR, genetic analysis of tetraploid plants triplex for rbr (rbr/rbr/rbr/RBR) revealed that RBR has a dosage-dependent pleiotropic effect on sporophytic development, trichome differentiation, and regulation of PRC2 subunit genes CURLY LEAF (CLF) and VERNALIZATION 2 (VRN2), and MET1 in leaves. There were, however, no obvious cell cycle and cell proliferation defects in these plant tissues, suggesting that a single functional RBR copy in tetraploids is capable of maintaining normal cell division but is not sufficient for distinct differentiation and developmental processes. Conversely, in leaves of mutants in sporophytic PRC2 subunits, trichome differentiation was also affected and expression of RBR and MET1 was reduced, providing evidence for a RBR-PRC2-MET1 regulatory feedback loop involved in sporophyte development. Together, dosage-sensitive RBR function and its genetic interaction with PRC2 genes and MET1 must have been recruited during plant evolution to control distinct generation-specific cell fate, differentiation, and development.
Collapse
|
23
|
Abstract
Retrotransposons like L1 are silenced in somatic cells by a
variety of mechanisms acting at different levels. Protective
mechanisms include DNA methylation and packaging into inactive
chromatin to suppress transcription and prevent recombination,
potentially supported by cytidine deaminase editing of RNA.
Furthermore, DNA strand breaks arising during attempted
retrotranspositions ought to activate cellular checkpoints, and L1
activation outside immunoprivileged sites may elicit immune
responses. A number of observations indicate that L1 sequences
nevertheless become reactivated in human cancer. Prominently,
methylation of L1 sequences is diminished in many cancer types and
full-length L1 RNAs become detectable, although strong expression
is restricted to germ cell cancers. L1 elements have been found to
be enriched at sites of illegitimate recombination in many
cancers. In theory, lack of L1 repression in cancer might cause
transcriptional deregulation, insertional mutations, DNA breaks,
and an increased frequency of recombinations, contributing to
genome disorganization, expression changes, and chromosomal
instability. There is however little evidence that such effects
occur at a gross scale in human cancers. Rather, as a rule, L1
repression is only partly alleviated. Unfortunately, many
techniques commonly used to investigate genetic and epigenetic
alterations in cancer cells are not well suited to detect subtle
effects elicited by partial reactivation of retroelements like L1
which are present as abundant, but heterogeneous copies.
Therefore, effects of L1 sequences exerted on the local chromatin
structure, on the transcriptional regulation of individual genes,
and on chromosome fragility need to be more closely investigated
in normal and cancer cells.
Collapse
Affiliation(s)
- Wolfgang A. Schulz
- Department of Urology, Heinrich Heine University, Mooreustrasse 5, 40225 Düsseldorf, Germany
- *Wolfgang A. Schulz:
| |
Collapse
|
24
|
Brey CW, Nelder MP, Hailemariam T, Gaugler R, Hashmi S. Krüppel-like family of transcription factors: an emerging new frontier in fat biology. Int J Biol Sci 2009; 5:622-36. [PMID: 19841733 PMCID: PMC2757581 DOI: 10.7150/ijbs.5.622] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 09/28/2009] [Indexed: 12/26/2022] Open
Abstract
In mammals, adipose tissue stores energy in the form of fat. The ability to regulate fat storage is essential for the growth, development and reproduction of most animals, thus any abnormalities caused by excess fat accumulation can result in pathological conditions which are linked to several interrelated diseases, such as cardiovascular diseases, diabetes, and obesity. In recent years significant effort has been applied to understand basic mechanism of fat accumulation in mammalian system. Work in mouse has shown that the family of Krüppel-like factors (KLFs), a conserved and important class of transcription factors, regulates adipocyte differentiation in mammals. However, how fat storage is coordinated in response to positive and negative feedback signals is still poorly understood. To address mechanisms underlying fat storage we have studied two Caenorhabditis elegans KLFs and demonstrate that both worm klfs are key regulators of fat metabolism in C. elegans. These results provide the first in vivo evidence supporting essential regulatory roles for KLFs in fat metabolism in C. elegans and shed light on the human counterpart in disease-gene association. This finding allows us to pursue a more comprehensive approach to understand fat biology and provides an opportunity to learn about the cascade of events that regulate KLF activation, repression and interaction with other factors in exerting its biological function at an organismal level. In this review, we provide an overview of the most current information on the key regulatory components in fat biology, synthesize the diverse literature, pose new questions, and propose a new model organism for understanding fat biology using KLFs as the central theme.
Collapse
Affiliation(s)
- Christopher W Brey
- Center for Vector Biology, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | | | | | | | |
Collapse
|
25
|
A dynamic reciprocal RBR-PRC2 regulatory circuit controls Arabidopsis gametophyte development. Curr Biol 2008; 18:1680-6. [PMID: 18976913 DOI: 10.1016/j.cub.2008.09.026] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 07/30/2008] [Accepted: 09/03/2008] [Indexed: 12/16/2022]
Abstract
Unlike animals that produce gametes upon differentiation of meiotic products, plants develop haploid male and female gametophytes that differentiate gametes such as sperm, egg and central cells, and accessory cells [1, 2]. Both gametophytes participate in double fertilization and give rise to the next sporophytic generation. Little is known about the function of cell-cycle genes in differentiation and development of gametophytes and in reproduction [1, 2]. RETINOBLASTOMA RELATED (RBR) is a plant homolog of the tumor suppressor Retinoblastoma (pRb), which is primarily known as negative regulator of the cell cycle [3]. We show that RBR is required for cell differentiation of male and female gametophytes in Arabidopsis and that loss of RBR perturbs expression levels of the evolutionarily ancient Polycomb Repressive Complex 2 (PRC2) subunits and their modifiers encoding PRC2 subunits or DNA METHYLTRANSFERASE 1 (MET1) [4-6], exemplifying convergent evolution involving the RBR-PRC2-MET1 regulatory pathways. In addition, RBR binds MET1, and maintenance of heterochromatin in central cells, a mechanism that is likely mediated by MET1[7, 8], is impaired in the absence of RBR. Surprisingly, PRC2-specific H3K27-trimethylation activity represses paternal RBR allele, suggesting a functional role for a dynamic and reciprocal RBR-PRC2 regulatory circuit in cellular differentiation and reproductive development.
Collapse
|
26
|
Abstract
The retinoblastoma (RB) tumour suppressor gene is functionally inactivated in a broad range of paediatric and adult cancers, and a plethora of cellular functions and partners have been identified for the RB protein. Data from human tumours and studies from mouse models indicate that loss of RB function contributes to both cancer initiation and progression. However, we still do not know the identity of the cell types in which RB normally prevents cancer initiation in vivo, and the specific functions of RB that suppress distinct aspects of the tumorigenic process are poorly understood.
Collapse
Affiliation(s)
- Deborah L Burkhart
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
27
|
Araki K, Kawauchi K, Tanaka N. IKK/NF-kappaB signaling pathway inhibits cell-cycle progression by a novel Rb-independent suppression system for E2F transcription factors. Oncogene 2008; 27:5696-705. [PMID: 18542057 DOI: 10.1038/onc.2008.184] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
E2Fs are key regulators of cell-cycle progression, and their transcriptional activities are regulated by histone acetyltransferases (HATs). Retinoblastoma (Rb) family proteins (pRb, p107 and p130) bind to E2Fs and inhibit their transcriptional activities by disrupting HAT binding and recruitment of histone deacetylases. In this study, we show that IkappaB kinases (IKKalpha or IKKbeta) activation inhibits cell growth and E2F-dependent transcription in normal human fibroblasts. The inhibition of E2F by IKKs was not observed in cells lacking nuclear factor (NF)-kappaB/p65; however, it was observed in cells lacking three Rb family genes. p65 disrupted the physical interaction between activator E2Fs (F2F1, E2F2 and E2F3) and the HAT cofactor transactivation/transformation-domain associated protein, resulting in a reduction in E2F-responsive gene expression. Furthermore, IKKalpha and IKKbeta directly phosphorylated E2F4, resulting in nuclear accumulation and enhanced DNA binding of the E2F4/p130 repressor complex. Our study describes a novel growth inhibitory system that functions by Rb-independent suppression of E2Fs by the IKK/NF-kappaB signaling pathway.
Collapse
Affiliation(s)
- K Araki
- Department of Molecular Oncology, Institute of Gerontology, Nippon Medical School, Kanagawa, Japan
| | | | | |
Collapse
|
28
|
Marlowe JL, Fan Y, Chang X, Peng L, Knudsen ES, Xia Y, Puga A. The aryl hydrocarbon receptor binds to E2F1 and inhibits E2F1-induced apoptosis. Mol Biol Cell 2008; 19:3263-71. [PMID: 18524851 DOI: 10.1091/mbc.e08-04-0359] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cellular stress by DNA damage induces checkpoint kinase-2 (CHK2)-mediated phosphorylation and stabilization of the E2F1 transcription factor, leading to induction of apoptosis by activation of a subset of proapoptotic E2F1 target genes, including Apaf1 and p73. This report characterizes an interaction between the aryl hydrocarbon (Ah) receptor (AHR), a ligand-activated transcription factor, and E2F1 that results in the attenuation of E2F1-mediated apoptosis. In Ahr(-/-) fibroblasts stably transfected with a doxycycline-regulated AHR expression vector, inhibition of AHR expression causes a significant elevation of oxidative stress, gammaH2A.X histone phosphorylation, and E2F1-dependent apoptosis, which can be blocked by small interfering RNA-mediated knockdown of E2F1 expression. In contrast, ligand-dependent AHR activation protects these cells from etoposide-induced cell death. In cells expressing both proteins, AHR and E2F1 interact independently of the retinoblastoma protein (RB), because AHR and E2F1 coimmunoprecipitate from extracts of RB-negative cells. Additionally, chromatin immunoprecipitation assays indicate that AHR and E2F1 bind to the Apaf1 promoter at a region containing a consensus E2F1 binding site but no AHR binding sites. AHR activation represses Apaf1 and TAp73 mRNA induction by a constitutively active CHK2 expression vector. Furthermore, AHR overexpression blocks the transcriptional induction of Apaf1 and p73 and the accumulation of sub-G(0)/G(1) cells resulting from ectopic overexpression of E2F1. These results point to a proproliferative, antiapoptotic function of the Ah receptor that likely plays a role in tumor progression.
Collapse
Affiliation(s)
- Jennifer L Marlowe
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Vandromme M, Chailleux C, Escaffit F, Trouche D. Binding of the Retinoblastoma Protein Is Not the Determinant for Stable Repression of Some E2F-Regulated Promoters in Muscle Cells. Mol Cancer Res 2008; 6:418-25. [DOI: 10.1158/1541-7786.mcr-07-0381] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Tenbaum SP, Papaioannou M, Reeb CA, Goeman F, Escher N, Kob R, von Eggeling F, Melle C, Baniahmad A. Alien inhibits E2F1 gene expression and cell proliferation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1447-54. [PMID: 17570542 DOI: 10.1016/j.bbamcr.2007.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 04/25/2007] [Accepted: 04/28/2007] [Indexed: 12/24/2022]
Abstract
Recently, using a proteomic approach we have identified the corepressor Alien as a novel interacting factor of the cell cycle regulator E2F1. Unclear was whether this interaction influences cell proliferation and endogenous E2F1 target gene expression. Here, we show by chromatin immunoprecipitation (ChIP) that Alien is recruited in vivo to the E2F binding sites present in the E2F1 gene promoter, inhibits the transactivation of E2F1 and represses endogenous E2F1 gene expression. Interestingly, using synchronized cells to assess the expression of Alien profile during cell cycle the levels of endogenous Alien are increased during G1, G1/S and G2 phase. Furthermore, stable transfection of Alien leads to reduction of cell proliferation. Thus, the data suggest that Alien acts as a corepressor for E2F1 and is involved in cell cycle regulation.
Collapse
Affiliation(s)
- Stephan P Tenbaum
- Molecular Genetics, Institute of Human Genetics and Anthropology, Friedrich-Schiller-University, 07740 Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bandyopadhyay D, Curry JL, Lin Q, Richards HW, Chen D, Hornsby PJ, Timchenko NA, Medrano EE. Dynamic assembly of chromatin complexes during cellular senescence: implications for the growth arrest of human melanocytic nevi. Aging Cell 2007; 6:577-91. [PMID: 17578512 PMCID: PMC1974778 DOI: 10.1111/j.1474-9726.2007.00308.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The retinoblastoma (RB)/p16(INK4a) pathway regulates senescence of human melanocytes in culture and oncogene-induced senescence of melanocytic nevi in vivo. This senescence response is likely due to chromatin modifications because RB complexes from senescent melanocytes contain increased levels of histone deacetylase (HDAC) activity and tethered HDAC1. Here we show that HDAC1 is prominently detected in p16(INK4a)-positive, senescent intradermal melanocytic nevi but not in proliferating, recurrent nevus cells that localize to the epidermal/dermal junction. To assess the role of HDAC1 in the senescence of melanocytes and nevi, we used tetracycline-based inducible expression systems in cultured melanocytic cells. We found that HDAC1 drives a sequential and cooperative activity of chromatin remodeling effectors, including transient recruitment of Brahma (Brm1) into RB/HDAC1 mega-complexes, formation of heterochromatin protein 1 beta (HP1 beta)/SUV39H1 foci, methylation of H3-K9, stable association of RB with chromatin and significant global heterochromatinization. These chromatin changes coincide with expression of typical markers of senescence, including the senescent-associated beta-galactosidase marker. Notably, formation of RB/HP1 beta foci and early tethering of RB to chromatin depends on intact Brm1 ATPase activity. As cells reached senescence, ejection of Brm1 from chromatin coincided with its dissociation from HP1 beta/RB and relocalization to protein complexes of lower molecular weight. These results provide new insights into the role of the RB pathway in regulating cellular senescence and implicate HDAC1 as a likely mediator of early chromatin remodeling events.
Collapse
Affiliation(s)
- Debdutta Bandyopadhyay
- Department of Dermatology, and Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Actin-related proteins in chromatin-level control of the cell cycle and developmental transitions. Trends Cell Biol 2007; 17:325-32. [PMID: 17643304 DOI: 10.1016/j.tcb.2007.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 05/10/2007] [Accepted: 06/26/2007] [Indexed: 11/18/2022]
Abstract
Regulating developmental transitions, cell proliferation and cell death through differential gene expression is essential to the ontogeny of all multicellular organisms. Chromatin remodeling is an active process that is necessary for managing the genome-wide suppression of gene activities resulting from DNA compaction. Recent data in plants suggest a general theme, whereby chromatin remodeling complexes containing nuclear actin-related proteins (ARPs) potentiate the activities of crucial regulatory genes involved in plant growth and development, in addition to their basal activities on a much larger set of genes.
Collapse
|
33
|
Abstract
In recent years the study of chemical modifications to chromatin and their effects on cellular processes has become increasingly important in the field of cancer research. Disruptions to the normal epigenetic pattern of the cell can serve as biomarkers and are important determinants of cancer progression. Accordingly, drugs that inhibit the enzymes responsible for modulating these epigenetic markers, in particular histone deacetylases, are the focus of intense research and development. In this chapter we provide an overview of class I and II histone deacetylases as well as a guide to the diverse types of histone deacetylase inhibitors and their activities in the context of APL. We also discuss the rationale for the use of histone deacetylase inhibitors in combination therapy for the treatment of cancer and the current status of clinical trials.
Collapse
Affiliation(s)
- K Petrie
- Section of Haemato-Oncology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | | | | |
Collapse
|
34
|
Schulz WA, Steinhoff C, Florl AR. Methylation of endogenous human retroelements in health and disease. Curr Top Microbiol Immunol 2006; 310:211-50. [PMID: 16909913 DOI: 10.1007/3-540-31181-5_11] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Retroelements constitute approximately 45% of the human genome. Long interspersed nuclear element (LINE) autonomous retrotransposons are predominantly represented by LINE-1, nonautonomous small interspersed nuclear elements (SINEs) are primarily represented by ALUs, and LTR retrotransposons by several families of human endogenous retroviruses (HERVs). The vast majority of LINE and HERV elements are densely methylated in normal somatic cells and contained in inactive chromatin. Methylation and chromatin structure together ensure a stable equilibrium between retroelements and their host. Hypomethylation and expression in developing germ cells opens a "window of opportunity" for retrotransposition and recombination that contribute to human evolution, but also inherited disease. In somatic cells, the presence of retroelements may be exploited to organize the genome into active and inactive regions, to separate domains and functional regions within one chromatin domain, to suppress transcriptional noise, and to regulate transcript stability. Retroelements, particularly ALUs, may also fulfill physiological roles during responses to stress and infections. Reactivation and hypomethylation of LINEs and HERVs may be important in the pathophysiology of cancer and various autoimmune diseases, contributing to chromosomal instability and chronically aberrant immune responses. The emerging insights into the pathophysiological importance of endogenous retroelements accentuate the gaps in our knowledge of how these elements are controlled in normal developing and mature cells.
Collapse
Affiliation(s)
- W A Schulz
- Urologische Klinik, Heinrich Heine Universität, Düsseldorf, Germany.
| | | | | |
Collapse
|
35
|
Jackson JG, Pereira-Smith OM. Primary and compensatory roles for RB family members at cell cycle gene promoters that are deacetylated and downregulated in doxorubicin-induced senescence of breast cancer cells. Mol Cell Biol 2006; 26:2501-10. [PMID: 16537896 PMCID: PMC1430319 DOI: 10.1128/mcb.26.7.2501-2510.2006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
When treated with DNA-damaging chemotherapy agents, many cancer cells, in vivo and in vitro, undergo a terminal growth arrest and acquire a senescence-like phenotype. We investigated the molecular basis for this in breast cancer cells following a 2-hour treatment with 1 muM doxorubicin. Treated cells arrested in G1 and G2 phases of the cell cycle, with concomitant reductions in S-phase and G2-M regulatory genes. p53 and p21 protein levels increased within hours after treatment and were maintained for 5 to 6 days but were reduced 8 days posttreatment, though the cells remained growth arrested. Levels of p130 rose after drug treatment, and it was the primary RB family member recruited to the S-phase promoters cyclin A and PCNA and G2-M promoters cyclin B and cdc2, remaining present for the entire 8-day time period. In contrast, p107 protein and promoter occupancy levels declined sharply after drug treatment. RB was recruited to only the PCNA promoter. In MCF-7 cells with p130 knockdown, p107 compensated for p130 loss at all cell cycle gene promoters examined, allowing cells to retain the growth arrest phenotype. Cells with p130 and p107 knockdown similarly arrested, while cells with knockdown of all three family members failed to downregulate cyclin A and cyclin B. These results demonstrate a mechanistic role for p130 and compensatory roles for p107 and RB in the long-term senescence-like growth arrest response of breast cancer cells to DNA damage.
Collapse
Affiliation(s)
- James G Jackson
- University of Texas Health Science Center at San Antonio, Department of Cellular and Structural Biology, Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, Texas 78245-3207, USA.
| | | |
Collapse
|
36
|
Hoffmann MJ, Schulz WA. Causes and consequences of DNA hypomethylation in human cancer. Biochem Cell Biol 2005; 83:296-321. [PMID: 15959557 DOI: 10.1139/o05-036] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
While specific genes are hypermethylated in the genome of cancer cells, overall methylcytosine content is often decreased as a consequence of hypomethylation affecting many repetitive sequences. Hypomethylation is also observed at a number of single-copy genes. While global hypomethylation is highly prevalent across all cancer types, it often displays considerable specificity with regard to tumor type, tumor stage, and sequences affected. Following an overview of hypomethylation alterations in various cancers, this review focuses on 3 hypotheses. First, hypomethylation at a single-copy gene may occur as a 2-step process, in which selection for gene function follows upon random hypo methylation. In this fashion, hypomethylation facilitates the adaptation of cancer cells to the ever-changing tumor tissue microenvironment, particularly during metastasis. Second, the development of global hypomethylation is intimately linked to chromatin restructuring and nuclear disorganization in cancer cells, reflected in a large number of changes in histone-modifying enzymes and other chromatin regulators. Third, DNA hypomethylation may occur at least partly as a consequence of cell cycle deregulation disturbing the coordination between DNA replication and activity of DNA methyltransferases. Finally, because of their relation to tumor progression and metastasis, DNA hypomethylation markers may be particularly useful to classify cancer and predict their clinical course.
Collapse
|
37
|
Abstract
Rb is a tumor suppressor that represses the expression of E2F regulated genes required for cell cycle progression. It is inactivated in melanomas and other cancer cells by phosphorylation catalyzed by persistent cyclin dependent kinase (CDK) activity. CDK activity is sustained in melanoma cells mostly by the elimination of the CDK inhibitor p16INK4A and by high levels of cyclins whose expression is maintained by stimuli emanating from activated cell surface receptors and/or mutated intracellular intermediates, such as N-Ras and B-Raf. However, Rb also suppresses the expression of apoptosis genes, and its presence protects normal melanocytes from cell death. Its high expression in human melanoma cells and tumors suggests a similar role in malignant cells as well. The differential release and suppression of E2F transcriptional activity is likely to depend on promoter-specific E2F/Rb interaction. Phosphorylated Rb is displaced from cell cycle genes but not from others. In addition, Rb gene repression is dependent on the nature of Rb-E2F interaction and the activity of the Rb-bound proteins recruited to the promoter. Deciphering the differences in Rb/E2F complex formation in normal and malignant melanocytes is likely to shed light on the mechanism by which Rb can exert tumor suppressing and promoting activities in this cellular system. The Rb/E2F pathway provides opportunities for efficient therapy at multiple levels. Novel drugs can reactivate Rb potential to suppress growth cycle promoting genes. In addition, the high E2F transcriptional activity in melanoma cells can be exploited to deliver cytotoxic molecules specifically to tumors, sparing the normal tissues.
Collapse
Affiliation(s)
- Ruth Halaban
- Department of Dermatology, Yale University School of Medicine, 15 York Street, P.O. Box 208059, New Haven, CT, 06520-8059, USA.
| |
Collapse
|
38
|
Benevolenskaya EV, Murray HL, Branton P, Young RA, Kaelin WG. Binding of pRB to the PHD protein RBP2 promotes cellular differentiation. Mol Cell 2005; 18:623-35. [PMID: 15949438 DOI: 10.1016/j.molcel.2005.05.012] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 02/02/2005] [Accepted: 05/16/2005] [Indexed: 12/31/2022]
Abstract
pRB can enforce a G1 block by repressing E2F-responsive promoters. It also coactivates certain non-E2F transcription factors and promotes differentiation. Some pRB variants activate transcription and promote differentiation despite impaired E2F binding and transcriptional repression capabilities. We identified RBP2 in a screen for proteins that bind to such pRB variants. RBP2 resembles other chromatin-associated transcriptional regulators and RBP2 binding tracked with pRB's ability to activate transcription and promote differentiation. RBP2 and pRB colocalize and pRB/RBP2 complexes were detected in chromatin isolated from differentiating cells. RBP2 siRNA phenocopied restoration of pRB function in coactivation and differentiation assays, suggesting that pRB prevents RBP2 from repressing genes required for differentiation. In addition, two bromodomain-containing proteins were identified as RBP2 targets that are transcriptionally activated by pRB in an RBP2-dependent manner. Our results suggest that promotion of differentiation by pRB involves neutralization of free RBP2 and transcriptional activation of RBP2 targets linked to euchromatin maintenance.
Collapse
Affiliation(s)
- Elizaveta V Benevolenskaya
- Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
39
|
Li D, Yea S, Li S, Chen Z, Narla G, Banck M, Laborda J, Tan S, Friedman JM, Friedman SL, Walsh MJ. Krüppel-like Factor-6 Promotes Preadipocyte Differentiation through Histone Deacetylase 3-dependent Repression of DLK1. J Biol Chem 2005; 280:26941-52. [PMID: 15917248 DOI: 10.1074/jbc.m500463200] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Preadipocyte differentiation occurs during distinct periods of human development and is a key determinant of body mass. Transcriptional events underlying adipogenesis continue to emerge, but the link between chromatin remodeling of specific target loci and preadipocyte differentiation remains elusive. We have identified Krüppel-like factor-6 (KLF6), a recently described tumor suppressor gene, as a repressor of the proto-oncogene Delta-like 1 (Dlk1), a gene encoding a transmembrane protein that inhibits adipocyte differentiation. Forced expression of KLF6 strongly inhibits Dlk1 expression in preadipocytes and NIH 3T3 cells in vivo, whereas down-regulation of KLF6 in 3T3-L1 cells by small interfering RNA prevents adipogenesis. Repression of Dlk1 requires HDAC3 deacetylase activity, which is recruited to the endogenous Dlk1 promoter where it interacts with KLF6. Our studies identify the interaction between HDAC3 and KLF6 as a potential mechanism underlying human adipogenesis, and highlight the role of KLF6 as a multifunctional transcriptional regulator capable of mediating adipocyte differentiation through gene repression.
Collapse
Affiliation(s)
- Dan Li
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The E2 factor (E2F) family of transcription factors are downstream targets of the retinoblastoma protein. E2F factors have been known for several years to be important regulators of S-phase entry. Recent studies have improved our understanding of the molecular mechanisms of action used by this transcriptional network. In addition, they have given us an appreciation of the fact that E2F has functions that reach beyond G1/S control and impact cell proliferation in several different ways. The discovery of new family members with unusual properties, the unexpected phenotypes of mutant animals, a diverse collection of biological activities, a large number of new putative target genes and the new modes of transcriptional regulation have all contributed to an increasingly complex view of E2F function. In this review, we will discuss these recent developments and describe how they are beginning to shape a new and revised picture of the E2F transcriptional program.
Collapse
|
41
|
Melnick AM, Adelson K, Licht JD. The theoretical basis of transcriptional therapy of cancer: can it be put into practice? J Clin Oncol 2005; 23:3957-70. [PMID: 15867201 DOI: 10.1200/jco.2005.14.498] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aberrant gene silencing is a frequent event in cancer and plays a critical role in the molecular pathogenesis of malignant transformation. The two major mechanisms of silencing in cancer include transcriptional repression by mutated or aberrantly expressed transcription factors, and aberrant epigenetic silencing by hypermethylation of tumor suppressor or DNA repair-related genes. Both of these mechanisms require the activities of multiprotein chromatin remodeling and modifying machines, several of which may be mutated in cancer. The end result is genetic reprogramming of cells to express combinations of genes that confer the neoplastic phenotype. Recent discoveries in transcriptional biochemistry and gene regulation indicate that therapeutic agents can be engineered to specifically target these mechanisms. We provide a framework for the clinical or translational scientist to consider how such drugs might be developed and what their impact might be on restoring cells to normal genetic programming.
Collapse
Affiliation(s)
- Ari M Melnick
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | |
Collapse
|
42
|
Zhang F, Wang L, Wu PP, Yan ZW, Zheng L, Yu YY, Jiang XC. In situ analysis of p16/INK4 promoter hypermethylation in esophageal carcinoma and gastric carcinoma. ACTA ACUST UNITED AC 2005; 5:149-55. [PMID: 15612883 DOI: 10.1111/j.1443-9573.2004.00172.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Inactivation of the tumor suppressor gene by CpG hypermethylation is a common event in a variety of tumors. The present study was designed to be a comprehensive analysis of p16/INK4 methylation in carcinomas of the upper digestive tract. METHODS Series of esophageal carcinomas (34 cases) and gastric carcinomas (25 cases) were examined for CpG methylation in p16/INK4 using methylation-specific PCR (MSP). The tissue sections underwent MSP in situ and were then examined microscopically. Immunohistochemical detection of the expression of p16 in the tumor specimens was also performed. RESULTS Immunohistochemistry detected positive p16 expression in 8 cases of esophageal squamous cell carcinoma and 15 cases of gastric carcinoma. In esophageal carcinoma, hypermethylation of the p16/INK4 promoter region was detected in 5 cases without statistical correlation with its loss of expression, whereas in the gastric carcinomas, p16 expression was positively correlated with the T-classification (r = 0.488, P = 0.01); p16/INK4 methylation was identified in 8 cases. In addition, p16 expression was lower in the methylated samples than in the non-methylated samples (25% vs 76.47%, P = 0.03). Analysis of the MSP-in-situ sections showed that the distribution of methylated cells in esophageal carcinoma differed from that in gastric carcinoma. CONCLUSION The role of DNA methylation in the silence of p16/INK4 may different between these two types of upper digestive tract tumor.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pathology, Shanghai Second Medical University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Dupont JM. [Topographical organisation of the chromatin in human interphase nuclei: architecture meets function]. Morphologie 2005; 88:127-34. [PMID: 15641649 DOI: 10.1016/s1286-0115(04)98135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
There are an estimated number of 30,000 genes in the human genome, accounting for as few as 5% of the whole DNA content. Determining the exact role of the vast majority of untranscribed DNA is a major goal for upcoming years. Among various evolutionary constrains which could explain the presence of such a quantity of so-called "junk DNA", one hypothesis is the necessary controlled topographical arrangement of the genome during interphase, leading to a non-random, reproducible position of chromosomal regions inside the nucleus. This hypothesis relies on recent progresses in imaging technologies such as fluorescence confocal microscopy, allowing for the first time the identification of each chromosome-specific chromatin during interphase. This review focuses on the past years advances leading to the actual model of chromosome territories in the interphase nucleus.
Collapse
Affiliation(s)
- J M Dupont
- Laboratoire d'Histologie Embryologie Cytogénétique, CHU Cochin, 123 Bd Port Royal, Paris.
| |
Collapse
|
44
|
Abstract
Access of gene regulatory factors to the eukaryotic genome is modulated by chromatin. The organization of this nucleoprotein complex is highly dynamic and tightly regulated. The control of wide-ranging nuclear processes through the configuration of chromatin is achieved by the concerted actions of ATP-dependent chromatin-remodeling complexes and histone-modifying enzymes, and by the incorporation of specialized histone variants. It is becoming clear that perturbation of these chromatin modifiers can lead to cancer. Recent findings illustrate the mechanisms by which chromatin influences cancer development, and aid understanding of the regulation of chromatin organization, cellular transformation and the connections between tumor suppressor and oncogene function.
Collapse
Affiliation(s)
- Richard I Gregory
- Gene Expression and Regulation Program, and Molecular and Cellular Oncogenesis Program, Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
45
|
Zhang B, Laribee RN, Klemsz MJ, Roman A. Human papillomavirus type 16 E7 protein increases acetylation of histone H3 in human foreskin keratinocytes. Virology 2004; 329:189-98. [PMID: 15476886 DOI: 10.1016/j.virol.2004.08.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2004] [Revised: 07/15/2004] [Accepted: 08/11/2004] [Indexed: 01/07/2023]
Abstract
Histone acetylation plays an important role in chromatin remodeling and transcription control. Acetylation of histones is regulated by histone acetyltransferases and histone deacetylases (HDACs). Human papillomavirus type 16 (HPV16) E7 can inactivate retinoblastoma protein (pRB), which recruits histone deacetylases, and also physically interacts with histone acetyltransferases and histone deacetylases, suggesting E7 may affect histone acetylation. To test this, we have analyzed the state of acetylation of histone H3 in human foreskin keratinocytes. HPV16 E7 increased acetylation of histone H3 on lysine 9, which is related to transcription activation. The ability to bind both pRB and histone deacetylase was required for HPV16 E7 to increase histone acetylation. Chromatin immunoprecipitations showed HPV16 E7 increases histone acetylation on the E2F1 and cdc25A promoters. Consistent with this, RT-PCR analysis showed an increase in the expression of E2F-responsive genes involved in cell cycle control. HPV16 E7 affected neither the steady-state levels of histone acetyltransferases or deacetylases nor histone deacetylase activity. However, HPV16 E7 did increase the level of methylation of histone H3 on lysine 4, which normally requires displacement of histone deacetylase. In contrast, sodium butyrate, a known inhibitor of histone deacetylases, caused an increase in acetylated but not methylated histone H3. These data suggest HPV16 E7, by increasing histone acetylation, may create a transcriptionally active chromatin structure to promote expression of genes vital for cell cycle progression.
Collapse
Affiliation(s)
- Benyue Zhang
- Department of Microbiology and Immunology, Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202-5120, USA
| | | | | | | |
Collapse
|
46
|
Abstract
The E2F transcription factors are downstream effectors of the retinoblastoma protein (pRB) pathway and are required for the timely regulation of numerous genes essential for DNA replication and cell cycle progression. Several laboratories have used genome-wide approaches to discover novel target genes of E2F, leading to the identification of several hundred such genes that are involved not only in DNA replication and cell cycle progression, but also in DNA damage repair, apoptosis, differentiation and development. These new findings greatly enrich our understanding of how E2F controls transcription and cellular homeostasis.
Collapse
Affiliation(s)
- Adrian P Bracken
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy
| | | | | | | |
Collapse
|
47
|
Liu L, Wylie RC, Andrews LG, Tollefsbol TO. Aging, cancer and nutrition: the DNA methylation connection. Mech Ageing Dev 2004; 124:989-98. [PMID: 14659588 DOI: 10.1016/j.mad.2003.08.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer and aging are two coupled developmental processes as reflected by the higher incidence of cancer in the elderly human population group. Genetic mutations accumulate in somatic cells with age, which may explain in part the association of age with cancer. Epigenetic mechanisms are also frequently involved in controlling gene functions during development and tumorigenesis. A common molecular feature associated with both aging and tumorigenesis is global hypomethylation of the genomic DNA. The contributing mechanisms underlying this hypomethylation are not yet well understood. Epigenetic investigation of cancer and aging has recently emerged as a fruitful area of study and has added exciting insights into some of the mysteries surrounding aging and cancer. Recent studies have also shown that dietary factors can modulate DNA methylation and thereby contribute to aging and tumorigenesis. Thus, DNA methylation provides an important common link between aging, cancer and nutrition.
Collapse
Affiliation(s)
- Liang Liu
- Department of Biology, University of Alabama at Birmingham,Birmingham, AL 35294-1170, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Research on the regulation of transcription in mammals initially focused on the mechanism of transcriptional activation and 'positive control' of gene regulation. In contrast, transcriptional repression and 'negative control' of gene transcription was viewed rather as part of the 'prokaryotic book of biology'. However, results obtained in recent years have shown convincingly that transcriptional repression mediated by repressor proteins is a common regulatory mechanism in mammals and may play a key role in many biological processes. In particular, the fact that human diseases, such as Rett and ICF syndromes as well as some human forms of cancer, are connected with the activities of human repressor proteins indicates that transcriptional repression and gene silencing is essential for maintenance of the cellular integrity of a multicellular organism. The wide range of diseases caused by aberration in transcriptional repression sheds light on the importance of understanding how mammalian transcriptional repressor proteins work.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, University of the Saarland Medical Center, Homburg, Germany.
| | | | | |
Collapse
|
49
|
Takaki T, Fukasawa K, Suzuki-Takahashi I, Hirai H. Cdk-mediated phosphorylation of pRB regulates HDAC binding in vitro. Biochem Biophys Res Commun 2004; 316:252-5. [PMID: 15003538 DOI: 10.1016/j.bbrc.2004.02.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Indexed: 12/28/2022]
Abstract
Retinoblastoma protein (pRB) controls the G1/S transition in the cell cycle by binding and inactivating E2F transcription factor. pRB changes the chromatin structure at the E2F-responsive promoter by recruiting histone deacetylase (HDAC) to the pRB-E2F complex, thus controlling the transcriptional activity of E2F. Cyclin-dependent kinases (Cdks) phosphorylate pRB and disrupt association between pRB and E2F. We investigated the effects of pRB phosphorylation on HDAC-1 binding in vitro. Phosphorylation of pRB by Cdk4-cyclin D2, Cdk2-cyclin E, and Cdk2-cyclin A inhibited association of pRB with HDAC. Among these Cdks, Cdk4-cyclin D2 showed particularly effective inhibition of pRB-HDAC complex formation. Using pRB mutants with various deletions in the N- and C-terminal domains, we found that both the pocket and C-terminal domains are important for regulating association between pRB and HDAC.
Collapse
Affiliation(s)
- Tohru Takaki
- Banyu Tsukuba Research Institute in collaboration with Merck Research Laboratories, 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan.
| | | | | | | |
Collapse
|
50
|
Ausió J, Abbott D. The role of histone variability in chromatin stability and folding. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0167-7306(03)39010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|