1
|
Wan Y, Fu J. GDF15 as a key disease target and biomarker: linking chronic lung diseases and ageing. Mol Cell Biochem 2024; 479:453-466. [PMID: 37093513 PMCID: PMC10123484 DOI: 10.1007/s11010-023-04743-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
Growth differentiation factor 15 (GDF15), a member of the transforming growth factor-beta superfamily, is expressed in several human organs. In particular, it is highly expressed in the placenta, prostate, and liver. The expression of GDF15 increases under cellular stress and pathological conditions. Although numerous transcription factors directly up-regulate the expression of GDF15, the receptors and downstream mediators of GDF15 signal transduction in most tissues have not yet been determined. Glial cell-derived neurotrophic factor family receptor α-like protein was recently identified as a specific receptor that plays a mediating role in anorexia. However, the specific receptors of GDF15 in other tissues and organs remain unclear. As a marker of cell stress, GDF15 appears to exert different effects under different pathological conditions. Cell senescence may be an important pathogenetic process and could be used to assess the progression of various lung diseases, including COVID-19. As a key member of the senescence-associated secretory phenotype protein repertoire, GDF15 seems to be associated with mitochondrial dysfunction, although the specific molecular mechanism linking GDF15 expression with ageing remains to be elucidated. Here, we focus on research progress linking GDF15 expression with the pathogenesis of various chronic lung diseases, including neonatal bronchopulmonary dysplasia, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and pulmonary hypertension, suggesting that GDF15 may be a key biomarker for diagnosis and prognosis. Thus, in this review, we aimed to provide new insights into the molecular biological mechanism and emerging clinical data associated with GDF15 in lung-related diseases, while highlighting promising research and clinical prospects.
Collapse
Affiliation(s)
- Yang Wan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Wang J, Luo LZ, Liang DM, Guo C, Huang ZH, Jian XH, Wen J. Recent progress in understanding mitokines as diagnostic and therapeutic targets in hepatocellular carcinoma. World J Clin Cases 2023; 11:5416-5429. [PMID: 37637689 PMCID: PMC10450380 DOI: 10.12998/wjcc.v11.i23.5416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent tumors worldwide and the leading contributor to cancer-related deaths. The progression and metastasis of HCC are closely associated with altered mitochondrial metabolism, including mitochondrial stress response. Mitokines, soluble proteins produced and secreted in response to mitochondrial stress, play an essential immunomodulatory role. Immunotherapy has emerged as a crucial treatment option for HCC. However, a positive response to therapy is typically dependent on the interaction of tumor cells with immune regulation within the tumor microenvironment. Therefore, exploring the specific immunomodulatory mechanisms of mitokines in HCC is essential for improving the efficacy of immunotherapy. This study provides a comprehensive overview of the association between HCC and the immune microenvironment and highlights recent progress in understanding the involvement of mitochondrial function in preserving liver function. In addition, a systematic review of mitokines-mediated immunomodulation in HCC is presented. Finally, the potential diagnostic and therapeutic roles of mitokines in HCC are prospected and summarized. Recent progress in mitokine research represents a new prospect for mitochondrial therapy. Considering the potential of mitokines to regulate immune function, investigating them as a relevant molecular target holds great promise for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Jiang Wang
- Children Medical Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Lan-Zhu Luo
- Children Medical Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Dao-Miao Liang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Chao Guo
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Zhi-Hong Huang
- Children Medical Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Xiao-Hong Jian
- Department of Anatomy, Hunan Normal University School of Medicine, Changsha 410013, Hunan Province, China
| | - Jie Wen
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| |
Collapse
|
3
|
Almudares F, Hagan J, Chen X, Devaraj S, Moorthy B, Lingappan K. Growth and differentiation factor 15 (GDF15) levels predict adverse respiratory outcomes in premature neonates. Pediatr Pulmonol 2023; 58:271-278. [PMID: 36205439 PMCID: PMC9772066 DOI: 10.1002/ppul.26197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/10/2022] [Accepted: 09/27/2022] [Indexed: 01/11/2023]
Abstract
Growth and differentiation factor 15 (GDF15) is a stress-responsive cytokine, and its expression increases during inflammation, hyperoxia, and senescence. Significantly, GDF15 is secreted by the placenta, and maternal levels increase throughout pregnancy. Serum GDF15 level is a promising biomarker for many lung diseases like pulmonary hypertension and pulmonary fibrosis. However, circulating GDF15 levels in preterm infants and their role as a predictor of respiratory outcomes have not been studied. We hypothesized that GDF15 levels would increase with gestational age at birth, and that postnatal GDF15 will be correlated with adverse respiratory outcomes in preterm infants. Scavenged blood samples were retrieved from 57 preterm infants at five time points, from birth until 36-weeks postmenstrual age (PMA). GDF15 levels were measured using ELISA in 114 samples. We performed two-sample t-test, correlation and linear regression, logistic regression, and mixed-effects linear models for statistical analysis, and significance was identified when p < 0.05. Contrary to our hypothesis, for every 1-week increase in gestational age at birth, the predicted GDF15 level decreased by 475.0 pg/ml (p < 0.001). Greater PMA was significantly associated with lower serum GDF15 levels (p < 0.001). Interestingly, higher GDF15 levels were associated with a longer need for mechanical ventilation (p = 0.034), prolonged respiratory support need (p < 0.001), and length of hospital stay (p = 0.006). In conclusion, in preterm infants, GDF15 levels show an inverse correlation with gestational age at birth, with higher levels in more preterm babies, and levels trend down postnatally. Furthermore, longitudinal GDF15 levels through 36 weeks PMA predict adverse respiratory outcomes in preterm infants.
Collapse
Affiliation(s)
- Faeq Almudares
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Joseph Hagan
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Xinpu Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Sridevi Devaraj
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Krithika Lingappan
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Muniyan S, Pothuraju R, Seshacharyulu P, Batra SK. Macrophage inhibitory cytokine-1 in cancer: Beyond the cellular phenotype. Cancer Lett 2022; 536:215664. [PMID: 35351601 PMCID: PMC9088220 DOI: 10.1016/j.canlet.2022.215664] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 01/22/2023]
Abstract
Despite technological advances in diagnostic abilities and improved treatment methods, the burden of cancers remains high, leading to significant morbidity and mortality. One primary reason is that cancer cell secretory factors modulate the tumor microenvironment, supporting tumor growth and circumvents anticancer activities of conventional therapies. Macrophage inhibitory cytokine-1 (MIC-1) is a pleiotropic cytokine elevated in various cancers. MIC-1 regulates various cancer hallmarks, including sustained proliferation, tumor-promoting inflammation, avoiding immune destruction, inducing invasion, metastasis, angiogenesis, and resisting cell death. Despite these facts, the molecular regulation and downstream signaling of MIC-1 in cancer remain elusive, partly because its receptor (GFRAL) was unknown until recently. Binding of MIC-1 to GFRAL recruits the coreceptor tyrosine kinase RET to execute its downstream signaling. So far, studies have shown that GFRAL expression is restricted to the brain stem and is responsible for MIC-1/GFRAL/RET-mediated metabolic disorders. Nevertheless, abundant levels of MIC-1 expression have been reported in all cancer types and have been proposed as a surrogate biomarker. Given the ubiquitous expression of MIC-1 in cancers, it is crucial to understand both upstream regulation and downstream MIC-1/GFRAL/RET signaling in cancer hallmark traits.
Collapse
Affiliation(s)
- Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
5
|
Ahmed DS, Isnard S, Berini C, Lin J, Routy JP, Royston L. Coping With Stress: The Mitokine GDF-15 as a Biomarker of COVID-19 Severity. Front Immunol 2022; 13:820350. [PMID: 35251002 PMCID: PMC8888851 DOI: 10.3389/fimmu.2022.820350] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Growth differentiation factor 15 (GDF-15) is a transforming growth factor (TGF)-β superfamily cytokine that plays a central role in metabolism regulation. Produced in response to mitochondrial stress, tissue damage or hypoxia, this cytokine has emerged as one of the strongest predictors of disease severity during inflammatory conditions, cancers and infections. Reports suggest that GDF-15 plays a tissue protective role via sympathetic and metabolic adaptation in the context of mitochondrial damage, although the exact mechanisms involved remain uncertain. In this review, we discuss the emergence of GDF-15 as a distinctive marker of viral infection severity, especially in the context of COVID-19. We will critically review the role of GDF-15 as an inflammation-induced mediator of disease tolerance, through metabolic and immune reprogramming. Finally, we discuss potential mechanisms of GDF-15 elevation during COVID-19 cytokine storm and its limitations. Altogether, this cytokine seems to be involved in disease tolerance to viral infections including SARS-CoV-2, paving the way for novel therapeutic interventions.
Collapse
Affiliation(s)
- Darakhshan Sohail Ahmed
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Stéphane Isnard
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,CIHR Canadian HIV Trials Network, Vancouver, BC, Canada
| | - Carolina Berini
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - John Lin
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Jean-Pierre Routy
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Léna Royston
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,CIHR Canadian HIV Trials Network, Vancouver, BC, Canada.,Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
6
|
Tan Q, Hu C, Chen Z, Jin T, Li L, Zhu P, Ma Y, Lin Z, Chen W, Shi N, Zhang X, Jiang K, Liu T, Yang X, Guo J, Huang W, Pandol SJ, Deng L, Xia Q. Growth differentiation factor 15 is an early predictor for persistent organ failure and mortality in acute pancreatitis. Pancreatology 2022; 22:200-209. [PMID: 34952762 DOI: 10.1016/j.pan.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/04/2021] [Accepted: 12/06/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Early prediction of persistent organ failure (POF) is crucial for patients with acute pancreatitis (AP). Growth differentiation factor 15 (GDF15), also known as macrophage inhibitory cytokine 1 (MIC-1), is associated with inflammatory responses. We investigated changes in plasma GDF15 and assessed its predictive value in AP. METHODS The study included 290 consecutive patients with AP admitted within 36 h after symptoms onset. Clinical data obtained during hospitalization were collected. Plasma GDF15 levels were determined using enzyme-linked immunosorbent assays. The predictive value of GDF15 for POF was analyzed. RESULTS There were 105 mild, 111 moderately severe, and 74 severe AP patients. Plasma GDF15 peak level were measured on admission, and significantly declined on the 3rd and 7th day. Admission GDF15 predicted POF and mortality with areas under the curve (AUC) of 0.847 (95% confidence interval [CI] 0.798-0.895) and 0.934 (95% CI 0.887-0.980), respectively. Admission GDF15, Bedside Index of Severity in Acute Pancreatitis, and hematocrit were independent factors for POF by univariate and multivariate logistic regression, and the nomogram built on these variables showed good performance (optimism-corrected c-statistic = 0.921). The combined predictive model increased the POF accuracy with an AUC 0.925 (95% CI 0.894-0.956), a net reclassification improvement of 0.3024 (95% CI: 0.1482-0.4565, P < 0.001), and an integrated discrimination index of 0.11 (95% CI 0.0497-0.1703; P < 0.001). CONCLUSIONS Plasma GDF15 measured within 48 h of symptom onset could help predict POF and mortality in AP patients.
Collapse
Affiliation(s)
- Qingyuan Tan
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Hu
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyao Chen
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Jin
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Li
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Zhu
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Ma
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Ziqi Lin
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Weiwei Chen
- Department of Gastroenterology, Subei People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Na Shi
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxin Zhang
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Kun Jiang
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Liu
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaonan Yang
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Jia Guo
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Stephen J Pandol
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lihui Deng
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China.
| | - Qing Xia
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Macrophage inhibitory cytokine-1 produced by melanoma cells contributes to melanoma tumor growth and metastasis in vivo by enhancing tumor vascularization. Melanoma Res 2022; 32:1-10. [PMID: 34939980 DOI: 10.1097/cmr.0000000000000790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Macrophage inhibitory cytokine-1 (MIC-1) has been reported to be elevated in various human cancers including melanoma; however, the function of MIC-1 in cancer remains unclear. In this study, we attempt to clarify the role of MIC-1 in tumor pathogenesis by employing the orthotopic B16F1 melanoma mouse model in which serum MIC-1 levels are positively correlated with tumor size. By stably transfecting a MIC-1 expression construct into B16F1 melanoma cells, we increased the expression and secretion levels of MIC-1. This increase in MIC-1 expression significantly enhanced the growth of tumors derived from B16F1 cells in vivo, despite not affecting in vitro cell growth. The elevated MIC-1 expression in B16F1 cells also resulted in lymph node metastasis in B16F1 tumor-bearing mice, significantly increasing mortality. Interestingly, among small melanoma tumors of similar size, tumors derived from the MIC-1-transfected B16F1 cells exhibited enhanced blood vessel formation compared with those of mock transfectant cells. Also, more MIC-1 was found in well-vascularized tumor regions than in poorly vascularized tumor regions. Moreover, conditioned medium (CM) of the MIC-1-transfected melanoma cells enhanced the angiogenic properties of endothelial cells more than CM of mock transfectant cells. Notably, hypoxic culture conditions forced parental B16F1 cells to secrete more endothelial cell-stimulating factors, among which the function of MIC-1 was confirmed by blocking the effects with an anti-MIC-1 antibody. Taken together, these results suggest that the MIC-1 produced by melanoma cells in response to oxygen deprivation promotes tumor vascularization during melanoma development in vivo, leading to enhanced tumor growth and metastasis.
Collapse
|
8
|
Lodi RS, Yu B, Xia L, Liu F. Roles and Regulation of Growth differentiation factor-15 in the Immune and tumor microenvironment. Hum Immunol 2021; 82:937-944. [PMID: 34412918 DOI: 10.1016/j.humimm.2021.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/26/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022]
Abstract
Growth differentiation factor-15 (GDF-15), a member of the TGF-β superfamily, plays multiple roles in a wide variety of cellular processes. It is expressed at low levels under normal conditions but is highly expressed in tumor and tumor microenvironment (TME)-related cells, such as fibroblasts and immune cells. The TME consists of the noncancerous cells present in the tumor, including immune cells, fibroblasts, blood vessel signaling molecules and extracellular matrix, which play a key role in tumor development. GDF-15 affects both stromal cells and immune cells in the TME. It also acts on immune checkpoints, such as PD-1/PDL-1 that regulate stemness of cancer cells, indicating that GDF-15 plays a prominent role in cancer, exhibiting both protumorigenic and antitumorigenic effects, although the latter are reported much less often than the former. The present review addresses novel ideas regarding communication between GDF-15 and stromal cells, immune cells, and cancer cells in the TME. In addition, it discusses the possibility of GDF-15's clinical application as a diagnostic biomarker and therapeutic target in cancer.
Collapse
Affiliation(s)
| | - Bin Yu
- The Central Laboratory, Changzhou Woman and Children Health Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Lin Xia
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Fang Liu
- International Genome Center, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
9
|
Pan J, Borné Y, Orho-Melander M, Nilsson J, Melander O, Engström G. The associations between red cell distribution width and plasma proteins in a general population. Clin Proteomics 2021; 18:12. [PMID: 33781199 PMCID: PMC8008679 DOI: 10.1186/s12014-021-09319-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND High red cell distribution width (RDW) has been increasingly recognized as a risk factor for cardiovascular diseases (CVDs), but the underlying mechanisms remain unknown. Our aim was to explore the associations between RDW and plasma proteins implicated in the pathogenesis of CVD using a targeted proteomics panel. METHODS RDW and 88 plasma proteins were measured in a population-based cohort study (n = 4726), Malmö Diet and Cancer-Cardiovascular Cohort (MDC-CC). A random 2/3 of the cohort was used as discovery sample and remaining 1/3 was used for replication. Multiple linear regression was used to assess the associations between RDW and plasma proteins, with adjustments for age, sex, and other potential confounders. Proteins with Bonferroni-corrected significant associations with RDW in the discovery sub-cohort were validated in the replication cohort. RESULTS Thirteen of 88 plasma proteins had significant associations with RDW in the discovery sample, after multivariate adjustments. Eleven of them were also significant in the replication sample, including SIR2-like protein 2 (SIRT2), stem cell factor (SCF, inversely), melusin (ITGB1BP2), growth differentiation factor-15 (GDF-15), matrix metalloproteinase-7 (MMP-7), hepatocyte growth factor (HGF), chitinase-3-like protein 1 (CHI3L1), interleukin-8 (IL-8), CD40 ligand (CD40-L), urokinase plasminogen activator surface receptor (U-PAR) and matrix metalloproteinase-3 (MMP-3). CONCLUSIONS Several proteins from this targeted proteomics panel were associated with RDW in this cohort. These proteins could potentially be linked to the increased cardiovascular risk in individuals with high RDW.
Collapse
Affiliation(s)
- Jingxue Pan
- Department of Clinical Sciences, Lund University, CRC Hus 60 plan 13, Jan Waldenströms gata 35, 20502, Malmö, Sweden.
| | - Yan Borné
- Department of Clinical Sciences, Lund University, CRC Hus 60 plan 13, Jan Waldenströms gata 35, 20502, Malmö, Sweden
| | - Marju Orho-Melander
- Department of Clinical Sciences, Lund University, CRC Hus 60 plan 13, Jan Waldenströms gata 35, 20502, Malmö, Sweden
| | - Jan Nilsson
- Department of Clinical Sciences, Lund University, CRC Hus 60 plan 13, Jan Waldenströms gata 35, 20502, Malmö, Sweden
| | - Olle Melander
- Department of Clinical Sciences, Lund University, CRC Hus 60 plan 13, Jan Waldenströms gata 35, 20502, Malmö, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences, Lund University, CRC Hus 60 plan 13, Jan Waldenströms gata 35, 20502, Malmö, Sweden
| |
Collapse
|
10
|
Zhou B, Huang WH, Chen S, Chen W, Peng P, Zhou Y, Gu W. GDF15 serves as a coactivator to enhance KISS-1 gene transcription through interacting with Sp1. Carcinogenesis 2021; 42:294-302. [PMID: 32966555 DOI: 10.1093/carcin/bgaa103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/07/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023] Open
Abstract
GDF15 has been recently recognized as a tumor-suppressive gene. However, the underlying mechanism by which GDF15 affects breast carcinogenesis is not well understood. Here, we showed that the inhibitory effect of GDF15 on cell proliferation was dependent on the nuclear localization of the protein. Dynamic translocation of GDF15 into the nucleus altered expression of a number of genes, including KISS-1, and resulted in inhibition of cell growth and invasive behavior. Using KISS-1 promoter-driven luciferase reporter and chromatin immunoprecipitation assays, we demonstrated that, in highly malignant breast cancer cells, GDF15 directly interacts with specific protein-1 (Sp1) at the Sp1-binding sites of the KISS-1 promoter, leading to upregulated KISS-1 expression. Our study indicates that nuclear GDF15 could serve as a transcriptional coactivator to mediate the expression of particular genes to reduce cell proliferation.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Pathophysiology and the Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Wen-He Huang
- Xiang'an Hospital of Xiamen University, Xiamen, Fujian Province, China
| | - Shaoying Chen
- Department of Pathophysiology and the Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Weibin Chen
- Department of Pathophysiology and the Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Pei Peng
- Department of Pathophysiology and the Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yanchun Zhou
- Department of Pathophysiology and the Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Wei Gu
- Department of Pathophysiology and the Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, China
- Guangdong Provincial Lab for Breast Cancer Diagnosis & Treatment, Shantou, China
| |
Collapse
|
11
|
Hasanpour Segherlou Z, Nouri-Vaskeh M, Noroozi Guilandehi S, Baghbanzadeh A, Zand R, Baradaran B, Zarei M. GDF-15: Diagnostic, prognostic, and therapeutic significance in glioblastoma multiforme. J Cell Physiol 2021; 236:5564-5581. [PMID: 33580506 DOI: 10.1002/jcp.30289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/16/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is the commonest primary malignant brain tumor and has a remarkably weak prognosis. According to the aggressive form of GBM, understanding the accurate molecular mechanism associated with GBM pathogenesis is essential. Growth differentiation factor 15 (GDF-15) belongs to transforming growth factor-β superfamily with important roles to control biological processes. It affects cancer growth and progression, drug resistance, and metastasis. It also can promote stemness in many cancers, and also can stress reactions control, bone generation, hematopoietic growth, adipose tissue performance, and body growth, and contributes to cardiovascular disorders. The role GDF-15 to develop and progress cancer is complicated and remains unclear. GDF-15 possesses tumor suppressor properties, as well as an oncogenic effect. GDF-15 antitumorigenic and protumorigenic impacts on tumor development are linked to the cancer type and stage. However, the GDF-15 signaling and mechanism have not yet been completely identified because of no recognized cognate receptor.
Collapse
Affiliation(s)
| | - Masoud Nouri-Vaskeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Zand
- Department of Neurology, Geisinger Health System, Danville, Pennsylvania, USA
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Zarei
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Ahmed DS, Isnard S, Lin J, Routy B, Routy JP. GDF15/GFRAL Pathway as a Metabolic Signature for Cachexia in Patients with Cancer. J Cancer 2021; 12:1125-1132. [PMID: 33442410 PMCID: PMC7797663 DOI: 10.7150/jca.50376] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Cachexia is a metabolic mutiny that directly reduces life expectancy in chronic conditions such as cancer. The underlying mechanisms associated with cachexia involve inflammation, metabolism, and anorexia. Therefore, the need to identify cachexia biomarkers is warranted to better understand catabolism change and assess various therapeutic interventions. Among inflammatory proteins, growth differentiation factor-15 (GDF15), an atypical transforming growth factor-beta (TGF-β) superfamily member, emerges as a stress-related hormone. In inflammatory conditions, cardiovascular diseases, and cancer, GDF15 is a biomarker for disease outcome. GDF15 is also implicated in energy homeostasis, body weight regulation, and plays a distinct role in cachexia. The recent discovery of its receptor, glial cell line-derived neurotrophic factor (GDNF) family receptor α-like (GFRAL), sheds light on its metabolic function. Herein, we critically review the mechanisms involving GDF15 in cancer cachexia and discuss therapeutic interventions to improve outcomes in people living with cancer.
Collapse
Affiliation(s)
- Darakhshan Sohail Ahmed
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Stéphane Isnard
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- CIHR Canadian HIV Trials Network, Vancouver, BC
| | - John Lin
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Bertrand Routy
- Division of Hémato-oncologie, Centre hospitalier de l'Université de Montréal
- Centre de recherche du Centre hospitalier de l'Université de Montréal
| | - Jean-Pierre Routy
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
13
|
Al-Mudares F, Reddick S, Ren J, Venkatesh A, Zhao C, Lingappan K. Role of Growth Differentiation Factor 15 in Lung Disease and Senescence: Potential Role Across the Lifespan. Front Med (Lausanne) 2020; 7:594137. [PMID: 33344478 PMCID: PMC7744305 DOI: 10.3389/fmed.2020.594137] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Growth Differentiation Factor 15 (GDF15) is a divergent member of transforming growth factor-beta (TGF-β) superfamily and is ubiquitously expressed, under normal physiological conditions. GDF15 expression increases during many pathological states and serves a marker of cellular stress. GDF15 has multiple and even paradoxical roles within a pathological condition, as its effects can be dose- and time-dependent and vary based on the targeted tissues and downstream pathways. GDF15 has emerged as one of the most recognized proteins as part of the senescence associated secretory phenotype. Cellular senescence plays a major role in many lung diseases across the life-span from bronchopulmonary dysplasia in the premature neonate to COPD and idiopathic pulmonary fibrosis in aged adults. GDF15 levels have been reported to be as a useful biomarker in chronic obstructive pulmonary disease, lung fibrosis and pulmonary arterial hypertension and predict disease severity, decline in lung function and mortality. Glial-cell-line-derived neurotrophic factor family receptor alpha-like (GFRAL) in the brain stem has been identified as the only validated GDF15 receptor and mediates GDF15-mediated anorexia and wasting. The mechanisms and pathways by which GDF15 exerts its pulmonary effects are being elucidated. GDF15 may also have an impact on the lung based on the changes in circulating levels or through the central action of GDF15 activating peripheral metabolic changes. This review focuses on the role of GDF15 in different lung diseases across the lifespan and its role in cellular senescence.
Collapse
Affiliation(s)
- Faeq Al-Mudares
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | | | - Jenny Ren
- Baylor College of Medicine, Houston, TX, United States
| | | | - Candi Zhao
- Rice University, Houston, TX, United States
| | - Krithika Lingappan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
14
|
Breen DM, Kim H, Bennett D, Calle RA, Collins S, Esquejo RM, He T, Joaquim S, Joyce A, Lambert M, Lin L, Pettersen B, Qiao S, Rossulek M, Weber G, Wu Z, Zhang BB, Birnbaum MJ. GDF-15 Neutralization Alleviates Platinum-Based Chemotherapy-Induced Emesis, Anorexia, and Weight Loss in Mice and Nonhuman Primates. Cell Metab 2020; 32:938-950.e6. [PMID: 33207247 DOI: 10.1016/j.cmet.2020.10.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/06/2020] [Accepted: 10/29/2020] [Indexed: 12/28/2022]
Abstract
Platinum-based cancer therapy is restricted by dose-limiting side effects and is associated with elevation of growth differentiation factor 15 (GDF-15). But whether this elevation contributes to such side effects has been unclear. Here, we explored the effects of GDF-15 blockade on platinum-based chemotherapy-induced emesis, anorexia, and weight loss in mice and/or nonhuman primate models. We found that circulating GDF-15 is higher in subjects with cancer receiving platinum-based chemotherapy and is positively associated with weight loss in colorectal cancer (NCT00609622). Further, chemotherapy agents associated with high clinical emetic score induce circulating GDF-15 and weight loss in mice. Platinum-based treatment-induced anorexia and weight loss are attenuated in GDF-15 knockout mice, while GDF-15 neutralization with the monoclonal antibody mAB1 improves survival. In nonhuman primates, mAB1 treatment attenuates anorexia and emesis. These results suggest that GDF-15 neutralization is a potential therapeutic approach to alleviate chemotherapy-induced side effects and improve the quality of life.
Collapse
Affiliation(s)
- Danna M Breen
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA.
| | - Hanna Kim
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Donald Bennett
- Biostatistics, Early Clinical Development, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Roberto A Calle
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Susie Collins
- Biostatistics, Early Clinical Development, Pfizer R&D UK Limited, Ramsgate Road, Sandwich, Kent, UK
| | - Ryan M Esquejo
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Tao He
- Biomedicine Design, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Stephanie Joaquim
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Alison Joyce
- Biomedicine Design, Pfizer Inc., 1 Burtt Road, Andover, MA, USA
| | - Matthew Lambert
- Biomedicine Design, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Laura Lin
- Biomedicine Design, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Betty Pettersen
- Drug Safety Research and Development, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Shuxi Qiao
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Michelle Rossulek
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Gregory Weber
- Biomedicine Design, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Zhidan Wu
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Bei B Zhang
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Morris J Birnbaum
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| |
Collapse
|
15
|
Izaguirre DI, Ng CW, Kwan SY, Kun EH, Tsang YTM, Gershenson DM, Wong KK. The Role of GDF15 in Regulating the Canonical Pathways of the Tumor Microenvironment in Wild-Type p53 Ovarian Tumor and Its Response to Chemotherapy. Cancers (Basel) 2020; 12:cancers12103043. [PMID: 33086658 PMCID: PMC7650722 DOI: 10.3390/cancers12103043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Patients with wild-type p53 ovarian cancer appear to have a poorer survival rate than those with mutant p53 due to resistance to chemotherapy. The mechanism underlying this observation is not clearly understood. The aim of this study was to identify potential biomarkers regulated by p53 that conferred resistance using in vitro and in vivo studies. Growth differentiation factor 15 (GDF15) expression was demonstrated to be controlled by p53 in both ovarian cancer cell lines and orthotopic mouse models. The histological and RNAseq studies of the GDF15-knocked down, A2780 cell line-induced tumor revealed that the ratio and canonical pathways of stromal/tumor were modified by secretory GDF15. Abstract Background: The standard treatment of ovarian cancer is surgery followed by a chemotherapeutic combination consisting of a platinum agent, such as cisplatin and a taxane-like paclitaxel. We previously observed that patients with ovarian cancer wild-type for p53 had a poorer survival rate than did those with p53 mutations. Thus, a better understanding of the molecular changes of epithelial ovarian cancer cells with wild-type p53 in response to treatment with cisplatin could reveal novel mechanisms of chemoresistance. Methods: Gene expression profiling was performed on an ovarian cancer cell line A2780 with wild-type p53 treated with cisplatin. A gene encoding a secretory protein growth differentiation factor 15 (GDF15) was identified to be highly induced by cisplatin treatment in vitro. This was further validated in a panel of wild-type and mutant p53 ovarian cancer cell lines, as well as in mouse orthotopic models. The mouse tumor tissues were further analyzed by histology and RNA-seq. Results: GDF15 was identified as one of the highly induced genes by cisplatin or carboplatin in ovarian cancer cell lines with wild-type p53. The wild-type p53-induced expression of GDF15 and GDF15-confered chemotherapy resistance was further demonstrated in vitro and in vivo. This study also discovered that GDF15-knockdown (GDF15-KD) tumors had less stromal component and had different repertoires of activated and inhibited canonical pathways in the stromal cell and cancer cell components from that of the control tumors after cisplatin treatment. Conclusions: GDF15 expression from the wild-type p53 cancer cells can modulate the canonical pathways in the tumor microenvironment in response to cisplatin, which is a possible mechanism of chemoresistance.
Collapse
Affiliation(s)
- Daisy I. Izaguirre
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.I.I.); (C.-W.N.); (S.-Y.K.); (E.H.K.); (Y.T.M.T.); (D.M.G.)
- Cancer Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Chun-Wai Ng
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.I.I.); (C.-W.N.); (S.-Y.K.); (E.H.K.); (Y.T.M.T.); (D.M.G.)
| | - Suet-Yan Kwan
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.I.I.); (C.-W.N.); (S.-Y.K.); (E.H.K.); (Y.T.M.T.); (D.M.G.)
- Cancer Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Eucharist H. Kun
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.I.I.); (C.-W.N.); (S.-Y.K.); (E.H.K.); (Y.T.M.T.); (D.M.G.)
| | - Yvonne T. M. Tsang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.I.I.); (C.-W.N.); (S.-Y.K.); (E.H.K.); (Y.T.M.T.); (D.M.G.)
| | - David M. Gershenson
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.I.I.); (C.-W.N.); (S.-Y.K.); (E.H.K.); (Y.T.M.T.); (D.M.G.)
| | - Kwong-Kwok Wong
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.I.I.); (C.-W.N.); (S.-Y.K.); (E.H.K.); (Y.T.M.T.); (D.M.G.)
- Cancer Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-792-0229
| |
Collapse
|
16
|
Lockhart SM, Saudek V, O’Rahilly S. GDF15: A Hormone Conveying Somatic Distress to the Brain. Endocr Rev 2020; 41:bnaa007. [PMID: 32310257 PMCID: PMC7299427 DOI: 10.1210/endrev/bnaa007] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/02/2020] [Indexed: 12/27/2022]
Abstract
GDF15 has recently gained scientific and translational prominence with the discovery that its receptor is a GFRAL-RET heterodimer of which GFRAL is expressed solely in the hindbrain. Activation of this receptor results in reduced food intake and loss of body weight and is perceived and recalled by animals as aversive. This information encourages a revised interpretation of the large body of previous research on the protein. GDF15 can be secreted by a wide variety of cell types in response to a broad range of stressors. We propose that central sensing of GDF15 via GFRAL-RET activation results in behaviors that facilitate the reduction of exposure to a noxious stimulus. The human trophoblast appears to have hijacked this signal, producing large amounts of GDF15 from early pregnancy. We speculate that this encourages avoidance of potential teratogens in pregnancy. Circulating GDF15 levels are elevated in a range of human disease states, including various forms of cachexia, and GDF15-GFRAL antagonism is emerging as a therapeutic strategy for anorexia/cachexia syndromes. Metformin elevates circulating GDF15 chronically in humans and the weight loss caused by this drug appears to be dependent on the rise in GDF15. This supports the concept that chronic activation of the GDF15-GFRAL axis has efficacy as an antiobesity agent. In this review, we examine the science of GDF15 since its identification in 1997 with our interpretation of this body of work now being assisted by a clear understanding of its highly selective central site of action.
Collapse
Affiliation(s)
- Samuel M Lockhart
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Vladimir Saudek
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Stephen O’Rahilly
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| |
Collapse
|
17
|
Hypoxia Induces Growth Differentiation Factor 15 to Promote the Metastasis of Colorectal Cancer via PERK-eIF2 α Signaling. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5958272. [PMID: 32076610 PMCID: PMC7008299 DOI: 10.1155/2020/5958272] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/06/2019] [Accepted: 08/08/2019] [Indexed: 12/17/2022]
Abstract
Hypoxia plays an essential role in orchestrating Epithelial-mesenchymal transition and promoting metastasis of colorectal cancer. However, the underlying mechanisms are still not well elucidated. Here, we present that hypoxic exposure causes endoplasmic reticulum stress and activates the unfolded protein response pathways, which drives GDF15 expression in colorectal cancer cells. Mechanistically, upregulated CHOP led by activated PERK-eIF2α signaling promotes GDF15 transcription via directly binding to its promoter. Further study implicates that hypoxia-induced GDF15 is required for the EMT and invasion of colorectal cancer cells; enforced expression of GDF15 promotes the mitochondrial oxidation of fatty acids in colorectal cancer cells. Moreover, the abrogation of GDF15 results in smaller xenograft tumors in size and impaired metastasis. GDF15 is expressed much more in tumor tissues of CRC patients and displays positive correlations with CHOP and HIF1α in mRNA levels. Our study demonstrates a novel molecular mechanism underlying hypoxia-promoted metastasis of CRC and provides PERK signaling-regulated GDF15 as a new and promising therapeutic target for clinical treatment and drug discovery.
Collapse
|
18
|
Hanauer JRH, Koch V, Lauer UM, Mühlebach MD. High-Affinity DARPin Allows Targeting of MeV to Glioblastoma Multiforme in Combination with Protease Targeting without Loss of Potency. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:186-200. [PMID: 31788553 PMCID: PMC6880102 DOI: 10.1016/j.omto.2019.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022]
Abstract
Measles virus (MeV) is naturally cytolytic by extensive cell-to-cell fusion. Vaccine-derived MeV is toxic for cancer cells and is clinically tested as oncolytic virus. To combine the potential of MeV with enhanced safety, different targeting strategies have been described. We generated a receptor-targeted MeV by using receptor-blind viral attachment protein genetically fused to designed ankyrin repeat protein (DARPin) binding domains specific for the epidermal growth factor receptor (EGFR). To reduce on-target toxicity for EGFR+ healthy cells, we used an engineered viral fusion protein activatable by tumor-associated matrix metalloproteases (MMPs) for additional protease targeting. The dual-targeted virus replicated exclusively on EGFR+/MMP+ tumor cells but was safe on healthy EGFR+ target cells, primary human keratinocytes. Nevertheless, glioblastoma and other tumor cells were efficiently killed by all targeted viruses, although replication and oncolysis were slower for protease-targeted MeV. In vivo, efficacy of EGFR-targeted MeV was virtually unimpaired, whereas also dual-targeted MeV showed significant intra-tumoral spread and efficacy and could be armed with a prodrug convertase. The use of DARPin-domains resulted in potent EGFR-targeted MeV and for the first time effective dual retargeting of an oncolytic virus, further enhancing tumor selectivity. Together with powerful cell-toxic genes, the application as highly tumor-specific platform is promising.
Collapse
Affiliation(s)
- Jan R H Hanauer
- Oncolytic Measles Viruses and Vaccine Vectors, Paul-Ehrlich-Institut, 63225 Langen, Germany.,Veterinary Medicine, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Vivian Koch
- Oncolytic Measles Viruses and Vaccine Vectors, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Ulrich M Lauer
- Department of Medical Oncology and Pneumology, University Hospital, University of Tübingen, 72076 Tübingen, Germany
| | - Michael D Mühlebach
- Oncolytic Measles Viruses and Vaccine Vectors, Paul-Ehrlich-Institut, 63225 Langen, Germany.,Veterinary Medicine, Paul-Ehrlich-Institut, 63225 Langen, Germany
| |
Collapse
|
19
|
Chen G, Wang M, Liu X. GDF15 promotes osteosarcoma cell migration and invasion by regulating the TGF‑β signaling pathway. Mol Med Rep 2019; 20:4262-4270. [PMID: 31545486 DOI: 10.3892/mmr.2019.10664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/25/2019] [Indexed: 11/05/2022] Open
Abstract
Growth and differentiation factor 15 (GDF15), a novel divergent member of the transforming growth factor‑β (TGF‑β) superfamily, was previously reported to be overexpressed in various types of cancers and was shown to be involved in tumor metastasis; however, the role of GDF15 in the development and malignant progression of osteosarcoma remains unclear. In the present study, reverse transcription‑quantitative polymerase chain reaction, western blot and ELISA analyses were performed to detect mRNA and protein expression, including that of GDF15, SMAD2 and SMAD3. Wound‑healing and cell invasion assays were conducted to determine the migratory and invasive abilities of osteosarcoma cells. A luciferase assay was performed to evaluate the transcriptional activity of a TGF‑β/SMAD‑responsive luciferase reporter. The Kaplan‑Meier method was used to generate survival curves, with a log‑rank test use to evaluate differences in survival. The results revealed that GDF15 expression was upregulated in metastatic osteosarcoma tissues compared with non‑metastatic osteosarcoma tissues. Patients with osteosarcoma that possessed high serum GDF15 levels exhibited significantly decreased overall survival (OS) and pulmonary metastasis‑free survival (PMFS) time compared with patients with low GDF15 expression. Furthermore, high serum GDF15 was an independent prognostic parameter for poor OS and short PMFS. Additionally, it was observed that the knockdown of GDF15 attenuated the migration and invasion of osteosarcoma cells. Silencing GDF15 markedly suppressed the TGF‑β signaling pathway. In conclusion, GDF15 may promote osteosarcoma cell metastasis by regulating the TGF‑β signaling pathway, and serum GDF15 levels may be a potential prognostic and pulmonary metastasis‑predictive biomarker in osteosarcoma.
Collapse
Affiliation(s)
- Guangfu Chen
- Department of Spine Surgery, The Affiliated Foshan Chancheng District Center Hospital of Guangdong Medical University, Foshan, Guangdong 528031, P.R. China
| | - Min Wang
- Department of Spine Surgery, The Affiliated Foshan Chancheng District Center Hospital of Guangdong Medical University, Foshan, Guangdong 528031, P.R. China
| | - Xiang Liu
- Department of Spine Surgery, The Affiliated Foshan Chancheng District Center Hospital of Guangdong Medical University, Foshan, Guangdong 528031, P.R. China
| |
Collapse
|
20
|
Emmerson PJ, Duffin KL, Chintharlapalli S, Wu X. GDF15 and Growth Control. Front Physiol 2018; 9:1712. [PMID: 30542297 PMCID: PMC6277789 DOI: 10.3389/fphys.2018.01712] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022] Open
Abstract
Growth/differentiation factor-15 (GDF-15) is a distant member of the transforming growth factor β (TGF-β) superfamily and is widely expressed in multiple mammalian tissues. Its expression is highly regulated and is often induced in response to conditions associated with cellular stress. GDF15 serum levels have a strong association with many diseases, including inflammation, cancer, cardiovascular diseases, and obesity, and potentially serve as reliable predictor of disease progression. A functional role for GDF15 has been suggested in cancer, cardiovascular disease, kidney disease and metabolic disease. However, the knowledge of its pathophysiological function at the molecular level is still limited and requires more investigation. Recent identification of the endogenous receptor for GDF15 may provide additional insight in to its' molecular mechanisms and relationship to disease states.
Collapse
Affiliation(s)
- Paul J Emmerson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - Kevin L Duffin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | | | - Xinle Wu
- Lilly China Innovation and Partnerships, Shanghai, China
| |
Collapse
|
21
|
Becker BV, Majewski M, Abend M, Palnek A, Nestler K, Port M, Ullmann R. Gene expression changes in human iPSC-derived cardiomyocytes after X-ray irradiation. Int J Radiat Biol 2018; 94:1095-1103. [PMID: 30247079 DOI: 10.1080/09553002.2018.1516908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Purpose: Radiation-induced heart disease caused by cardiac exposure to ionizing radiation comprises a variety of cardiovascular effects. Research in this field has been hampered by limited availability of clinical samples and appropriate test models. In this study, we wanted to elucidate the molecular mechanisms underlying electrophysiological changes, which we have observed in a previous study. Materials and methods: We employed RNA deep-sequencing of human-induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) 48 h after 5 Gy X-ray irradiation. By comparison to public data from hiPSC-CMs and human myocardium, we verified the expression of cardiac-specific genes in hiPSC-CMs. Results were validated by qRT-PCR. Results: Differentially gene expression analysis identified 39 and 481 significantly up- and down-regulated genes after irradiation, respectively. Besides, a large fraction of genes associated with cell cycle processes, we identified genes implicated in cardiac calcium homeostasis (PDE3B), oxidative stress response (FDXR and SPATA18) and the etiology of cardiomyopathy (SGCD, BBC3 and GDF15). Conclusions: Notably, observed gene expression characteristics specific to hiPSC-CMs might be relevant regarding further investigations of the response to external stressors like radiation. The genes and biological processes highlighted in our study present promising starting points for functional follow-up studies for which hiPSC-CMs could pose an appropriate cell model when cell type specific peculiarities are taken into account.
Collapse
Affiliation(s)
- Benjamin V Becker
- a Bundeswehr Institute of Radiobiology affiliated to Ulm University , Munich , Germany
| | - Matthäus Majewski
- a Bundeswehr Institute of Radiobiology affiliated to Ulm University , Munich , Germany
| | - Michael Abend
- a Bundeswehr Institute of Radiobiology affiliated to Ulm University , Munich , Germany
| | - Andreas Palnek
- a Bundeswehr Institute of Radiobiology affiliated to Ulm University , Munich , Germany
| | - Kai Nestler
- b Bundeswehr Institute for Preventive Medicine , Koblenz , Germany
| | - Matthias Port
- a Bundeswehr Institute of Radiobiology affiliated to Ulm University , Munich , Germany
| | - Reinhard Ullmann
- a Bundeswehr Institute of Radiobiology affiliated to Ulm University , Munich , Germany
| |
Collapse
|
22
|
Kim YI, Shin HW, Chun YS, Park JW. CST3 and GDF15 ameliorate renal fibrosis by inhibiting fibroblast growth and activation. Biochem Biophys Res Commun 2018; 500:288-295. [DOI: 10.1016/j.bbrc.2018.04.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/21/2022]
|
23
|
Zhang Y, Wang X, Zhang M, Zhang Z, Jiang L, Li L. GDF15 promotes epithelial-to-mesenchymal transition in colorectal [corrected]. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:652-658. [PMID: 29771147 DOI: 10.1080/21691401.2018.1466146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Growth differentiation factor 15 (GDF15) is a divergent member of the transforming growth factor-β (TGF-β) superfamily that has been associated with colorectal cancers (CRC). However, the role of GDF15 in the progression of CRC remains unknown. We demonstrated that GDF15 expression was higher in fresh CRC tissues than in adjacent normal tissues. Moreover, we found that GDF15 overexpression significantly facilitated cell viability, cell invasion and migration (p < .01 or p < .05). The protein expression of N-cadherin, vimentin and Twist1 were up-regulated by GDF15 overexpression, while E-cadherin was down-regulated. Reciprocally, using a GDF15-shRNA strategy, we observed that GDF15 downregulation inhibited both basal and GDF16-induced cell viability, invasion and migration in LoVo cells. In conclusion, GDF15 could promote cell viability, invasion and migration of LoVo cells through EMT induction.
Collapse
Affiliation(s)
- Yifei Zhang
- a Department of Gastrointestinal Surgery , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , China.,b Department of Gastrointestinal Surgery , Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University , Yantai , China
| | - Xixun Wang
- b Department of Gastrointestinal Surgery , Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University , Yantai , China
| | - Menglai Zhang
- b Department of Gastrointestinal Surgery , Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University , Yantai , China
| | - Zhenbin Zhang
- b Department of Gastrointestinal Surgery , Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University , Yantai , China
| | - Lixin Jiang
- b Department of Gastrointestinal Surgery , Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University , Yantai , China
| | - Leping Li
- a Department of Gastrointestinal Surgery , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , China
| |
Collapse
|
24
|
Wang T, Mao B, Cheng C, Zou Z, Gao J, Yang Y, Lei T, Qi X, Yuan Z, Xu W, Lu Z. YAP promotes breast cancer metastasis by repressing growth differentiation factor-15. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1744-1753. [PMID: 29499325 DOI: 10.1016/j.bbadis.2018.02.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/08/2018] [Accepted: 02/26/2018] [Indexed: 01/15/2023]
Abstract
The transcriptional co-activator Yes-associated protein (YAP) has been implicated as an oncogene and is found to promote breast cancer metastasis. However, the pro-metastatic mechanism of YAP remains unclear. Here, we demonstrated that YAP functions as a transcriptional repressor of growth differentiation factor-15 (GDF15), a divergent member of the transforming growth factor superfamily, in several breast cancer cell lines. Functionally, knockdown of YAP decreased, whereas knockdown of GDF15 increased, the metastatic potential of breast cancer cells. More than that, the reduced metastasis in YAP-depleted cells could be reversed by simultaneous knockdown of GDF15. Mechanistically, the repressive effect of YAP on GDF15 requires its transcriptional factor TEAD (TEA domain family). In addition, YAP recruits polycomb repressive complex 2 (PRC2) to tri-methylate histone H3 lysine 27 in the promoter region of GDF15. Co-immunoprecipitation experiments demonstrated that YAP and enhancer of zeste 2 PRC2 subunit (EZH2) physically interact with each other. In conclusion, our data reveal that YAP promotes metastasis of breast cancer cells by repressing GDF15 transcription and present a novel molecular mechanism underlying the pro-metastasis function of YAP oncoprotein, with the implication of a therapeutic avenue for breast cancer treatment.
Collapse
Affiliation(s)
- Ting Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beibei Mao
- State key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chi Cheng
- General Surgery Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhuangzhi Zou
- State key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Huazhong University of Science & Technology, Wuhan 430074, China
| | - Junling Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanglu Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tong Lei
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Qi
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zengqiang Yuan
- The Brain Science Center, Institute of Basic Medical Sciences, Beijing 100850, China; Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.
| | - Wentong Xu
- General Surgery Center, Chinese PLA General Hospital, Beijing 100853, China.
| | - Zhongbing Lu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Kalli M, Papageorgis P, Gkretsi V, Stylianopoulos T. Solid Stress Facilitates Fibroblasts Activation to Promote Pancreatic Cancer Cell Migration. Ann Biomed Eng 2018; 46:657-669. [PMID: 29470747 DOI: 10.1007/s10439-018-1997-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/09/2018] [Indexed: 01/15/2023]
Abstract
Pancreatic fibroblasts are continuously gaining ground as an important component of tumor microenvironment that dynamically interact with cancer cells to promote tumor progression. In addition, these tumor-infiltrated fibroblasts can acquire an activated phenotype and produce excessive amounts of extracellular matrix creating a highly dense stroma, a situation known as desmoplasia. Desmoplasia, along with the uncontrolled proliferation of cancer cells, leads to the development of compressive forces within the tumor, generating the so-called solid stress. Solid stress is previously shown to affect cancer cell proliferation and migration, however there is no pertinent study taking into account the effects of solid stress on fibroblasts and whether these effects contribute to tumor progression. In this work, we applied a defined compressive stress on pancreatic fibroblasts, similar in magnitude to that experienced by cells in native pancreatic tumors. Our results suggest that solid stress stimulates fibroblasts activation and strongly upregulates Growth Differentiation Factor-15 (GDF15) expression. Moreover, co-culture of compression-induced activated fibroblasts with pancreatic cancer cells significantly promotes cancer cell migration, which is inhibited by shRNA-mediated silencing of GDF15 in fibroblasts. Conclusively, our findings highlight the involvement of biophysical factors, such as solid stress, in tumor progression and malignancy revealing a novel role for GDF15.
Collapse
Affiliation(s)
- Maria Kalli
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | - Panagiotis Papageorgis
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus.,Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
| | - Vasiliki Gkretsi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus.,Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus.
| |
Collapse
|
26
|
Korbecki J, Gutowska I, Kojder I, Jeżewski D, Goschorska M, Łukomska A, Lubkowska A, Chlubek D, Baranowska-Bosiacka I. New extracellular factors in glioblastoma multiforme development: neurotensin, growth differentiation factor-15, sphingosine-1-phosphate and cytomegalovirus infection. Oncotarget 2018; 9:7219-7270. [PMID: 29467963 PMCID: PMC5805549 DOI: 10.18632/oncotarget.24102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/02/2018] [Indexed: 11/25/2022] Open
Abstract
Recent years have seen considerable progress in understanding the biochemistry of cancer. For example, more significance is now assigned to the tumor microenvironment, especially with regard to intercellular signaling in the tumor niche which depends on many factors secreted by tumor cells. In addition, great progress has been made in understanding the influence of factors such as neurotensin, growth differentiation factor-15 (GDF-15), sphingosine-1-phosphate (S1P), and infection with cytomegalovirus (CMV) on the 'hallmarks of cancer' in glioblastoma multiforme. Therefore, in the present work we describe the influence of these factors on the proliferation and apoptosis of neoplastic cells, cancer stem cells, angiogenesis, migration and invasion, and cancer immune evasion in a glioblastoma multiforme tumor. In particular, we discuss the effect of neurotensin, GDF-15, S1P (including the drug FTY720), and infection with CMV on tumor-associated macrophages (TAM), microglial cells, neutrophil and regulatory T cells (Treg), on the tumor microenvironment. In order to better understand the role of the aforementioned factors in tumoral processes, we outline the latest models of intratumoral heterogeneity in glioblastoma multiforme. Based on the most recent reports, we discuss the problems of multi-drug therapy in treating glioblastoma multiforme.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland.,Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biała, 43-309 Bielsko-Biała, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Ireneusz Kojder
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Dariusz Jeżewski
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Agnieszka Łukomska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
27
|
Wang L, Liu Y, Li W, Song Z. Growth differentiation factor 15 promotes cell viability, invasion, migration, and angiogenesis in human liver carcinoma cell line HepG2. Clin Res Hepatol Gastroenterol 2017; 41:408-414. [PMID: 28161428 DOI: 10.1016/j.clinre.2016.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 02/04/2023]
Abstract
AIM This study was aimed to explore the role of growth differentiation factor 15 (GDF15) in hepatocellular carcinoma (HCC). METHODS Human liver carcinoma cell line HepG2 was used and transfected with vector and/or short hairpin RNA (shRNA) against GDF15. Then, the transfection efficiency was ascertained by real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blot. Cell viability was measured by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyltetrazolium bromide (MTT). Cell invasion and migration were measured by Transwell assay and Scratch assay. In addition, human umbilical vein endothelial cell (HUVEC) tube formation assay was performed to analysis the angiogenesis. Further, the protein expressions of epithelial-mesenchymal transition (EMT)-related factors were measured by Western blot. RESULT We found that GDF15 overexpression significantly facilitated cell viability, cell invasion, migration, and angiogenesis (P<0.05 or P<0.01). The protein expressions of N-Cadherin, Vimentin and Twist1 were up-regulated by GDF15 overexpression, while E-Cadherin was down-regulated. Reciprocally, using a GDF15-shRNA strategy, we observed that GDF15 downregulation inhibited both basal and GDF15-induced cell viability, migration, invasion and angiogenesis in HepG2 cells. CONCLUSION GDF15 could promote cell viability, invasion, migration, and angiogenesis of HepG2 cells. GDF15 overexpression might be a potential risk factor of HCC.
Collapse
Affiliation(s)
- Liang Wang
- The Second Department of General Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, 061000 Cangzhou, Hebei, China.
| | - Yagang Liu
- The Second Department of General Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, 061000 Cangzhou, Hebei, China
| | - Wei Li
- The Second Department of General Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, 061000 Cangzhou, Hebei, China
| | - Zhe Song
- The Second Department of General Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, 061000 Cangzhou, Hebei, China
| |
Collapse
|
28
|
De Haan JJ, Haitjema S, den Ruijter HM, Pasterkamp G, de Borst GJ, Teraa M, Verhaar MC, Gremmels H, de Jager SCA. Growth Differentiation Factor 15 Is Associated With Major Amputation and Mortality in Patients With Peripheral Artery Disease. J Am Heart Assoc 2017; 6:JAHA.117.006225. [PMID: 28855167 PMCID: PMC5634279 DOI: 10.1161/jaha.117.006225] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Peripheral artery disease (PAD) is one of the most common clinical presentations of atherosclerosis, and its prevalence is still increasing. Despite improvement of health care, morbidity and mortality risks remain high, including the risk of amputation. GDF15 (growth differentiation factor 15) is a member of the transforming growth factor family that is involved in apoptosis and inflammation; therefore, GDF15 is a potential biomarker to identify patients at high risk of adverse clinical outcomes. Methods and Results Circulating GDF15 levels were measured using a multiplex immunoassay in patients with critical limb ischemia and PAD from 2 different patient cohorts that included patients with clinically manifest PAD: the JUVENTAS (Rejuvenating Endothelial Progenitor Cells via Transcutaneous Intra‐Arterial Supplementation) trial (n=160, 67 major events; critical limb ischemia) and the Athero‐Express Biobank (n=386, 64 major events; PAD). Kaplan–Meier curves demonstrated that high levels of GDF15 were associated with increased risk of major events, defined as major amputation (at or above the ankle joint) and all‐cause mortality, in both cohorts (highest versus lowest, JUVENTAS: hazard ratio: 4.01 [95% confidence interval, 2.05–7.84; P<0.0001]; Athero‐Express: hazard ratio: 3.27 [95% confidence interval, 1.64–6.54; P=0.0008]). In the JUVENTAS trial, this was more pronounced in women. Cox proportional multivariable regression models with median follow‐up of 3 years, corrected for common confounders, showed hazard ratios of 1.70 (95% confidence interval, 1.18–2.69; P=0.0053) and 1.57 (95% confidence interval, 1.02–2.41; P=0.041) per 2.78‐fold increase of GDF15 in JUVENTAS and Athero‐Express, respectively. Conclusions High GDF15 levels are associated with increased risk of major amputation and/or death in PAD patients. GDF15 levels could be of additive value to identify patients who are at high risk of amputation or death and could help guide treatment choices.
Collapse
Affiliation(s)
- Judith J De Haan
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, the Netherlands
| | - Saskia Haitjema
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, the Netherlands
| | - Hester M den Ruijter
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, the Netherlands
| | - Gerard Pasterkamp
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, the Netherlands.,Laboratory for Clinical Chemistry and Haematology, University Medical Center Utrecht, the Netherlands
| | - Gert J de Borst
- Department of Vascular Surgery, University Medical Center Utrecht, the Netherlands
| | - Martin Teraa
- Department of Vascular Surgery, University Medical Center Utrecht, the Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
| | - Hendrik Gremmels
- Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
| | - Saskia C A de Jager
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, the Netherlands .,Laboratory of Translational Immunology, University Medical Center Utrecht, the Netherlands
| |
Collapse
|
29
|
He Y, Luo Y, Liang B, Ye L, Lu G, He W. Potential applications of MEG3 in cancer diagnosis and prognosis. Oncotarget 2017; 8:73282-73295. [PMID: 29069869 PMCID: PMC5641212 DOI: 10.18632/oncotarget.19931] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022] Open
Abstract
LncRNAs are emerging as integral functional and regulatory components of normal biological activities and are now considered as critically involved in the development of different diseases including cancer. In this review, we summarized recent findings on maternally expressed gene 3 (MEG3), a noncoding lncRNA, locates in the imprinted DLK1–MEG3 locus on human chromosome 14q32.3 region. MEG3 is expressed in normal tissues but is either lost or decreased in many human tumors and tumor derived cell lines. Studies have demonstrated that MEG3 is associated with cancer initiation, progression, metastasis and chemo-resistance. MEG3 may affect the activities of TP53, MDM2, GDF15, RB1 and some other key cell cycle regulators. In addition, the level of MEG3 showed good correlation with cancer clinicopathological grade. In summary, MEGs is an RNA-based tumor suppressor and is involved in the etiology, progression, and chemosensitivity of cancers. The alteration of MEG3 levels in various cancers suggested the possibility of using MEG3 level for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Yuqing He
- Institute of Medical Systems Biology, Guangdong Medical University, Dongguan 523808, China.,Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan 523808, China
| | - Yanhong Luo
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan 523808, China
| | - Biyu Liang
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan 523808, China
| | - Lei Ye
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan 523808, China
| | - Guangxing Lu
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan 523808, China
| | - Weiming He
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
30
|
Hypoxia Downregulates MAPK/ERK but Not STAT3 Signaling in ROS-Dependent and HIF-1-Independent Manners in Mouse Embryonic Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4386947. [PMID: 28819544 PMCID: PMC5551543 DOI: 10.1155/2017/4386947] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/27/2017] [Accepted: 05/15/2017] [Indexed: 12/21/2022]
Abstract
Hypoxia is involved in the regulation of stem cell fate, and hypoxia-inducible factor 1 (HIF-1) is the master regulator of hypoxic response. Here, we focus on the effect of hypoxia on intracellular signaling pathways responsible for mouse embryonic stem (ES) cell maintenance. We employed wild-type and HIF-1α-deficient ES cells to investigate hypoxic response in the ERK, Akt, and STAT3 pathways. Cultivation in 1% O2 for 24 h resulted in the strong dephosphorylation of ERK and its upstream kinases and to a lesser extent of Akt in an HIF-1-independent manner, while STAT3 phosphorylation remained unaffected. Downregulation of ERK could not be mimicked either by pharmacologically induced hypoxia or by the overexpression. Dual-specificity phosphatases (DUSP) 1, 5, and 6 are hypoxia-sensitive MAPK-specific phosphatases involved in ERK downregulation, and protein phosphatase 2A (PP2A) regulates both ERK and Akt. However, combining multiple approaches, we revealed the limited significance of DUSPs and PP2A in the hypoxia-mediated attenuation of ERK signaling. Interestingly, we observed a decreased reactive oxygen species (ROS) level in hypoxia and a similar phosphorylation pattern for ERK when the cells were supplemented with glutathione. Therefore, we suggest a potential role for the ROS-dependent attenuation of ERK signaling in hypoxia, without the involvement of HIF-1.
Collapse
|
31
|
Codó P, Weller M, Kaulich K, Schraivogel D, Silginer M, Reifenberger G, Meister G, Roth P. Control of glioma cell migration and invasiveness by GDF-15. Oncotarget 2016; 7:7732-46. [PMID: 26741507 PMCID: PMC4884950 DOI: 10.18632/oncotarget.6816] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 11/15/2015] [Indexed: 12/11/2022] Open
Abstract
Growth and differentiation factor (GDF)-15 is a member of the transforming growth factor (TGF)-β family of proteins. GDF-15 levels are increased in the blood and cerebrospinal fluid of glioblastoma patients. Using a TCGA database interrogation, we demonstrate that high GDF-15 expression levels are associated with poor survival of glioblastoma patients. To elucidate the role of GDF-15 in glioblastoma in detail, we confirmed that glioma cells express GDF-15 mRNA and protein in vitro. To allow for a detailed functional characterization, GDF-15 expression was silenced using RNA interference in LNT-229 and LN-308 glioma cells. Depletion of GDF-15 had no effect on cell viability. In contrast, GDF-15-deficient cells displayed reduced migration and invasion, in the absence of changes in Smad2 or Smad1/5/8 phosphorylation. Conversely, exogenous GDF-15 stimulated migration and invasiveness. Large-scale expression profiling revealed that GDF-15 gene silencing resulted in minor changes in the miRNA profile whereas several genes, including members of the plasminogen activator/inhibitor complex, were deregulated at the mRNA level. One of the newly identified genes induced by GDF-15 gene silencing was the serpin peptidase inhibitor, clade E nexin group 1 (serpine1) which is induced by TGF-β and known to inhibit migration and invasiveness. However, serpine1 down-regulation alone did not mediate GDF-15-induced promotion of migration and invasiveness. Our findings highlight the complex contributions of GDF-15 to the invasive phenotype of glioma cells and suggest anti-GDF-15 approaches as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Paula Codó
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Kerstin Kaulich
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Schraivogel
- Department of Biochemistry I, University of Regensburg, Regensburg, Germany
| | - Manuela Silginer
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Guido Reifenberger
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gunter Meister
- Department of Biochemistry I, University of Regensburg, Regensburg, Germany
| | - Patrick Roth
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Patel MS, Lee J, Baz M, Wells CE, Bloch S, Lewis A, Donaldson AV, Garfield BE, Hopkinson NS, Natanek A, Man WD, Wells DJ, Baker EH, Polkey MI, Kemp PR. Growth differentiation factor-15 is associated with muscle mass in chronic obstructive pulmonary disease and promotes muscle wasting in vivo. J Cachexia Sarcopenia Muscle 2016; 7:436-48. [PMID: 27239406 PMCID: PMC4864181 DOI: 10.1002/jcsm.12096] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/23/2015] [Accepted: 11/02/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Loss of muscle mass is a co-morbidity common to a range of chronic diseases including chronic obstructive pulmonary disease (COPD). Several systemic features of COPD including increased inflammatory signalling, oxidative stress, and hypoxia are known to increase the expression of growth differentiation factor-15 (GDF-15), a protein associated with muscle wasting in other diseases. We therefore hypothesized that GDF-15 may contribute to muscle wasting in COPD. METHODS We determined the expression of GDF-15 in the serum and muscle of patients with COPD and analysed the association of GDF-15 expression with muscle mass and exercise performance. To determine whether GDF-15 had a direct effect on muscle, we also determined the effect of increased GDF-15 expression on the tibialis anterior of mice by electroporation. RESULTS Growth differentiation factor-15 was increased in the circulation and muscle of COPD patients compared with controls. Circulating GDF-15 was inversely correlated with rectus femoris cross-sectional area (P < 0.001) and exercise capacity (P < 0.001) in two separate cohorts of patients but was not associated with body mass index. GDF-15 levels were associated with 8-oxo-dG in the circulation of patients consistent with a role for oxidative stress in the production of this protein. Local over-expression of GDF-15 in mice caused wasting of the tibialis anterior muscle that expressed it but not in the contralateral muscle suggesting a direct effect of GDF-15 on muscle mass (P < 0.001). CONCLUSIONS Together, the data suggest that GDF-15 contributes to the loss of muscle mass in COPD.
Collapse
Affiliation(s)
- Mehul S. Patel
- NIHR Respiratory Biomedical Research UnitRoyal Brompton & Harefield NHS Foundation Trust and Imperial CollegeLondonUK
| | - Jen Lee
- Section of Molecular MedicineNational Heart and Lung Institute, Imperial College LondonLondonUK
| | - Manuel Baz
- NIHR Respiratory Biomedical Research UnitRoyal Brompton & Harefield NHS Foundation Trust and Imperial CollegeLondonUK
| | - Claire E. Wells
- Institute of Infection and ImmunitySt George's, University of LondonLondonUK
| | - Susannah Bloch
- NIHR Respiratory Biomedical Research UnitRoyal Brompton & Harefield NHS Foundation Trust and Imperial CollegeLondonUK
| | - Amy Lewis
- Section of Molecular MedicineNational Heart and Lung Institute, Imperial College LondonLondonUK
| | - Anna V. Donaldson
- NIHR Respiratory Biomedical Research UnitRoyal Brompton & Harefield NHS Foundation Trust and Imperial CollegeLondonUK
| | - Benjamin E. Garfield
- NIHR Respiratory Biomedical Research UnitRoyal Brompton & Harefield NHS Foundation Trust and Imperial CollegeLondonUK
| | - Nicholas S. Hopkinson
- NIHR Respiratory Biomedical Research UnitRoyal Brompton & Harefield NHS Foundation Trust and Imperial CollegeLondonUK
| | - Amanda Natanek
- NIHR Respiratory Biomedical Research UnitRoyal Brompton & Harefield NHS Foundation Trust and Imperial CollegeLondonUK
| | - William D‐C Man
- NIHR Respiratory Biomedical Research UnitRoyal Brompton & Harefield NHS Foundation Trust and Imperial CollegeLondonUK
| | - Dominic J. Wells
- Comparative Biomedical Sciences Royal Veterinary CollegeLondonUK
| | - Emma H. Baker
- Institute of Infection and ImmunitySt George's, University of LondonLondonUK
| | - Michael I. Polkey
- NIHR Respiratory Biomedical Research UnitRoyal Brompton & Harefield NHS Foundation Trust and Imperial CollegeLondonUK
| | - Paul R. Kemp
- Section of Molecular MedicineNational Heart and Lung Institute, Imperial College LondonLondonUK
| |
Collapse
|
33
|
GDF-15 inhibits integrin activation and mouse neutrophil recruitment through the ALK-5/TGF-βRII heterodimer. Blood 2016; 128:529-41. [DOI: 10.1182/blood-2016-01-696617] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022] Open
Abstract
Key Points
A classical TGF-β receptor pair counteracts extravasation of myeloid cells by rapidly interfering with integrin activation. GDF-15 and TGF-β1 inhibit leukocyte integrin activation by targeting the Rap-1 GTPase exchange factor CalDAG-GEF1.
Collapse
|
34
|
Fujita Y, Taniguchi Y, Shinkai S, Tanaka M, Ito M. Secreted growth differentiation factor 15 as a potential biomarker for mitochondrial dysfunctions in aging and age-related disorders. Geriatr Gerontol Int 2016; 16 Suppl 1:17-29. [DOI: 10.1111/ggi.12724] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Yasunori Fujita
- Research Teams for; Mechanism of Aging; Tokyo Metropolitan Institute of Gerontology; Tokyo Japan
| | - Yu Taniguchi
- Social Participation and Community Health; Tokyo Metropolitan Institute of Gerontology; Tokyo Japan
| | - Shoji Shinkai
- Social Participation and Community Health; Tokyo Metropolitan Institute of Gerontology; Tokyo Japan
| | - Masashi Tanaka
- Department of Genomics for Longevity and Health; Tokyo Metropolitan Institute of Gerontology; Tokyo Japan
| | - Masafumi Ito
- Research Teams for; Mechanism of Aging; Tokyo Metropolitan Institute of Gerontology; Tokyo Japan
| |
Collapse
|
35
|
Min KW, Lee SH, Baek SJ. Moonlighting proteins in cancer. Cancer Lett 2015; 370:108-16. [PMID: 26499805 DOI: 10.1016/j.canlet.2015.09.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/15/2015] [Accepted: 09/18/2015] [Indexed: 12/26/2022]
Abstract
Since the 1980s, growing evidence suggested that the cellular localization of proteins determined their activity and biological functions. In a classical view, a protein is characterized by the single cellular compartment where it primarily resides and functions. It is now believed that when proteins appear in different subcellular locations, the cells surpass the expected activity of proteins given the same genomic information to fulfill complex biological behavior. Many proteins are recognized for having the potential to exist in multiple locations in cells. Dysregulation of translocation may cause cancer or contribute to poorer cancer prognosis. Thus, quantitative and comprehensive assessment of dynamic proteins and associated protein movements could be a promising indicator in determining cancer prognosis and efficiency of cancer treatment and therapy. This review will summarize these so-called moonlighting proteins, in terms of a coupled intracellular cancer signaling pathway. Determination of the detailed biological intracellular and extracellular transit and regulatory activity of moonlighting proteins permits a better understanding of cancer and identification of potential means of molecular intervention.
Collapse
Affiliation(s)
- Kyung-Won Min
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA
| | - Seung Joon Baek
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
36
|
Ünal B, Alan S, Başsorgun Cİ, Karakaş AA, Elpek GÖ, Çiftçioğlu MA. The divergent roles of growth differentiation factor-15 (GDF-15) in benign and malignant skin pathologies. Arch Dermatol Res 2015; 307:551-7. [PMID: 25690161 DOI: 10.1007/s00403-015-1546-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 01/12/2015] [Accepted: 01/31/2015] [Indexed: 02/08/2023]
Abstract
GDF-15 (Growth Differentiation Factor-15) is a member of the transforming growth factor β (TGF-β) superfamily. GDF-15 is not only involved in cancer development, progression, angiogenesis and metastasis, but also controls stress responses, bone formation, hematopoietic development, adipose tissue function and cardiovascular diseases. GDF-15, which is regulated by p53, has shown antitumorigenic and proapoptotic activities in vivo and in vitro. Also, GDF-15 is involved in skin biology and histamine-induced melanogenesis; it is overexpressed in melanoma cells and is associated with depth of tumor invasion and metastasis. GDF-15 level is increased in patients with systemic sclerosis and is related with the degree of skin sclerosis and intensity of pulmonary fibrosis. In the future, GDF-15 may be a potential target for therapy in benign disorders with skin fibrosis and malignant lesions of the skin.
Collapse
Affiliation(s)
- Betül Ünal
- Department of Pathology, School of Medicine, Akdeniz University, Antalya, Turkey,
| | | | | | | | | | | |
Collapse
|
37
|
Wojton J, Meisen WH, Jacob NK, Thorne AH, Hardcastle J, Denton N, Chu Z, Dmitrieva N, Marsh R, Van Meir EG, Kwon CH, Chakravarti A, Qi X, Kaur B. SapC-DOPS-induced lysosomal cell death synergizes with TMZ in glioblastoma. Oncotarget 2015; 5:9703-9. [PMID: 25210852 PMCID: PMC4259431 DOI: 10.18632/oncotarget.2232] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
SapC-DOPS is a novel nanotherapeutic that has been shown to target and induce cell death in a variety of cancers, including glioblastoma (GBM). GBM is a primary brain tumor known to frequently demonstrate resistance to apoptosis-inducing therapeutics. Here we explore the mode of action for SapC-DOPS in GBM, a treatment being developed by Bexion Pharmaceuticals for clinical testing in patients. SapC-DOPS treatment was observed to induce lysosomal dysfunction of GBM cells characterized by decreased glycosylation of LAMP1 and altered proteolytic processing of cathepsin D independent of apoptosis and autophagic cell death. We observed that SapC-DOPS induced lysosomal membrane permeability (LMP) as shown by LysoTracker Red and Acridine Orange staining along with an increase of sphingosine, a known inducer of LMP. Additionally, SapC-DOPS displayed strong synergistic interactions with the apoptosis-inducing agent TMZ. Collectively our data suggest that SapC-DOPS induces lysosomal cell death in GBM cells, providing a new approach for treating tumors resistant to traditional apoptosis-inducing agents.
Collapse
Affiliation(s)
- Jeffrey Wojton
- Department of Neurosurgery, The Ohio State University Medical Center, Columbus, OH
| | - Walter Hans Meisen
- Department of Neurosurgery, The Ohio State University Medical Center, Columbus, OH
| | - Naduparambil K Jacob
- Department of Radiation-Oncology, The Ohio State University Medical Center, Columbus, OH
| | - Amy Haseley Thorne
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, California
| | - Jayson Hardcastle
- Departments of Medical Oncology and Molecular Medicine, Mayo Clinic, Rochester, MN
| | - Nicholas Denton
- Department of Neurosurgery, The Ohio State University Medical Center, Columbus, OH
| | - Zhengtao Chu
- The Vontz Center for Molecular Studies, Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Nina Dmitrieva
- Department of Neurosurgery, The Ohio State University Medical Center, Columbus, OH
| | - Rachel Marsh
- Department of Neurosurgery, The Ohio State University Medical Center, Columbus, OH
| | - Erwin G Van Meir
- Departments of Neurosurgery and Hematology and Medical Oncology, Winship Cancer, Winship Cancer Institute and School of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Chang-Hyuk Kwon
- Department of Neurosurgery, The Ohio State University Medical Center, Columbus, OH. Solid-Tumor Program at the James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, OH
| | - Arnab Chakravarti
- Department of Radiation-Oncology, The Ohio State University Medical Center, Columbus, OH
| | - Xiaoyang Qi
- The Vontz Center for Molecular Studies, Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Balveen Kaur
- Department of Neurosurgery, The Ohio State University Medical Center, Columbus, OH
| |
Collapse
|
38
|
Min KW, Liggett JL, Silva G, Wu WW, Wang R, Shen RF, Eling TE, Baek SJ. NAG-1/GDF15 accumulates in the nucleus and modulates transcriptional regulation of the Smad pathway. Oncogene 2015; 35:377-88. [PMID: 25893289 PMCID: PMC4613816 DOI: 10.1038/onc.2015.95] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 02/25/2015] [Accepted: 03/03/2015] [Indexed: 02/06/2023]
Abstract
Protein dynamics, modifications, and trafficking are all processes that can modulate protein activity. Accumulating evidence strongly suggests that many proteins play distinctive roles dependent on cellular location. Nonsteroidal anti-inflammatory drug activated gene-1 (NAG-1) is a TGF-β superfamily protein that plays a role in cancer, obesity, and inflammation. NAG-1 is synthesized and cleaved into a mature peptide, which is ultimately secreted into the extracellular matrix (ECM). In this study, we have found that full-length NAG-1 is expressed in not only the cytoplasm and ECM, but also in the nucleus. NAG-1 is dynamically moved to the nucleus, exported into cytoplasm, and further transported into the ECM. We have also found that nuclear NAG-1 contributes to inhibition of the Smad pathway by interrupting the Smad complex. Overall, our study indicates that NAG-1 is localized in the nucleus and provides new evidence that NAG-1 controls transcriptional regulation in the Smad pathway.
Collapse
Affiliation(s)
- K-W Min
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - J L Liggett
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - G Silva
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - W W Wu
- Facility for Biotechnology Resources, CBER, Food and Drug Administration, Bethesda, MD, USA
| | - R Wang
- Facility for Biotechnology Resources, CBER, Food and Drug Administration, Bethesda, MD, USA
| | - R-F Shen
- Facility for Biotechnology Resources, CBER, Food and Drug Administration, Bethesda, MD, USA
| | - T E Eling
- Laboratory of Molecular Carcinogenesis, NIH/NIEHS, Research Triangle Park, NC, USA
| | - S J Baek
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
39
|
Evasion of anti-growth signaling: A key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds. Semin Cancer Biol 2015; 35 Suppl:S55-S77. [PMID: 25749195 DOI: 10.1016/j.semcancer.2015.02.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 12/14/2022]
Abstract
The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting.
Collapse
|
40
|
Husaini Y, Lockwood GP, Nguyen TV, Tsai VWW, Mohammad MG, Russell PJ, Brown DA, Breit SN. Macrophage inhibitory cytokine-1 (MIC-1/GDF15) gene deletion promotes cancer growth in TRAMP prostate cancer prone mice. PLoS One 2015; 10:e0115189. [PMID: 25695521 PMCID: PMC4335046 DOI: 10.1371/journal.pone.0115189] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/11/2014] [Indexed: 12/21/2022] Open
Abstract
The divergent TGF-β superfamily member, macrophage inhibitory cytokine-1 (MIC-1/GDF15), is overexpressed by most cancers, including prostate cancer (PCa). Whilst its circulating levels are linked to cancer outcome, the role MIC-1/GDF15 plays in cancer development and progression is incompletely understood. To investigate its effect on PCa development and spread, we have used TRAMP prostate cancer prone mice bearing a germline deletion of MIC-1/GDF15 (TRAMPMIC-/-). On average TRAMPMIC-/- mice died about 5 weeks earlier and had larger prostatic tumors compared with TRAMP mice that were wild type for MIC-1/GDF15 (TRAMPMIC+/+). Additionally, at the time of death or ethical end point, even when adjusted for lifespan, there were no significant differences in the number of mice with metastases between the TRAMPMIC+/+ and TRAMPMIC-/- groups. However, consistent with our previous data, more than twice as many TRAMP mice overexpressing MIC-1/GDF15 (TRAMPfmsmic-1) had metastases than TRAMPMIC+/+ mice (p<0.0001). We conclude that germ line gene deletion of MIC-1/GDF15 leads to increased local tumor growth resulting in decreased survival consistent with an overall protective role for MIC-1/GDF15 in early primary tumor development. However, in advancing disease, as we have previously noted, MIC-1/GDF15 overexpression may promote local invasion and metastatic spread.
Collapse
Affiliation(s)
- Yasmin Husaini
- St. Vincent’s Centre for Applied Medical Research, St. Vincent’s Hospital and University of New South Wales, Sydney, NSW 2010, Australia
| | - Glen P. Lockwood
- St. Vincent’s Centre for Applied Medical Research, St. Vincent’s Hospital and University of New South Wales, Sydney, NSW 2010, Australia
| | - Trung V. Nguyen
- St. Vincent’s Centre for Applied Medical Research, St. Vincent’s Hospital and University of New South Wales, Sydney, NSW 2010, Australia
| | - Vicky Wang-Wei Tsai
- St. Vincent’s Centre for Applied Medical Research, St. Vincent’s Hospital and University of New South Wales, Sydney, NSW 2010, Australia
| | - Mohammad G. Mohammad
- St. Vincent’s Centre for Applied Medical Research, St. Vincent’s Hospital and University of New South Wales, Sydney, NSW 2010, Australia
| | - Pamela J. Russell
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - David A. Brown
- St. Vincent’s Centre for Applied Medical Research, St. Vincent’s Hospital and University of New South Wales, Sydney, NSW 2010, Australia
- * E-mail: (SNB); (DAB)
| | - Samuel N. Breit
- St. Vincent’s Centre for Applied Medical Research, St. Vincent’s Hospital and University of New South Wales, Sydney, NSW 2010, Australia
- * E-mail: (SNB); (DAB)
| |
Collapse
|
41
|
Abstract
AbstractThe Growth Differentiation Factor-15 gene (GDF15) is a member of TGF-b superfamily and this cytokine family is considered to be a promising target for cancer therapy. The purpose of this study was to investigate the effect of tumor derived GDF15 on proliferation and radiosensitivity of breast cancer cells in vitro and in vivo. A mouse breast cancer LM2 cell line with stable transfection of full-length mouse GDF15 cDNA was established. Cell growth and proliferation was observed using WST assay and impedance-based method. Radiation induced GDF15 and TGF-b1 expression was determined by qRT-PCR. Radiosensitivity was measured by a colony formation assay in vitro and by a tumor growth delay assay in vivo. Cells with more than a 10-fold increase in GDF15 expression had a higher growth rate than parental control cells in vitro and in vivo. The radiation induced elevation of the expression of TGFb1 was reduced in GDF15 overexpressing cells. GDF15 may play a role in the radiation response of breast cancer cells by effecting cell survival, inhibiting radiation-induced cell death, and inhibiting the TGF-b1 related cytotoxic action.
Collapse
|
42
|
Liu J, Zhang C, Wang XL, Ly P, Belyi V, Xu-Monette ZY, Young KH, Hu W, Feng Z. E3 ubiquitin ligase TRIM32 negatively regulates tumor suppressor p53 to promote tumorigenesis. Cell Death Differ 2014; 21:1792-804. [PMID: 25146927 DOI: 10.1038/cdd.2014.121] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 07/12/2014] [Accepted: 07/14/2014] [Indexed: 01/07/2023] Open
Abstract
Tumor suppressor p53 has a key role in maintaining genomic stability and preventing tumorigenesis through its regulation of cellular stress responses, including apoptosis, cell cycle arrest and senescence. To ensure its proper levels and functions in cells, p53 is tightly regulated mainly through post-translational modifications, such as ubiquitination. Here, we identified E3 ubiquitin ligase TRIM32 as a novel p53 target gene and negative regulator to regulate p53-mediated stress responses. In response to stress, such as DNA damage, p53 binds to the p53 responsive element in the promoter of the TRIM32 gene and transcriptionally induces the expression of TRIM32 in cells. In turn, TRIM32 interacts with p53 and promotes p53 degradation through ubiquitination. Thus, TRIM32 negatively regulates p53-mediated apoptosis, cell cycle arrest and senescence in response to stress. TRIM32 is frequently overexpressed in different types of human tumors. TRIM32 overexpression promotes cell oncogenic transformation and tumorigenesis in mice in a largely p53-dependent manner. Taken together, our results demonstrated that as a novel p53 target and a novel negative regulator for p53, TRIM32 has an important role in regulation of p53 and p53-mediated cellular stress responses. Furthermore, our results also revealed that impairing p53 function is a novel mechanism for TRIM32 in tumorigenesis.
Collapse
Affiliation(s)
- Ju Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - C Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - X L Wang
- 1] Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA [2] Department of Breast Surgery, Qilu Hospital, Shandong University, Ji'nan, China
| | - P Ly
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - V Belyi
- Center for Systems Biology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - Z Y Xu-Monette
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - K H Young
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - Z Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
43
|
Yan F, Alinari L, Lustberg ME, Martin LK, Cordero-Nieves HM, Banasavadi-Siddegowda Y, Virk S, Barnholtz-Sloan J, Bell EH, Wojton J, Jacob NK, Chakravarti A, Nowicki MO, Wu X, Lapalombella R, Datta J, Yu B, Gordon K, Haseley A, Patton JT, Smith PL, Ryu J, Zhang X, Mo X, Marcucci G, Nuovo G, Kwon CH, Byrd JC, Chiocca EA, Li C, Sif S, Jacob S, Lawler S, Kaur B, Baiocchi RA. Genetic validation of the protein arginine methyltransferase PRMT5 as a candidate therapeutic target in glioblastoma. Cancer Res 2014; 74:1752-65. [PMID: 24453002 DOI: 10.1158/0008-5472.can-13-0884] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glioblastoma is the most common and aggressive histologic subtype of brain cancer with poor outcomes and limited treatment options. Here, we report the selective overexpression of the protein arginine methyltransferase PRMT5 as a novel candidate theranostic target in this disease. PRMT5 silences the transcription of regulatory genes by catalyzing symmetric dimethylation of arginine residues on histone tails. PRMT5 overexpression in patient-derived primary tumors and cell lines correlated with cell line growth rate and inversely with overall patient survival. Genetic attenuation of PRMT5 led to cell-cycle arrest, apoptosis, and loss of cell migratory activity. Cell death was p53-independent but caspase-dependent and enhanced with temozolomide, a chemotherapeutic agent used as a present standard of care. Global gene profiling and chromatin immunoprecipitation identified the tumor suppressor ST7 as a key gene silenced by PRMT5. Diminished ST7 expression was associated with reduced patient survival. PRMT5 attenuation limited PRMT5 recruitment to the ST7 promoter, led to restored expression of ST7 and cell growth inhibition. Finally, PRMT5 attenuation enhanced glioblastoma cell survival in a mouse xenograft model of aggressive glioblastoma. Together, our findings defined PRMT5 as a candidate prognostic factor and therapeutic target in glioblastoma, offering a preclinical justification for targeting PRMT5-driven oncogenic pathways in this deadly disease.
Collapse
Affiliation(s)
- Fengting Yan
- Authors' Affiliations: Division of Hematology, Department of Internal Medicine; Division of Infectious Diseases, Department of Internal Medicine; Departments of Neurosurgery; Molecular and Cellular Biochemistry; Chemical Engineering; Statistics; Pathology; Radiation Oncology; and College of Pharmacy, The Ohio State University (OSU), Columbus; Case Comprehensive Cancer Center; and Department of Epidemiology and Biostatistics, CWRU School of Medicine, Cleveland, Ohio
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zerrouqi A, Pyrzynska B, Brat DJ, Van Meir EG. P14ARF suppresses tumor-induced thrombosis by regulating the tissue factor pathway. Cancer Res 2014; 74:1371-8. [PMID: 24398474 DOI: 10.1158/0008-5472.can-13-1951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
How necrotic areas develop in tumors is incompletely understood but can impact progression. Recent findings suggest that the formation of vascular microthrombi contributes to tumor necrosis, prompting investigation of coagulation cascades. Here, we report that loss of tumor suppressor P14ARF can contribute to activating the clotting cascade in glioblastoma. P14ARF transcriptionally upregulated TFPI2, a Kunitz-type serine protease in the tissue factor pathway that inhibits the initiation of thrombosis reactions. P14ARF activation in tumor cells delayed their ability to activate plasma clotting. Mechanistically, P14ARF activated the TFPI2 promoter in a p53-independent manner that relied upon c-JUN, SP1, and JNK activity. Taken together, our results identify the critical signaling pathways activated by P14ARF to prevent vascular microthrombosis triggered by glioma cells. Stimulation of this pathway might be used as a therapeutic strategy to reduce aggressive phenotypes associated with necrotic tumors, including glioblastoma.
Collapse
Affiliation(s)
- Abdessamad Zerrouqi
- Authors' Affiliations: Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery; Departments of Pathology and Laboratory Medicine and Hematology and Medical Oncology, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | | | | | | |
Collapse
|
45
|
Corre J, Hébraud B, Bourin P. Concise review: growth differentiation factor 15 in pathology: a clinical role? Stem Cells Transl Med 2013; 2:946-52. [PMID: 24191265 DOI: 10.5966/sctm.2013-0055] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Growth differentiation factor 15 (GDF15) is a divergent member of the transforming growth factor β family discovered in a broad range of cells, as indicated by the diversity of its nomenclature. However, the only tissue that expresses a high amount of GDF15 in the physiologic state is placenta. GDF15 is easily detected in blood, and its concentration varies with age. In fact, increased blood concentration of GDF15 is associated with numerous pathological conditions. However, the biological significance underlying these observations is far from clear. GDF15 could have a positive or negative role depending on the state of cells or their environment. Furthermore, study of its biology is hampered by lack of knowledge of its receptor and thus the signaling pathways that drive its action. GDF15 seems to be an integrative signal in pathologic conditions, giving information on severity of disease. Its effectiveness in classifying patients to modulate treatment remains to be shown. Development of therapeutic interventions with GDF15 or anti-GDF15 agents remains difficult until we uncover the mechanism that drives its activity.
Collapse
Affiliation(s)
- Jill Corre
- Intergroupe Francophone du Myélome, France
| | | | | |
Collapse
|
46
|
Feng H, Chen L, Wang Q, Shen B, Liu L, Zheng P, Xu S, Liu X, Chen J, Teng J. Calumenin-15 facilitates filopodia formation by promoting TGF-β superfamily cytokine GDF-15 transcription. Cell Death Dis 2013; 4:e870. [PMID: 24136234 PMCID: PMC3920949 DOI: 10.1038/cddis.2013.403] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/04/2013] [Accepted: 09/11/2013] [Indexed: 12/12/2022]
Abstract
Filopodia, which are actin-rich finger-like membrane protrusions, have an important role in cell migration and tumor metastasis. Here we identify 13 novel calumenin (Calu) isoforms (Calu 3-15) produced by alternative splicing, and find that Calu-15 promotes filopodia formation and cell migration. Calu-15 shuttles between the nucleus and cytoplasm through interacting with importin α, Ran GTPase, and Crm1. The phosphorylation of the threonine at position 73 (Thr-73) by casein kinase 2 (CK2) is essential for the nuclear import of Calu-15, and either Thr-73 mutation or inhibition of CK2 interrupts its nuclear localization. In the nucleus, Calu-15 increases the transcription of growth differentiation factor-15 (GDF-15), a member of the transforming growth factor-β (TGF-β) superfamily, via binding to its promoter region. Furthermore, Calu-15 induces filopodia formation mediated by GDF-15. Together, we identify that Calu-15, a novel isoform of Calu with phosphorylation-dependent nuclear localization, has a critical role in promoting filopodia formation and cell migration by upregulating the GDF-15 transcription.
Collapse
Affiliation(s)
- H Feng
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - L Chen
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Q Wang
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - B Shen
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - L Liu
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - P Zheng
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - S Xu
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - X Liu
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - J Chen
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing, China
| | - J Teng
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
47
|
Sanchis-Gomar F, Bonaguri C, Aloe R, Pareja-Galeano H, Martinez-Bello V, Gomez-Cabrera MC, Candel J, Viña J, Lippi G. Effects of acute exercise and xanthine oxidase inhibition on novel cardiovascular biomarkers. Transl Res 2013; 162:102-9. [PMID: 23507375 DOI: 10.1016/j.trsl.2013.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/31/2013] [Accepted: 02/21/2013] [Indexed: 01/12/2023]
Abstract
Several sports have been associated with a postexercise increase of cardiac, liver, and skeletal muscle biomarkers of injury. Exhaustive or acute physical exercise causes an increased generation of reactive oxygen species, resulting in cellular injury. Thus, exercise and training may trigger pathophysiological changes in serum concentrations of a variety of biomarkers. In this study, we aimed to evaluate the variation of novel biomarkers of stress and cardiovascular disease such as copeptin, midregional part of proadrenomedullin (MR-proADM), growth differentiation factor 15 (GDF15), soluble vascular endothelial growth factor receptor, and placental growth factor along with uric acid before and after acute high-intensity exercise and allopurinol administration. We also assessed whether allopurinol administration may affect the circulating levels of these biomarkers by inhibition of XO activity. This is a double-blind, placebo-controlled study in which 12 professional football players were divided into 2 experimental groups. An oral dose of 300 mg of allopurinol was administered to one group of six participants 4 hours before a match of the Spanish Football League, whereas the other 6 participants received placebo (cellulose). Venous blood samples were obtained before the match (baseline) and twelve hours afterwards (post-match). Serum MR-proADM levels increased significantly in the placebo group, whereas serum GDF15 levels increased significantly in both the placebo and allopurinol group after the match. No differences in the other parameters tested were found after the match in any experimental group. The trend toward postexercise increase of serum MR-proADM and GDF15 levels shows that the metabolism of these proteins is clearly imbalanced after exercise, which thereby represents a potential source of biological variability in their clinical assessment.
Collapse
|
48
|
The multiple facets of the TGF-β family cytokine growth/differentiation factor-15/macrophage inhibitory cytokine-1. Cytokine Growth Factor Rev 2013; 24:373-84. [DOI: 10.1016/j.cytogfr.2013.05.003] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/21/2013] [Indexed: 12/23/2022]
|
49
|
Li J, Yang L, Qin W, Zhang G, Yuan J, Wang F. Adaptive induction of growth differentiation factor 15 attenuates endothelial cell apoptosis in response to high glucose stimulus. PLoS One 2013; 8:e65549. [PMID: 23799024 PMCID: PMC3683015 DOI: 10.1371/journal.pone.0065549] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 04/25/2013] [Indexed: 02/01/2023] Open
Abstract
Growth differentiation factor 15 (GDF15), a direct target gene of p53, is a multifunctional member of the TGF-β/BMP superfamily. GDF15 can be induced and is implicated as a key secretory cytokine in response to multiple cellular stimuli. Accumulating evidence indicates that GDF15 is associated with the development and prognosis of diabetes mellitus, while whether GDF15 can be induced by high glucose is unknown. In the present study, we revealed that high glucose could induce GDF15 expression and secretion in cultured human umbilical vein endothelial cells in a ROS- and p53-dependent manner. Inhibition of high glucose-induced GDF15 expression by siRNA demonstrated that adaptively induced GDF15 played a protective role against high glucose-induced human umbilical vein endothelial cell apoptosis via maintaining the active state of PI3K/Akt/eNOS pathway and attenuating NF-κB/JNK pathway activation. The protective effects of GDF15 were probably achieved by inhibiting ROS overproduction in high glucose-treated human umbilical vein endothelial cells in a negative feedback manner. Our results suggest that high glucose can promote GDF15 expression and secretion in human umbilical vein endothelial cells, which in turn attenuates high glucose-induced endothelial cell apoptosis.
Collapse
Affiliation(s)
- Jun Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Lijun Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Geng Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jianlin Yuan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Fuli Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- * E-mail:
| |
Collapse
|
50
|
Friedrich K, Hanauer JR, Prüfer S, Münch RC, Völker I, Filippis C, Jost C, Hanschmann KM, Cattaneo R, Peng KW, Plückthun A, Buchholz CJ, Cichutek K, Mühlebach MD. DARPin-targeting of measles virus: unique bispecificity, effective oncolysis, and enhanced safety. Mol Ther 2013; 21:849-59. [PMID: 23380817 DOI: 10.1038/mt.2013.16] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Oncolytic virotherapy is an emerging treatment modality that uses replication-competent viruses to destroy cancers. Many naturally occurring viruses have a preferential, although nonexclusive, tropism for tumors and tumor cells. In addition, specific targeting of cancer cells can be achieved at the virus entry level. We optimized retargeting of cell entry by elongating the measles virus attachment protein with designed ankyrin repeat proteins (DARPins), while simultaneously ablating entry through the natural receptors. DARPin-targeted viruses were strongly attenuated in off-target tissue, thereby enhancing safety, but completely eliminated tumor xenografts. Taking advantage of the unique properties of DARPins of being fused without generating folding problems, we generated a virus simultaneous targeting two different tumor markers. The bispecific virus retained the original oncolytic efficacy, while providing proof of concept for a strategy to counteract issues of resistance development. Thus, DARPin-targeting opens new prospects for the development of personalized, targeted therapeutics.
Collapse
Affiliation(s)
- Katrin Friedrich
- Oncolytic Measles Viruses and Vaccine Vectors, Paul-Ehrlich-Institut, Langen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|