1
|
Mills M, Emori C, Kumar P, Boucher Z, George J, Bolcun-Filas E. Single-cell and bulk transcriptional profiling of mouse ovaries reveals novel genes and pathways associated with DNA damage response in oocytes. Dev Biol 2024; 517:55-72. [PMID: 39306223 DOI: 10.1016/j.ydbio.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Immature oocytes enclosed in primordial follicles stored in female ovaries are under constant threat of DNA damage induced by endogenous and exogenous factors. Checkpoint kinase 2 (CHEK2) is a key mediator of the DNA damage response (DDR) in all cells. Genetic studies have shown that CHEK2 and its downstream targets, p53, and TAp63, regulate primordial follicle elimination in response to DNA damage. However, the mechanism leading to their demise is still poorly characterized. Single-cell and bulk RNA sequencing were used to determine the DDR in wild-type and Chek2-deficient ovaries. A low but oocyte-lethal dose of ionizing radiation induces ovarian DDR that is solely dependent on CHEK2. DNA damage activates multiple response pathways related to apoptosis, p53, interferon signaling, inflammation, cell adhesion, and intercellular communication. These pathways are differentially employed by different ovarian cell types, with oocytes disproportionately affected by radiation. Novel genes and pathways are induced by radiation specifically in oocytes, shedding light on their sensitivity to DNA damage, and implicating a coordinated response between oocytes and pregranulosa cells within the follicle. These findings provide a foundation for future studies on the specific mechanisms regulating oocyte survival in the context of aging, therapeutic and environmental genotoxic exposures.
Collapse
Affiliation(s)
- Monique Mills
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA; The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04469, USA
| | - Chihiro Emori
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 5650871, Japan
| | - Parveen Kumar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06110, USA
| | - Zachary Boucher
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06110, USA
| | | |
Collapse
|
2
|
Mills M, Emori C, Kumar P, Boucher Z, George J, Bolcun-Filas E. Single-cell and bulk transcriptional profiling of mouse ovaries reveals novel genes and pathways associated with DNA damage response in oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578648. [PMID: 38352597 PMCID: PMC10862846 DOI: 10.1101/2024.02.02.578648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Immature oocytes enclosed in primordial follicles stored in female ovaries are under constant threat of DNA damage induced by endogenous and exogenous factors. Checkpoint kinase 2 (CHEK2) is a key mediator of the DNA damage response in all cells. Genetic studies have shown that CHEK2 and its downstream targets, p53 and TAp63, regulate primordial follicle elimination in response to DNA damage, however the mechanism leading to their demise is still poorly characterized. Single-cell and bulk RNA sequencing were used to determine the DNA damage response in wildtype and Chek2-deficient ovaries. A low but oocyte-lethal dose of ionizing radiation induces a DNA damage response in ovarian cells that is solely dependent on CHEK2. DNA damage activates multiple ovarian response pathways related to apoptosis, p53, interferon signaling, inflammation, cell adhesion, and intercellular communication. These pathways are differentially employed by different ovarian cell types, with oocytes disproportionately affected by radiation. Novel genes and pathways are induced by radiation specifically in oocytes, shedding light on their sensitivity to DNA damage, and implicating a coordinated response between oocytes and pre-granulosa cells within the follicle. These findings provide a foundation for future studies on the specific mechanisms regulating oocyte survival in the context of aging, as well as therapeutic and environmental genotoxic exposures.
Collapse
Affiliation(s)
- Monique Mills
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - Chihiro Emori
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan
| | - Parveen Kumar
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Zachary Boucher
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Joshy George
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
3
|
Silonov SA, Mokin YI, Nedelyaev EM, Smirnov EY, Kuznetsova IM, Turoverov KK, Uversky VN, Fonin AV. On the Prevalence and Roles of Proteins Undergoing Liquid-Liquid Phase Separation in the Biogenesis of PML-Bodies. Biomolecules 2023; 13:1805. [PMID: 38136675 PMCID: PMC10741438 DOI: 10.3390/biom13121805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The formation and function of membrane-less organelles (MLOs) is one of the main driving forces in the molecular life of the cell. These processes are based on the separation of biopolymers into phases regulated by multiple specific and nonspecific inter- and intramolecular interactions. Among the realm of MLOs, a special place is taken by the promyelocytic leukemia nuclear bodies (PML-NBs or PML bodies), which are the intranuclear compartments involved in the regulation of cellular metabolism, transcription, the maintenance of genome stability, responses to viral infection, apoptosis, and tumor suppression. According to the accepted models, specific interactions, such as SUMO/SIM, the formation of disulfide bonds, etc., play a decisive role in the biogenesis of PML bodies. In this work, a number of bioinformatics approaches were used to study proteins found in the proteome of PML bodies for their tendency for spontaneous liquid-liquid phase separation (LLPS), which is usually caused by weak nonspecific interactions. A total of 205 proteins found in PML bodies have been identified. It has been suggested that UBC9, P53, HIPK2, and SUMO1 can be considered as the scaffold proteins of PML bodies. It was shown that more than half of the proteins in the analyzed proteome are capable of spontaneous LLPS, with 85% of the analyzed proteins being intrinsically disordered proteins (IDPs) and the remaining 15% being proteins with intrinsically disordered protein regions (IDPRs). About 44% of all proteins analyzed in this study contain SUMO binding sites and can potentially be SUMOylated. These data suggest that weak nonspecific interactions play a significantly larger role in the formation and biogenesis of PML bodies than previously expected.
Collapse
Affiliation(s)
- Sergey A. Silonov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Yakov I. Mokin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Eugene M. Nedelyaev
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Eugene Y. Smirnov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Alexander V. Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| |
Collapse
|
4
|
Yellajoshyula D. Transcriptional regulatory network for neuron-glia interactions and its implication for DYT6 dystonia. DYSTONIA (LAUSANNE, SWITZERLAND) 2023; 2:11796. [PMID: 38737544 PMCID: PMC11087070 DOI: 10.3389/dyst.2023.11796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Advances in sequencing technologies have identified novel genes associated with inherited forms of dystonia, providing valuable insights into its genetic basis and revealing diverse genetic pathways and mechanisms involved in its pathophysiology. Since identifying genetic variation in the transcription factor coding THAP1 gene linked to isolated dystonia, numerous investigations have employed transcriptomic studies in DYT-THAP1 models to uncover pathogenic molecular mechanisms underlying dystonia. This review examines key findings from transcriptomic studies conducted on in vivo and in vitro DYT-THAP1 models, which demonstrate that the THAP1-regulated transcriptome is diverse and cell-specific, yet it is bound and co-regulated by a common set of proteins. Prominent among its functions, THAP1 and its co-regulatory network target molecular pathways critical for generating myelinating oligodendrocytes that ensheath axons and generate white matter in the central nervous system. Several lines of investigation have demonstrated the importance of myelination and oligodendrogenesis in motor function during development and in adults, emphasizing the non-cell autonomous contributions of glial cells to neural circuits involved in motor function. Further research on the role of myelin abnormalities in motor deficits in DYT6 models will enhance our understanding of axon-glia interactions in dystonia pathophysiology and provide potential therapeutic interventions targeting these pathways.
Collapse
|
5
|
Sun Y, Bae YE, Zhu J, Zhang Z, Zhong H, Cheng C, Deng Y, Wu C, Wu L. A Splicing Transcriptome-Wide Association Study Identifies Candidate Altered Splicing for Prostate Cancer Risk. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:372-380. [PMID: 37486714 DOI: 10.1089/omi.2023.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Prostate cancer (PCa) represents a huge public health burden among men. Many susceptibility genetic factors for PCa still remain unknown. In this study, we performed a large splicing transcriptome-wide association study (spTWAS) using three modeling strategies to develop alternative splicing genetic prediction models for identifying novel susceptibility loci and splicing introns for PCa risk by assessing 79,194 cases and 61,112 controls of European ancestry in the PRACTICAL, CRUK, CAPS, BPC3, and PEGASUS consortia. We identified 120 splicing introns of 97 genes showing an association with PCa risk at false discovery rate (FDR)-corrected threshold (FDR <0.05). Of them, 33 genes were enriched in PCa-related diseases and function categories. Fine-mapping analysis suggested that 21 splicing introns of 19 genes were likely causally associated with PCa risk. Thirty-five splicing introns of 34 novel genes were identified to be related to PCa susceptibility for the first time, and 11 of the genes were enriched in a cancer-related network. Our study identified novel loci and splicing introns associated with PCa risk, which can improve our understanding of the etiology of this common malignancy.
Collapse
Affiliation(s)
- Yanfa Sun
- College of Life Science, Longyan University, Longyan, P.R. China
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, P.R. China
- Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan, P.R. China
| | - Ye Eun Bae
- Department of Statistics, Florida State University, Tallahassee, Florida, USA
| | - Jingjing Zhu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Zichen Zhang
- Department of Statistics, Florida State University, Tallahassee, Florida, USA
| | - Hua Zhong
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Chunmei Cheng
- College of Life Science, Longyan University, Longyan, P.R. China
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Chong Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| |
Collapse
|
6
|
Bukhari-Parlakturk N, Frucht SJ. Isolated and combined dystonias: Update. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:425-442. [PMID: 37620082 DOI: 10.1016/b978-0-323-98817-9.00005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Dystonia is a hyperkinetic movement disorder with a unique motor phenomenology that can manifest as an isolated clinical syndrome or combined with other neurological features. This chapter reviews the characteristic features of dystonia phenomenology and the syndromic approach to evaluating the disorders that may allow us to differentiate the isolated and combined syndromes. We also present the most common types of isolated and combined dystonia syndromes. Since accelerated gene discoveries have increased our understanding of the molecular mechanisms of dystonia pathogenesis, we also present isolated and combined dystonia syndromes by shared biological pathways. Examples of these converging mechanisms of the isolated and combined dystonia syndromes include (1) disruption of the integrated response pathway through eukaryotic initiation factor 2 alpha signaling, (2) disease of dopaminergic signaling, (3) alterations in the cerebello-thalamic pathway, and (4) disease of protein mislocalization and stability. The discoveries that isolated and combined dystonia syndromes converge in shared biological pathways will aid in the development of clinical trials and therapeutic strategies targeting these convergent molecular pathways.
Collapse
Affiliation(s)
- Noreen Bukhari-Parlakturk
- Department of Neurology, Movement Disorders Division, Duke University (NBP), Durham, NC, United States.
| | - Steven J Frucht
- Department of Neurology, NYU Grossman School of Medicine (SJF), New York, NY, United States
| |
Collapse
|
7
|
Im NG, Guillaumet-Adkins A, Wal M, Rogers AJ, Frede J, Havig CC, Yang J, Anand P, Stegmann SK, Waldschmidt JM, Sotudeh N, Niu L, Voisine J, Schweiger MR, Grassberger C, Lohr JG, Knoechel B. Regulatory Programs of B-cell Activation and Germinal Center Reaction Allow B-ALL Escape from CD19 CAR T-cell Therapy. Cancer Immunol Res 2022; 10:1055-1068. [PMID: 35759797 PMCID: PMC9444959 DOI: 10.1158/2326-6066.cir-21-0626] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 04/13/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has led to tremendous successes in the treatment of B-cell malignancies. However, a large fraction of treated patients relapse, often with disease expressing reduced levels of the target antigen. Here, we report that exposing CD19+ B-cell acute lymphoblastic leukemia (B-ALL) cells to CD19 CAR T cells reduced CD19 expression within hours. Initially, CD19 CAR T cells caused clustering of CD19 at the T cell-leukemia cell interface followed by CD19 internalization and decreased CD19 surface expression on the B-ALL cells. CD19 expression was then repressed by transcriptional rewiring. Using single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin using sequencing, we demonstrated that a subset of refractory CD19low cells sustained decreased CD19 expression through transcriptional programs of physiologic B-cell activation and germinal center reaction. Inhibiting B-cell activation programs with the Bruton's tyrosine kinase inhibitor ibrutinib increased the cytotoxicity of CD19 CAR T cells without affecting CAR T-cell viability. These results demonstrate transcriptional plasticity as an underlying mechanism of escape from CAR T cells and highlight the importance of combining CAR T-cell therapy with targeted therapies that aim to overcome this plasticity. See related Spotlight by Zhao and Melenhorst, p. 1040.
Collapse
Affiliation(s)
- Nam Gyu Im
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Institute for Translational Epigenetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Amy Guillaumet-Adkins
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Megha Wal
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anna J. Rogers
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Julia Frede
- Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Claire C. Havig
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jing Yang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Praveen Anand
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Johannes M. Waldschmidt
- Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Noori Sotudeh
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Leili Niu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jordan Voisine
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michal R. Schweiger
- Institute for Translational Epigenetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Clemens Grassberger
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jens G. Lohr
- Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Corresponding Authors: Birgit Knoechel, MD, PhD, Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Phone: 617-632-2072; ., Jens G. Lohr, MD, PhD, Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Phone: 617-632-2069;
| | - Birgit Knoechel
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Division of Hematology/Oncology, Department of Medicine, Boston Children’s Hospital, MA, USA.,Corresponding Authors: Birgit Knoechel, MD, PhD, Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Phone: 617-632-2072; ., Jens G. Lohr, MD, PhD, Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Phone: 617-632-2069;
| |
Collapse
|
8
|
Kou L, Yang N, Dong B, Yang J, Song Y, Li Y, Qin Q. Circular RNA testis-expressed 14 overexpression induces apoptosis and suppresses migration of ox-LDL-stimulated vascular smooth muscle cells via regulating the microRNA 6509-3p/thanatos-associated domain-containing apoptosis-associated protein 1 axis. Bioengineered 2022; 13:13150-13161. [PMID: 35635088 PMCID: PMC9275967 DOI: 10.1080/21655979.2022.2070582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Affiliation(s)
- Lu Kou
- Cardiovascular Department, Tianjin Chest Hospital, Tianjin, China
| | - Ning Yang
- Cardiovascular Department, Tianjin Chest Hospital, Tianjin, China
| | - Bo Dong
- Cardiovascular Department, Tianjin Chest Hospital, Tianjin, China
| | - Jingyu Yang
- Cardiovascular Department, Tianjin Chest Hospital, Tianjin, China
| | - Yanqiu Song
- Institute of Cardiology Research, Tianjin Chest Hospital, Tianjin, China
| | - Yang Li
- Cardiovascular Department, Tianjin Chest Hospital, Tianjin, China
| | - Qin Qin
- Cardiovascular Department, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
9
|
Yellajoshyula D, Pappas SS, Dauer WT. Oligodendrocyte and Extracellular Matrix Contributions to Central Nervous System Motor Function: Implications for Dystonia. Mov Disord 2022; 37:456-463. [PMID: 34989453 PMCID: PMC11152458 DOI: 10.1002/mds.28892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022] Open
Abstract
The quest to elucidate nervous system function and dysfunction in disease has focused largely on neurons and neural circuits. However, fundamental aspects of nervous system development, function, and plasticity are regulated by nonneuronal elements, including glial cells and the extracellular matrix (ECM). The rapid rise of genomics and neuroimaging techniques in recent decades has highlighted neuronal-glial interactions and ECM as a key component of nervous system development, plasticity, and function. Abnormalities of neuronal-glial interactions have been understudied but are increasingly recognized to play a key role in many neurodevelopmental disorders. In this report, we consider the role of myelination and the ECM in the development and function of central nervous system motor circuits and the neurodevelopmental disease dystonia. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Samuel S Pappas
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - William T Dauer
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
10
|
Park TY, Leiserson MD, Klau GW, Raphael BJ. SuperDendrix algorithm integrates genetic dependencies and genomic alterations across pathways and cancer types. CELL GENOMICS 2022; 2. [PMID: 35382456 PMCID: PMC8979493 DOI: 10.1016/j.xgen.2022.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent genome-wide CRISPR-Cas9 loss-of-function screens have identified genetic dependencies across many cancer cell lines. Associations between these dependencies and genomic alterations in the same cell lines reveal phenomena such as oncogene addiction and synthetic lethality. However, comprehensive identification of such associations is complicated by complex interactions between genes across genetically heterogeneous cancer types. We introduce and apply the algorithm SuperDendrix to CRISPR-Cas9 loss-of-function screens from 769 cancer cell lines, to identify differential dependencies across cell lines and to find associations between differential dependencies and combinations of genomic alterations and cell-type-specific markers. These associations respect the position and type of interactions within pathways: for example, we observe increased dependencies on downstream activators of pathways, such as NFE2L2, and decreased dependencies on upstream activators of pathways, such as CDK6. SuperDendrix also reveals dozens of dependencies on lineage-specific transcription factors, identifies cancer-type-specific correlations between dependencies, and enables annotation of individual mutated residues. Using SuperDendrix, Park et al. examine associations between genetic dependencies in 769 cancer cell lines. They report 127 genetic dependencies explained by combinations of mutually exclusive somatic mutations congregating into a few oncogenic pathways across cancer subtypes. These present a small number of prominent and highly specific genetic vulnerabilities in cancer. Graphical abstract
Collapse
|
11
|
Domingo A, Yadav R, Shah S, Hendriks WT, Erdin S, Gao D, O'Keefe K, Currall B, Gusella JF, Sharma N, Ozelius LJ, Ehrlich ME, Talkowski ME, Bragg DC. Dystonia-specific mutations in THAP1 alter transcription of genes associated with neurodevelopment and myelin. Am J Hum Genet 2021; 108:2145-2158. [PMID: 34672987 PMCID: PMC8595948 DOI: 10.1016/j.ajhg.2021.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/27/2021] [Indexed: 12/28/2022] Open
Abstract
Dystonia is a neurologic disorder associated with an increasingly large number of genetic variants in many genes, resulting in characteristic disturbances in volitional movement. Dissecting the relationships between these mutations and their functional outcomes is critical in understanding the pathways that drive dystonia pathogenesis. Here we established a pipeline for characterizing an allelic series of dystonia-specific mutations. We used this strategy to investigate the molecular consequences of genetic variation in THAP1, which encodes a transcription factor linked to neural differentiation. Multiple pathogenic mutations associated with dystonia cluster within distinct THAP1 functional domains and are predicted to alter DNA-binding properties and/or protein interactions differently, yet the relative impact of these varied changes on molecular signatures and neural deficits is unclear. To determine the effects of these mutations on THAP1 transcriptional activity, we engineered an allelic series of eight alterations in a common induced pluripotent stem cell background and differentiated these lines into a panel of near-isogenic neural stem cells (n = 94 lines). Transcriptome profiling followed by joint analysis of the most robust signatures across mutations identified a convergent pattern of dysregulated genes functionally related to neurodevelopment, lysosomal lipid metabolism, and myelin. On the basis of these observations, we examined mice bearing Thap1-disruptive alleles and detected significant changes in myelin gene expression and reduction of myelin structural integrity relative to control mice. These results suggest that deficits in neurodevelopment and myelination are common consequences of dystonia-associated THAP1 mutations and highlight the potential role of neuron-glial interactions in the pathogenesis of dystonia.
Collapse
Affiliation(s)
- Aloysius Domingo
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rachita Yadav
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shivangi Shah
- The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - William T Hendriks
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Serkan Erdin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dadi Gao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kathryn O'Keefe
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benjamin Currall
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - James F Gusella
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Michelle E Ehrlich
- Departments of Neurology, Pediatrics, and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - D Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| |
Collapse
|
12
|
Staege S, Kutschenko A, Baumann H, Glaß H, Henkel L, Gschwendtberger T, Kalmbach N, Klietz M, Hermann A, Lohmann K, Seibler P, Wegner F. Reduced Expression of GABA A Receptor Alpha2 Subunit Is Associated With Disinhibition of DYT-THAP1 Dystonia Patient-Derived Striatal Medium Spiny Neurons. Front Cell Dev Biol 2021; 9:650586. [PMID: 34095114 PMCID: PMC8176025 DOI: 10.3389/fcell.2021.650586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
DYT-THAP1 dystonia (formerly DYT6) is an adolescent-onset dystonia characterized by involuntary muscle contractions usually involving the upper body. It is caused by mutations in the gene THAP1 encoding for the transcription factor Thanatos-associated protein (THAP) domain containing apoptosis-associated protein 1 and inherited in an autosomal-dominant manner with reduced penetrance. Alterations in the development of striatal neuronal projections and synaptic function are known from transgenic mice models. To investigate pathogenetic mechanisms, human induced pluripotent stem cell (iPSC)-derived medium spiny neurons (MSNs) from two patients and one family member with reduced penetrance carrying a mutation in the gene THAP1 (c.474delA and c.38G > A) were functionally characterized in comparison to healthy controls. Calcium imaging and quantitative PCR analysis revealed significantly lower Ca2+ amplitudes upon GABA applications and a marked downregulation of the gene encoding the GABAA receptor alpha2 subunit in THAP1 MSNs indicating a decreased GABAergic transmission. Whole-cell patch-clamp recordings showed a significantly lower frequency of miniature postsynaptic currents (mPSCs), whereas the frequency of spontaneous action potentials (APs) was elevated in THAP1 MSNs suggesting that decreased synaptic activity might have resulted in enhanced generation of APs. Our molecular and functional data indicate that a reduced expression of GABAA receptor alpha2 subunit could eventually lead to limited GABAergic synaptic transmission, neuronal disinhibition, and hyperexcitability of THAP1 MSNs. These data give pathophysiological insight and may contribute to the development of novel treatment strategies for DYT-THAP1 dystonia.
Collapse
Affiliation(s)
- Selma Staege
- Department of Neurology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| | - Anna Kutschenko
- Department of Neurology, Hannover Medical School, Hanover, Germany
| | - Hauke Baumann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Hannes Glaß
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University of Rostock, Rostock, Germany
| | - Lisa Henkel
- Department of Neurology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| | - Thomas Gschwendtberger
- Department of Neurology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| | - Norman Kalmbach
- Department of Neurology, Hannover Medical School, Hanover, Germany
| | - Martin Klietz
- Department of Neurology, Hannover Medical School, Hanover, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University of Rostock, Rostock, Germany.,German Center for Neurodegenerative Diseases Rostock/Greifswald, Rostock, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| |
Collapse
|
13
|
Ajit K, Murphy BD, Banerjee A. Elucidating evolutionarily conserved mechanisms of diapause regulation using an in silico approach. FEBS Lett 2021; 595:1350-1374. [PMID: 33650678 DOI: 10.1002/1873-3468.14064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/02/2021] [Accepted: 02/19/2021] [Indexed: 11/11/2022]
Abstract
Embryonic diapause is an enigmatic phenomenon that appears in diverse species. Although regulatory mechanisms have been established, there is much to be discovered. Herein, we have made the first comprehensive attempt to elucidate diapause regulatory mechanisms using a computational approach. We found transcription factors unique to promoters of genes in diapause species. From pathway analysis and STRING PPI networks, the signaling pathways regulated by these unique transcription factors were identified. The pathways were then consolidated into a model to combine various known mechanisms of diapause regulation. This work also highlighted certain transcription factors that may act as 'master transcription factors' to regulate the phenomenon. Promoter analysis further suggested evidence for independent evolution for some of regulatory elements involved in diapause.
Collapse
Affiliation(s)
- Kamal Ajit
- Department of Biological Sciences, BITS Pilani KK Birla Goa Campus, Goa, India
| | - Bruce D Murphy
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médicine Vétérinaire, Université Montréal, St-Hyacinthe, QC, Canada
| | - Arnab Banerjee
- Department of Biological Sciences, BITS Pilani KK Birla Goa Campus, Goa, India
| |
Collapse
|
14
|
Cheratta AR, Thayyullathil F, Pallichankandy S, Subburayan K, Alakkal A, Galadari S. Prostate apoptosis response-4 and tumor suppression: it's not just about apoptosis anymore. Cell Death Dis 2021; 12:47. [PMID: 33414404 PMCID: PMC7790818 DOI: 10.1038/s41419-020-03292-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
The tumor suppressor prostate apoptosis response-4 (Par-4) has recently turned ‘twenty-five’. Beyond its indisputable role as an apoptosis inducer, an increasing and sometimes bewildering, new roles for Par-4 are being reported. These roles include its ability to regulate autophagy, senescence, and metastasis. This growing range of responses to Par-4 is reflected by our increasing understanding of the various mechanisms through which Par-4 can function. In this review, we summarize the existing knowledge on Par-4 tumor suppressive mechanisms, and discuss how the interaction of Par-4 with different regulators influence cell fate. This review also highlights the new secretory pathway that has emerged and the likely discussion on its clinical implications.
Collapse
Affiliation(s)
- Anees Rahman Cheratta
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE
| | - Faisal Thayyullathil
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE
| | - Siraj Pallichankandy
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE
| | - Karthikeyan Subburayan
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE
| | - Ameer Alakkal
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE
| | - Sehamuddin Galadari
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE.
| |
Collapse
|
15
|
Shavali M, Pouladi N, Abdolahi S, Farajzadeh D, Moniri S. Investigating the association of rs920778T > C polymorphism in HOTAIR gene in breast cancer patients in the northwestern of Iran. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
De Simone G, di Masi A, Vita GM, Polticelli F, Pesce A, Nardini M, Bolognesi M, Ciaccio C, Coletta M, Turilli ES, Fasano M, Tognaccini L, Smulevich G, Abbruzzetti S, Viappiani C, Bruno S, Ascenzi P. Mycobacterial and Human Nitrobindins: Structure and Function. Antioxid Redox Signal 2020; 33:229-246. [PMID: 32295384 DOI: 10.1089/ars.2019.7874] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Aims: Nitrobindins (Nbs) are evolutionary conserved all-β-barrel heme-proteins displaying a highly solvent-exposed heme-Fe(III) atom. The physiological role(s) of Nbs is almost unknown. Here, the structural and functional properties of ferric Mycobacterium tuberculosis Nb (Mt-Nb(III)) and ferric Homo sapiens Nb (Hs-Nb(III)) have been investigated and compared with those of ferric Arabidopsis thaliana Nb (At-Nb(III), Rhodnius prolixus nitrophorins (Rp-NP(III)s), and mammalian myoglobins. Results: Data here reported demonstrate that Mt-Nb(III), At-Nb(III), and Hs-Nb(III) share with Rp-NP(III)s the capability to bind selectively nitric oxide, but display a very low reactivity, if any, toward histamine. Data obtained overexpressing Hs-Nb in human embryonic kidney 293 cells indicate that Hs-Nb localizes mainly in the cytoplasm and partially in the nucleus, thanks to a nuclear localization sequence encompassing residues Glu124-Leu154. Human Hs-Nb corresponds to the C-terminal domain of the human nuclear protein THAP4 suggesting that Nb may act as a sensor possibly modulating the THAP4 transcriptional activity residing in the N-terminal region. Finally, we provide strong evidence that both Mt-Nb(III) and Hs-Nb(III) are able to scavenge peroxynitrite and to protect free l-tyrosine against peroxynitrite-mediated nitration. Innovation: Data here reported suggest an evolutionarily conserved function of Nbs related to their role as nitric oxide sensors and components of antioxidant systems. Conclusion: Human THAP4 may act as a sensing protein that couples the heme-based Nb(III) reactivity with gene transcription. Mt-Nb(III) seems to be part of the pool of proteins required to scavenge reactive nitrogen and oxygen species produced by the host during the immunity response.
Collapse
Affiliation(s)
| | | | | | - Fabio Polticelli
- Dipartimento di Scienze, Università Roma Tre, Roma, Italy.,Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, Roma, Italy
| | | | - Marco Nardini
- Dipartimento di Bioscienze, Università di Milano, Milano, Italy
| | - Martino Bolognesi
- Dipartimento di Bioscienze, Università di Milano, Milano, Italy.,Centro di Ricerche Pediatriche R.E. Invernizzi, Università di Milano, Milano, Italy
| | - Chiara Ciaccio
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Roma, Italy
| | - Massimo Coletta
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Roma, Italy
| | - Emily Samuela Turilli
- Dipartimento di Scienza ed Alta Tecnologia, Università dell'Insubria, Busto Arsizio, Italy
| | - Mauro Fasano
- Dipartimento di Scienza ed Alta Tecnologia, Università dell'Insubria, Busto Arsizio, Italy
| | - Lorenzo Tognaccini
- Dipartimento di Chimica Ugo Schiff, Università di Firenze, Sesto Fiorentino, Italy
| | - Giulietta Smulevich
- Dipartimento di Chimica Ugo Schiff, Università di Firenze, Sesto Fiorentino, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parma, Italy
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Paolo Ascenzi
- Dipartimento di Scienze, Università Roma Tre, Roma, Italy
| |
Collapse
|
17
|
Santos RVC, de Sena WLB, Dos Santos FA, da Silva Filho AF, da Rocha Pitta MG, da Rocha Pitta MG, de Melo Rego MB, Pereira MC. Potential Therapeutic Agents Against Par-4 Target for Cancer Treatment: Where Are We Going? Curr Drug Targets 2020; 20:635-654. [PMID: 30474528 DOI: 10.2174/1389450120666181126122440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
Abstract
One of the greatest challenges of cancer therapeutics nowadays is to find selective targets successfully. Prostate apoptosis response-4 (Par-4) is a selective tumor suppressor protein with an interesting therapeutic potential due to its specificity on inducing apoptosis in cancer cells. Par-4 activity and levels can be downregulated in several tumors and cancer cell types, indicating poor prognosis and treatment resistance. Efforts to increase Par-4 expression levels have been studied, including its use as a therapeutic protein by transfection with adenoviral vectors or plasmids. However, gene therapy is very complex and still presents many hurdles to be overcome. We decided to review molecules and drugs with the capacity to upregulate Par-4 and, thereby, be an alternative to reach this druggable target. In addition, Par-4 localization and function are reviewed in some cancers, clarifying how it can be used as a therapeutic target.
Collapse
Affiliation(s)
- Renata Virgínia Cavalcanti Santos
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE, Brazil
| | - Wanessa Layssa Batista de Sena
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE, Brazil
| | - Flaviana Alves Dos Santos
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE, Brazil
| | - Antônio Felix da Silva Filho
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Maira Galdino da Rocha Pitta
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE, Brazil
| | - Moacyr Barreto de Melo Rego
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE, Brazil
| | - Michelly Cristiny Pereira
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
18
|
Identifying Cattle Breed-Specific Partner Choice of Transcription Factors during the African Trypanosomiasis Disease Progression Using Bioinformatics Analysis. Vaccines (Basel) 2020; 8:vaccines8020246. [PMID: 32456126 PMCID: PMC7350023 DOI: 10.3390/vaccines8020246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Abstract
African Animal Trypanosomiasis (AAT) is a disease caused by pathogenic trypanosomes which affects millions of livestock every year causing huge economic losses in agricultural production especially in sub-Saharan Africa. The disease is spread by the tsetse fly which carries the parasite in its saliva. During the disease progression, the cattle are prominently subjected to anaemia, weight loss, intermittent fever, chills, neuronal degeneration, congestive heart failure, and finally death. According to their different genetic programs governing the level of tolerance to AAT, cattle breeds are classified as either resistant or susceptible. In this study, we focus on the cattle breeds N’Dama and Boran which are known to be resistant and susceptible to trypanosomiasis, respectively. Despite the rich literature on both breeds, the gene regulatory mechanisms of the underlying biological processes for their resistance and susceptibility have not been extensively studied. To address the limited knowledge about the tissue-specific transcription factor (TF) cooperations associated with trypanosomiasis, we investigated gene expression data from these cattle breeds computationally. Consequently, we identified significant cooperative TF pairs (especially DBP−PPARA and DBP−THAP1 in N’Dama and DBP−PAX8 in Boran liver tissue) which could help understand the underlying AAT tolerance/susceptibility mechanism in both cattle breeds.
Collapse
|
19
|
Unraveling Molecular Mechanisms of THAP1 Missense Mutations in DYT6 Dystonia. J Mol Neurosci 2020; 70:999-1008. [PMID: 32112337 PMCID: PMC7334247 DOI: 10.1007/s12031-020-01490-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Mutations in THAP1 (THAP domain-containing apoptosis-associated protein 1) are responsible for DYT6 dystonia. Until now, more than eighty different mutations in THAP1 gene have been found in patients with primary dystonia, and two third of them are missense mutations. The potential pathogeneses of these missense mutations in human are largely elusive. In the present study, we generated stable transfected human neuronal cell lines expressing wild-type or mutated THAP1 proteins found in DYT6 patients. Transcriptional profiling using microarrays revealed a set of 28 common genes dysregulated in two mutated THAP1 (S21T and F81L) overexpression cell lines suggesting a common mechanism of these mutations. ChIP-seq showed that THAP1 can bind to the promoter of one of these genes, superoxide dismutase 2 (SOD2). Overexpression of THAP1 in SK-N-AS cells resulted in increased SOD2 protein expression, whereas fibroblasts from THAP1 patients have less SOD2 expression, which indicates that SOD2 is a direct target gene of THAP1. In addition, we show that some THAP1 mutations (C54Y and F81L) decrease the protein stability which might also be responsible for altered transcription regulation due to dosage insufficiency. Taking together, the current study showed different potential pathogenic mechanisms of THAP1 mutations which lead to the same consequence of DYT6 dystonia.
Collapse
|
20
|
Structure of a P element transposase-DNA complex reveals unusual DNA structures and GTP-DNA contacts. Nat Struct Mol Biol 2019; 26:1013-1022. [PMID: 31659330 DOI: 10.1038/s41594-019-0319-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/11/2019] [Indexed: 01/19/2023]
Abstract
P element transposase catalyzes the mobility of P element DNA transposons within the Drosophila genome. P element transposase exhibits several unique properties, including the requirement for a guanosine triphosphate cofactor and the generation of long staggered DNA breaks during transposition. To gain insights into these features, we determined the atomic structure of the Drosophila P element transposase strand transfer complex using cryo-EM. The structure of this post-transposition nucleoprotein complex reveals that the terminal single-stranded transposon DNA adopts unusual A-form and distorted B-form helical geometries that are stabilized by extensive protein-DNA interactions. Additionally, we infer that the bound guanosine triphosphate cofactor interacts with the terminal base of the transposon DNA, apparently to position the P element DNA for catalysis. Our structure provides the first view of the P element transposase superfamily, offers new insights into P element transposition and implies a transposition pathway fundamentally distinct from other cut-and-paste DNA transposases.
Collapse
|
21
|
Chen CP, Sang Y, Liu L, Feng ZQ, Liang Z, Pei X. THAP7 promotes cell proliferation by regulating the G1/S phase transition via epigenetically silencing p21 in lung adenocarcinoma. Onco Targets Ther 2019; 12:5651-5660. [PMID: 31372002 PMCID: PMC6634299 DOI: 10.2147/ott.s208908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Lung adenocarcinoma (LUAD) is one of the most common cancers worldwide. The THanatos-Associated Proteins (THAP) family plays an essential role in multiple cancers. However, the role of THAP7 in cancers has remained elusive. METHODS THAP7 expression status in LUAD tissues was analysed by using the Oncomine database and qRT-PCR, and its expression level in LUAD cell lines was detected by qRT-PCR and Western blotting. The role of THAP7 in LUAD cells was determined by proliferation, colony formation, and cell cycle analyses. In vivo role of THAP7 was studied on xenograft models. Luciferase reporter assays and chromatin immunoprecipitation (ChIP) were used to determine the activity and acetylation of the p21 promoter. RESULTS THAP7 expression was increased in LUAD tissues and cell lines. Moreover, the high expression of THAP7 was correlated with poor prognosis. The overexpression of THAP7 accelerated the G1/S phase transition and promoted tumour growth both in vitro and in vivo. A mechanistic study revealed that THAP7 reduced the acetylation of histone H3 on the p21 promoter to suppress p21 transcription. CONCLUSION For the first time, we demonstrated the function of THAP7 in LUAD, and our findings suggested that THAP7 may be a potential molecular therapy target in LUAD.
Collapse
Affiliation(s)
- Cai-Ping Chen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing210009, People’s Republic of China
| | - Yi Sang
- Department of Center Laboratory, Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi330008, People’s Republic of China
| | - Lijuan Liu
- Department of Pharmacy, Jiangxi Cancer Hospital, Nanchang, Jiangxi330029, People’s Republic of China
| | - Zhi-Qi Feng
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing210009, People’s Republic of China
| | - Zibin Liang
- Department of Thoracic Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong519000, People’s Republic of China
| | - Xiaofeng Pei
- Department of Thoracic Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong519000, People’s Republic of China
| |
Collapse
|
22
|
Clark AM, Ponniah K, Warden MS, Raitt EM, Smith BG, Pascal SM. Tetramer formation by the caspase-activated fragment of the Par-4 tumor suppressor. FEBS J 2019; 286:4060-4073. [PMID: 31177609 DOI: 10.1111/febs.14955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/10/2019] [Accepted: 06/06/2019] [Indexed: 11/27/2022]
Abstract
The prostate apoptosis response-4 (Par-4) tumor suppressor can selectively kill cancer cells via apoptosis while leaving healthy cells unharmed. Full length Par-4 has been shown to be predominantly intrinsically disordered in vitro under neutral conditions. As part of the apoptotic process, cellular Par-4 is cleaved at D131 by caspase-3, which generates a 24 kDa C-terminal activated fragment (cl-Par-4) that enters the nucleus and inhibits pro-survival genes, thereby preventing cancer cell proliferation. Here, the structure of cl-Par-4 was investigated using CD spectroscopy, dynamic light scattering, intrinsic tyrosine fluorescence, and size exclusion chromatography with mutli-angle light scattering. Biophysical characterization shows that cl-Par-4 aggregates and is disordered at low ionic strength. However, with increasing ionic strength, cl-Par-4 becomes progressively more helical and less aggregated, ultimately forming largely ordered tetramers at high NaCl concentration. These results, together with previous results showing induced folding at acidic pH, suggest that the in vivo structure and self-association state of cl-Par-4 may be strongly dependent upon cellular environment.
Collapse
Affiliation(s)
- Andrea M Clark
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| | - Komala Ponniah
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| | - Meghan S Warden
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| | - Emily M Raitt
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| | - Benjamin G Smith
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| | - Steven M Pascal
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
23
|
Mutations in THAP1/DYT6 reveal that diverse dystonia genes disrupt similar neuronal pathways and functions. PLoS Genet 2018; 14:e1007169. [PMID: 29364887 PMCID: PMC5798844 DOI: 10.1371/journal.pgen.1007169] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 02/05/2018] [Accepted: 12/25/2017] [Indexed: 12/14/2022] Open
Abstract
Dystonia is characterized by involuntary muscle contractions. Its many forms are genetically, phenotypically and etiologically diverse and it is unknown whether their pathogenesis converges on shared pathways. Mutations in THAP1 [THAP (Thanatos-associated protein) domain containing, apoptosis associated protein 1], a ubiquitously expressed transcription factor with DNA binding and protein-interaction domains, cause dystonia, DYT6. There is a unique, neuronal 50-kDa Thap1-like immunoreactive species, and Thap1 levels are auto-regulated on the mRNA level. However, THAP1 downstream targets in neurons, and the mechanism via which it causes dystonia are largely unknown. We used RNA-Seq to assay the in vivo effect of a heterozygote Thap1 C54Y or ΔExon2 allele on the gene transcription signatures in neonatal mouse striatum and cerebellum. Enriched pathways and gene ontology terms include eIF2α Signaling, Mitochondrial Dysfunction, Neuron Projection Development, Axonal Guidance Signaling, and Synaptic LongTerm Depression, which are dysregulated in a genotype and tissue-dependent manner. Electrophysiological and neurite outgrowth assays were consistent with those enrichments, and the plasticity defects were partially corrected by salubrinal. Notably, several of these pathways were recently implicated in other forms of inherited dystonia, including DYT1. We conclude that dysfunction of these pathways may represent a point of convergence in the pathophysiology of several forms of inherited dystonia. Dystonia is a brain disorder that causes disabling involuntary muscle contractions and abnormal postures. Mutations in THAP1, a zinc-finger transcription factor, cause DYT6, but its neuronal targets and functions are unknown. In this study, we sought to determine the effects of Thap1C54Y and ΔExon2 alleles on the gene transcription signatures at postnatal day 1 (P1) in the mouse striatum and cerebellum in order to correlate function with specific genes or pathways. Our unbiased transcriptomics approach showed that Thap1 mutants revealed multiple signaling pathways involved in neuronal plasticity, axonal guidance, and oxidative stress response, which are also present in other forms of dystonia, particularly DYT1. We conclude that dysfunction of these pathways may represent a point of convergence on the pathogenesis of unrelated forms of inherited dystonia.
Collapse
|
24
|
Weisheit CE, Pappas SS, Dauer WT. Inherited dystonias: clinical features and molecular pathways. HANDBOOK OF CLINICAL NEUROLOGY 2018; 147:241-254. [PMID: 29325615 DOI: 10.1016/b978-0-444-63233-3.00016-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent decades have witnessed dramatic increases in understanding of the genetics of dystonia - a movement disorder characterized by involuntary twisting and abnormal posture. Hampered by a lack of overt neuropathology, researchers are investigating isolated monogenic causes to pinpoint common molecular mechanisms in this heterogeneous disease. Evidence from imaging, cellular, and murine work implicates deficiencies in dopamine neurotransmission, transcriptional dysregulation, and selective vulnerability of distinct neuronal populations to disease mutations. Studies of genetic forms of dystonia are also illuminating the developmental dependence of disease symptoms that is typical of many forms of the disease. As understanding of monogenic forms of dystonia grows, a clearer picture will develop of the abnormal motor circuitry behind this relatively common phenomenology. This chapter focuses on the current data covering the etiology and epidemiology, clinical presentation, and pathogenesis of four monogenic forms of isolated dystonia: DYT-TOR1A, DYT-THAP1, DYT-GCH1, and DYT-GNAL.
Collapse
Affiliation(s)
- Corinne E Weisheit
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Samuel S Pappas
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - William T Dauer
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
25
|
Yellajoshyula D, Liang CC, Pappas SS, Penati S, Yang A, Mecano R, Kumaran R, Jou S, Cookson MR, Dauer WT. The DYT6 Dystonia Protein THAP1 Regulates Myelination within the Oligodendrocyte Lineage. Dev Cell 2017; 42:52-67.e4. [PMID: 28697333 DOI: 10.1016/j.devcel.2017.06.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 04/25/2017] [Accepted: 06/07/2017] [Indexed: 11/30/2022]
Abstract
The childhood-onset motor disorder DYT6 dystonia is caused by loss-of-function mutations in the transcription factor THAP1, but the neurodevelopmental processes in which THAP1 participates are unknown. We find that THAP1 is essential for the timing of myelination initiation during CNS maturation. Conditional deletion of THAP1 in the CNS retards maturation of the oligodendrocyte (OL) lineage, delaying myelination and causing persistent motor deficits. The CNS myelination defect results from a cell-autonomous requirement for THAP1 in the OL lineage and is recapitulated in developmental assays performed on OL progenitor cells purified from Thap1 null mice. Loss of THAP1 function disrupts a core set of OL maturation genes and reduces the DNA occupancy of YY1, a transcription factor required for OL maturation. These studies establish a role for THAP1 transcriptional regulation at the inception of myelination and implicate abnormal timing of myelination in the pathogenesis of childhood-onset dystonia.
Collapse
Affiliation(s)
- Dhananjay Yellajoshyula
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Chun-Chi Liang
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Samuel S Pappas
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Silvia Penati
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Angela Yang
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Rodan Mecano
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Ravindran Kumaran
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Stephanie Jou
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - William T Dauer
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; VAAAHS, University of Michigan Medical School, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
| |
Collapse
|
26
|
Abstract
Par-4 is a unique proapoptotic protein with the ability to induce apoptosis selectively in cancer cells. The X-ray crystal structure of the C-terminal domain of Par-4 (Par-4CC), which regulates its apoptotic function, was obtained by MAD phasing. Par-4 homodimerizes by forming a parallel coiled-coil structure. The N-terminal half of Par-4CC contains the homodimerization subdomain. This structure includes a nuclear export signal (Par-4NES) sequence, which is masked upon dimerization indicating a potential mechanism for nuclear localization. The heteromeric-interaction models specifically showed that charge interaction is an important factor in the stability of heteromers of the C-terminal leucine zipper subdomain of Par-4 (Par-4LZ). These heteromer models also displayed NES masking capacity and therefore the ability to influence intracellular localization.
Collapse
|
27
|
Simmonds P, Loomis E, Curry E. DNA methylation-based chromatin compartments and ChIP-seq profiles reveal transcriptional drivers of prostate carcinogenesis. Genome Med 2017; 9:54. [PMID: 28592290 PMCID: PMC5463361 DOI: 10.1186/s13073-017-0443-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/23/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Profiles of DNA methylation of many tissues relevant in human disease have been obtained from microarrays and are publicly available. These can be used to generate maps of chromatin compartmentalization, demarcating open and closed chromatin across the genome. Additionally, large sets of genome-wide transcription factor binding profiles have been made available thanks to ChIP-seq technology. METHODS We have identified genomic regions with altered chromatin compartmentalization in prostate adenocarcinoma tissue relative to normal prostate tissue, using DNA methylation microarray data from The Cancer Genome Atlas. DNA binding profiles from the Encyclopedia of DNA Elements (ENCODE) ChIP-seq studies have been systematically screened to find transcription factors with inferred DNA binding sites located in discordantly open/closed chromatin in malignant tissue (compared with non-cancer control tissue). We have combined this with tests for corresponding up-/downregulation of the transcription factors' putative target genes to obtain an integrated measure of cancer-specific regulatory activity to identify likely transcriptional drivers of prostate cancer. RESULTS Generally, we find that the degree to which transcription factors preferentially bind regions of chromatin that become more accessible during prostate carcinogenesis is significantly associated to the level of systematic upregulation of their targets, at the level of gene expression. Our approach has yielded 11 transcription factors that show strong cancer-specific transcriptional activation of targets, including the novel candidates KAT2A and TRIM28, alongside established drivers of prostate cancer MYC, ETS1, GABP and YY1. CONCLUSIONS This approach to integrated epigenetic and transcriptional profiling using publicly available data represents a cheap and powerful technique for identifying potential drivers of human disease. In our application to prostate adenocarcinoma data, the fact that well-known drivers are amongst the top candidates suggests that the discovery of novel candidate drivers may unlock pathways to future medicines. Data download instructions and code to reproduce this work are available at GitHub under 'edcurry/PRAD-compartments'.
Collapse
Affiliation(s)
- Poppy Simmonds
- Division of Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.,Centre for Cell, Gene & Tissue Therapeutics, UCL Medical School, Royal Free Hospital, Pond Street, London, NW3 2QG, UK
| | - Erick Loomis
- Helix, 1 Circle Star Way, San Carlos, CA, 94070, USA
| | - Edward Curry
- Division of Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
28
|
Aguilo F, Zakirova Z, Nolan K, Wagner R, Sharma R, Hogan M, Wei C, Sun Y, Walsh MJ, Kelley K, Zhang W, Ozelius LJ, Gonzalez-Alegre P, Zwaka TP, Ehrlich ME. THAP1: Role in Mouse Embryonic Stem Cell Survival and Differentiation. Stem Cell Reports 2017; 9:92-107. [PMID: 28579396 PMCID: PMC5511047 DOI: 10.1016/j.stemcr.2017.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 12/16/2022] Open
Abstract
THAP1 (THAP [Thanatos-associated protein] domain-containing, apoptosis-associated protein 1) is a ubiquitously expressed member of a family of transcription factors with highly conserved DNA-binding and protein-interacting regions. Mutations in THAP1 cause dystonia, DYT6, a neurologic movement disorder. THAP1 downstream targets and the mechanism via which it causes dystonia are largely unknown. Here, we show that wild-type THAP1 regulates embryonic stem cell (ESC) potential, survival, and proliferation. Our findings identify THAP1 as an essential factor underlying mouse ESC survival and to some extent, differentiation, particularly neuroectodermal. Loss of THAP1 or replacement with a disease-causing mutation results in an enhanced rate of cell death, prolongs Nanog, Prdm14, and/or Rex1 expression upon differentiation, and results in failure to upregulate ectodermal genes. ChIP-Seq reveals that these activities are likely due in part to indirect regulation of gene expression. Wild-type THAP1 regulates ESC potential, survival, and proliferation THAP1 is essential for ESC differentiation, particularly neuroectodermal Thap1C54Y or ΔExon2 ESCs prolong expression of pluripotent genes upon differentiation Thap1C54Y or ΔExon2 EBs show increased cell death and abnormal differentiation
Collapse
Affiliation(s)
- Francesca Aguilo
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Zuchra Zakirova
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Katie Nolan
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ryan Wagner
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rajal Sharma
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Megan Hogan
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chengguo Wei
- Department of Medicine Bioinformatics Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yifei Sun
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Martin J Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kevin Kelley
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Weijia Zhang
- Department of Medicine Bioinformatics Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Laurie J Ozelius
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Pedro Gonzalez-Alegre
- Perelman Center for Cellular & Molecular Therapeutics, Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas P Zwaka
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michelle E Ehrlich
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
29
|
Camargos S, Cardoso F. Understanding dystonia: diagnostic issues and how to overcome them. ARQUIVOS DE NEURO-PSIQUIATRIA 2016; 74:921-936. [DOI: 10.1590/0004-282x20160140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/07/2016] [Indexed: 08/30/2023]
Abstract
ABSTRACT The diagnosis and treatment of dystonia are challenging. This is likely due to gaps in the complete understanding of its pathophysiology, lack of animal models for translational studies, absence of a consistent pathological substrate and highly variable phenotypes and genotypes. The aim of this review article is to provide an overview of the clinical, neurophysiological and genetic features of dystonia that can help in the identification of this movement disorder, as well as in the differential diagnosis of the main forms of genetic dystonia. The variation of penetrance, age of onset, and topographic distribution of the disease in carriers of the same genetic mutation indicates that other factors – either genetic or environmental – might be involved in the development of symptoms. The growing knowledge of cell dysfunction in mutants may give insights into more effective therapeutic targets.
Collapse
|
30
|
Deng Y, Zhao J, Sakurai D, Sestak AL, Osadchiy V, Langefeld CD, Kaufman KM, Kelly JA, James JA, Petri MA, Bae SC, Alarcón-Riquelme ME, Alarcón GS, Anaya JM, Criswell LA, Freedman BI, Kamen DL, Gilkeson GS, Jacob CO, Merrill JT, Gaffney PM, Sivils KM, Niewold TB, Ramsey-Goldman R, Reveille JD, Scofield RH, Stevens AM, Boackle SA, Vilá LM, Sohn W, Lee S, Chang DM, Song YW, Vyse TJ, Harley JB, Brown EE, Edberg JC, Kimberly RP, Cantor RM, Hahn BH, Grossman JM, Tsao BP. Decreased SMG7 expression associates with lupus-risk variants and elevated antinuclear antibody production. Ann Rheum Dis 2016; 75:2007-2013. [PMID: 26783109 PMCID: PMC4949149 DOI: 10.1136/annrheumdis-2015-208441] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/14/2015] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Following up the systemic lupus erythematosus (SLE) genome-wide association studies (GWAS) identification of NMNAT2 at rs2022013, we fine-mapped its 150 kb flanking regions containing NMNAT2 and SMG7 in a 15 292 case-control multi-ancestry population and tested functions of identified variants. METHODS We performed genotyping using custom array, imputation by IMPUTE 2.1.2 and allele specific functions using quantitative real-time PCR and luciferase reporter transfections. SLE peripheral blood mononuclear cells (PBMCs) were cultured with small interfering RNAs to measure antinuclear antibody (ANA) and cyto/chemokine levels in supernatants using ELISA. RESULTS We confirmed association at NMNAT2 in European American (EA) and Amerindian/Hispanic ancestries, and identified independent signal at SMG7 tagged by rs2702178 in EA only (p=2.4×10-8, OR=1.23 (95% CI 1.14 to 1.32)). In complete linkage disequilibrium with rs2702178, rs2275675 in the promoter region robustly associated with SMG7 mRNA levels in multiple expression quantitative trait locus (eQTL) datasets. Its risk allele was dose-dependently associated with decreased SMG7 mRNA levels in PBMCs of 86 patients with SLE and 119 controls (p=1.1×10-3 and 6.8×10-8, respectively) and conferred reduced transcription activity in transfected HEK-293 (human embryonic kidney cell line) and Raji cells (p=0.0035 and 0.0037, respectively). As a critical component in the nonsense-mediated mRNA decay pathway, SMG7 could regulate autoantigens including ribonucleoprotein (RNP) and Smith (Sm). We showed SMG7 mRNA levels in PBMCs correlated inversely with ANA titres of patients with SLE (r=-0.31, p=0.01), and SMG7 knockdown increased levels of ANA IgG and chemokine (C-C motif) ligand 19 in SLE PBMCs (p=2.0×10-5 and 2.0×10-4, respectively). CONCLUSION We confirmed NMNAT2 and identified independent SMG7 association with SLE. The inverse relationship between levels of the risk allele-associated SMG7 mRNAs and ANA suggested the novel contribution of mRNA surveillance pathway to SLE pathogenesis.
Collapse
Affiliation(s)
- Yun Deng
- Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jian Zhao
- Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Daisuke Sakurai
- Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Andrea L. Sestak
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Vadim Osadchiy
- Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Carl D. Langefeld
- Department of Biostatistical Sciences and Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kenneth M. Kaufman
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Jennifer A. Kelly
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Judith A. James
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michelle A. Petri
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Marta E. Alarcón-Riquelme
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Pfizer-Universidad de Granada-Junta de Andalucía Center for Genomics and Oncological Research, Granada, Spain
| | - Graciela S Alarcón
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), Universidad del Rosario, Bogotá, Colombia
| | - Lindsey A. Criswell
- Rosalind Russell/Ephraim P. Engleman Rheumatology Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Barry I Freedman
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Diane L. Kamen
- Division of Rheumatology, Medical University of South Carolina, Charleston, SC, USA
| | - Gary S. Gilkeson
- Division of Rheumatology, Medical University of South Carolina, Charleston, SC, USA
| | - Chaim O. Jacob
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joan T Merrill
- Clinical Pharmacology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Patrick M. Gaffney
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kathy Moser Sivils
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Timothy B Niewold
- Division of Rheumatology and Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Rosalind Ramsey-Goldman
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John D Reveille
- Rheumatology and Clinical Immunogenetics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - R Hal Scofield
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- US Department of Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Anne M Stevens
- Division of Rheumatology, Department of Pediatrics, University of Washington, Seattle, WA, USA
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Susan A Boackle
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
- US Department of Veterans Affairs Medical Center, Denver, CO, USA
| | - Luis M Vilá
- Division of Rheumatology, Department of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Woong Sohn
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Seung Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | | | - Yeong Wook Song
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Medical Research Center, Seoul National University, Seoul, Korea
| | - Timothy J. Vyse
- Division of Genetics and Molecular Medicine and Immunology, King’s College London, London, UK
| | - John B. Harley
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Elizabeth E. Brown
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeffrey C. Edberg
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert P. Kimberly
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rita M. Cantor
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Bevra H. Hahn
- Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jennifer M. Grossman
- Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Betty P. Tsao
- Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
31
|
Bradley EW, Carpio LR, McGee-Lawrence ME, Becerra CC, Amanatullah DF, Ta LE, Otero M, Goldring MB, Kakar S, Westendorf JJ. Phlpp1 facilitates post-traumatic osteoarthritis and is induced by inflammation and promoter demethylation in human osteoarthritis. Osteoarthritis Cartilage 2016; 24:1021-8. [PMID: 26746148 PMCID: PMC4875839 DOI: 10.1016/j.joca.2015.12.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/23/2015] [Accepted: 12/20/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is the most common form of arthritis and a leading cause of disability. OA is characterized by articular chondrocyte deterioration, subchondral bone changes and debilitating pain. One strategy to promote cartilage regeneration and repair is to accelerate proliferation and matrix production of articular chondrocytes. We previously reported that the protein phosphatase Phlpp1 controls chondrocyte differentiation by regulating the activities of anabolic kinases. Here we examined the role of Phlpp1 in OA progression in a murine model. We also assessed PHLPP1 expression and promoter methylation. DESIGN Knee joints of WT and Phlpp1(-/-) mice were surgically destabilized by transection of the medial meniscal ligament (DMM). Mice were assessed for signs of OA progression via radiographic and histological analyses, and pain assessment for mechanical hypersensitivity using the von Frey assay. Methylation of the PHLPP1 promoter and PHLPP1 expression were evaluated in human articular cartilage and chondrocyte cell lines. RESULTS Following DMM surgeries, Phlpp1 deficient mice showed fewer signs of OA and cartilage degeneration. Mechanical allodynia associated with DMM surgeries was also attenuated in Phlpp1(-/-) mice. PHLPP1 was highly expressed in human articular cartilage from OA patients, but was undetectable in cartilage specimens from femoral neck fractures (FNFxs). Higher PHLPP1 levels correlated with less PHLPP1 promoter CpG methylation in cartilage from OA patients. Blocking cytosine methylation or treatment with inflammatory mediators enhanced PHLPP1 expression in human chondrocyte cell lines. CONCLUSION Phlpp1 deficiency protects against OA progression while CpG demethylation and inflammatory cytokines promote PHLPP1 expression.
Collapse
Affiliation(s)
| | | | - Meghan E. McGee-Lawrence
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905,Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, 30912
| | | | | | - Lauren E. Ta
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
| | - Miguel Otero
- Research Division, Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021
| | - Mary B. Goldring
- Research Division, Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021
| | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905
| | - Jennifer J. Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
32
|
The C-terminal region of the transcriptional regulator THAP11 forms a parallel coiled-coil domain involved in protein dimerization. J Struct Biol 2016; 194:337-46. [DOI: 10.1016/j.jsb.2016.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 11/15/2022]
|
33
|
Cortical gene expression correlates of temporal lobe epileptogenicity. ACTA ACUST UNITED AC 2016; 23:181-90. [PMID: 27354343 DOI: 10.1016/j.pathophys.2016.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/19/2016] [Accepted: 05/27/2016] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Despite being one of the most common neurological diseases, it is unknown whether there may be a genetic basis to temporal lobe epilepsy (TLE). Whole genome analyses were performed to test the hypothesis that temporal cortical gene expression differs between TLE patients with high vs. low baseline seizure frequency. METHODS Baseline seizure frequency was used as a clinical measure of epileptogenicity. Twenty-four patients in high or low seizure frequency groups (median seizures/month) underwent anterior temporal lobectomy with amygdalohippocampectomy for intractable TLE. RNA was isolated from the lateral temporal cortex and submitted for expression analysis. Genes significantly associated with baseline seizure frequency on likelihood ratio test were identified based on >0.90 area under the ROC curve, P value of <0.05. RESULTS Expression levels of forty genes were significantly associated with baseline seizure frequency. Of the seven most significant, four have been linked to other neurologic diseases. Expression levels associated with high seizure frequency included low expression of Homeobox A10, Forkhead box A2, Lymphoblastic leukemia derived sequence 1, HGF activator, Kelch repeat and BTB (POZ) domain containing 11, Thanatos-associated protein domain containing 8 and Heparin sulfate (glucosamine) 3-O-sulfotransferase 3A1. CONCLUSIONS This study describes novel associations between forty known genes and a clinical marker of epileptogenicity, baseline seizure frequency. Four of the seven discussed have been previously related to other neurologic diseases. Future investigation of these genes could establish new biomarkers for predicting epileptogenicity, and could have significant implications for diagnosis and management of temporal lobe epilepsy, as well as epilepsy pathogenesis.
Collapse
|
34
|
Li Y, Wang X. Role of long noncoding RNAs in malignant disease (Review). Mol Med Rep 2015; 13:1463-9. [PMID: 26708950 DOI: 10.3892/mmr.2015.4711] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 11/24/2015] [Indexed: 11/06/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are endogenous transcribed RNA molecules without protein-coding potential, ranging between 200 and 100,000 nt in length. LncRNAs regulate the expression of specific genes in several ways, including guiding chromatin-remodeling, and affecting splicing, transcription or translation. The mutations and dysregulation of lncRNAs have been found to be important in various human diseases, but particularly in human cancer. Previous studies have demonstrated that changes to lncRNAs are closely associated with tumorigenesis, metastasis, prognosis and diagnosis. The current review aims to present a brief overview of the associated reports of lncRNAs in malignant neoplasms, including breast cancer, prostate cancer and hematological malignancies. LncRNAs may be evaluated as novel markers in disease diagnosis, and as prospective therapeutic targets for the prevention and treatment of human diseases.
Collapse
Affiliation(s)
- Ying Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
35
|
Liu J, Huang W, Lin Y, Bian L, He Y. Identification of proteins interacting with protein kinase C-δ in hyperthermia-induced apoptosis and thermotolerance of Tca8113 cells. Mol Med Rep 2015; 12:3821-3828. [PMID: 26017369 DOI: 10.3892/mmr.2015.3861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 04/30/2015] [Indexed: 11/06/2022] Open
Abstract
The purpose of the present study was to investigate the differential proteins that interact with protein kinase C‑δ (PKC‑δ) in hyperthermia‑induced apoptosis as well as thermotolerance in Tca8113 cells, and furthermore, to investigate the mechanisms of these processes in tumor cells. Activation of PKC‑δ was previously indicated to be involved in the heat sensitivity and thermal resistance of tongue squamous carcinoma cells. Tca8113 cell apoptosis was induced by incubation at 43˚C for 80 min and the thermotolerant Tca8113 cells (TT‑Tca8113) were generated through a gradient temperature‑elevating method. The apoptotic rate of the cells was determined by flow cytometry, while cleavage and activation of PKC‑δ were analyzed by western blot analysis. The proteins that interacted with PKC‑δ in the Tca8113 and TT‑Tca8113 cells were identified by co‑immunoprecipitation coupled with mass spectrometry. Co‑immunoprecipitation analysis followed by electrospray ionization mass spectrometric analysis were utilized to identify the pro‑ and anti‑apoptotic proteins that interacted with PKC‑δ. Significant cell apoptosis was observed in Tca8113 cells following hyperthermia, and the apoptotic rate was significantly higher than that in the control group (P<0.05). Marked PKC‑δ cleavage fragmentation was also identified. By contrast, the apoptotic rate of the TT‑Tca8113 cells was not significantly increased following hyperthermia and no PKC‑δ cleavage fragmentation was observed. Among the proteins interacting with PKC‑δ, 39 were found to be involved in the promotion of apoptosis and 16 in the inhibition of apoptosis of Tca8113 cells; these proteins were known to be involved in the regulation of cell proliferation, apoptosis, transcription and intracellular protein transport. The results of the present study provided evidence that PKC‑δ is a crucial factor in the heat sensitivity and thermal resistance of tongue squamous carcinoma cells and elucidated the underlying molecular basis, which may aid in the improvement of hyperthermic cancer treatments.
Collapse
Affiliation(s)
- Jianqi Liu
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Wenchuan Huang
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Yunhong Lin
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Li Bian
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yongwen He
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| |
Collapse
|
36
|
Camargo CHF, Camargos ST, Cardoso FEC, Teive HAG. The genetics of the dystonias--a review based on the new classification of the dystonias. ARQUIVOS DE NEURO-PSIQUIATRIA 2015; 73:350-8. [PMID: 25992527 DOI: 10.1590/0004-282x20150030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 01/07/2015] [Indexed: 11/22/2022]
Abstract
The definition and classification of the dystonias was recently revisited. In the new 2013 classification, the dystonias are subdivided in terms of their etiology according to whether they are the result of pathological changes or structural damage, have acquired causes or are inherited. As hereditary dystonias are clinically and genetically heterogeneous, we sought to classify them according to the new recently defined criteria. We observed that although the new classification is still the subject of much debate and controversy, it is easy to use in a logical and objective manner with the inherited dystonias. With the discovery of new genes, however, it remains to be seen whether the new classification will continue to be effective.
Collapse
Affiliation(s)
- Carlos Henrique F Camargo
- Unidade de Distúrbios do Movimento, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Sarah Teixeira Camargos
- Unidade de Distúrbios do Movimento, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Francisco Eduardo C Cardoso
- Unidade de Distúrbios do Movimento, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Hélio Afonso G Teive
- Unidade de Distúrbios do Movimento, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
37
|
LeDoux MS. Dystonia. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
38
|
Hebbar N, Shrestha-Bhattarai T, Rangnekar VM. Cancer-selective apoptosis by tumor suppressor par-4. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 818:155-66. [PMID: 25001535 DOI: 10.1007/978-1-4471-6458-6_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Tumor suppressor genes play an important role in preventing neoplastic transformation and maintaining normal tissue homeostasis. Par-4 is one such tumor suppressor which is unique in its ability to selectively induce apoptosis in cancer cells while leaving the normal cells unaffected. The cancer cell specific activity of Par-4 is elicited through intracellular as well as extracellular mechanisms. Intracellularly Par-4 acts through the inhibition of pro-survival pathways and activation of Fas mediated apoptosis whereas extracellular (secreted Par-4) acts by binding to cell surface GRP78 leading to activation of the extrinsic apoptotic pathway. Many studies have highlighted the importance of Par-4 not only in preventing cancer development/recurrence but also as a promising anticancer therapeutic agent.
Collapse
Affiliation(s)
- Nikhil Hebbar
- Graduate Center for Toxicology, University of Kentucky, Combs Building Room 326, Lexington, KY, USA
| | | | | |
Collapse
|
39
|
Morais DR, Reis ST, Viana N, Piantino CB, Massoco C, Moura C, Dip N, Silva IA, Srougi M, Leite KR. The involvement of miR-100 in bladder urothelial carcinogenesis changing the expression levels of mRNA and proteins of genes related to cell proliferation, survival, apoptosis and chromosomal stability. Cancer Cell Int 2014; 14:119. [PMID: 25493074 PMCID: PMC4260205 DOI: 10.1186/s12935-014-0119-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 10/30/2014] [Indexed: 11/23/2022] Open
Abstract
Introduction MicroRNAs (miRNA) are small non-coding RNAs that play an important role in the control of gene expression by inhibiting protein translation or promoting messenger RNA degradation. Today, miRNAs have been shown to be involved in various physiological and pathological cellular processes, including cancer, where they can act as oncogenes or tumor suppressor genes. Recently, lowered expression of miR-100, resulting in upregulation of FGFR3, has been correlated with low-grade, non-invasive bladder urothelial cancer, as an alternative oncogenesis pathway to the typical FGFR3 gene mutation. Our aim is to analyze the role of miR-100 in bladder cancer cell lines in controlling the expression of some of its possible target genes, including FGFR3 and its relationship with proliferation, apoptosis and DNA ploidy. Methods The bladder cancer cell lines RT4 and T24 were transfected with pre-miR 100, anti-miR 100 and their respective controls using a lipid-based formulation. After transfection mRNA and protein levels of its supposed target genes THAP2, BAZ2A, mTOR, SMARCA5 and FGFR3 were analyzed by quantitative real time polymerase chain reaction (qRT-PCR) and western blotting. Cell proliferation, apoptosis and DNA ploidy were analyzed by flow cytometry. For statistical analysis, a t-test was applied, p < 0.05 was considered significant. Results After miR-100 transfection, there was a significant reduction in the mRNA of mTOR (p = 0.006), SMARCA5 (p = 0.007) and BAZ2A (p = 0.029) in RT4, mTOR (p = 0.023) and SMARCA5 (p = 0.015) in T24. There was a reduction in the expression of all proteins, variable from 22.5% to 57.1% in both cell lines. In T24 miR-100 promoted an increase in cell proliferation and anti-miR 100 promoted apoptosis characterizing miR-100 as an oncomiR in this cell line representative of a high-grade urothelial carcinoma. Conclusion miR-100 transfection reduces expression of BAZ2A, mTOR and SMARCA5 mRNA and protein in BC cell lines. miR-100 would be classified as an oncomiR in T24 cells representative of high grade urothelial carcinoma promoting increase in cell proliferation and reduction in apoptosis. The knowledge of miRNA role in tumors will allow their use as tumor markers and targets for new therapies.
Collapse
Affiliation(s)
- Denis R Morais
- Laboratory of Medical Research, Department of Urology - LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil ; Department of Pathology, University of Sao Paulo Veterinary Medicine and Zootechnics School, Sao Paulo, Brazil
| | - Sabrina T Reis
- Laboratory of Medical Research, Department of Urology - LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Nayara Viana
- Laboratory of Medical Research, Department of Urology - LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Camila Berfort Piantino
- Laboratory of Medical Research, Department of Urology - LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Cristina Massoco
- Department of Pathology, University of Sao Paulo Veterinary Medicine and Zootechnics School, Sao Paulo, Brazil
| | - Caio Moura
- Laboratory of Medical Research, Department of Urology - LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Nelson Dip
- Laboratory of Medical Research, Department of Urology - LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Iran A Silva
- Laboratory of Medical Research, Department of Urology - LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Miguel Srougi
- Laboratory of Medical Research, Department of Urology - LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Katia Rm Leite
- Laboratory of Medical Research, Department of Urology - LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
40
|
Gajos A, Golańska E, Sieruta M, Szybka M, Liberski PP, Bogucki A. High variability of clinical symptoms in a Polish family with a novelTHAP1mutation. Int J Neurosci 2014; 125:755-9. [DOI: 10.3109/00207454.2014.981749] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
41
|
Abstract
Isolated inherited dystonia-formerly referred to as primary dystonia-is characterized by abnormal motor functioning of a grossly normal appearing brain. The disease manifests as abnormal involuntary twisting movements. The absence of overt neuropathological lesions, while intriguing, has made it particularly difficult to unravel the pathogenesis of isolated inherited dystonia. The explosion of genetic techology enabling the identification of the causative gene mutations is transforming our understanding of dystonia pathogenesis, as the molecular, cellular and circuit level consequences of these mutations are identified in experimental systems. Here, I review the clinical genetics and cell biology of three forms of inherited dystonia for which the causative mutation is known: DYT1 (TOR1A), DYT6 (THAP1), DYT25 (GNAL).
Collapse
Affiliation(s)
- William Dauer
- Department of Neurology, Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109-220, USA,
| |
Collapse
|
42
|
Ortiz-Virumbrales M, Ruiz M, Hone E, Dolios G, Wang R, Morant A, Kottwitz J, Ozelius LJ, Gandy S, Ehrlich ME. Dystonia type 6 gene product Thap1: identification of a 50 kDa DNA-binding species in neuronal nuclear fractions. Acta Neuropathol Commun 2014; 2:139. [PMID: 25231164 PMCID: PMC4177242 DOI: 10.1186/s40478-014-0139-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 09/05/2014] [Indexed: 01/04/2023] Open
Abstract
Mutations in THAP1 result in dystonia type 6, with partial penetrance and variable phenotype. The goal of this study was to examine the nature and expression pattern of the protein product(s) of the Thap1 transcription factor (DYT6 gene) in mouse neurons, and to study the regional and developmental distribution, and subcellular localization of Thap1 protein. The goal was accomplished via overexpression and knock-down of Thap1 in the HEK293T cell line and in mouse striatal primary cultures and western blotting of embryonic Thap1-null tissue. The endogenous and transduced Thap1 isoforms were characterized using three different commercially available anti-Thap1 antibodies and validated by immunoprecipitation and DNA oligonucleotide affinity chromatography. We identified multiple, novel Thap1 species of apparent Mr 32 kDa, 47 kDa, and 50–52 kDa in vitro and in vivo, and verified the previously identified species at 29–30 kDa in neurons. The Thap1 species at the 50 kDa size range was exclusively detected in murine brain and testes and were located in the nuclear compartment. Thus, in addition to the predicted 25 kDa apparent Mr, we identified Thap1 species with greater apparent Mr that we speculate may be a result of posttranslational modifications. The neural localization of the 50 kDa species and its nuclear compartmentalization suggests that these may be key Thap1 species controlling neuronal gene transcription. Dysfunction of the neuronal 50 kDa species may therefore be implicated in the pathogenesis of DYT6.
Collapse
|
43
|
Tiruttani Subhramanyam UK, Kubicek J, Eidhoff UB, Labahn J. Cloning, expression, purification, crystallization and preliminary crystallographic analysis of the C-terminal domain of Par-4 (PAWR). Acta Crystallogr F Struct Biol Commun 2014; 70:1224-7. [PMID: 25195896 PMCID: PMC4157423 DOI: 10.1107/s2053230x14014691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/21/2014] [Indexed: 11/10/2022] Open
Abstract
Prostate apoptosis response-4 protein is an intrinsically disordered pro-apoptotic protein with tumour suppressor function. Par-4 is known for its selective induction of apoptosis in cancer cells only and its ability to interact with various apoptotic proteins via its C-terminus. Par-4, with its unique function and various interacting partners, has gained importance as a potential target for cancer therapy. The C-terminus of the rat homologue of Par-4 was crystallized and a 3.7 Å resolution X-ray diffraction data set was collected. Preliminary data analysis shows the space group to be P41212. The unit-cell parameters are a = b = 115.351, c = 123.663 Å, α = β = γ = 90°.
Collapse
Affiliation(s)
- Udaya Kumar Tiruttani Subhramanyam
- Centre for Structural Systems Biology (CSSB), DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jan Kubicek
- Centre for Structural Systems Biology (CSSB), DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Cube Biotech GmbH, Alfred-Nobel-Strasse 10, 40789 Monheim, Germany
| | - Ulf B. Eidhoff
- Centre for Structural Systems Biology (CSSB), DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Joerg Labahn
- Centre for Structural Systems Biology (CSSB), DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
44
|
The potential role of O-GlcNAc modification in cancer epigenetics. Cell Mol Biol Lett 2014; 19:438-60. [PMID: 25141978 PMCID: PMC6275943 DOI: 10.2478/s11658-014-0204-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 08/01/2014] [Indexed: 12/20/2022] Open
Abstract
There is no doubt that cancer is not only a genetic disease but that it can also occur due to epigenetic abnormalities. Diet and environmental factors can alter the scope of epigenetic regulation. The results of recent studies suggest that O-GlcNAcylation, which involves the addition of N-acetylglucosamine on the serine or threonine residues of proteins, may play a key role in the regulation of the epigenome in response to the metabolic status of the cell. Two enzymes are responsible for cyclic O-GlcNAcylation: O-GlcNAc transferase (OGT), which catalyzes the addition of the GlcNAc moiety to target proteins; and O-GlcNAcase (OGA), which removes the sugar moiety from proteins. Aberrant expression of O-GlcNAc cycling enzymes, especially OGT, has been found in all studied human cancers. OGT can link the cellular metabolic state and the epigenetic status of cancer cells by interacting with and modifying many epigenetic factors, such as HCF-1, TET, mSin3A, HDAC, and BAP1. A growing body of evidence from animal model systems also suggests an important role for OGT in polycomb-dependent repression of genes activity. Moreover, O-GlcNAcylation may be a part of the histone code: O-GlcNAc residues are found on all core histones.
Collapse
|
45
|
Camargo CHF, Camargos ST, Raskin S, Cardoso FEC, Teive HAG. DYT6 in Brazil: Genetic Assessment and Clinical Characteristics of Patients. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2014; 4:226. [PMID: 24757586 PMCID: PMC3992363 DOI: 10.7916/d83776rc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/11/2014] [Indexed: 12/13/2022]
Abstract
Background Several genes associated with dystonia have been identified. A mutation in one of these, THAP1 (DYT6), is linked to isolated dystonia. The aim of this study was to assess the prevalence of THAP1 gene mutations and the clinical characteristics of patients with these mutations in a clinical population in Brazil. Methods Seventy-four patients presenting with dystonia involving the cervical muscles and without mutations in the TOR1A (DYT1) gene or any other movement disorders were recruited at a movement disorders clinic between June 2008 and June 2009. All the patients underwent clinical examination and were screened for mutations of the THAP1 gene. Results Three patients had the novel p.Gln97Ter THAP1 nonsense mutation in heterozygosis. One of them had no family history of dystonia. Symptoms in this patient first appeared in his right arm, and the condition progressed to the generalized form. The other two patients belonged to the same family (cousins). Symptoms in the first patient started in her right arm at the age of 18 years and the condition progressed to the segmental form. The second patient, who carried the p.Arg169Gln missense mutation, developed dystonia in her left arm at the age of 6 years. The condition progressed to generalized dystonia. Discussion We conclude that THAP1 mutations are also a cause, albeit uncommon, of segmental and generalized dystonia in the Brazilian population.
Collapse
Affiliation(s)
- Carlos Henrique F Camargo
- Movement Disorders Unit, Neurology Service, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil ; Neurology Service, Medicine Department, Hospital Universitário, State University of Ponta Grossa, Ponta Grossa, Brazil
| | | | - Salmo Raskin
- Genetika Laboratory and Catholic University of Paraná, Curitiba, Brazil
| | | | - Hélio Afonso G Teive
- Movement Disorders Unit, Neurology Service, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
46
|
Ledoux MS, Dauer WT, Warner TT. Emerging common molecular pathways for primary dystonia. Mov Disord 2014; 28:968-81. [PMID: 23893453 DOI: 10.1002/mds.25547] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 12/23/2022] Open
Abstract
The dystonias are a group of hyperkinetic movement disorders whose principal cause is neuron dysfunction at 1 or more interconnected nodes of the motor system. The study of genes and proteins that cause familial dystonia provides critical information about the cellular pathways involved in this dysfunction, which disrupts the motor pathways at the systems level. In recent years study of the increasing number of DYT genes has implicated a number of cell functions that appear to be involved in the pathogenesis of dystonia. A review of the literature published in English-language publications available on PubMed relating to the genetics and cellular pathology of dystonia was performed. Numerous potential pathogenetic mechanisms have been identified. We describe those that fall into 3 emerging thematic groups: cell-cycle and transcriptional regulation in the nucleus, endoplasmic reticulum and nuclear envelope function, and control of synaptic function. © 2013 Movement Disorder Society.
Collapse
Affiliation(s)
- Mark S Ledoux
- Department of Neurology, University of Tennessee Health Science Center Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
47
|
Yin RH, Li Y, Yang F, Zhan YQ, Yu M, Ge CH, Xu WX, Tang LJ, Wang XH, Chen B, Yang Y, Li JJ, Li CY, Yang XM. Expansion of the polyQ repeats in THAP11 forms intranuclear aggregation and causes cell G0/G1 arrest. Cell Biol Int 2014; 38:757-67. [PMID: 24677642 DOI: 10.1002/cbin.10255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/27/2014] [Indexed: 12/31/2022]
Abstract
Polyglutamine diseases are a group of neurodegenerative disorders caused by expansion of a CAG repeat that encodes polyglutamine in each respective disease gene. The transcription factor THAP11, a member of THAP family, is involved in cell growth, ES cell pluripotency and embryogenesis. Previous studies suggest that THAP11 protein contains a 29-residue repeat polyglutamine motif and the number of polyglutamine ranges from 20 to 41 in Indian population. We have investigated the CAG numbers at the THAP11 locus in normal individuals and neurodegenerative disease patients of Chinese Han population and a 38Q expansion (THAP11(38Q)) was found in patients. Using fluorescence confocal-based cell imaging, THAP11(38Q) protein formed intranuclear inclusions easier than THAP11(29Q) in PC12 cells. Enhanced toxicity was investigated in THAP11(38Q)-expressing cells by growth inhibition and G0/G1 arrest. CREB-mediated transcription activity was inhibited by THAP11(38Q). The transcription factor, TBP, coactivator CBP, and chaperon protein, HSP70, could be recruited to THAP11(38Q). These results indicate that expansion of the polyglutamine in THAP11 forms intracellular aggregation and is toxic in PC12 cells, suggesting a putative role of THAP11 in polyglutamine disease.
Collapse
Affiliation(s)
- Rong-Hua Yin
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Vemula SR, Xiao J, Zhao Y, Bastian RW, Perlmutter JS, Racette BA, Paniello RC, Wszolek ZK, Uitti RJ, Van Gerpen JA, Hedera P, Truong DD, Blitzer A, Rudzińska M, Momčilović D, Jinnah HA, Frei K, Pfeiffer RF, LeDoux MS. A rare sequence variant in intron 1 of THAP1 is associated with primary dystonia. Mol Genet Genomic Med 2014; 2:261-72. [PMID: 24936516 PMCID: PMC4049367 DOI: 10.1002/mgg3.67] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/31/2013] [Accepted: 01/03/2014] [Indexed: 12/16/2022] Open
Abstract
Although coding variants in THAP1 have been causally associated with primary dystonia, the contribution of noncoding variants remains uncertain. Herein, we examine a previously identified Intron 1 variant (c.71+9C>A, rs200209986). Among 1672 subjects with mainly adult-onset primary dystonia, 12 harbored the variant in contrast to 1/1574 controls (P < 0.01). Dystonia classification included cervical dystonia (N = 3), laryngeal dystonia (adductor subtype, N = 3), jaw-opening oromandibular dystonia (N = 1), blepharospasm (N = 2), and unclassified (N = 3). Age of dystonia onset ranged from 25 to 69 years (mean = 54 years). In comparison to controls with no identified THAP1 sequence variants, the c.71+9C>A variant was associated with an elevated ratio of Isoform 1 (NM_018105) to Isoform 2 (NM_199003) in leukocytes. In silico and minigene analyses indicated that c.71+9C>A alters THAP1 splicing. Lymphoblastoid cells harboring the c.71+9C>A variant showed extensive apoptosis with relatively fewer cells in the G2 phase of the cell cycle. Differentially expressed genes from lymphoblastoid cells revealed that the c.71+9C>A variant exerts effects on DNA synthesis, cell growth and proliferation, cell survival, and cytotoxicity. In aggregate, these data indicate that THAP1 c.71+9C>A is a risk factor for adult-onset primary dystonia.
Collapse
Affiliation(s)
- Satya R Vemula
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, Tennessee, 38163
| | - Jianfeng Xiao
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, Tennessee, 38163
| | - Yu Zhao
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, Tennessee, 38163
| | | | - Joel S Perlmutter
- Department of Neurology, Washington University School of Medicine St. Louis, Missouri
| | - Brad A Racette
- Department of Neurology, Washington University School of Medicine St. Louis, Missouri
| | - Randal C Paniello
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine St. Louis, Missouri
| | | | - Ryan J Uitti
- Department of Neurology, Mayo Clinic Jacksonville, Florida, 32224
| | - Jay A Van Gerpen
- Department of Neurology, Mayo Clinic Jacksonville, Florida, 32224
| | - Peter Hedera
- Department of Neurology, Vanderbilt University Nashville, Tennessee
| | - Daniel D Truong
- Parkinson's & Movement Disorder Institute Fountain Valley, California, 92708
| | - Andrew Blitzer
- New York Center for Voice and Swallowing Disorders New York, New York
| | - Monika Rudzińska
- Department of Neurology, Jagiellonian University Medical College in Krakow Kraków, Poland
| | - Dragana Momčilović
- Clinic for Child Neurology and Psychiatry, Medical Faculty University of Belgrade Belgrade, Serbia
| | - Hyder A Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, School of Medicine, Emory University Atlanta, Georgia, 30322
| | - Karen Frei
- Department of Neurology, Loma Linda University Health System Loma Linda, California, 92354
| | - Ronald F Pfeiffer
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, Tennessee, 38163
| | - Mark S LeDoux
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, Tennessee, 38163
| |
Collapse
|
49
|
Goodchild RE, Grundmann K, Pisani A. New genetic insights highlight 'old' ideas on motor dysfunction in dystonia. Trends Neurosci 2013; 36:717-25. [PMID: 24144882 DOI: 10.1016/j.tins.2013.09.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 12/13/2022]
Abstract
Primary dystonia is a poorly understood but common movement disorder. Recently, several new primary dystonia genes were identified that provide new insight into dystonia pathogenesis. The GNAL dystonia gene is central for striatal responses to dopamine (DA) and is a component of a molecular pathway already implicated in DOPA-responsive dystonia (DRD). Furthermore, this pathway is also dysfunctional and pathogenically linked to mTOR signaling in L-DOPA-induced dyskinesias (LID). These new data suggest that striatal DA responses are central to primary dystonia, even when symptoms do not benefit from DA therapies. Here we integrate these new findings with current understanding of striatal microcircuitry and other dystonia-causing insults to develop new ideas on the pathophysiology of this incapacitating movement disorder.
Collapse
Affiliation(s)
- Rose E Goodchild
- Vlaams Instituut voor Biotechnologie (VIB) Centre for the Biology of Disease and KU Leuven, Department of Human Genetics, Campus Gasthuisberg, 3000 Leuven, Belgium
| | | | | |
Collapse
|
50
|
Zhang L, Xu HG, Lu C. A novel long non-coding RNA T-ALL-R-LncR1 knockdown and Par-4 cooperate to induce cellular apoptosis in T-cell acute lymphoblastic leukemia cells. Leuk Lymphoma 2013; 55:1373-82. [PMID: 23906015 DOI: 10.3109/10428194.2013.829574] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a hematologic malignancy with a poor prognosis. It has been shown that long non-coding RNA (lncRNA) plays an important role in tumorigenesis. Here, we characterized a novel lncRNA, T-ALL-R-LncR1, with whole-transcriptome deep sequencing from the Jurkat leukemic T-cell line. T-ALL-R-LncR1 was not observed in human normal tissues. However, an obvious expression was observed in some tumor tissues. T-ALL-R-LncR1 was markedly expressed in neoplastic T lymphocytes of 11 cases out of 21 children with T-ALL, indicating that T-ALL-R-LncR1 might be associated with T-ALL. T-ALL-R-LncR1 knockdown predisposed Jurkat cells to undergo pro-apoptotic factor Par-4-induced apoptosis. Further studies revealed that T-ALL-R-LncR1 knockdown facilitated the formation of a Par-4/THAP1 protein complex, resulting in the activation of caspase-3 and an increase of pro-apoptotic Smac protein in T-ALL cells. Our studies indicate a potential role of suppressing the novel long non-coding RNA T-ALL-R-LncR1 in the therapy of human T-ALL.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Pediatrics, the First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | | | | |
Collapse
|