1
|
Bogdanov KV, Merzlikina OV, Mirolyubova YV, Girshova LL, Lomaia EG, Zaritskey AY. CASC5 Gene Expression Changes Correlate with Targeted Mutations in Leukemia. Mol Biol 2021. [DOI: 10.1134/s0026893321010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Takimoto M. D40/KNL1/CASC5 and autosomal recessive primary microcephaly. Congenit Anom (Kyoto) 2017; 57:191-196. [PMID: 28901661 DOI: 10.1111/cga.12252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/04/2017] [Accepted: 09/09/2017] [Indexed: 12/30/2022]
Abstract
Autosomal recessive primary microcephaly (MCPH) is a very rare neuro-developmental disease with brain size reduction. More than a dozen loci encoding proteins of diverse function have been shown to be responsible for MCPH1-13. Mutations in the D40/KNL1/CASC5 gene, which was initially characterized as a gene involved in chromosomal translocation in leukemia and as a member of the cancer/testis gene family, was later found to encode a kinetochore protein essential for mitotic cell division and to cause MCPH4. Although our previous studies showed that this gene is required for cell growth and division in vitro and in animal experiments, the revelation that mutations in this gene caused microcephaly provides in vivo evidence of a critical role in brain growth. In this review, we describe mutated gene targets responsible for MCPH1-13 and summarize clinical studies of, and molecular and biological aspects of the gene and encoded protein responsible for MCPH4.
Collapse
Affiliation(s)
- Masato Takimoto
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Nähse V, Christ L, Stenmark H, Campsteijn C. The Abscission Checkpoint: Making It to the Final Cut. Trends Cell Biol 2016; 27:1-11. [PMID: 27810282 DOI: 10.1016/j.tcb.2016.10.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/08/2016] [Accepted: 10/11/2016] [Indexed: 12/11/2022]
Abstract
Cytokinesis is the final stage of cell division and is concluded by abscission of the intercellular bridge to physically separate the daughter cells. Timing of cytokinetic abscission is monitored by a molecular machinery termed the abscission checkpoint. This machinery delays abscission in cells with persistent chromatin in the intercellular bridge. Recent work has also uncovered its response to high membrane tension, nuclear pore defects, and DNA replication stress. Although it is known that the abscission checkpoint depends on persistent activity of the Aurora B protein kinase, we have only recently begun to understand its molecular basis. We propose here a molecular framework for abscission checkpoint signaling and we discuss outstanding questions relating to its function and physiological relevance.
Collapse
Affiliation(s)
- Viola Nähse
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Liliane Christ
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Faculty of Medicine, 7491 Trondheim, Norway.
| | - Coen Campsteijn
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway.
| |
Collapse
|
4
|
Yang JJ, Park TS, Lee ST, Seo JY, Oh SH, Cho EH, Strehl S, Mühlegger N, Dworzak MN, Zuna J, Pospisilova D, Meyer C, Marschalek R, Kim HJ, Kim SH. Molecular characterization and clinical impact of t(11;15)(q23;q14-15) MLL-CASC5 rearrangement. Haematologica 2014; 99:e11-3. [PMID: 24425691 DOI: 10.3324/haematol.2013.095638] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
5
|
ANCHR mediates Aurora-B-dependent abscission checkpoint control through retention of VPS4. Nat Cell Biol 2014; 16:550-60. [PMID: 24814515 DOI: 10.1038/ncb2959] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 04/02/2014] [Indexed: 02/07/2023]
Abstract
During the final stage of cell division, cytokinesis, the Aurora-B-dependent abscission checkpoint (NoCut) delays membrane abscission to avoid DNA damage and aneuploidy in cells with chromosome segregation defects. This arrest depends on Aurora-B-mediated phosphorylation of CHMP4C, a component of the endosomal sorting complex required for transport (ESCRT) machinery that mediates abscission, but the mechanism remains unknown. Here we describe ANCHR (Abscission/NoCut Checkpoint Regulator; ZFYVE19) as a key regulator of the abscission checkpoint, functioning through the most downstream component of the ESCRT machinery, the ATPase VPS4. In concert with CHMP4C, ANCHR associates with VPS4 at the midbody ring following DNA segregation defects to control abscission timing and prevent multinucleation in an Aurora-B-dependent manner. This association prevents VPS4 relocalization to the abscission zone and is relieved following inactivation of Aurora B to allow abscission. We propose that the abscission checkpoint is mediated by ANCHR and CHMP4C through retention of VPS4 at the midbody ring.
Collapse
|
6
|
Cerveira N, Meyer C, Santos J, Torres L, Lisboa S, Pinheiro M, Bizarro S, Correia C, Norton L, Marschalek R, Teixeira MR. A novel spliced fusion of MLL with CT45A2 in a pediatric biphenotypic acute leukemia. BMC Cancer 2010; 10:518. [PMID: 20920256 PMCID: PMC2956734 DOI: 10.1186/1471-2407-10-518] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 09/29/2010] [Indexed: 11/10/2022] Open
Abstract
Background Abnormalities of 11q23 involving the MLL gene are found in approximately 10% of human leukemias. To date, nearly 100 different chromosome bands have been described in rearrangements involving 11q23 and 64 fusion genes have been cloned and characterized at the molecular level. In this work we present the identification of a novel MLL fusion partner in a pediatric patient with de novo biphenotypic acute leukemia. Methods Cytogenetics, fluorescence in situ hybridization (FISH), molecular studies (RT-PCR and LDI-PCR), and bioinformatic sequence analysis were used to characterize the CT45A2 gene as novel MLL fusion partner in pediatric acute leukemia. Results Fluorescence in situ hybridization of bone marrow G-banded metaphases demonstrated a cryptic insertion of 11q23 in Xq26.3 involving the MLL gene. Breakpoint fusion analysis revealed that a DNA fragment of 653 kb from 11q23, containing MLL exons 1-9 in addition to 16 other 11q23 genes, was inserted into the upstream region of the CT45A2 gene located at Xq26.3. In addition, a deletion at Xq26.3 encompassing the 3' region of the DDX26B gene (exons 9-16) and the entire CT45A1 gene was identified. RNA analysis revealed the presence of a novel MLL-CT45A2 fusion transcript in which the first 9 exons of the MLL gene were fused in-frame to exon 2 of the CT45A2 gene, resulting in a spliced MLL fusion transcript with an intact open reading frame. The resulting chimeric transcript predicts a fusion protein where the N-terminus of MLL is fused to the entire open reading frame of CT45A2. Finally, we demonstrate that all breakpoint regions are rich in long repetitive motifs, namely LINE/L1 and SINE/Alu sequences, but all breakpoints were exclusively identified outside these repetitive DNA sequences. Conclusion We have identified CT45A2 as a novel spliced MLL fusion partner in a pediatric patient with de novo biphenotypic acute leukemia, as a result of a cryptic insertion of 11q23 in Xq26.3. Since CT45A2 is the first Cancer/Testis antigen family gene found fused with MLL in acute leukemia, future studies addressing its biologic relevance for leukemogenesis are warranted.
Collapse
Affiliation(s)
- Nuno Cerveira
- Department of Genetics of the Portuguese Oncology Institute, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Marina O, Hainz U, Biernacki MA, Zhang W, Cai A, Duke-Cohan JS, Liu F, Brusic V, Neuberg D, Kutok JL, Alyea EP, Canning CM, Soiffer RJ, Ritz J, Wu CJ. Serologic markers of effective tumor immunity against chronic lymphocytic leukemia include nonmutated B-cell antigens. Cancer Res 2010; 70:1344-55. [PMID: 20124481 PMCID: PMC2852266 DOI: 10.1158/0008-5472.can-09-3143] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Patients with chronic lymphocytic leukemia (CLL) who relapse after allogeneic transplant may achieve durable remission following donor lymphocyte infusion (DLI), showing the potency of donor-derived immunity in eradicating tumors. We sought to elucidate the antigenic basis of the effective graft-versus-leukemia (GvL) responses associated with DLI for the treatment of CLL by analyzing the specificity of plasma antibody responses developing in two DLI-treated patients who achieved long-term remission without graft-versus-host disease. By probing high-density protein microarrays with patient plasma, we discovered 35 predominantly intracellular antigens that elicited high-titer antibody reactivity greater in post-DLI than in pre-DLI plasma. Three antigens-C6orf130, MDS032, and ZFYVE19-were identified by both patients. Along with additional candidate antigens DAPK3, SERBP1, and OGFOD1, these proteins showed higher transcript and protein expression in B cells and CLL cells compared with normal peripheral blood mononuclear cells. DAPK3 and the shared antigens do not represent minor histocompatibility antigens, as their sequences are identical in both donor and tumor. Although ZFYVE19, DAPK3, and OGFOD1 elicited minimal antibody reactivity in 12 normal subjects and 12 chemotherapy-treated CLL patients, 5 of 12 CLL patients with clinical GvL responses were serologically reactive to these antigens. Moreover, antibody reactivity against these antigens was temporally correlated with clinical disease regression. These B-cell antigens represent promising biomarkers of effective anti-CLL immunity.
Collapse
MESH Headings
- Antigens, Surface/analysis
- Antigens, Surface/blood
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Bone Marrow Transplantation/immunology
- Cell Lineage/immunology
- Female
- Humans
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Immunodominant Epitopes/analysis
- Immunodominant Epitopes/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Male
- Middle Aged
- Mutation/physiology
- Prognosis
- Protein Array Analysis
- Treatment Outcome
Collapse
Affiliation(s)
- Ovidiu Marina
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston MA
- William Beaumont Hospital, Transitional Year Program, Royal Oak, MI
| | - Ursula Hainz
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA
| | - Melinda A. Biernacki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA
- University of Connecticut School of Medicine, Farmington, CT
| | - Wandi Zhang
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston MA
| | - Ann Cai
- Harvard Medical School, Boston MA
| | - Jonathan S. Duke-Cohan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA
- Harvard Medical School, Boston MA
| | - Fenglong Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston MA
| | - Vladimir Brusic
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston MA
| | - Donna Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston MA
| | - Jeffery L. Kutok
- Harvard Medical School, Boston MA
- Department of Pathology, Brigham and Women’s Hospital, Boston MA
| | - Edwin P. Alyea
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA
- Harvard Medical School, Boston MA
- Department of Medicine, Brigham and Women's Hospital, Boston MA
| | - Christine M. Canning
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA
| | - Robert J. Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA
- Harvard Medical School, Boston MA
- Department of Medicine, Brigham and Women's Hospital, Boston MA
| | - Jerome Ritz
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA
- Harvard Medical School, Boston MA
- Department of Medicine, Brigham and Women's Hospital, Boston MA
| | - Catherine J. Wu
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA
- Harvard Medical School, Boston MA
- Department of Medicine, Brigham and Women's Hospital, Boston MA
| |
Collapse
|
8
|
Antoniou AC, Sinilnikova OM, Simard J, Léoné M, Dumont M, Neuhausen SL, Struewing JP, Stoppa-Lyonnet D, Barjhoux L, Hughes DJ, Coupier I, Belotti M, Lasset C, Bonadona V, Bignon YJ, Rebbeck TR, Wagner T, Lynch HT, Domchek SM, Nathanson KL, Garber JE, Weitzel J, Narod SA, Tomlinson G, Olopade OI, Godwin A, Isaacs C, Jakubowska A, Lubinski J, Gronwald J, Górski B, Byrski T, Huzarski T, Peock S, Cook M, Baynes C, Murray A, Rogers M, Daly PA, Dorkins H, Schmutzler RK, Versmold B, Engel C, Meindl A, Arnold N, Niederacher D, Deissler H, Spurdle AB, Chen X, Waddell N, Cloonan N, Kirchhoff T, Offit K, Friedman E, Kaufmann B, Laitman Y, Galore G, Rennert G, Lejbkowicz F, Raskin L, Andrulis IL, Ilyushik E, Ozcelik H, Devilee P, Vreeswijk MPG, Greene MH, Prindiville SA, Osorio A, Benitez J, Zikan M, Szabo CI, Kilpivaara O, Nevanlinna H, Hamann U, Durocher F, Arason A, Couch FJ, Easton DF, Chenevix-Trench G. RAD51 135G-->C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. Am J Hum Genet 2007; 81:1186-200. [PMID: 17999359 DOI: 10.1086/522611] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 08/02/2007] [Indexed: 01/12/2023] Open
Abstract
RAD51 is an important component of double-stranded DNA-repair mechanisms that interacts with both BRCA1 and BRCA2. A single-nucleotide polymorphism (SNP) in the 5' untranslated region (UTR) of RAD51, 135G-->C, has been suggested as a possible modifier of breast cancer risk in BRCA1 and BRCA2 mutation carriers. We pooled genotype data for 8,512 female mutation carriers from 19 studies for the RAD51 135G-->C SNP. We found evidence of an increased breast cancer risk in CC homozygotes (hazard ratio [HR] 1.92 [95% confidence interval {CI} 1.25-2.94) but not in heterozygotes (HR 0.95 [95% CI 0.83-1.07]; P=.002, by heterogeneity test with 2 degrees of freedom [df]). When BRCA1 and BRCA2 mutation carriers were analyzed separately, the increased risk was statistically significant only among BRCA2 mutation carriers, in whom we observed HRs of 1.17 (95% CI 0.91-1.51) among heterozygotes and 3.18 (95% CI 1.39-7.27) among rare homozygotes (P=.0007, by heterogeneity test with 2 df). In addition, we determined that the 135G-->C variant affects RAD51 splicing within the 5' UTR. Thus, 135G-->C may modify the risk of breast cancer in BRCA2 mutation carriers by altering the expression of RAD51. RAD51 is the first gene to be reliably identified as a modifier of risk among BRCA1/2 mutation carriers.
Collapse
Affiliation(s)
- Antonis C Antoniou
- Cancer Research UK, Genetic Epidemiology Unit, Strangeways Research Laboratory, Cambridge, CB1 8RN, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Genome-scale RNAi profiling of cell division in human tissue culture cells. Nat Cell Biol 2007; 9:1401-12. [PMID: 17994010 DOI: 10.1038/ncb1659] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 10/09/2007] [Indexed: 11/08/2022]
Abstract
Cell division is fundamental for all organisms. Here we report a genome-scale RNA-mediated interference screen in HeLa cells designed to identify human genes that are important for cell division. We have used a library of endoribonuclease-prepared short interfering RNAs for gene silencing and have used DNA content analysis to identify genes that induced cell cycle arrest or altered ploidy on silencing. Validation and secondary assays were performed to generate a nine-parameter loss-of-function phenoprint for each of the genes. These phenotypic signatures allowed the assignment of genes to specific functional classes by combining hierarchical clustering, cross-species analysis and proteomic data mining. We highlight the richness of our dataset by ascribing novel functions to genes in mitosis and cytokinesis. In particular, we identify two evolutionarily conserved transcriptional regulatory networks that govern cytokinesis. Our work provides an experimental framework from which the systematic analysis of novel genes necessary for cell division in human cells can begin.
Collapse
|
10
|
Meyer C, Burmeister T, Strehl S, Schneider B, Hubert D, Zach O, Haas O, Klingebiel T, Dingermann T, Marschalek R. Spliced MLL fusions: a novel mechanism to generate functional chimeric MLL-MLLT1 transcripts in t(11;19)(q23;p13.3) leukemia. Leukemia 2007; 21:588-90. [PMID: 17252016 DOI: 10.1038/sj.leu.2404542] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
MESH Headings
- Acute Disease
- Adult
- Animals
- Child
- Chromosome Breakage
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 11/ultrastructure
- Chromosomes, Human, Pair 19/genetics
- Chromosomes, Human, Pair 19/ultrastructure
- DNA, Neoplasm/genetics
- Exons/genetics
- Histone-Lysine N-Methyltransferase
- Humans
- Introns/genetics
- Leukemia/genetics
- Mice
- Myeloid-Lymphoid Leukemia Protein/chemistry
- Myeloid-Lymphoid Leukemia Protein/genetics
- Neoplasm Proteins/genetics
- Nuclear Proteins/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Trans-Splicing/genetics
- Transcription Factors/genetics
- Transcription, Genetic
- Translocation, Genetic/genetics
Collapse
|
11
|
Sherif ZA, Danielsen M. Balanced t(11;15)(q23;q15) in a TP53+/+ breast cancer patient from a Li–Fraumeni syndrome family. ACTA ACUST UNITED AC 2006; 168:50-8. [PMID: 1677212 DOI: 10.1016/j.cancergencyto.2005.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 12/07/2005] [Accepted: 12/15/2005] [Indexed: 02/05/2023]
Abstract
Li-Fraumeni Syndrome (LFS) is characterized by early-onset carcinogenesis involving multiple tumor types and shows autosomal dominant inheritance. Approximately 70% of LFS cases are due to germline mutations in the TP53 gene on chromosome 17p13.1. Mutations have also been found in the CHEK2 gene on chromosome 22q11, and others have been mapped to chromosome 11q23. While characterizing an LFS family with a documented defect in TP53, we found one family member who developed bilateral breast cancer at age 37 yet was homozygous for wild-type TP53. Her mother also developed early-onset primary bilateral breast cancer, and a sister had unilateral breast cancer and a soft tissue sarcoma. Cytogenetic analysis using fluorescence in situ hybridization of a primary skin fibroblast cell line revealed that the patient had a novel balanced reciprocal translocation between the long arms of chromosomes 11 and 15: t(11;15)(q23;q15). This translocation was not present in a primary skin fibroblast cell line from a brother with neuroblastoma, who was heterozygous for the TP53 mutation. There was no evidence of acute lymphoblastic leukemia in either the patient or her mother, although a nephew did develop leukemia and died in childhood. These data may implicate the region at breakpoint 11q23 and/or 15q15 as playing a significant role in predisposition to breast cancer development.
Collapse
Affiliation(s)
- Zaki A Sherif
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Basic Science Building, Rm. 337, 3900 Reservoir Road, NW, Washington, DC 20057, USA.
| | | |
Collapse
|
12
|
Cerveira N, Correia C, Bizarro S, Pinto C, Lisboa S, Mariz JM, Marques M, Teixeira MR. SEPT2 is a new fusion partner of MLL in acute myeloid leukemia with t(2;11)(q37;q23). Oncogene 2006; 25:6147-52. [PMID: 16682951 DOI: 10.1038/sj.onc.1209626] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have identified a new mixed lineage leukemia (MLL) gene fusion partner in a patient with treatment-related acute myeloid leukemia (AML) presenting a t(2;11)(q37;q23) as the only cytogenetic abnormality. Fluorescence in situ hybridization demonstrated a rearrangement of the MLL gene and molecular genetic analyses identified a septin family gene, SEPT2, located on chromosome 2q37, as the fusion partner of MLL. RNA and DNA analyses showed the existence of an in-frame fusion of MLL exon 7 with SEPT2 exon 3, with the genomic breakpoints located in intron 7 and 2 of MLL and SEPT2, respectively. Search for DNA sequence motifs revealed the existence of two sequences with 94.4% homology with the topoisomerase II consensus cleavage site in MLL intron 7 and SEPT2 intron 2. SEPT2 is the fifth septin family gene fused with MLL, making this gene family the most frequently involved in MLL-related AML (about 10% of all known fusion partners). The protein encoded by SEPT2 is highly homologous to septins 1, 4 and 5 and is involved in the coordination of several key steps of mitosis. Further studies are warranted to understand why the septin protein family is particularly involved in the pathogenesis of MLL-associated leukemia.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 2
- DNA, Neoplasm
- Exons
- Female
- Histone-Lysine N-Methyltransferase
- Humans
- In Situ Hybridization, Fluorescence
- Karyotyping
- Leukemia, Myeloid/chemically induced
- Leukemia, Myeloid/genetics
- Middle Aged
- Molecular Sequence Data
- Myeloid-Lymphoid Leukemia Protein/genetics
- Phosphoric Monoester Hydrolases/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Translocation, Genetic
Collapse
Affiliation(s)
- N Cerveira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Taki T, Akiyama M, Saito S, Ono R, Taniwaki M, Kato Y, Yuza Y, Eto Y, Hayashi Y. The MYO1F, unconventional myosin type 1F, gene is fused to MLL in infant acute monocytic leukemia with a complex translocation involving chromosomes 7, 11, 19 and 22. Oncogene 2005; 24:5191-7. [PMID: 15897884 DOI: 10.1038/sj.onc.1208711] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We analysed a complex translocation involving chromosomes 7, 11, 19 and 22 in infant acute monocytic leukemia, and identified that the MLL gene on 11q23 was fused to the unconventional myosin type 1F, MYO1F, gene on 19p13.2-13.3. MYO1F consists of at least 28 exons and was predicted to encode a 1098-amino-acid with an N-terminal head domain containing both ATP-binding and actin-binding sequences, a neck domain with a single IQ motif, and a tail with TH1, TH2 and SH3 domains. Northern blot analysis of RNAs prepared from multiple tissues showed that the expression of approximately 4-kb transcripts appeared constant in most tissues examined. However, MYO1F was expressed in only three of 22 leukemic cell lines. The MLL-MYO1F fusion protein contains almost the entire MYO1F, however, C-terminal MYO1F has neither the transactivation domain nor the dimerization domain found in various MLL fusion partners. Further analysis of this novel type of MLL fusion protein would provide new insights into leukemogenesis. MYO1F is the fourth partner gene of MLL on 19p13. At the cytogenetic level, it may be difficult to distinguish MLL-ENL, MLL-ELL, MLL-EEN and MLL-MYO1F fusions created by t(11;19)(q23;p13), and it is likely that cases of t(11;19) lacking a known fusion gene may result in this gene fusion.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Cell Line, Tumor
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 19
- Chromosomes, Human, Pair 22
- Chromosomes, Human, Pair 7
- DNA-Binding Proteins/genetics
- Female
- Gene Rearrangement
- Histone-Lysine N-Methyltransferase
- Humans
- Infant
- Leukemia, Monocytic, Acute/genetics
- Molecular Sequence Data
- Myeloid-Lymphoid Leukemia Protein
- Myosin Type I/genetics
- Proto-Oncogenes/genetics
- Transcription Factors/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Tomohiko Taki
- Department of Molecular Laboratory Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, 465 Kajii-cho Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sasao T, Itoh N, Takano H, Watanabe S, Wei G, Tsukamoto T, Kuzumaki N, Takimoto M. The protein encoded by cancer/testis gene D40/AF15q14 is localized in spermatocytes, acrosomes of spermatids and ejaculated spermatozoa. Reproduction 2004; 128:709-16. [PMID: 15579588 DOI: 10.1530/rep.1.00312] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have previously identified and cloned a human gene, D40, that is preferentially expressed in testis among normal organs, while it is widely expressed in various human tumor cell lines and primary tumors derived from different organs. In this report, we have examined the expression and localization of this protein in human testis with an antibody specific to D40 protein. In Western analyses, the anti-D40 antibody recognized a major band with a molecular mass of 300 kDa and a minor band of 250 kDa. These bands were not observed in the testis lysates from patients with Sertoli-cell-only syndrome and with Kleinfelter syndrome, who lack germ cells of the testis, indicating that D40 protein is expressed in the germ cells of normal testis. Immunohistochemical studies have revealed that D40 protein is highly expressed in spermatocytes and in the pre-acrosome of round spermatids. In the acrosome, D40 protein expression is observed not inside but outside the acrosome membrane. This is consistent with the finding that the amino-acid sequence at the amino terminal of the D40 protein lacks a hydrophobic signal peptide that is required for proteins to translocate to the membrane. Expression of D40 protein is observed in the acrosome of ejaculated spermatozoa as well, although the level is low compared with that in the pre-acrosome of spermatids. These results suggest that D40 protein plays important roles in spermatogenesis, especially in the formation and maintenance of the acrosome.
Collapse
Affiliation(s)
- Takumi Sasao
- Division of Cancer Gene Regulation, Research Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkiaido 060-0815, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Mitterbauer-Hohendanner G, Mannhalter C. The biological and clinical significance of MLL abnormalities in haematological malignancies. Eur J Clin Invest 2004; 34 Suppl 2:12-24. [PMID: 15291802 DOI: 10.1111/j.0960-135x.2004.01366.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The MLL (Mixed Lineage Leukaemia or Myeloid/Lymphoid Leukaemia) gene on chromosome 11q23 is frequently involved in chromosomal translocations associated with human acute leukaemias. These translocations lead to fusion genes generally resulting in novel chimeric proteins containing the amino terminus of MLL fused in-frame to one of about 30 distinct partner proteins. Abnormalities involving the MLL gene are observed in leukaemias of either lymphoid or myeloid lineage derivation, as well as in poorly differentiated or biphenotypic leukaemias. They are frequently seen in infant patients, and patients with therapy-related secondary AML following treatment with inhibitors of topoisomerase II (epipodophyllotoxins). In the majority of cases, abnormalities involving the MLL gene are associated with a very poor prognostic outcome. In this review, we will discuss some of the recent advances in MLL research resulting from biological as well as clinical studies.
Collapse
Affiliation(s)
- G Mitterbauer-Hohendanner
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Vienna, Austria.
| | | |
Collapse
|
16
|
Kuefer MU, Chinwalla V, Zeleznik-Le NJ, Behm FG, Naeve CW, Rakestraw KM, Mukatira ST, Raimondi SC, Morris SW. Characterization of the MLL partner gene AF15q14 involved in t(11;15)(q23;q14). Oncogene 2003; 22:1418-24. [PMID: 12618768 DOI: 10.1038/sj.onc.1206272] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Translocations interrupting the mixed lineage leukemia gene (MLL) occur in 7-10% of acute lymphoblastic leukemia (ALL) and 5-6% of acute myeloid leukemia (AML) cases. One of these translocations, t(11;15)(q23;q14), occurs rarely in both ALL and AML. The gene on chromosome 15, AF15q14, was cloned recently in a patient with AML-M4. We have identified the same gene in a de novo T-ALL patient. However, both the MLL and AF15q14 breakpoints in these patients differed: in the previously reported AML-M4, both gene breaks were within exons, while in our ALL case the MLL break is intronic and the AF15q14 break is exonic. The MLL-AF15q14 fusion described previously shares no AF15q14 residues in common with the chimera reported here. The fusion proteins also differ with respect to MLL--the previously described fusion contains 55 extra amino acids as its MLL break is in exon 11, while the chimera we report breaks in intron 9. Contrary to the originally described normal AF15q14 (5925-bp cDNA encoding a 1833-aa protein), we identify a 7542-bp cDNA and a 2342-aa AF15q14 protein. AF15q14 appears identical to an mRNA previously found to be expressed in melanoma rendered nontumorigenic by microcell-mediated introduction of normal chromosome 6, suggesting the gene may function normally to suppress cell growth and/or enhance maturation.
Collapse
MESH Headings
- Amino Acid Sequence
- Carrier Proteins
- Chromosome Breakage
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 11/ultrastructure
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 15/ultrastructure
- Chromosomes, Human, Pair 6/genetics
- Genetic Complementation Test
- Hematopoiesis/genetics
- Humans
- Introns/genetics
- Leukemia, Myelomonocytic, Acute/genetics
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Melanoma/genetics
- Melanoma/pathology
- Microtubule-Associated Proteins
- Molecular Sequence Data
- Myeloid-Lymphoid Leukemia Protein
- Oncogene Proteins, Fusion/genetics
- Proteins/genetics
- Proteins/physiology
- RNA, Messenger/genetics
- Translocation, Genetic/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Martin U Kuefer
- Landratsamt Ostallgäu, Abteilung Gesundheitswesen, Marktoberdorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|