1
|
Wang JZ, Landry AP, Raleigh DR, Sahm F, Walsh KM, Goldbrunner R, Yefet LS, Tonn JC, Gui C, Ostrom QT, Barnholtz-Sloan J, Perry A, Ellenbogen Y, Hanemann CO, Jungwirth G, Jenkinson MD, Tabatabai G, Mathiesen TI, McDermott MW, Tatagiba M, la Fougère C, Maas SLN, Galldiks N, Albert NL, Brastianos PK, Ehret F, Minniti G, Lamszus K, Ricklefs FL, Schittenhelm J, Drummond KJ, Dunn IF, Pathmanaban ON, Cohen-Gadol AA, Sulman EP, Tabouret E, Le Rhun E, Mawrin C, Moliterno J, Weller M, Bi W(L, Gao A, Yip S, Niyazi M, Aldape K, Wen PY, Short S, Preusser M, Nassiri F, Zadeh G. Meningioma: International Consortium on Meningiomas consensus review on scientific advances and treatment paradigms for clinicians, researchers, and patients. Neuro Oncol 2024; 26:1742-1780. [PMID: 38695575 PMCID: PMC11449035 DOI: 10.1093/neuonc/noae082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Meningiomas are the most common primary intracranial tumors in adults and are increasing in incidence due to the aging population and increased access to neuroimaging. While most exhibit nonmalignant behavior, a subset of meningiomas are biologically aggressive and are associated with treatment resistance, resulting in significant neurologic morbidity and even mortality. In recent years, meaningful advances in our understanding of the biology of these tumors have led to the incorporation of molecular biomarkers into their grading and prognostication. However, unlike other central nervous system (CNS) tumors, a unified molecular taxonomy for meningiomas has not yet been established and remains an overarching goal of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy-Not Official World Health Organization (cIMPACT-NOW) working group. Additionally, clinical equipoise still remains on how specific meningioma cases and patient populations should be optimally managed. To address these existing gaps, members of the International Consortium on Meningiomas including field-leading experts, have prepared this comprehensive consensus narrative review directed toward clinicians, researchers, and patients. Included in this manuscript are detailed overviews of proposed molecular classifications, novel biomarkers, contemporary treatment strategies, trials on systemic therapies, health-related quality-of-life studies, and management strategies for unique meningioma patient populations. In each section, we discuss the current state of knowledge as well as ongoing clinical and research challenges to road map future directions for further investigation.
Collapse
Affiliation(s)
- Justin Z Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Alexander P Landry
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - David R Raleigh
- Department of Radiation Oncology, Neurological Surgery, and Pathology, University of California San Francisco, San Francisco, California, USA
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg and German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kyle M Walsh
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Roland Goldbrunner
- Center of Neurosurgery, Department of General Neurosurgery, University of Cologne, Cologne, Germany
| | - Leeor S Yefet
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Jörg C Tonn
- Department of Neurosurgery, University Hospital Munich LMU, Munich, Germany
| | - Chloe Gui
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Quinn T Ostrom
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Central Brain Tumor Registry of the United States, Hinsdale, Illinois, USA
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Jill Barnholtz-Sloan
- Center for Biomedical Informatics & Information Technology (CBIIT), National Cancer Institute, Bethesda, Maryland, USA
- Trans Divisional Research Program (TDRP), Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, Bethesda, Maryland, USA
- Central Brain Tumor Registry of the United States, Hinsdale, Illinois, USA
| | - Arie Perry
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Yosef Ellenbogen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - C Oliver Hanemann
- Peninsula Schools of Medicine, University of Plymouth University, Plymouth, UK
| | - Gerhard Jungwirth
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University, Heidelberg, Germany
| | - Michael D Jenkinson
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
- Institute of Translational Medicine, University of Liverpool, UK
| | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Tiit I Mathiesen
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael W McDermott
- Division of Neuroscience, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
- Miami Neuroscience Institute, Baptist Health of South Florida, Miami, Florida, USA
| | - Marcos Tatagiba
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Christian la Fougère
- Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tübingen, Germany
- Cluster of Excellence (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sybren L N Maas
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (IMN-3), Research Center Juelich, Juelich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany
| | - Priscilla K Brastianos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Felix Ehret
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Katrin Lamszus
- Laboratory for Brain Tumor Biology, University Hospital Eppendorf, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, University Hospital Tübingen, Eberhard-Karls-University Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Katharine J Drummond
- Department of Neurosurgery, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Ian F Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Omar N Pathmanaban
- Division of Neuroscience and Experimental Psychology, Manchester Centre for Clinical Neurosciences, Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
| | - Aaron A Cohen-Gadol
- Department of Neurological Surgery, Indiana University, Indianapolis, Indiana, USA
| | - Erik P Sulman
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York, USA
| | - Emeline Tabouret
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille University, Marseille, France
| | - Emelie Le Rhun
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Christian Mawrin
- Department of Neuropathology, University Hospital Magdeburg, Magdeburg, Germany
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Wenya (Linda) Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew Gao
- Department of Laboratory Medicine and Pathobiology, University Health Network, Toronto, Ontario, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Radiation Oncology, University Hospital, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Maximilian Niyazi
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | | | - Kenneth Aldape
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Patrick Y Wen
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Short
- Leeds Institute of Medical Research, St James’s University Hospital, Leeds, UK
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Farshad Nassiri
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Tomanelli M, Florio T, Vargas GC, Pagano A, Modesto P. Domestic Animal Models of Central Nervous System Tumors: Focus on Meningiomas. Life (Basel) 2023; 13:2284. [PMID: 38137885 PMCID: PMC10744527 DOI: 10.3390/life13122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023] Open
Abstract
Intracranial primary tumors (IPTs) are aggressive forms of malignancies that cause high mortality in both humans and domestic animals. Meningiomas are frequent adult IPTs in humans, dogs, and cats, and both benign and malignant forms cause a decrease in life quality and survival. Surgery is the primary therapeutic approach to treat meningiomas, but, in many cases, it is not resolutive. The chemotherapy and targeted therapy used to treat meningiomas also display low efficacy and many side effects. Therefore, it is essential to find novel pharmacological approaches to increase the spectrum of therapeutic options for meningiomas. This review analyzes the similarities between human and domestic animal (dogs and cats) meningiomas by evaluating the molecular and histological characteristics, diagnosis criteria, and treatment options and highlighting possible research areas to identify novel targets and pharmacological approaches, which are useful for the diagnosis and therapy of this neoplasia to be used in human and veterinary medicine.
Collapse
Affiliation(s)
- Michele Tomanelli
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
| | - Tullio Florio
- Pharmacology Section, Department of Internal Medicine (DIMI), University of Genova, 16126 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Gabriela Coronel Vargas
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
| | - Aldo Pagano
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Paola Modesto
- National Reference Center for Veterinary and Comparative Oncology, Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Torino, Italy
| |
Collapse
|
3
|
Fei T, Zhou EC, Wang XJ. FOXD2 regulations IQGAP3 mediated Ca 2+ signaling pathway to facilitate gastric adenocarcinoma cell promotion. Kaohsiung J Med Sci 2023; 39:1087-1095. [PMID: 37724892 DOI: 10.1002/kjm2.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
As a transcriptional factor, the Forkhead box (FOX) gene family is closely connected with apoptosis, proliferation, and other cellular processes. FOXD2, as one descendant of the FOX gene family, has been mentioned in many articles to show a high expression in several cancers. However, whether FOXD2 has a connection with gastric adenocarcinoma remains an unanswered question. Expression of FOXD2 and IQGAP3 in gastric adenocarcinoma was evaluated by bioinformatics analysis, which was further detected by real-time quantitative PCR (qRT-PCR) and western blot. The downstream target genes of FOXD2 were also mined by bioinformatics analysis. Pathway enrichment analysis was then performed on the target genes. Chromatin immunoprecipitation assay (ChIP) and dual-luciferase reporter assay were conducted to validate the regulatory relationship between FOXD2 and its downstream target gene IQGAP3. Methyl thiazolyl tetrazolium assay (MTT), combined with cell colony formation assay, was employed to assess the effect of FOXD2 and IQGAP3 on the proliferation of gastric adenocarcinoma cells. Intracytoplasmic Ca2+ concentration was measured by Fluo-3 fluorescence staining. FOXD2 showed a high expression in gastric adenocarcinoma tissues and cells, and FOXD2 silencing considerably attenuated gastric adenocarcinoma cell proliferation. IQGAP3, a downstream target gene of FOXD2, had a positive connection with the expression of FOXD2. The binding relationship between FOXD2 and the promoter region of IQGAP3 was further verified by ChIP and dual-luciferase reporter assays. The results of cell function experiments indicated that FOXD2 could promote gastric adenocarcinoma cell proliferation by transcriptionally activating IQGAP3 to induce an increase in intracellular Ca2+ level. This study confirmed that FOXD2 increased intracellular Ca2+ level through transcriptional activation of IQGAP3, which in turn propelled the proliferation of gastric adenocarcinoma cells, revealing the considerable significance of FOXD2 in the development of gastric adenocarcinoma.
Collapse
Affiliation(s)
- Ting Fei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - En-Cheng Zhou
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiao-Jun Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
4
|
Tsitsikov EN, Hameed S, Tavakol SA, Stephens TM, Tsytsykova AV, Garman L, Bi WL, Dunn IF. Specific gene expression signatures of low grade meningiomas. Front Oncol 2023; 13:1126550. [PMID: 36937440 PMCID: PMC10016690 DOI: 10.3389/fonc.2023.1126550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/10/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction Meningiomas are the most common primary central nervous system (CNS) tumors in adults, representing approximately one-third of all primary adult CNS tumors. Although several recent publications have proposed alternative grading systems of meningiomas that incorporate genomic and/or epigenomic data to better predict meningioma recurrence and progression-free survival, our understanding of driving forces of meningioma development is still limited. Objective To define gene expression signatures of the most common subtypes of meningiomas to better understand cellular processes and signaling pathways specific for each tumor genotype. Methods We used RNA sequencing (RNA-seq) to determine whole transcriptome profiles of twenty meningiomas with genomic alterations including NF2 inactivation, loss of chr1p, and missense mutations in TRAF7, AKT1 and KLF4. Results The analysis revealed that meningiomas with NF2 gene inactivation expressed higher levels of BCL2 and GLI1 compared with tumors harboring TRAF7 missense mutations. Moreover, NF2 meningiomas were subdivided into two distinct groups based on additional loss of chr1p. NF2 tumors with intact chr1p were characterized by the high expression of tumor suppressor PTCH2 compared to NF2 tumors with chr1p loss. Taken together with the high expression of BCL2 and GLI1, these results suggest that activation of Sonic Hedgehog pathway may contribute to NF2 meningioma development. In contrast, NF2 tumors with chr1p loss expressed high levels of transcription factor FOXD3 and its antisense RNA FOXD3-AS1. Examination of TRAF7 tumors demonstrated that TRAF7 regulates a number of biomechanically responsive genes (KRT6a, KRT16, IL1RL1, and AQP3 among others). Interestingly, AKT1 and KLF4 meningiomas expressed genes specific for PI3K/AKT signaling pathway, suggesting overlapping gene signatures between the two subtypes. In addition, KLF4 meningiomas had high expression of carcinoembryonic antigen family members CEACAM6 and CEACAM5. Conclusions Each group of meningiomas displayed a unique gene expression signature suggesting signaling pathways potentially implicated in tumorigenesis. These findings will improve our understanding of meningioma tumorigenesis and prognosis.
Collapse
Affiliation(s)
- Erdyni N. Tsitsikov
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Sanaa Hameed
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Sherwin A. Tavakol
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Tressie M. Stephens
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Alla V. Tsytsykova
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Lori Garman
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Ian F. Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- *Correspondence: Ian F. Dunn,
| |
Collapse
|
5
|
Genome-wide association study identified INSC gene associated with Trail Making Test Part A and Alzheimer's disease related cognitive phenotypes. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110393. [PMID: 34224794 DOI: 10.1016/j.pnpbp.2021.110393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND The Trail Making Test (TMT) Part A (TMT-A) is a good measure of performance on cognitive processing speed. This study aimed to perform a genome-wide association study of TMT-A in Alzheimer's disease (AD). METHODS A total of 757 individuals with TMT-A phenotypes and 620,901 single nucleotide polymorphisms (SNPs) were extracted from the Alzheimer's Disease Neuroimaging Initiative 1 (ADNI-1) cohort. AD related cognitive phenotypes include TMT-A, TMT-B, Functional Activities Questionnaire (FAQ), Clinical Dementia Rating Sum of Boxes (CDR-SB), and Alzheimer's Disease Assessment Scale-Cognitive Subscale 13 (ADAS13). Multivariable linear regression analysis of TMT-A was conducted using PLINK software. The most TMT-A associated gene was tested with Color Trails Test 1 Form A (CTTA), a culturally fair analog of the TMT-A. Functional annotation of SNPs was performed using the RegulomeDB and Genotype-Tissue Expression (GTEx) databases. RESULTS The best signal with TMT-A was rs1108010 (p = 4.34 × 10-8) at 11p15.2 within INSC gene, which was also associated with TMT-B, FAQ, CDR-SB, and ADAS13 (p = 2.47 × 10-4, 8.56 × 10-3, 0.0127 and 0.0188, respectively). Furthermore, suggestive loci were identified such as FOXD2 and CLTA with TMT-A, GBP1/GBP3 with TMT-B, GRIK2 with FAQ, BAALC and CCDC146 with CDR-SB, BAALC and NKAIN2 with ADAS13. Additionally, the best SNP within INSC associated with CTTA was rs7931705 (p = 6.15 × 10-5). Several SNPs had significant eQTLs using GTEx. CONCLUSIONS We identified several genes/loci associated with TMT-A and AD related phenotypes. These findings offer the potential for new insights into the pathogenesis of cognitive function and Alzheimer's disease.
Collapse
|
6
|
DNA repair and cell synthesis proteins: immunohistochemical expression and correlation with recurrence-regrowth in meningiomas. J Mol Histol 2020; 51:411-420. [PMID: 32617895 DOI: 10.1007/s10735-020-09892-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/25/2020] [Indexed: 10/23/2022]
Abstract
Meningiomas are considered the second most common neoplasm of the central nervous system in adults. Most of them are benign with slow growth, frequent in women and with a high recurrence rate. In tumors, DNA error repair processes lose efficacy, providing mutagenesis and genomic instability. This work evaluated the expression of proteins involved in cell synthesis (cyclin D1) and DNA errors repair (MUTYH, XPF, XPG) in meningiomas, relating them to clinical, tumor and survival variables. The study included 85 patients, with a mean age of 52 ± 13.3 years and most of them women (2:1 ratio). Sixty-seven cases were grade I (79%). Grade II tumors were independent predictors of recurrence-regrowth (HR: 2.8; p = 0.038). The high expression of cyclin D1 was associated with grade II (p = 0.001) and low MUTYH expression with grade I (p = 0.04). Strong expression of XPF and XPG was associated with grade II (p = 0.002; p < 0.001) and with recurrence-regrowth (p = 0.04; p = 0.003). Strong XPF expression was significantly related to large tumors (p = 0.03). An association of cyclin D1, MUTYH and XPF were found. Survival was not associated with the expression of any of the proteins studied. To know the role of DNA repair proteins and cell synthesis is important for understanding the processes of origin and tumor development. Grade II meningiomas and strong expression of XPF and XPG were predictors of recurrence or regrowth and may assist in clinical management, considering the high recurrence of meningiomas and the absence of consensus regarding treatment.
Collapse
|
7
|
Al-Rashed M, Foshay K, Abedalthagafi M. Recent Advances in Meningioma Immunogenetics. Front Oncol 2020; 9:1472. [PMID: 31970090 PMCID: PMC6960175 DOI: 10.3389/fonc.2019.01472] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/09/2019] [Indexed: 12/26/2022] Open
Abstract
Meningiomas are relatively common, and typically benign intracranial tumors, which in many cases can be cured by surgical resection. However, less prevalent, high grade meningiomas, grow quickly, and recur frequently despite treatment, leading to poor patient outcomes. Across tumor grades, subjective guidelines for histological analysis can preclude accurate diagnosis, and an insufficient understanding of recurrence risk can cloud the choice of optimal treatment. Improved diagnostic and prognostic markers capable of discerning between the 15 heterogeneous WHO recognized meningioma subtypes are necessary to improve disease management and identify new targeted drug treatments. In this review, we show the advances in molecular profiling and immunophenotyping of meningiomas, which may lead to the development of new personalized therapeutic strategies.
Collapse
Affiliation(s)
- May Al-Rashed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Kara Foshay
- Inova Neuroscience and Spine Institute, Inova Health Systems, Falls Church, VA, United States
- Virginia Commonwealth University School of Medicine, Inova Campus, Richmond, VA, United States
| | - Malak Abedalthagafi
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Li Y, Zhao H, Xu Q, Lv N, Jing Y, Wang L, Wang X, Guo J, Zhou L, Liu J, Chen G, Chen C, Li Y, Yu L. Detection of prognostic methylation markers by methylC-capture sequencing in acute myeloid leukemia. Oncotarget 2017; 8:110444-110459. [PMID: 29299160 PMCID: PMC5746395 DOI: 10.18632/oncotarget.22789] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022] Open
Abstract
Clinical and genetic features incompletely predict outcome in acute myeloid leukemia (AML). The value of clinical methylation assays for prognostic markers has not been extensively explored. We assess the prognostic implications of methylC-capture sequencing (MCC-Seq) in patients with de novo AML by integrating DNA methylation and genetic risk stratification. MCC-Seq assessed DNA methylation level in 44 samples. The differentially methylated regions associated with prognostic genetic information were identified. The selected prognostic DNA methylation markers were independently validated in two sets. MCC-Seq exhibited good performance in AML patients. A panel of 12 differentially methylated genes was identified with promoter hyper-differentially methylated regions associated with the outcome. Compared with a low M-value, a high M-value was associated with failure to achieve complete remission (p = 0.024), increased hazard for disease-free survival in the study set (p = 0.039) and poor overall survival in The Cancer Genome Atlas set (p = 0.038). Hematopoietic stem cell transplantation and survival outcomes were not adversely affected by a high M-value (p = 0.271). Our study establishes that MCC-Seq is a stable, reproducible, and cost-effective methylation assay in AML. A 12-gene M-value encompassing epigenetic and genetic prognostic information represented a valid prognostic marker for patients with AML.
Collapse
Affiliation(s)
- Yan Li
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, China.,Department of Hematology, Hainan Branch of Chinese PLA General Hospital, Sanya 572013, China
| | - Hongmei Zhao
- Annoroad Gene Technology Co. Ltd., Beijing 100176, China
| | - Qingyu Xu
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, China.,Medical School of Nankai University, Tianjin 300071, China
| | - Na Lv
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, China.,Department of Hematology, General Hospital of Shenzhen University, Shenzhen 518060, China
| | - Yu Jing
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Lili Wang
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaowen Wang
- Annoroad Gene Technology Co. Ltd., Beijing 100176, China
| | - Jing Guo
- Annoroad Gene Technology Co. Ltd., Beijing 100176, China
| | - Lei Zhou
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jing Liu
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Guofeng Chen
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, China.,Medical School of Nankai University, Tianjin 300071, China
| | - Chongjian Chen
- Annoroad Gene Technology Co. Ltd., Beijing 100176, China
| | - Yonghui Li
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Li Yu
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, China.,Department of Hematology, General Hospital of Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
9
|
Dagklis T, Papageorgiou E, Siomou E, Paspaliaris V, Zerva C, Chatzis P, Thomaidis L, Manolakos E, Papoulidis I. Prenatal diagnosis of 1p34.3 interstitial microdeletion by aCGH in a fetus with jaw bone abnormalities. Mol Cytogenet 2016; 9:77. [PMID: 27713767 PMCID: PMC5053025 DOI: 10.1186/s13039-016-0288-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/28/2016] [Indexed: 12/01/2022] Open
Abstract
Background Interstitial microdeletions in 1p are extremely rare, as very few cases have been reported postnatally and only one prenatally, yet. There is a variability of phenotypic findings such as hypotonia, facial dysmorphisms, mild microcephaly, with being most common developmental delay. Case presentation The present case involved a female fetus with an interstitial deletion on 1p, presenting with micrognathia in the 2nd trimester routine ultrasound examination. Array-based comparative genomic hybridization (a-CGH) revealed a 2,7 Mb deletion located on 1p34.3 which could not be detected by standard karyotyping. Conclusions This is the first prenatal case of an interstitial deletion in 1p34.3 with facial dysmorphism detected by a-CGH. Due to the use of a-CGH techniques submicroscopic imbalances could be detected, and a refined genotype-phenotype correlation could be achieved.
Collapse
Affiliation(s)
- Themistoklis Dagklis
- 3rd Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece ; Embryomitriki, Prenatal Diagnostic Center, Thessaloniki, Greece
| | - Elena Papageorgiou
- Access To Genome - ATG P.C, Clinical Laboratory Genetics, 33A Ethn. Antistaseos str, 55134 Thessaloniki, Greece ; Access To Genome - ATG P.C, Clinical Laboratory Genetics, 8 Sisini str, 11528 Athens, Greece
| | - Elisavet Siomou
- Access To Genome - ATG P.C, Clinical Laboratory Genetics, 33A Ethn. Antistaseos str, 55134 Thessaloniki, Greece ; Access To Genome - ATG P.C, Clinical Laboratory Genetics, 8 Sisini str, 11528 Athens, Greece
| | - Vassilis Paspaliaris
- Access To Genome - ATG P.C, Clinical Laboratory Genetics, 33A Ethn. Antistaseos str, 55134 Thessaloniki, Greece ; Access To Genome - ATG P.C, Clinical Laboratory Genetics, 8 Sisini str, 11528 Athens, Greece
| | - Christina Zerva
- Embryomitriki, Prenatal Diagnostic Center, Thessaloniki, Greece
| | - Panagiotis Chatzis
- 2nd Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | - Loretta Thomaidis
- Developmental assessment unit, 2nd department of pediatrics, P. & A. Kyriakou children's hospital, School of medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanouil Manolakos
- Access To Genome - ATG P.C, Clinical Laboratory Genetics, 33A Ethn. Antistaseos str, 55134 Thessaloniki, Greece ; Access To Genome - ATG P.C, Clinical Laboratory Genetics, 8 Sisini str, 11528 Athens, Greece ; Developmental assessment unit, 2nd department of pediatrics, P. & A. Kyriakou children's hospital, School of medicine, National and Kapodistrian University of Athens, Athens, Greece ; Department of Medical Genetics, University of Cagliari, Binaghi Hospital, Cagliari, Italy
| | - Ioannis Papoulidis
- Access To Genome - ATG P.C, Clinical Laboratory Genetics, 33A Ethn. Antistaseos str, 55134 Thessaloniki, Greece
| |
Collapse
|
10
|
Ding C, Fan X, Wu G. Peroxiredoxin 1 - an antioxidant enzyme in cancer. J Cell Mol Med 2016; 21:193-202. [PMID: 27653015 PMCID: PMC5192802 DOI: 10.1111/jcmm.12955] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/17/2016] [Indexed: 12/11/2022] Open
Abstract
Peroxiredoxins (PRDXs), a ubiquitous family of redox‐regulating proteins, are reported of potential to eliminate various reactive oxygen species (ROS). As a major member of the antioxidant enzymes, PRDX1 can become easily over‐oxidized on its catalytically active cysteine induced by a variety of stimuli in vitro and in vivo. In nucleus, oligomeric PRDX1 directly associates with p53 or transcription factors such as c‐Myc, NF‐κB and AR, and thus affects their bioactivities upon gene regulation, which in turn induces or suppresses cell death. Additionally, PRDX1 in cytoplasm has anti‐apoptotic potential through direct or indirect interactions with several ROS‐dependent (redox regulation) effectors, including ASK1, p66Shc, GSTpi/JNK and c‐Abl kinase. PRDX1 is proven to be a versatile molecule regulating cell growth, differentiation and apoptosis. Recent studies have found that PRDX1 and/or PRDX1‐regulated ROS‐dependent signalling pathways play an important role in the progression and metastasis of human tumours, particularly in breast, oesophageal and lung cancers. In this paper, we review the structure, effector functions of PRDX1, its role in cancer and the pivotal role of ROS in anticancer treatment.
Collapse
Affiliation(s)
- Chenbo Ding
- Medical School of Southeast University, Nanjing, China
| | - Xiaobo Fan
- Medical School of Southeast University, Nanjing, China
| | - Guoqiu Wu
- Medical School of Southeast University, Nanjing, China.,Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
11
|
Mawrin C, Chung C, Preusser M. Biology and clinical management challenges in meningioma. Am Soc Clin Oncol Educ Book 2016:e106-15. [PMID: 25993161 DOI: 10.14694/edbook_am.2015.35.e106] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Meningiomas are the most frequently occurring intracranial tumors. They are characterized by a broad spectrum of histopathologic appearance. Molecular alterations driving meningioma development, which affect the NF2 gene, are found in roughly 50% of patients. Rare genetic events in benign meningiomas are mutations in TRAF7, KLF4, AKT1, and SMO; all of these mutations are exclusive of NF2 alterations. Progression to a clinically aggressive meningioma is linked to inactivation of CDKN2A/B genes, and a plethora of signaling molecules have been described as activated in meningiomas, which supports the concept of successful clinical use of specific inhibitors. Established treatments include surgical resection with or without radiotherapy delivered in a single fraction, a few large fractions (radiosurgery), or multiple fractions (fractionated radiotherapy). For recurrent and aggressive tumors, inhibitors of the vascular endothelial growth factor (VEGF) pathway, such as vatalinib, bevacizumab, and sunitinib, showed signs of activity in small, uncontrolled studies, and prospective clinical studies will test the efficacy of the tetrahydroisoquinoline trabectedin and of SMO and AKT1 inhibitors.
Collapse
Affiliation(s)
- Christian Mawrin
- From the Department of Neuropathology, Otto-von-Guericke University, Magdeburg, Germany; Department of Radiation Oncology, University of Toronto/Princess Margaret Cancer Centre, Toronto, Canada; Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Caroline Chung
- From the Department of Neuropathology, Otto-von-Guericke University, Magdeburg, Germany; Department of Radiation Oncology, University of Toronto/Princess Margaret Cancer Centre, Toronto, Canada; Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- From the Department of Neuropathology, Otto-von-Guericke University, Magdeburg, Germany; Department of Radiation Oncology, University of Toronto/Princess Margaret Cancer Centre, Toronto, Canada; Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Conesa-Zamora P, García-Solano J, Turpin MDC, Sebastián-León P, Torres-Moreno D, Estrada E, Tuomisto A, Wilce J, Mäkinen MJ, Pérez-Guillermo M, Conesa A. Methylome profiling reveals functions and genes which are differentially methylated in serrated compared to conventional colorectal carcinoma. Clin Epigenetics 2015; 7:101. [PMID: 26388956 PMCID: PMC4574063 DOI: 10.1186/s13148-015-0128-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/31/2015] [Indexed: 12/31/2022] Open
Abstract
Background Serrated adenocarcinoma (SAC) is a recently recognized colorectal cancer (CRC) subtype accounting for 7.5–8.7 % of CRCs. It has been shown that SAC has a worse prognosis and different histological and molecular features compared to conventional carcinoma (CC) but, to date, there is no study analysing its methylome profile. Results The methylation status of 450,000 CpG sites using the Infinium Human Methylation 450 BeadChip array was investigated in 103 colorectal specimens, including 39 SACs and 34 matched CCs, from Spanish and Finnish patients. Microarray data showed a higher representation of morphogenesis-, neurogenesis-, cytoskeleton- and vesicle transport-related functions and also significant differential methylation of 15 genes, including the iodothyronine deiodinase DIO3 and the forkhead family transcription factor FOXD2 genes which were validated at the CpG, mRNA and protein level using pyrosequencing, methylation-specific PCR, quantitative polymerase chain reaction (qPCR) and immunohistochemistry. A quantification study of the methylation status of CpG sequences in FOXD2 demonstrated a novel region controlling gene expression. Moreover, differences in these markers were also evident when comparing SAC with CRC showing molecular and histological features of high-level microsatellite instability. Conclusions This methylome study demonstrates distinct epigenetic regulation patterns in SAC which are consistent to previous expression profile studies and that DIO3 and FOXD2 might be molecular targets for a specific histology-oriented treatment of CRC. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0128-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pablo Conesa-Zamora
- Department of Pathology, Santa Lucía General University Hospital (HGUSL), C/Mezquita s/n, 30202 Cartagena, Spain ; Facultad de Ciencias de la Salud, Catholic University of Murcia (UCAM), Murcia, Spain
| | - José García-Solano
- Department of Pathology, Santa Lucía General University Hospital (HGUSL), C/Mezquita s/n, 30202 Cartagena, Spain ; Facultad de Ciencias de la Salud, Catholic University of Murcia (UCAM), Murcia, Spain
| | | | - Patricia Sebastián-León
- Department of Bioinformatics and Genomics, Centro de Investigación Príncipe Felipe (CIPF), Yúfera, 3, 46012 Valencia, Spain
| | - Daniel Torres-Moreno
- Department of Pathology, Santa Lucía General University Hospital (HGUSL), C/Mezquita s/n, 30202 Cartagena, Spain
| | - Eduardo Estrada
- Department of Social Psychology and Methodology, Autónoma University, Madrid, Spain
| | - Anne Tuomisto
- Department of Pathology, University of Oulu, Oulu, Finland
| | - Jamie Wilce
- Department of Pathology, Santa Lucía General University Hospital (HGUSL), C/Mezquita s/n, 30202 Cartagena, Spain
| | | | - Miguel Pérez-Guillermo
- Department of Pathology, Santa Lucía General University Hospital (HGUSL), C/Mezquita s/n, 30202 Cartagena, Spain
| | - Ana Conesa
- Department of Bioinformatics and Genomics, Centro de Investigación Príncipe Felipe (CIPF), Yúfera, 3, 46012 Valencia, Spain ; Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, USA
| |
Collapse
|
13
|
Zhang YL, Sun FT, Zhang Z, Chen XX, Liu AX, Pan JJ, Peng F, Zhou S, Sun LJ. Comprehensive expression analysis suggests functional overlapping of human FOX transcription factors in cancer. Asian Pac J Cancer Prev 2015; 15:10475-81. [PMID: 25556495 DOI: 10.7314/apjcp.2014.15.23.10475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Forkhead-box (FOX) transcription factors comprise a large gene family that contains more than 50 members in man. Extensive studies have revealed that they not only have functions in control of growth and development, but also play important roles in different diseases, especially in cancer. However, biological functions for most of the members in the FOX family remain unknown. In the present study, the expression of 39 FOX genes in 48 kinds of cancer was mined from the Gene Expression Atlas database of European Bioinformatics Institute. The analysis results showed that some FOX genes demonstrate overlapping expression in various cancers, which suggests particular biological functions. The pleiotropic features of the FOX genes make them excellent candidates in efforts aimed to give medical treatment for cancers at the genetic level. The results also indicated that different FOX genes may have the synergy or antagonistics effects in the same cancers. The study provides clues for further functional analysis of FOX genes, especially for the pleiotropic biological functions and crosstalk of FOX genes in human cancers.
Collapse
|
14
|
ABO and Rhesus blood groups and risk of endometriosis in a French Caucasian population of 633 patients living in the same geographic area. BIOMED RESEARCH INTERNATIONAL 2014; 2014:618964. [PMID: 25243164 PMCID: PMC4160609 DOI: 10.1155/2014/618964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 08/10/2014] [Indexed: 11/26/2022]
Abstract
Objectives. The identification of epidemiological factors increasing the risk of endometriosis could shorten the time to diagnosis. Specific blood groups may be more common in patients with endometriosis. Study Design. We designed a cross-sectional study of 633 Caucasian women living in the same geographic area. Study group included 311 patients with histologically proven endometriosis. Control group included 322 patients without endometriosis as checked during surgery. Frequencies of ABO and Rhesus groups in the study and control groups were compared using univariate and multivariate analyses. Results. We observed a higher proportion of Rh-negative women in the study group, as compared to healthy controls. Multivariate analysis showed that Rh-negative women are twice as likely to develop endometriosis (aOR = 1.90; 95% CI: 1.20–2.90). There was no significant difference in ABO group distribution between patients and controls. There was no difference when taking into account either the clinical forms (superficial endometriosis, endometrioma, and deep infiltration endometriosis) or the rAFS stages. Conclusion. Rh-negative women are twice as likely to develop endometriosis. Chromosome 1p, which contains the genes coding for the Rhesus, could also harbor endometriosis susceptibility genes.
Collapse
|
15
|
Ho CY, Mosier S, Safneck J, Salomao DR, Miller NR, Eberhart CG, Gocke CD, Batista DAS, Rodriguez FJ. Genetic profiling by single-nucleotide polymorphism-based array analysis defines three distinct subtypes of orbital meningioma. Brain Pathol 2014; 25:193-201. [PMID: 24773246 DOI: 10.1111/bpa.12150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/23/2014] [Indexed: 12/12/2022] Open
Abstract
Orbital meningiomas can be classified as primary optic nerve sheath (ON) meningiomas, primary intraorbital ectopic (Ob) meningiomas and spheno-orbital (Sph-Ob) meningiomas based on anatomic site. Single-nucleotide polymorphism (SNP)-based array analysis with the Illumina 300K platform was performed on formalin-fixed, paraffin-embedded tissue from 19 orbital meningiomas (5 ON, 4 Ob and 10 Sph-Ob meningiomas). Tumors were World Health Organization (WHO) grade I except for two grade II meningiomas, and one was NF2-associated. We found genomic alterations in 68% (13 of 19) of orbital meningiomas. Sph-Ob tumors frequently exhibited monosomy 22/22q loss (70%; 7/10) and deletion of chromosome 1p, 6q and 19p (50% each; 5/10). Among genetic alterations, loss of chromosome 1p and 6q were more frequent in clinically progressive tumors. Chromosome 22q loss also was detected in the majority of Ob meningiomas (75%; 3/4) but was infrequent in ON meningiomas (20%; 1/5). In general, Ob tumors had fewer chromosome alterations than Sph-Ob and ON tumors. Unlike Sph-Ob meningiomas, most of the Ob and ON meningiomas did not progress even after incomplete excision, although follow-up was limited in some cases. Our study suggests that ON, Ob and Sph-Ob meningiomas are three molecularly distinct entities. Our results also suggest that molecular subclassification may have prognostic implications.
Collapse
Affiliation(s)
- Cheng-Ying Ho
- Department of Pathology, Johns Hopkins University, Baltimore, MD; Division of Pathology, Children's National Medical Center, Washington, DC
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Holliday EB, Sulman EP. Tumor prognostic factors and the challenge of developing predictive factors. Curr Oncol Rep 2013; 15:33-46. [PMID: 23224629 DOI: 10.1007/s11912-012-0283-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Histopathologic classification has been widely used to type and grade primary brain tumors. However, the diverse behavior of primary brain tumors has made prognostic determinations based purely on clinical and histopathologic variables difficult. Recent advances in the molecular genetics of brain tumors have helped to explain the witnessed heterogeneity regarding response to treatment, time to progression, and overall survival. Additionally, there has been interest in identifying predictive factors to help direct patients to therapeutic interventions specific to their tumor and patient biology. Further identification of both prognostic and predictive biomarkers will make possible better patient stratification and individualization of treatment.
Collapse
Affiliation(s)
- Emma B Holliday
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
17
|
Huang J, Dou D, Dang J, Pardue JH, Qin X, Huan J, Gerthoffer WT, Tan M. Knowledge acquisition, semantic text mining, and security risks in health and biomedical informatics. World J Biol Chem 2012; 3:27-33. [PMID: 22371823 PMCID: PMC3286791 DOI: 10.4331/wjbc.v3.i2.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/07/2011] [Accepted: 12/14/2011] [Indexed: 02/05/2023] Open
Abstract
Computational techniques have been adopted in medical and biological systems for a long time. There is no doubt that the development and application of computational methods will render great help in better understanding biomedical and biological functions. Large amounts of datasets have been produced by biomedical and biological experiments and simulations. In order for researchers to gain knowledge from original data, nontrivial transformation is necessary, which is regarded as a critical link in the chain of knowledge acquisition, sharing, and reuse. Challenges that have been encountered include: how to efficiently and effectively represent human knowledge in formal computing models, how to take advantage of semantic text mining techniques rather than traditional syntactic text mining, and how to handle security issues during the knowledge sharing and reuse. This paper summarizes the state-of-the-art in these research directions. We aim to provide readers with an introduction of major computing themes to be applied to the medical and biological research.
Collapse
Affiliation(s)
- Jingshan Huang
- Jingshan Huang, J Harold Pardue, School of Computer and Information Sciences, University of South Alabama, Mobile, AL 36688, United States
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
This article constitutes a mini-review of the pathology and genetics of meningiomas. Meningiomas are the most common primary intracranial tumors. They are usually durally based and are often found adjacent to venous sinuses and dural infoldings. The majority of these tumors are WHO grade I, although a minority is WHO grade II, atypical, or WHO grade III, anaplastic. Grade II and III meningiomas show a greater tendency than Grade I tumors to recur and metastasize. The current WHO scheme recognizes 15 histologic subtypes of meningiomas. Nine of these are WHO grade I, three are grade II, and three are grade III. In addition to these histologic subtypes, meningiomas can also be graded on the basis of mitotic activity, evidence of brain invasion, growth pattern cellular density, nuclear atypia, and necrosis. Loss of the long arm of chromosome 22, which is usually associated with inactivation of the NF2 gene, is the most common genetic abnormality found in meningiomas. Other chromosomal abnormalities associated with tumorogenesis and increased gradeof meningiomas include loss of heterozygosity for chromosome 1p, loss of 14q, deletion of 9p21, abnormalities of chromosome 10 and 17q. Telomerase activity increases with meningiomas grade as well. The only proven environmental risk factor for meningiomas is ionizing radiation. Radiation-induced meningiomas are more often multiple and have higher recurrence rates than standard meningiomas.
Collapse
Affiliation(s)
- Hussein Alahmadi
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
| | | |
Collapse
|
19
|
Abstract
Much progress has been made in understanding the molecular genetics of brain tumors, especially gliomas.The development and use of high-throughput platforms that can interrogate molecular lesions on a variety of platforms will increase our ability to identify molecular subclasses of these tumors. Future challenges will include the development of methods to integrate these data among different platforms in order to identify optimal biomarkers and robust subclasses. The ultimate challenge, however, remains the translation of this biological knowledge into improved therapies for patients.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiation Oncology, University of Texas-MD Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
20
|
Abstract
INTRODUCTION Incidence of oesophageal adenocarcinoma (OAC) is increasing rapidly. OAC arises in columnar-lined oesophagus (CLO), a metaplastic change affecting some patients with gastro-oesophageal reflux disease (GORD). As yet there is no reliable method of identifying those at highest risk. Our earlier observation of an association between OAC and blood group O Rhesus negative, if confirmed, may help identify those at greatest risk. AIM AND METHODS To assess the distribution of blood group and Rhesus D (RhD) factor in patients with GORD compared with the blood donating general population. GORD was categorized as nonerosive reflux (NER), erosive oesophagitis, CLO and OAC. The Rotherham Hospital database holds details of all GORD, CLO and OAC patients seen in the Gastroenterology Unit. Blood group information for patients with GORD was obtained from patients' records and the hospital's blood transfusion service. The blood group distribution in the general population was obtained from the National Blood Transfusion Service. The number of expected to observed patients in each blood group for each subtype was compared. RESULTS Two thousand six hundred and ten NER, 2813 erosive oesophagitis, 568 CLO and 73 OAC patients had a recorded blood group. For RhD positive patients observed proportions in each blood group were similar to expected. The most striking difference was the marked excess of OAC in blood group O, Rhesus negative (P=0.002). CONCLUSION CLO patients with blood group O, RhD negative carry a disproportionately higher risk of developing OAC. The mechanism is unknown but the finding has practical application in guiding risk stratification and intensity of surveillance.
Collapse
|
21
|
Choy W, Kim W, Nagasawa D, Stramotas S, Yew A, Gopen Q, Parsa AT, Yang I. The molecular genetics and tumor pathogenesis of meningiomas and the future directions of meningioma treatments. Neurosurg Focus 2011; 30:E6. [DOI: 10.3171/2011.2.focus1116] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Meningiomas are mostly benign, slow-growing tumors of the CNS that originate from arachnoidal cap cells. While monosomy 22 is the most frequent genetic abnormality found in meningiomas, a multitude of other aberrant chromosomal alterations, signaling pathways, and growth factors have been implicated in its pathogenesis. Losses on 22q12.2, a region encoding the tumor suppressor gene merlin, represent the most common genetic alterations in early meningioma formation. Malignant meningioma progression, however, is associated with more complex karyotypes and greater genetic instability. Cytogenetic studies of atypical and anaplastic meningiomas revealed gains and losses on chromosomes 9, 10, 14, and 18, with amplifications on chromosome 17. However, the specific gene targets in a majority of these chromosomal abnormalities remain elusive.
Studies have also implicated a myriad of aberrant signaling pathways involved with meningioma tumorigenesis, including those involved with proliferation, angiogenesis, and autocrine loops. Understanding these disrupted pathways will aid in deciphering the relationship between various genetic changes and their downstream effects on meningioma pathogenesis.
Despite advancements in our understanding of meningioma pathogenesis, the conventional treatments, including surgery, radiotherapy, and stereotactic radiosurgery, have remained largely stagnant. Surgery and radiation therapy are curative in the majority of lesions, yet treatment remains challenging for meningiomas that are recurrent, aggressive, or refractory to conventional treatments. Future therapies will include combinations of targeted molecular agents as a result of continued progress in the understanding of genetic and biological changes associated with meningiomas.
Collapse
Affiliation(s)
| | - Won Kim
- 1Department of Neurological Surgery, and
| | | | | | - Andrew Yew
- 1Department of Neurological Surgery, and
| | - Quinton Gopen
- 2Division of Otolaryngology, University of California Los Angeles; and
| | - Andrew T. Parsa
- 3Department of Neurological Surgery, University of California, San Francisco, California
| | - Isaac Yang
- 1Department of Neurological Surgery, and
| |
Collapse
|
22
|
Genomic profiling of atypical meningiomas associates gain of 1q with poor clinical outcome. J Neuropathol Exp Neurol 2009; 68:1155-65. [PMID: 19918127 DOI: 10.1097/nen.0b013e3181ba3952] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Atypical meningiomas exhibit heterogeneous clinical outcomes. It is unclear which atypical meningiomas require aggressive multimodality treatment with surgery and radiation therapy versus surgery alone to prevent recurrence. Detailed molecular-genetic characterization of these neoplasms is necessary to understand their pathogenesis and identify clinically relevant genetic markers. Oligonucleotide array comparative genomic hybridization was used to identify frequent genetic alterations in 47 primary atypical meningiomas resected at Massachusetts General Hospital between August 1987 and September 2006. Eighty-five percent of samples exhibited loss of 22q, including the neurofibromatosis type 2 gene. The second most frequent regions of loss were confined to the short arm of chromosome 1, particularly 1p33-p36.2 (70%) and 1p13.2 (64%). Other frequent regions of loss, detected in more than 50% of samples, included 14q, 10q, 8q, 7p, 21q, 19, 9q34, and 4p16. Frequent regions of gain were detected along 1q (59%), 17q (44%), 9q34 (30%), and 7q36 (26%). Univariate marker-by-marker analysis of all frequently identified copy number alterations showed potential correlation between gain of 1q and shorter progression-free survival. Given the heterogeneous treatment outcomes of atypical meningioma, investigation of large-scale and focal genomic alterations in multi-institutional efforts may help clarify molecular-genetic signatures of clinical use.
Collapse
|
23
|
Lee Y, Liu J, Patel S, Cloughesy T, Lai A, Farooqi H, Seligson D, Dong J, Liau L, Becker D, Mischel P, Shams S, Nelson S. Genomic landscape of meningiomas. Brain Pathol 2009; 20:751-62. [PMID: 20015288 DOI: 10.1111/j.1750-3639.2009.00356.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Meningiomas are one of the most common adult brain tumors. For most patients, surgical excision is curative. However, up to 20% recur. Currently, the molecular determinants predicting recurrence and malignant transformation are lacking. We performed retrospective global genetic and genomic analysis of 85 meningioma samples of various grades. Copy number alterations were assessed by 100K single-nucleotide polymorphism arrays and correlated with gene expression, proliferation indices and clinical outcome. In addition to chromosome 22q loss, which was detected in the majority of clinical samples, chromosome 6q and 14q loss was significantly more common in recurrent tumors and was associated with anaplastic histology. Five "classes" of meningiomas were detected by gene expression analysis that correlated with copy number alterations, recurrent status and malignant histology. These classes more accurately identified recurrent tumors relative to Ki-67 index and extent of surgical resection, and highlight substantial expression heterogeneity between meningiomas. These data offer the most complete description of the genomic landscape of meningiomas, and provide broad genomic information that may be used to further stratify meningioma patients into prognostic risk groups.
Collapse
Affiliation(s)
- Yohan Lee
- Department of Human Genetics, UCLA School of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, Calif 90095-7088, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
TOE1 interacts with p53 to modulate its transactivation potential. FEBS Lett 2009; 583:2165-70. [DOI: 10.1016/j.febslet.2009.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 05/11/2009] [Accepted: 06/02/2009] [Indexed: 11/19/2022]
|
25
|
Guan Y, Hata N, Kuga D, Yoshimoto K, Mizoguchi M, Shono T, Suzuki SO, Tahira T, Kukita Y, Higasa K, Yokoyama N, Nagata S, Iwaki T, Sasaki T, Hayashi K. Narrowing of the regions of allelic losses of chromosome 1p36 in meningioma tissues by an improved SSCP analysis. Int J Cancer 2007; 122:1820-6. [DOI: 10.1002/ijc.23297] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Hansson CM, Buckley PG, Grigelioniene G, Piotrowski A, Hellström AR, Mantripragada K, Jarbo C, Mathiesen T, Dumanski JP. Comprehensive genetic and epigenetic analysis of sporadic meningioma for macro-mutations on 22q and micro-mutations within the NF2 locus. BMC Genomics 2007; 8:16. [PMID: 17222329 PMCID: PMC1781436 DOI: 10.1186/1471-2164-8-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2006] [Accepted: 01/12/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Meningiomas are the most common intracranial neoplasias, representing a clinically and histopathologically heterogeneous group of tumors. The neurofibromatosis type 2 (NF2) tumor suppressor is the only gene known to be frequently involved in early development of meningiomas. The objective of this study was to identify genetic and/or epigenetic factors contributing to the development of these tumors. A large set of sporadic meningiomas were analyzed for presence of 22q macro-mutations using array-CGH in order to identify tumors carrying gene dosage aberrations not encompassing NF2. The NF2 locus was also comprehensively studied for point mutations within coding and conserved non-coding sequences. Furthermore, CpG methylation within the NF2 promoter region was thoroughly analyzed. RESULTS Monosomy 22 was the predominant finding, detected in 47% of meningiomas. Thirteen percent of the tumors contained interstitial/terminal deletions and gains, present singly or in combinations. We defined at least two minimal overlapping regions outside the NF2 locus that are small enough (approximately 550 kb and approximately 250 kb) to allow analysis of a limited number of candidate genes. Bialleinactivationo the NF2 gne was detected in 36% of meningiomas. Among the monosomy 22 cases, no additional NF2 mutations could be identified in 35% (17 out of 49) of tumors. Furthermore, the majority of tumors (9 out of 12) with interstitial/terminal deletions did not have any detectable NF2 mutations. Methylation within the NF2 promoter region was only identified at a single CpG site in one tumor sample. CONCLUSION We confirmed previous findings of pronounced differences in mutation frequency between different histopathological subtypes. There is a higher frequency of biallelic NF2 inactivation in fibroblastic (52%) compared to meningothelial (18%) tumors. The presence of macro-mutations on 22q also shows marked differences between fibroblastic (86%) and meningothelial (39%) subtypes. Thus, inactivation of NF2, often combined with the presence of macro-mutation on 22q, is likely not as important for the development of the meningothelial subtype, as opposed to the fibroblastic form. Analysis of 40 CpG sites distributed within 750 bp of the promoter region suggests that NF2 promoter methylation does not play a major role in meningioma development.
Collapse
Affiliation(s)
- Caisa M Hansson
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Patrick G Buckley
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Giedre Grigelioniene
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Arkadiusz Piotrowski
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | | | - Kiran Mantripragada
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Caroline Jarbo
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Tiit Mathiesen
- Department of Neurosurgery, Karolinska University Hospital, Solna, SE-171 76 Stockholm, Sweden
| | - Jan P Dumanski
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
- University of Alabama at Birmingham, 1530 3rd. Ave. S., Kaul 420, Birmingham, AL 35294-0024, USA
| |
Collapse
|
27
|
Riemenschneider MJ, Perry A, Reifenberger G. Histological classification and molecular genetics of meningiomas. Lancet Neurol 2006; 5:1045-54. [PMID: 17110285 DOI: 10.1016/s1474-4422(06)70625-1] [Citation(s) in RCA: 343] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Meningiomas account for up to 30% of all primary intracranial tumours. They are histologically classified according to the World Health Organization (WHO) classification of tumours of the nervous system. Most meningiomas are benign lesions of WHO grade I, whereas some meningioma variants correspond with WHO grades II and III and are associated with a higher risk of recurrence and shorter survival times. Mutations in the NF2 gene and loss of chromosome 22q are the most common genetic alterations associated with the initiation of meningiomas. With increase in tumour grade, additional progression-associated molecular aberrations can be found; however, most of the relevant genes are yet to be identified. High-throughput techniques of global genome and transcriptome analyses and new meningioma models provide increasing insight into meningioma biology and will help to identify common pathogenic pathways that may be targeted by new therapeutic approaches.
Collapse
|
28
|
Kim YJ, Ketter R, Henn W, Zang KD, Steudel WI, Feiden W. Histopathologic indicators of recurrence in meningiomas: correlation with clinical and genetic parameters. Virchows Arch 2006; 449:529-38. [PMID: 17016718 DOI: 10.1007/s00428-006-0285-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 07/26/2006] [Indexed: 11/25/2022]
Abstract
Meningiomas in general are circumscribed slow-growing tumors. However, despite gross total resection, tumor relapse and patients' outcome are still an issue. Risk stratification based on histomorphology alone remains problematic. This study explored the independent prognostic value of potential risk factors among 206 patients who underwent meningioma resection and followed-up until death or a median of 44 months. The statistical analysis considered clinical data, histomorphologic parameters, cytogenetic findings, Ki-67 immunoreactivity, and activity of tissue non-specific alkaline phosphatase (ALPL). Recurrence-free survival estimates were computed and prognostic factors were identified using Cox proportional hazards model. Independent predictors of recurrence included (1) anaplasia; (2) mitotic index > or =20/10 high-power fields; (3) subtotal tumor resection; (4) loss of short arm of chromosome 1 (1p-); and (5) Ki-67 labeling index (LI) >12%. Among totally resected WHO grade I meningiomas, neither histopathologic nor clinical parameters were predictive, whereas 1p- was the only independent prognostic factor. ALPL did not reach significance in the multivariate modeling, however, the fast and low-cost histochemical detection of ALPL expression could be proved as a highly sensitive screening method for 1p-. In particular, biologically aggressive meningiomas of histologically benign or "borderline" phenotype could be therefore identified by ALPL detection followed by 1p in situ hybridization.
Collapse
Affiliation(s)
- Yoo-Jin Kim
- School of Medicine, Institute of Neuropathology, Saarland University, Bldg. 90.3, 66421 Homburg-Saar, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Lee Y, Miller HL, Russell HR, Boyd K, Curran T, McKinnon PJ. Patched2 modulates tumorigenesis in patched1 heterozygous mice. Cancer Res 2006; 66:6964-71. [PMID: 16849540 DOI: 10.1158/0008-5472.can-06-0505] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The sonic hedgehog (SHH) receptor Patched 1 (Ptch1) is critical for embryonic development, and its loss is linked to tumorigenesis. Germ line inactivation of one copy of Ptch1 predisposes to basal cell carcinoma and medulloblastoma in mouse and man. In many cases, medulloblastoma arising from perturbations of Ptch1 function leads to a concomitant up-regulation of a highly similar gene, Patched2 (Ptch2). As increased expression of Ptch2 is associated with medulloblastoma and other tumors, we investigated the role of Ptch2 in tumor suppression by generating Ptch2-deficient mice. In striking contrast to Ptch1-/- mice, Ptch2-/- animals were born alive and showed no obvious defects and were not cancer prone. However, loss of Ptch2 markedly affected tumor formation in combination with Ptch1 haploinsufficiency. Ptch1+/-Ptch2-/- and Ptch1+/-Ptch2+/- animals showed a higher incidence of tumors and a broader spectrum of tumor types compared with Ptch1+/- animals. Therefore, Ptch2 modulates tumorigenesis associated with Ptch1 haploinsufficiency.
Collapse
Affiliation(s)
- Youngsoo Lee
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee. 38105, USA
| | | | | | | | | | | |
Collapse
|
30
|
Häusler T, Stang A, Anastassiou G, Jöckel KH, Mrzyk S, Horsthemke B, Lohmann DR, Zeschnigk M. Loss of heterozygosity of 1p in uveal melanomas with monosomy 3. Int J Cancer 2005; 116:909-13. [PMID: 15849744 DOI: 10.1002/ijc.21086] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gains and losses of chromosomes 1, 3, 6 and 8 are nonrandom chromosomal aberrations in uveal melanoma. Monosomy 3 is the most frequent abnormality and is associated with poor prognosis. To identify regions of allelic loss on the short arm of chromosome 1 and to investigate if these alterations contribute to uveal melanoma progression, we performed microsatellite analysis of 10 loci in 70 uveal melanomas. A total of 51 tumors were obtained from patients with clinical follow-up data, 19 tumors were from recent patients without follow-up. Loss of heterozygosity (LOH) of at least 1 marker was more frequent in tumors with monosomy 3 (40%) than in tumors with disomy 3 (10%). In particular, loss of the entire short arm of chromosome 1 was only observed in tumors with monosomy 3 (p = 0.0001). By comparing the extent of 1p LOH in all tumors with monosomy 3, we were able to define a smallest region of overlap (SRO) of approximately 55 Mb, which is flanked by markers D1S507 and D1S198. On the basis of our data and published cytogenetic data, we propose that 1p31 harbors genes involved in the progression of uveal melanoma with monosomy 3.
Collapse
Affiliation(s)
- Thomas Häusler
- Institut für Humangenetik, Universitätsklinikum Essen, Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Buckley PG, Jarbo C, Menzel U, Mathiesen T, Scott C, Gregory SG, Langford CF, Dumanski JP. Comprehensive DNA copy number profiling of meningioma using a chromosome 1 tiling path microarray identifies novel candidate tumor suppressor loci. Cancer Res 2005; 65:2653-61. [PMID: 15805262 DOI: 10.1158/0008-5472.can-04-3651] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Meningiomas are common neoplasms of the meninges lining of the central nervous system. Deletions of 1p have been established as important for the initiation and/or progression of meningioma. The rationale of this array-CGH study was to characterize copy number imbalances of chromosome 1 in meningioma, using a full-coverage genomic microarray containing 2,118 distinct measurement points. In total, 82 meningiomas were analyzed, making this the most detailed analysis of chromosome 1 in a comprehensive series of tumors. We detected a broad range of aberrations, such as deletions and/or gains of various sizes. Deletions were the predominant finding and ranged from monosomy to a 3.5-Mb terminal 1p homozygous deletion. Although multiple aberrations were observed across chromosome 1, every meningioma in which imbalances were detected harbored 1p deletions. Tumor heterogeneity was also observed in three recurrent meningiomas, which most likely reflects a progressive loss of chromosomal segments at different stages of tumor development. The distribution of aberrations supports the existence of at least four candidate loci on chromosome 1, which are important for meningioma tumorigenesis. In one of these regions, our results already allow the analysis of a number of candidate genes. In a large series of cases, we observed an association between the presence of segmental duplications and deletion breakpoints, which suggests their role in the generation of these tumor-specific aberrations. As 1p is the site of the genome most frequently affected by tumor-specific aberrations, our results indicate loci of general importance for cancer development and progression.
Collapse
Affiliation(s)
- Patrick G Buckley
- Rudbeck Laboratory, Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Recent clinical and molecular research has shed new light on the biology of meningiomas--a common but understudied CNS neoplasm. This review will focus on recent advances and their significance for future research and treatment. RECENT FINDINGS Meningiomas represent the second most common brain tumor in adults, and while improved diagnostic modalities are available, these tumors remain underreported. Radiosurgery is an effective adjuvant therapy against meningioma; however, no effective chemotherapy exists. In addition to histologic grading and estimates of the extent of resection, biomarkers, such as progesterone receptor, cyclooxygenase 2, S100A5 and ornithine decarboxylase may be useful in predicting tumor recurrence and/or progression potential in patients with meningioma. On the genetic level, cytogenetic losses on chromosomes 1, 7, 10 and 14 and telomerase activation are observed in clinically aggressive meningioma, whereas monosomy 22 is a common early molecular event in tumor formation. Several candidate growth regulatory genes have been identified, including the Neurofibromatosis 2 (NF2), Tumor Suppressor in Lung Cancer-1 (TSLC1), Protein 4.1B, p53/MDM2 and S6-Kinase genes. The roles of these genes in meningioma formation and progression, as well as the clinical implications of these genetic changes, are discussed. SUMMARY The recent insights into the molecular biology and genetics of meningioma provide new avenues for basic science research aimed at understanding the mechanisms underlying meningioma formation and malignant progression. These advances may be useful in improving our ability to predict clinical outcome and developing targeted therapies to improve outcomes in patients with clinically aggressive meningiomas.
Collapse
Affiliation(s)
- Eriks Lusis
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | |
Collapse
|