1
|
Garner MA, Hubbard MG, Boitet ER, Hubbard ST, Gade A, Ying G, Jones BW, Baehr W, Gross AK. NUDC is critical for rod photoreceptor function, maintenance, and survival. FASEB J 2024; 38:e23518. [PMID: 38441532 PMCID: PMC10917122 DOI: 10.1096/fj.202301641rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 03/07/2024]
Abstract
NUDC (nuclear distribution protein C) is a mitotic protein involved in nuclear migration and cytokinesis across species. Considered a cytoplasmic dynein (henceforth dynein) cofactor, NUDC was shown to associate with the dynein motor complex during neuronal migration. NUDC is also expressed in postmitotic vertebrate rod photoreceptors where its function is unknown. Here, we examined the role of NUDC in postmitotic rod photoreceptors by studying the consequences of a conditional NUDC knockout in mouse rods (rNudC-/- ). Loss of NUDC in rods led to complete photoreceptor cell death at 6 weeks of age. By 3 weeks of age, rNudC-/- function was diminished, and rhodopsin and mitochondria were mislocalized, consistent with dynein inhibition. Levels of outer segment proteins were reduced, but LIS1 (lissencephaly protein 1), a well-characterized dynein cofactor, was unaffected. Transmission electron microscopy revealed ultrastructural defects within the rods of rNudC-/- by 3 weeks of age. We investigated whether NUDC interacts with the actin modulator cofilin 1 (CFL1) and found that in rods, CFL1 is localized in close proximity to NUDC. In addition to its potential role in dynein trafficking within rods, loss of NUDC also resulted in increased levels of phosphorylated CFL1 (pCFL1), which would purportedly prevent depolymerization of actin. The absence of NUDC also induced an inflammatory response in Müller glia and microglia across the neural retina by 3 weeks of age. Taken together, our data illustrate the critical role of NUDC in actin cytoskeletal maintenance and dynein-mediated protein trafficking in a postmitotic rod photoreceptor.
Collapse
Affiliation(s)
- Mary Anne Garner
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| | - Meredith G. Hubbard
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| | - Evan R. Boitet
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| | - Seth T. Hubbard
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| | - Anushree Gade
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| | - Guoxin Ying
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, 84132 USA
| | - Bryan W. Jones
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, 84132 USA
| | - Wolfgang Baehr
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, 84132 USA
| | - Alecia K. Gross
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| |
Collapse
|
2
|
Garner MA, Hubbard MG, Boitet ER, Hubbard ST, Gade A, Ying G, Jones BW, Baehr W, Gross AK. NUDC is critical for rod photoreceptor function, maintenance, and survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.568878. [PMID: 38076848 PMCID: PMC10705250 DOI: 10.1101/2023.11.28.568878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
NUDC ( nu clear d istribution protein C) is a mitotic protein involved in nuclear migration and cytokinesis across species. Considered a cytoplasmic dynein (henceforth dynein) cofactor, NUDC was shown to associate with the dynein motor complex during neuronal migration. NUDC is also expressed in postmitotic vertebrate rod photoreceptors where its function is unknown. Here, we examined the role of NUDC in postmitotic rod photoreceptors by studying the consequences of a conditional NUDC knockout in mouse rods (r NudC -/- ). Loss of NUDC in rods led to complete photoreceptor cell death at six weeks of age. By 3 weeks of age, r NudC -/- function was diminished, and rhodopsin and mitochondria were mislocalized, consistent with dynein inhibition. Levels of outer segment proteins were reduced, but LIS1 (lissencephaly protein 1), a well-characterized dynein cofactor, was unaffected. Transmission electron microscopy revealed ultrastructural defects within the rods of r NudC -/- by 3 weeks of age. We investigated whether NUDC interacts with the actin modulator cofilin 1 (CFL1) and found that in rods, CFL1 is localized in close proximity to NUDC. In addition to its potential role in dynein trafficking within rods, loss of NUDC also resulted in increased levels of phosphorylated CFL1 (pCFL1), which would purportedly prevent depolymerization of actin. Absence of NUDC also induced an inflammatory response in Müller glia and microglia across the neural retina by 3 weeks of age. Taken together, our data illustrate the critical role of NUDC in actin cytoskeletal maintenance and dynein-mediated protein trafficking in a postmitotic rod photoreceptor. Significance Statement Nuclear distribution protein C (NUDC) has been studied extensively as an essential protein for mitotic cell division. In this study, we discovered its expression and role in the postmitotic rod photoreceptor cell. In the absence of NUDC in mouse rods, we detected functional loss, protein mislocalization, and rapid retinal degeneration consistent with dynein inactivation. In the early phase of retinal degeneration, we observed ultrastructural defects and an upregulation of inflammatory markers suggesting additional, dynein-independent functions of NUDC.
Collapse
|
3
|
Jeong SH, Park M, Park SY, Park J, Kim TH, Lee YJ, Jung EJ, Ju YT, Jeong CY, Kim JY, Ko GH, Kim M, Nam KT, Goldenring JR. Transcriptome Analysis and the Prognostic Role of NUDC in Diffuse and Intestinal Gastric Cancer. Technol Cancer Res Treat 2021; 20:15330338211019501. [PMID: 34060350 PMCID: PMC8173992 DOI: 10.1177/15330338211019501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/05/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION There have been few studies about gene differences between patients with diffuse-type gastric cancer and those with intestinal-type gastric cancer. The aim of this study was to compare the transcriptomes of signet ring cell gastric cancer (worst prognosis in diffuse-type) and well-differentiated gastric cancer (best prognosis in intestinal-type); NUDC was identified, and its prognostic role was studied. MATERIALS AND METHODS We performed next-generation sequencing with 5 well-differentiated gastric cancers and 3 of signet ring cell gastric cancer surgical samples. We performed gene enrichment and functional annotation analysis using the Database for Annotation, Visualization and Integrated Discovery bioinformatics resources. Immunohistochemistry was used to validate NUDC expression. RESULTS Overall, 900 genes showed significantly higher expression, 644 genes showed lower expression in signet ring cell gastric cancer than in well-differentiated gastric cancers, and there was a large difference in adhesion, vascular development, and cell-to-cell junction components between the 2 subtypes. We performed variant analysis and found 52 variants and 30 cancer driver genes, including NUDC. We analyzed NUDC expression in gastric cancer tissue and its relationship with prognosis. Cox proportional hazard analysis identified T stage, N stage, and NUDC expression as independent risk factors for survival (P < 0.05). The overall survival of the NUDC-positive group was significantly higher (53.2 ± 0.92 months) than that of the NUDC-negative group (44.6 ± 3.7 months) (P = 0.001) in Kaplan-Meier survival analysis. CONCLUSION We found 30 cancer driver gene candidates and found that the NUDC-positive group showed significantly better survival than the NUDC-negative group via variant analysis.
Collapse
Affiliation(s)
- Sang-Ho Jeong
- Department of Surgery, School of Medicine, Gyeongsang National University, Jinju, South Korea
- Department of Surgery, Gyeongsang National University, Changwon Hospital, Changwon, South Korea
| | - Miyeong Park
- Department of Anesthesiology, Gyeongsang National University, Changwon Hospital, Changwon, South Korea
| | - Sun Yi Park
- Department of Surgery, School of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Jiho Park
- Department of Surgery, School of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Tae-Han Kim
- Department of Surgery, Gyeongsang National University, Changwon Hospital, Changwon, South Korea
| | - Young-Joon Lee
- Department of Surgery, School of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Eun-Jung Jung
- Department of Surgery, School of Medicine, Gyeongsang National University, Jinju, South Korea
- Department of Surgery, Gyeongsang National University, Changwon Hospital, Changwon, South Korea
| | - Young-tae Ju
- Department of Surgery, School of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Chi-Young Jeong
- Department of Surgery, School of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Ju-Yeon Kim
- Department of Surgery, School of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Gyung Hyuck Ko
- Department of Pathology, School of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Minhye Kim
- Department of Pathology, School of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Ki Taek Nam
- Severance Biomedical Science, Yonsei University College of Medicine, Seodaemun-gu, South Korea
| | | |
Collapse
|
4
|
Asselin-Mullen P, Chauvin A, Dubois ML, Drissi R, Lévesque D, Boisvert FM. Protein interaction network of alternatively spliced NudCD1 isoforms. Sci Rep 2017; 7:12987. [PMID: 29021621 PMCID: PMC5636827 DOI: 10.1038/s41598-017-13441-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022] Open
Abstract
NudCD1, also known as CML66 or OVA66, is a protein initially identified as overexpressed in patients with chronic myelogenous leukemia. The mRNA of NudCD1 is expressed in heart and testis of normal tissues, and is overexpressed in several cancers. Previous studies have shown that the expression level of the protein correlates with tumoral phenotype, possibly interacting upstream of the Insulin Growth Factor - 1 Receptor (IGF-1R). The gene encoding the NudCD1 protein consists of 12 exons that can be alternative spliced, leading to the expression of three different isoforms. These isoforms possess a common region of 492 amino acids in their C-terminus region and have an isoform specific N-terminus. To determine the distinct function of each isoforms, we have localised the isoforms within the cells using immunofluorescence microscopy and used a quantitative proteomics approach (SILAC) to identify specific protein interaction partners for each isoforms. Localization studies showed a different subcellular distribution for the different isoforms, with the first isoform being nuclear, while the other two isoforms have distinct cytoplasmic and nuclear location. We found that the different NudCD1 isoforms have unique interacting partners, with the first isoform binding to a putative RNA helicase named DHX15 involved in mRNA splicing.
Collapse
Affiliation(s)
- Patrick Asselin-Mullen
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - Anaïs Chauvin
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - Marie-Line Dubois
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - Romain Drissi
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - Dominique Lévesque
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - François-Michel Boisvert
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada.
| |
Collapse
|
5
|
Kong Q, Chen XS, Tian T, Xia XY, Xu P. MicroRNA-194 suppresses prostate cancer migration and invasion by downregulating human nuclear distribution protein. Oncol Rep 2016; 37:803-812. [PMID: 27959429 DOI: 10.3892/or.2016.5305] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/07/2016] [Indexed: 11/06/2022] Open
Abstract
Human NudC nuclear distribution protein (hNUDC) is differentially expressed between normal and cancer cells. Based on its marked altered expression and its roles in modulating cell division, cytokineses and migration, a detailed understanding of the mechanisms regulating hNUDC expression in cancer cells is critical. In this study, we identified miR-194 as a downstream target of hNUDC and linked its expression to reduced metastatic capacity and tumorigenicity of prostate cancer (PCa) cells. Using miRNA target prediction programs, hNUDC mRNA was found to contain a potential binding site for miR-194 within its 3'UTR. A Reporter assay confirmed that post-transcriptional regulation of hNUDC was dependent on the miR-194 binding site. Forced expression of miR-194 in PCa cell lines, PC-3 and DU-145, led to a decrease in the mRNA and protein levels of hNUDC. Overexpression of miR-194 in these cells inhibited cell migration and invasion, and induced multinucleated cells. Our data showed that hNUDC knockdown by siRNA significantly reduced the migration and invasion in the PC-3 and DU-145 cells, phenocopying the results of miR-194 overexpression. Furthermore, lentivirus-mediated stable expression of miR-194 in PCa cells reduced the ability of colony formation as detected by a soft agar assay and exhibited significantly less tumorigenic ability in vivo. Our results suggest a novel role for miR-194 in effectively controlling cell metastatic processes in PCa cells via the regulation of hNUDC expression.
Collapse
Affiliation(s)
- Qi Kong
- The Key Laboratory of Gene Engineering of the Chinese Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Xu-Shen Chen
- The Key Laboratory of Gene Engineering of the Chinese Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Tian Tian
- The Key Laboratory of Gene Engineering of the Chinese Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Xiang-You Xia
- The Key Laboratory of Gene Engineering of the Chinese Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Peilin Xu
- The Key Laboratory of Gene Engineering of the Chinese Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510275, P.R. China
| |
Collapse
|
6
|
Lerebours A, Chapman EC, Sweet MJ, Heupel MR, Rotchell JM. Molecular changes in skin pigmented lesions of the coral trout Plectropomus leopardus. MARINE ENVIRONMENTAL RESEARCH 2016; 120:130-135. [PMID: 27521482 DOI: 10.1016/j.marenvres.2016.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/11/2016] [Accepted: 07/16/2016] [Indexed: 06/06/2023]
Abstract
A high prevalence of skin pigmented lesions of 15% was recently reported in coral trout Plectropomus leopardus, a commercially important marine fish, inhabiting the Great Barrier Reef. Herein, fish were sampled at two offshore sites, characterised by high and low lesion prevalence. A transcriptomic approach using the suppressive subtractive hybridisation (SSH) method was used to analyse the differentially expressed genes between lesion and normal skin samples. Transcriptional changes of 14 genes were observed in lesion samples relative to normal skin samples. These targeted genes encoded for specific proteins which are involved in general cell function but also in different stages disrupted during the tumourigenesis process of other organisms, such as cell cycling, cell proliferation, skeletal organisation and cell migration. The results highlight transcripts that are associated with the lesion occurrence, contributing to a better understanding of the molecular aetiology of this coral trout skin disease.
Collapse
Affiliation(s)
- Adélaïde Lerebours
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Emma C Chapman
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Michael J Sweet
- Molecular Health and Disease Laboratory, Environmental Sustainability Research Centre, College of Life and Natural Sciences, University of Derby, Derby, DE22 1GB, United Kingdom
| | - Michelle R Heupel
- Australian Institute of Marine Science, Townsville, Australia; Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Australia
| | - Jeanette M Rotchell
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom.
| |
Collapse
|
7
|
Weiderhold KN, Fadri-Moskwik M, Pan J, Nishino M, Chuang C, Deeraksa A, Lin SH, Yu-Lee LY. Dynamic Phosphorylation of NudC by Aurora B in Cytokinesis. PLoS One 2016; 11:e0153455. [PMID: 27074040 PMCID: PMC4830538 DOI: 10.1371/journal.pone.0153455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/30/2016] [Indexed: 01/06/2023] Open
Abstract
Nuclear distribution protein C (NudC) is a mitotic regulator that plays a role in cytokinesis. However, how NudC is regulated during cytokinesis remains unclear. Here, we show that NudC is phosphorylated by Aurora B, a kinase critical for cell abscission. NudC is co-localized with Aurora B at the midbody and co-immunoprecipitated with Aurora B in mitosis. Inhibition of Aurora B by ZM447439 reduced NudC phosphorylation, suggesting that NudC is an Aurora B substrate in vivo. We identified T40 on NudC as an Aurora B phosphorylation site. NudC depletion resulted in cytokinesis failure with a dramatic elongation of the intercellular bridge between daughter cells, sustained Aurora B activity at the midbody, and reduced cell abscission. These cytokinetic defects can be rescued by the ectopic expression of wild-type NudC. Reconstitution with T40A phospho-defective NudC was found to rescue the cytokinesis defect. In contrast, reconstitution with the T40D phospho-mimetic NudC was inefficient in supporting the completion of cytokinesis. These results suggest that that dynamic phosphorylation of NudC by Aurora B regulates cytokinesis.
Collapse
Affiliation(s)
- Kimberly N. Weiderhold
- Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria Fadri-Moskwik
- Department of Medicine, Section of Allergy Immunology and Rheumatology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jing Pan
- Department of Medicine, Section of Allergy Immunology and Rheumatology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michiya Nishino
- Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas, United States of America
| | - Carol Chuang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Arpaporn Deeraksa
- Department of Medicine, Section of Allergy Immunology and Rheumatology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Li-Yuan Yu-Lee
- Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Medicine, Section of Allergy Immunology and Rheumatology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
8
|
ZHOU LIRONG, DI QINGGUO, SUN BAOHUA, WANG XIAOSHENG, LI MIN, SHI JIAN. MicroRNA-194 restrains the cell progression of non-small cell lung cancer by targeting human nuclear distribution protein C. Oncol Rep 2016; 35:3435-44. [DOI: 10.3892/or.2016.4708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/07/2016] [Indexed: 11/06/2022] Open
|
9
|
Fu Q, Wang W, Zhou T, Yang Y. Emerging roles of NudC family: from molecular regulation to clinical implications. SCIENCE CHINA-LIFE SCIENCES 2016; 59:455-62. [PMID: 26965524 DOI: 10.1007/s11427-016-5029-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/03/2016] [Indexed: 12/12/2022]
Abstract
Nuclear distribution gene C (NudC) was first found in Aspergillus nidulans as an upstream regulator of NudF, whose mammalian homolog is Lissencephaly 1 (Lis1). NudC is conserved from fungi to mammals. Vertebrate NudC has three homologs: NudC, NudC-like protein (NudCL), and NudC-like protein 2 (NudCL2). All members of the NudC family share a conserved p23 domain, which possesses chaperone activity both in conjunction with and independently of heat shock protein 90 (Hsp90). Our group and the others found that NudC homologs were involved in cell cycle regulation by stabilizing the components of the LIS1/dynein complex. Additionally, NudC plays important roles in cell migration, ciliogenesis, thrombopoiesis, and the inflammatory response. It has been reported that NudCL is essential for the stability of the dynein intermediate chain and ciliogenesis via its interaction with the dynein 2 complex. Our data showed that NudCL2 regulates the LIS1/dynein pathway by stabilizing LIS1 with Hsp90 chaperone. The fourth distantly related member of the NudC family, CML66, a tumor-associated antigen in human leukemia, contains a p23 domain and appears to promote oncogenesis by regulating the IGF-1R-MAPK signaling pathway. In this review, we summarize our current knowledge of the NudC family and highlight its potential clinical relevance.
Collapse
Affiliation(s)
- Qiqin Fu
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wei Wang
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Tianhua Zhou
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China.
| | - Yuehong Yang
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China.
| |
Collapse
|
10
|
Mukhtar E, Adhami VM, Sechi M, Mukhtar H. Dietary flavonoid fisetin binds to β-tubulin and disrupts microtubule dynamics in prostate cancer cells. Cancer Lett 2015; 367:173-83. [PMID: 26235140 DOI: 10.1016/j.canlet.2015.07.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 01/08/2023]
Abstract
Microtubule targeting based therapies have revolutionized cancer treatment; however, resistance and side effects remain a major limitation. Therefore, novel strategies that can overcome these limitations are urgently needed. We made a novel discovery that fisetin, a hydroxyflavone, is a microtubule stabilizing agent. Fisetin binds to tubulin and stabilizes microtubules with binding characteristics far superior than paclitaxel. Surface plasmon resonance and computational docking studies suggested that fisetin binds to β-tubulin with superior affinity compared to paclitaxel. Fisetin treatment of human prostate cancer cells resulted in robust up-regulation of microtubule associated proteins (MAP)-2 and -4. In addition, fisetin treated cells were enriched in α-tubulin acetylation, an indication of stabilization of microtubules. Fisetin significantly inhibited PCa cell proliferation, migration, and invasion. Nudc, a protein associated with microtubule motor dynein/dynactin complex that regulates microtubule dynamics, was inhibited with fisetin treatment. Further, fisetin treatment of a P-glycoprotein overexpressing multidrug-resistant cancer cell line NCI/ADR-RES inhibited the viability and colony formation. Our results offer in vitro proof-of-concept for fisetin as a microtubule targeting agent. We suggest that fisetin could be developed as an adjuvant for treatment of prostate and other cancer types.
Collapse
Affiliation(s)
- Eiman Mukhtar
- Department of Dermatology, University of Wisconsin-Madison, 1300 University Avenue, 4385 Medical Sciences Center, Madison, WI 53706, USA
| | - Vaqar Mustafa Adhami
- Department of Dermatology, University of Wisconsin-Madison, 1300 University Avenue, 4385 Medical Sciences Center, Madison, WI 53706, USA
| | - Mario Sechi
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin-Madison, 1300 University Avenue, 4385 Medical Sciences Center, Madison, WI 53706, USA.
| |
Collapse
|
11
|
Benkhalifa M, Madkour A, Louanjli N, Bouamoud N, Saadani B, Kaarouch I, Chahine H, Sefrioui O, Merviel P, Copin H. From global proteome profiling to single targeted molecules of follicular fluid and oocyte: contribution to embryo development and IVF outcome. Expert Rev Proteomics 2015; 12:407-23. [DOI: 10.1586/14789450.2015.1056782] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Chang FM, Ou TY, Cheng WN, Chou ML, Lee KC, Chin YP, Lin CP, Chang KD, Lin CT, Su CH. Short-term exposure to fluconazole induces chromosome loss in Candida albicans: an approach to produce haploid cells. Fungal Genet Biol 2014; 70:68-76. [PMID: 25038494 DOI: 10.1016/j.fgb.2014.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 02/07/2023]
Abstract
Candida albicans is considered to be an obligate diploid fungus. Here, we describe an approach to isolate aneuploids or haploids induced by the short-term (12-16 h) exposure of diploid reference strains SC5314 and CAI4 to the most commonly used antifungal drug, fluconazole, followed by repeated single-cell separation among small morphologically distinct colonies in the inhibition zone. The isolated strains had altered cell morphology and LOH events in the MTL and other marker alleles of the analyzed loci at 8 chromosomes of C. albicans with decreased DNA content. The present study employed next-generation sequencing (NGS) combined flow cytometry analysis of the DNA content to analyze the haploid, autodiploid, and aneuploid strains that arose from the fluconazole treatment instead of using the conventional single nucleotide polymorphism/comparative genome hybridization (SNP/CGH) method. A multiple-alignment tool was also developed based on sequenced data from NGS to establish haplotype mapping for each chromosome of the selected strains. These findings revealed that C. albicans experiences 'concerted chromosome loss' to form strains with homozygous alleles and that it even has a haploid status after short-term exposure to fluconazole. Additionally, we developed a new platform to analyze chromosome copy number using NGS.
Collapse
Affiliation(s)
- Fang-Mo Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsong-Yih Ou
- Division of Infectious Disease, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wei-Ning Cheng
- Department of Microbiology and Immunology, Taipei Medical University, Taipei, Taiwan
| | - Ming-Li Chou
- Department of Microbiology and Immunology, Taipei Medical University, Taipei, Taiwan
| | - Kai-Cheng Lee
- Department of Microbiology and Immunology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ping Chin
- Department of Microbiology and Immunology, Taipei Medical University, Taipei, Taiwan
| | | | | | - Che-Tong Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Hua Su
- Department of Microbiology and Immunology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
13
|
Xiao Y, Zheng Y, Tan P, Xu P, Zhang Q. Overexpression of nuclear distribution protein (hNUDC) causes pro-apoptosis and differentiation in Dami megakaryocytes. Cell Prolif 2013; 46:576-85. [PMID: 24010816 DOI: 10.1111/cpr.12055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 05/01/2013] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES Overexpression of hNUDC, a member of the nuclear distribution protein family, reduces cell population growth in prostate cancer cell lines, concurrent with induced morphological change and enhanced polyploidization. These phenomena are also closely associated with terminal phases of megakaryocyte maturation. MATERIALS AND METHODS In Dami cells, MTT and trypan blue assays were used to investigate cell viability and proliferation effects of hNUDC, and flow cytometry was used to analyse cell cycle and DNA content. Real-time RT-PCR was employed to detect mRNA expression. Activations of caspase-3, ERK, Akt and Stat-5 were determined by immunoblotting. May-Grünwald-Giemsa staining was performed to reveal cell morphology. RESULTS AND CONCLUSION Functional studies using adenovirus-mediated hNUDC overexpression led to inhibition of megakaryocyte proliferation via cell cycle arrest in G2/M transition phase. This process could have been be mediated by upregulation of p21 and downregulation of its downstream targets, including cyclin B1, cyclin B2 and c-myc. Enhanced apoptosis in turn ensued, characterized by increased caspase-3 activation, upregulation of pro-apoptotic Bax and downregulation of anti-apoptotic Bcl-2. Furthermore, hNUDC overexpression elevated the level of megakaryocyte maturation, associated with increased polyploidy, cell morphological changes and increased expression of cell surface differentiation markers, including CD10, CD44, CD41 and CD61. Our results further suggest that the ERK signalling pathway was involved in hNUDC overexpression-induced apoptosis. Taken together, this study provides experimental evidence for overexpression of hNUDC in Dami cells and suggests that activation of apoptotic machinery may be involved in megakaryocytic differentiation.
Collapse
Affiliation(s)
- Y Xiao
- Key Laboratory of Gene Engineering of Education Ministry, School of Life Sciences, Zhongshan University, Guangzhou, 510275, China
| | | | | | | | | |
Collapse
|
14
|
Iizuka D, Imaoka T, Nishimura M, Kawai H, Suzuki F, Shimada Y. Aberrant microRNA expression in radiation-induced rat mammary cancer: the potential role of miR-194 overexpression in cancer cell proliferation. Radiat Res 2012; 179:151-9. [PMID: 23273170 DOI: 10.1667/rr2927.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Aberrant expression of microRNAs (miRNAs) is frequently associated with a variety of cancers, including breast cancer. We and others have demonstrated that radiation-induced rat mammary cancer exhibits a characteristic gene expression profile and a random increase in aberrant DNA copy number; however, the role of aberrant miRNA expression is unclear. We performed a microarray analysis of frozen samples of eight mammary cancers induced by γ irradiation (2 Gy), eight spontaneous mammary cancers and seven normal mammary samples. We found that a small set of miRNAs was characteristically overexpressed in radiation-induced cancer. Quantitative RT-PCR analysis confirmed that miR-135b, miR-192, miR-194 and miR-211 were significantly up-regulated in radiation-induced mammary cancer compared with spontaneous cancer and normal mammary tissue. The expression of miR-192 and miR-194 also was up-regulated in human breast cancer cell lines compared with noncancer cells. Manipulation of the miR-194 expression level using a synthetic inhibiting RNA produced a small but significant suppression of cell proliferation and upregulation in the expression of several genes that are thought to act as tumor suppressors in MCF-7 and T47D breast cancer cells. Our data suggest that the induction of rat mammary cancer by radiation involves aberrant expression of miRNAs, which may facilitate cell proliferation.
Collapse
Affiliation(s)
- Daisuke Iizuka
- Department of Molecular Radiobiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Song Z, He CD, Sun C, Xu Y, Jin X, Zhang Y, Xiao T, Wang Y, Lu P, Jiang Y, Wei H, Chen HD. Increased expression of MAP2 inhibits melanoma cell proliferation, invasion and tumor growth in vitro and in vivo. Exp Dermatol 2011; 19:958-64. [PMID: 20100193 DOI: 10.1111/j.1600-0625.2009.01020.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Malignant melanoma (MM) is characterized by aggressive metastasis and high mortality rate. Microtubule-associated proteins 2 (MAP2) is expressed abundantly in majority of melanocytic nevi and primary melanomas, but absent in metastatic melanomas. To determine whether MAP2 correlates with tumor progression of MM, we investigated the effects of MAP2 inhibition on the biological behaviour of metastatic melanoma in vitro and in vivo. Our results demonstrated that adenovirus-mediated MAP2 induced apoptotic cell death and cell cycle arrest in metastatic human and mouse melanoma cell lines in vitro, and substantially inhibited the growth of melanomas in nude mice in vivo. In addition, intracellular expression of MAP2 was found to induce the morphologic alteration, suppress the migration and invasion and affect the assembly, stabilization and bundling of microtubules in melanoma cells. This is the first study that MAP2 expression significantly inhibits the growth of MM in vivo. Our results suggest that MAP2 may serve as a promising molecular target for therapy and chemoprevention of MM in humans.
Collapse
Affiliation(s)
- Zhiqi Song
- Department of Dermatology, No. 1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Ministry of Health (China Medical University), Shenyang, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zheng M, Cierpicki T, Burdette AJ, Utepbergenov D, Janczyk PŁ, Derewenda U, Stukenberg PT, Caldwell KA, Derewenda ZS. Structural features and chaperone activity of the NudC protein family. J Mol Biol 2011; 409:722-41. [PMID: 21530541 DOI: 10.1016/j.jmb.2011.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/07/2011] [Accepted: 04/07/2011] [Indexed: 11/19/2022]
Abstract
The NudC family consists of four conserved proteins with representatives in all eukaryotes. The archetypal nudC gene from Aspergillus nidulans is a member of the nud gene family that is involved in the maintenance of nuclear migration. This family also includes nudF, whose human orthologue, Lis1, codes for a protein essential for brain cortex development. Three paralogues of NudC are known in vertebrates: NudC, NudC-like (NudCL), and NudC-like 2 (NudCL2). The fourth distantly related member of the family, CML66, contains a NudC-like domain. The three principal NudC proteins have no catalytic activity but appear to play as yet poorly defined roles in proliferating and dividing cells. We present crystallographic and NMR studies of the human NudC protein and discuss the results in the context of structures recently deposited by structural genomics centers (i.e., NudCL and mouse NudCL2). All proteins share the same core CS domain characteristic of proteins acting either as cochaperones of Hsp90 or as independent small heat shock proteins. However, while NudC and NudCL dimerize via an N-terminally located coiled coil, the smaller NudCL2 lacks this motif and instead dimerizes as a result of unique domain swapping. We show that NudC and NudCL, but not NudCL2, inhibit the aggregation of several target proteins, consistent with an Hsp90-independent heat shock protein function. Importantly, and in contrast to several previous reports, none of the three proteins is able to form binary complexes with Lis1. The availability of structural information will be of help in further studies on the cellular functions of the NudC family.
Collapse
Affiliation(s)
- Meiying Zheng
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Increased cellular apoptosis susceptibility (CSE1L/CAS) protein expression promotes protrusion extension and enhances migration of MCF-7 breast cancer cells. Exp Cell Res 2010; 316:2969-81. [DOI: 10.1016/j.yexcr.2010.07.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/22/2010] [Accepted: 07/29/2010] [Indexed: 11/24/2022]
|
18
|
Berretta R, Moscato P. Cancer biomarker discovery: the entropic hallmark. PLoS One 2010; 5:e12262. [PMID: 20805891 PMCID: PMC2923618 DOI: 10.1371/journal.pone.0012262] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 06/26/2010] [Indexed: 12/29/2022] Open
Abstract
Background It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-througput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases.
Collapse
Affiliation(s)
- Regina Berretta
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- Information Based Medicine Program, Hunter Medical Research Institute, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Pablo Moscato
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- Information Based Medicine Program, Hunter Medical Research Institute, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
- Australian Research Council Centre of Excellence in Bioinformatics, Callaghan, New South Wales, Australia
- * E-mail:
| |
Collapse
|
19
|
Mills CN, Joshi SS, Niles RM. Expression and function of hypoxia inducible factor-1 alpha in human melanoma under non-hypoxic conditions. Mol Cancer 2009; 8:104. [PMID: 19919690 PMCID: PMC2781803 DOI: 10.1186/1476-4598-8-104] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 11/17/2009] [Indexed: 11/10/2022] Open
Abstract
Background Hypoxia inducible factor-1 alpha (HIF-1α) protein is rapidly degraded under normoxic conditions. When oxygen tensions fall HIF-1α protein stabilizes and transactivates genes involved in adaptation to hypoxic conditions. We have examined the normoxic expression of HIF-1α RNA and protein in normal human melanocytes and a series of human melanoma cell lines isolated from radial growth phase (RGP), vertical growth phase (VGP) and metastatic (MET) melanomas. Results HIF-1α mRNA and protein was increased in RGP vs melanocytes, VGP vs RGP and MET vs VGP melanoma cell lines. We also detected expression of a HIF-1α mRNA splice variant that lacks part of the oxygen-dependent regulation domain in WM1366 and WM9 melanoma cells. Over-expression of HIF-1α and its splice variant in the RGP cell line SbCl2 resulted in a small increase in soft agar colony formation and a large increase in matrigel invasion relative to control transfected cells. Knockdown of HIF-1α expression by siRNA in the MET WM9 melanoma cell line resulted in a large decrease in both soft agar colony formation and matrigel invasion relative to cells treated with non-specific siRNA. There is a high level of ERK1/2 phosphorylation in WM9 cells, indicating an activated Ras-Raf-MEK-ERK1/2 MAPK pathway. Treatment of WM9 cells with 30 μM U0126 MEK inhibitor, decreased ERK1/2 phosphorylation and resulted in a decrease in HIF-1α expression. However, a 24 h treatment with 10 μM U0126 totally eliminated Erk1/2 phosphorylation, but did not change HIF-1alpha levels. Furthermore, siRNA knockdown of MEK siRNA did not change HIF-1alpha levels. Conclusion We speculate that metabolic products of U0126 decrease HIF-1alpha expression through "off target" effects. Overall our data suggest that increased HIF-1α expression under normoxic conditions contributes to some of the malignant phenotypes exhibited by human melanoma cells. The expanded role of HIF-1α in melanoma biology increases its importance as a therapeutic target.
Collapse
Affiliation(s)
- Caroline N Mills
- Department of Biochemistry and Microbiology, Joan C, Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | | | | |
Collapse
|
20
|
Inhibition of cytokinesis by overexpression of NudCL that is localized to the centrosome and midbody. Cell Res 2009; 19:1305-8. [DOI: 10.1038/cr.2009.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
21
|
Perez DE, Hoyer JS, Johnson AI, Moody ZR, Lopez J, Kaplinsky NJ. BOBBER1 is a noncanonical Arabidopsis small heat shock protein required for both development and thermotolerance. PLANT PHYSIOLOGY 2009; 151:241-52. [PMID: 19571304 PMCID: PMC2735987 DOI: 10.1104/pp.109.142125] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 06/29/2009] [Indexed: 05/18/2023]
Abstract
Plants have evolved a range of cellular responses to maintain developmental homeostasis and to survive over a range of temperatures. Here, we describe the in vivo and in vitro functions of BOBBER1 (BOB1), a NudC domain containing Arabidopsis (Arabidopsis thaliana) small heat shock protein. BOB1 is an essential gene required for the normal partitioning and patterning of the apical domain of the Arabidopsis embryo. Because BOB1 loss-of-function mutants are embryo lethal, we used a partial loss-of-function allele (bob1-3) to demonstrate that BOB1 is required for organismal thermotolerance and postembryonic development. Recombinant BOB1 protein functions as a molecular chaperone and prevents the aggregation of a model protein substrate in vitro. In plants, BOB1 is cytoplasmic at basal temperatures, but forms heat shock granules containing canonical small heat shock proteins at high temperatures. In addition to thermotolerance defects, bob1-3 exhibits pleiotropic development defects during all phases of development. bob1-3 phenotypes include decreased rates of shoot and root growth as well as patterning defects in leaves, flowers, and inflorescence meristems. Most eukaryotic chaperones play important roles in protein folding either during protein synthesis or during cellular responses to denaturing stress. Our results provide, to our knowledge, the first evidence of a plant small heat shock protein that has both developmental and thermotolerance functions and may play a role in both of these folding networks.
Collapse
Affiliation(s)
- Dahlia E Perez
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
| | | | | | | | | | | |
Collapse
|
22
|
Riera J, Lazo PS. The mammalian NudC-like genes: a family with functions other than regulating nuclear distribution. Cell Mol Life Sci 2009; 66:2383-90. [PMID: 19381437 PMCID: PMC11115750 DOI: 10.1007/s00018-009-0025-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/25/2009] [Accepted: 03/24/2009] [Indexed: 10/20/2022]
Abstract
Nuclear distribution gene C homolog (NudC) is a highly conserved gene. It has been identified in different species from fungi to mammals. The high degree of conservation, in special in the nudC domain, suggests that they are genes with essential functions. Most of the identified genes in the family have been implicated in cell division through the regulation of cytoplasmic dynein. As for mammalian genes, human NUDC has been implicated in the migration and proliferation of tumor cells and has therefore been considered a possible therapeutic target. There is evidence suggesting that mammalian NudC is also implicated in the regulation of the inflammatory response and in thrombopoiesis. The presence of these other functions not related to the interaction with molecular motors agrees with that these genes and their products are larger in size than their microbial orthologous, indicating that they have evolved to convey additional features.
Collapse
Affiliation(s)
- José Riera
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Campus del Cristo, 33071 Oviedo, Spain
| | - Pedro S. Lazo
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Campus del Cristo, 33071 Oviedo, Spain
| |
Collapse
|
23
|
Boelens MC, van den Berg A, Fehrmann RSN, Geerlings M, de Jong WK, te Meerman GJ, Sietsma H, Timens W, Postma DS, Groen HJM. Current smoking-specific gene expression signature in normal bronchial epithelium is enhanced in squamous cell lung cancer. J Pathol 2009; 218:182-91. [DOI: 10.1002/path.2520] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Abstract
Natural and synthetic compounds that disrupt microtubule dynamics are among the most successful and widely used cancer chemotherapeutic agents. However, lack of reliable markers that predict sensitivity of cancers to these agents and development of resistance remain vexing issues. There is accumulating evidence that a family of cellular proteins that are associated with and alter the dynamics of microtubules can determine sensitivity of cancer cells to microtubule-targeting agents and play a role in tumor cell resistance to these agents. This growing family of microtubule-associated proteins (MAP) includes products of oncogenes, tumor suppressors, and apoptosis regulators, suggesting that alteration of microtubule dynamics may be one of the critical events in tumorigenesis and tumor progression. The objective of this review is to integrate the knowledge on these seemingly unrelated proteins that share a common function and examine their relevance to microtubule-targeting therapies and highlight MAPs-tubulin-drug interactions as a novel avenue for new drug discovery. Based on the available evidence, we propose that rational microtubule-targeting cancer therapeutic approaches should ideally include proteomic profiling of tumor MAPs before administration of microtubule-stabilizing/destabilizing agents preferentially in combination with agents that modulate the expression of relevant MAPs.
Collapse
Affiliation(s)
- Kumar M R Bhat
- Department of Dermatology, University of Wisconsin School of Medicine, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
25
|
Riera J, Rodríguez R, Carcedo MT, Campa VM, Ramos S, Lazo PS. Isolation and characterization ofnudCfrom mouse macrophages, a gene implicated in the inflammatory response through the regulation of PAF-AH(I) activity. FEBS Lett 2007; 581:3057-62. [PMID: 17555748 DOI: 10.1016/j.febslet.2007.05.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 05/17/2007] [Indexed: 10/23/2022]
Abstract
We report the characterization of a cDNA induced in mouse macrophages that encodes a 332-amino acid protein with extensive sequence identity with members of the mammalian nudC-like genes. The interaction between mNUDC and the regulatory beta subunit of platelet activating factor acetylhydrolase I (PAF-AH(I)) shown in this article indicates a new function of NUDC. Thus, we show that NUDC increases the catalytic activity of PAF-AH(I) and that this regulatory activity is located in the carboxyl terminal half of the protein which is highly conserved. This suggests a novel function for mammalian nudC-like genes as anti-inflammatory proteins.
Collapse
Affiliation(s)
- José Riera
- Departamento de Bioquímica y Biología Molecular and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33071 Oviedo, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Suzuki SO, McKenney RJ, Mawatari SY, Mizuguchi M, Mikami A, Iwaki T, Goldman JE, Canoll P, Vallee RB. Expression patterns of LIS1, dynein and their interaction partners dynactin, NudE, NudEL and NudC in human gliomas suggest roles in invasion and proliferation. Acta Neuropathol 2007; 113:591-9. [PMID: 17221205 DOI: 10.1007/s00401-006-0180-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 11/26/2006] [Accepted: 11/26/2006] [Indexed: 11/24/2022]
Abstract
Diffusely infiltrating gliomas are the most common type of primary intracranial neoplasm in humans. One of the major obstacles to the effective treatment of these tumors is their highly infiltrative growth. However, mechanisms controlling their migration and proliferation are poorly understood. Glioma cells resemble neural progenitors, and we hypothesize that gliomas recapitulate the capacity of migration and proliferation of progenitors that takes place during brain development. Based on recent evidence implicating cytoplasmic dynein and its regulatory proteins in neural progenitor migration and division, we conducted immunohistochemical evaluation of surgically resected human glioma samples for the presence and distribution of these proteins. We examined expression of LIS1, the gene responsible for type I lissencephaly, cytoplasmic dynein and the dynein- and LIS1-interacting factors dynactin, NudE/NudEL and NudC, which play significant roles in neural progenitor cell behavior. We found that each of these proteins is expressed in all histological types and grades of human neuroectodermal tumors examined. Immunohistochemical analysis revealed that the levels of expression varied from cell to cell within each tumor, ranging from very high to undetectable. This stands in contrast to the low levels of diffuse staining seen in non-neoplastic brain tissue. Of particular interest, we noted tumor cells infiltrating the white matter and tumor cells undergoing cell division amongst the cells with notably high expression levels. These findings are compatible with the idea that LIS1 and its interacting proteins play a role in glioma migration and proliferation analogous to their role during brain development.
Collapse
Affiliation(s)
- Satoshi O Suzuki
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, 812-8582 Fukuoka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hatakeyama H, Kondo T, Fujii K, Nakanishi Y, Kato H, Fukuda S, Hirohashi S. Protein clusters associated with carcinogenesis, histological differentiation and nodal metastasis in esophageal cancer. Proteomics 2006; 6:6300-16. [PMID: 17133371 DOI: 10.1002/pmic.200600488] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We examined the proteomic background of esophageal cancer. We used laser microdissection to obtain tumor tissues from 72 esophageal squamous cell carcinoma cases and adjacent normal tissues in 57 of these cases. The 2D-DIGE generated quantitative expression profiles with 1730 protein spots. Based on the intensity of the protein spots, unsupervised classification distinguished the tumor tissues from their normal counterparts, and subdivided the tumor tissues according to their histological differentiation. We identified 498 protein spots with altered intensity in the tumor tissues, which protein identification by LC-MS/MS showed to correspond to 217 gene products. We also found 41 protein spots that were associated with nodal metastasis, and identified 33 proteins corresponding to the spots, including cancer-associated proteins such as alpha-actinin 4, hnRNP K, periplakin, squamous cell carcinoma antigen 1 and NudC. The identified cancer-associated proteins have been previously reported to be individually involved in a range of cancer types, and our study observed them collectively in a single type of malignancy, esophageal cancer. As the identified proteins are involved in important biological processes such as cytoskeletal/structural organization, transportation, chaperon, oxidoreduction, transcription and signal transduction, they may function in a coordinate manner in carcinogenesis and tumor progression of esophageal cancer.
Collapse
Affiliation(s)
- Hiromitsu Hatakeyama
- Proteome Bioinformatics Project, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
MacRae EJ, Giannoudis A, Ryan R, Brown NJ, Hamdy FC, Maitland N, Lewis CE. Gene therapy for prostate cancer: current strategies and new cell-based approaches. Prostate 2006; 66:470-94. [PMID: 16353250 DOI: 10.1002/pros.20388] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Prostate cancer is the most commonly diagnosed cancer in adult males in the Western world. It accounts for one in ten cancer cases and is the second leading cause of cancer death in men, after lung cancer. A number of curative treatments are available for patients with localized prostate cancer such as radical prostatectomy, radiotherapy, or brachytherapy. However, a proportion of these men will develop progressive disease, and some will present de novo with advanced and metastatic prostate cancer, which is amenable to palliation only with androgen-withdrawal therapy. Most of these patients will eventually develop hormone refractory disease which is incurable, and for whom gene therapy, if feasible may develop as an alternative treatment option. In this review we discuss the gene therapy vectors and strategies that are currently in use, new cell-based approaches, discuss their advantages and disadvantages, and review the potential or proven pre-clinical and clinical efficacy in prostate cancer models/patients.
Collapse
Affiliation(s)
- E J MacRae
- Tumour Targeting Group, University of Sheffield Medical School, Beech Hill Road, Sheffield, United Kingdom
| | | | | | | | | | | | | |
Collapse
|