1
|
Gutiérrez J, Gonzalez D, Escalona-Rivano R, Takahashi C, Brandan E. Reduced RECK levels accelerate skeletal muscle differentiation, improve muscle regeneration, and decrease fibrosis. FASEB J 2021; 35:e21503. [PMID: 33811686 DOI: 10.1096/fj.202001646rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/07/2021] [Accepted: 02/19/2021] [Indexed: 12/15/2022]
Abstract
The muscle regeneration process requires a properly assembled extracellular matrix (ECM). Its homeostasis depends on the activity of different matrix-metalloproteinases (MMPs). The reversion-inducing-cysteine-rich protein with kazal motifs (RECK) is a membrane-anchored protein that negatively regulates the activity of different MMPs. However, the role of RECK in the process of skeletal muscle differentiation, regeneration, and fibrosis has not been elucidated. Here, we show that during skeletal muscle differentiation of C2C12 myoblasts and in satellite cells on isolated muscle fibers, RECK is transiently up regulated. C2C12 myoblasts with reduced RECK levels are more prone to enter the differentiation program, showing an accelerated differentiation process. Notch-1 signaling was reduced, while p38 and AKT signaling were augmented in myoblasts with decreased RECK levels. Overexpression of RECK restores the normal differentiation process but diminished the ability to form myotubes. Transient up-regulation of RECK occurs during skeletal muscle regeneration, which was accelerated in RECK-deficient mice (Reck±). RECK, MMPs and ECM proteins augmented in chronically damaged WT muscle, a model of muscle fibrosis. In this model, RECK ± mice showed diminished fibrosis compared to WT. These results strongly suggest that RECK is acting as a potential myogenic repressor during muscle formation and regeneration, emerging as a new player in these processes, and as a potential target to treat individuals with the muscle-wasting disease.
Collapse
Affiliation(s)
- Jaime Gutiérrez
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile.,Centro de Regeneración y Envejecimiento (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David Gonzalez
- Centro de Regeneración y Envejecimiento (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Escalona-Rivano
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile
| | - Chiaki Takahashi
- Oncology and Molecular Biology, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Enrique Brandan
- Centro de Regeneración y Envejecimiento (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| |
Collapse
|
2
|
Key Genes Regulating Skeletal Muscle Development and Growth in Farm Animals. Animals (Basel) 2021; 11:ani11030835. [PMID: 33809500 PMCID: PMC7999090 DOI: 10.3390/ani11030835] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Skeletal muscle mass is an important economic trait, and muscle development and growth is a crucial factor to supply enough meat for human consumption. Thus, understanding (candidate) genes regulating skeletal muscle development is crucial for understanding molecular genetic regulation of muscle growth and can be benefit the meat industry toward the goal of increasing meat yields. During the past years, significant progress has been made for understanding these mechanisms, and thus, we decided to write a comprehensive review covering regulators and (candidate) genes crucial for muscle development and growth in farm animals. Detection of these genes and factors increases our understanding of muscle growth and development and is a great help for breeders to satisfy demands for meat production on a global scale. Abstract Farm-animal species play crucial roles in satisfying demands for meat on a global scale, and they are genetically being developed to enhance the efficiency of meat production. In particular, one of the important breeders’ aims is to increase skeletal muscle growth in farm animals. The enhancement of muscle development and growth is crucial to meet consumers’ demands regarding meat quality. Fetal skeletal muscle development involves myogenesis (with myoblast proliferation, differentiation, and fusion), fibrogenesis, and adipogenesis. Typically, myogenesis is regulated by a convoluted network of intrinsic and extrinsic factors monitored by myogenic regulatory factor genes in two or three phases, as well as genes that code for kinases. Marker-assisted selection relies on candidate genes related positively or negatively to muscle development and can be a strong supplement to classical selection strategies in farm animals. This comprehensive review covers important (candidate) genes that regulate muscle development and growth in farm animals (cattle, sheep, chicken, and pig). The identification of these genes is an important step toward the goal of increasing meat yields and improves meat quality.
Collapse
|
3
|
Chuang KC, Chen FW, Tsai MH, Shieh JJ. EGR-1 plays a protective role in AMPK inhibitor compound C-induced apoptosis through ROS-induced ERK activation in skin cancer cells. Oncol Lett 2021; 21:304. [PMID: 33732380 DOI: 10.3892/ol.2021.12565] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Skin cancer is caused by abnormal proliferation, gene regulation and mutation of epidermis cells. Compound C is commonly used as an inhibitor of AMP-activated protein kinase (AMPK), which serves as an energy sensor in cells. Recently, compound C has been reported to induce apoptotic and autophagic death in various skin cancer cell lines via an AMPK-independent pathway. However, the signaling pathways activated in compound C-treated cancer cells remain unclear. The present oligodeoxynucleotide-based microarray screening assay showed that the mRNA expression of the zinc-finger transcription factor early growth response-1 (EGR-1), which helps regulate cell cycle progression and cell survival, was significantly upregulated in compound C-treated skin cancer cells. Compound C was demonstrated to induce EGR-1 mRNA and protein expression in a time and dose-dependent manner. Confocal imaging showed that compound C-induced EGR-1 protein expression was localized in the nucleus. Compound C was demonstrated to activate extracellular signal-regulated kinase (ERK) phosphorylation. Inhibition of this compound C-induced ERK phosphorylation downregulated the mRNA and protein expression of EGR-1. In addition, removal of compound C-induced reactive oxygen species (ROS) not only decreased ERK phosphorylation, but also inhibited compound C-induced EGR-1 expression. A functional assay showed that knock down of EGR-1 expression in cancer cells decreased the survival rate while also increasing caspase-3 activity and apoptotic marker expression after compound C treatment. However, no difference in autophagy marker light chain 3-II protein expression was observed between compound C-treated control cells and EGR-1-knockdown cells. Thus, it was concluded that that EGR-1 may antagonize compound C-induced apoptosis but not compound C-induced autophagy through the ROS-mediated ERK activation pathway.
Collapse
Affiliation(s)
- Kai-Cheng Chuang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Fan-Wen Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Meng-Hsiun Tsai
- Department of Management Information System, National Chung Hsing University, Taichung 402, Taiwan, R.O.C.,Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Jeng-Jer Shieh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan, R.O.C.,Department of Education and Research, Taichung Veterans General Hospital, Taichung 407, Taiwan, R.O.C.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| |
Collapse
|
4
|
Olmo A, Yuste Y, Serrano JA, Maldonado-Jacobi A, Pérez P, Huertas G, Pereira S, Yufera A, de la Portilla F. Electrical Modeling of the Growth and Differentiation of Skeletal Myoblasts Cell Cultures for Tissue Engineering. SENSORS 2020; 20:s20113152. [PMID: 32498394 PMCID: PMC7309147 DOI: 10.3390/s20113152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 11/16/2022]
Abstract
In tissue engineering, of utmost importance is the control of tissue formation, in order to form tissue constructs of clinical relevance. In this work, we present the use of an impedance spectroscopy technique for the real-time measurement of the dielectric properties of skeletal myoblast cell cultures. The processes involved in the growth and differentiation of these cell cultures in skeletal muscle are studied. A circuit based on the oscillation-based test technique was used, avoiding the use of high-performance circuitry or external input signals. The effect of electrical pulse stimulation applied to cell cultures was also studied. The technique proved useful for monitoring in real-time the processes of cell growth and estimating the fill factor of muscular stem cells. Impedance spectroscopy was also useful to study the real-time monitoring of cell differentiation, obtaining different oscillation amplitude levels for differentiated and undifferentiated cell cultures. Finally, an electrical model was implemented to better understand the physical properties of the cell culture and control the tissue formation process.
Collapse
Affiliation(s)
- Alberto Olmo
- Instituto de Microelectrónica de Sevilla, IMSE, CNM (CSIC, Universidad de Sevilla), Av. Américo Vespucio, sn 41092 Sevilla, Spain; (J.A.S.); (A.M.-J.); (P.P.); (G.H.); (A.Y.)
- Escuela Técnica Superior de Ingeniería Informática, Departamento de Tecnología Electrónica, Universidad de Sevilla, Av. Reina Mercedes, sn 41012 Sevilla, Spain
- Correspondence: ; Tel.: +34-954-55-43-25
| | - Yaiza Yuste
- Instituto de Biomedicina de Sevilla (IBIS), Campus Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot, s/n 41013, Sevilla, Spain; (Y.Y.); (S.P.); (F.d.l.P.)
| | - Juan Alfonso Serrano
- Instituto de Microelectrónica de Sevilla, IMSE, CNM (CSIC, Universidad de Sevilla), Av. Américo Vespucio, sn 41092 Sevilla, Spain; (J.A.S.); (A.M.-J.); (P.P.); (G.H.); (A.Y.)
| | - Andres Maldonado-Jacobi
- Instituto de Microelectrónica de Sevilla, IMSE, CNM (CSIC, Universidad de Sevilla), Av. Américo Vespucio, sn 41092 Sevilla, Spain; (J.A.S.); (A.M.-J.); (P.P.); (G.H.); (A.Y.)
| | - Pablo Pérez
- Instituto de Microelectrónica de Sevilla, IMSE, CNM (CSIC, Universidad de Sevilla), Av. Américo Vespucio, sn 41092 Sevilla, Spain; (J.A.S.); (A.M.-J.); (P.P.); (G.H.); (A.Y.)
- Escuela Técnica Superior de Ingeniería Informática, Departamento de Tecnología Electrónica, Universidad de Sevilla, Av. Reina Mercedes, sn 41012 Sevilla, Spain
| | - Gloria Huertas
- Instituto de Microelectrónica de Sevilla, IMSE, CNM (CSIC, Universidad de Sevilla), Av. Américo Vespucio, sn 41092 Sevilla, Spain; (J.A.S.); (A.M.-J.); (P.P.); (G.H.); (A.Y.)
- Facultad de Física, Departamento de Electrónica y Electromagnetismo, Universidad de Sevilla, Av. Reina Mercedes, sn 41012 Sevilla, Spain
| | - Sheila Pereira
- Instituto de Biomedicina de Sevilla (IBIS), Campus Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot, s/n 41013, Sevilla, Spain; (Y.Y.); (S.P.); (F.d.l.P.)
| | - Alberto Yufera
- Instituto de Microelectrónica de Sevilla, IMSE, CNM (CSIC, Universidad de Sevilla), Av. Américo Vespucio, sn 41092 Sevilla, Spain; (J.A.S.); (A.M.-J.); (P.P.); (G.H.); (A.Y.)
- Escuela Técnica Superior de Ingeniería Informática, Departamento de Tecnología Electrónica, Universidad de Sevilla, Av. Reina Mercedes, sn 41012 Sevilla, Spain
| | - Fernando de la Portilla
- Instituto de Biomedicina de Sevilla (IBIS), Campus Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot, s/n 41013, Sevilla, Spain; (Y.Y.); (S.P.); (F.d.l.P.)
| |
Collapse
|
5
|
Kim SH, Yi SJ, Lee H, Kim JH, Oh MJ, Song EJ, Kim K, Jhun BH. β 2-Adrenergic receptor (β 2-AR) agonist formoterol suppresses differentiation of L6 myogenic cells by blocking PI3K-AKT pathway. Anim Cells Syst (Seoul) 2019; 23:18-25. [PMID: 30834155 PMCID: PMC6394304 DOI: 10.1080/19768354.2018.1561516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/20/2018] [Accepted: 12/05/2018] [Indexed: 01/01/2023] Open
Abstract
β2-Adrenergic receptor (β2-AR) is implicated in muscle metabolic activities such as glycogen metabolism, glucose uptake, lipolysis and muscle growth. However, the functional role of β2-AR in the differentiation of skeletal muscle is largely unknown. Here, we examined the functional role of β2-AR in L6 myoblast differentiation using the long-term-acting β2-AR-specific agonist formoterol. We observed that formoterol treatment strongly suppressed L6 myoblast differentiation and the expression of myosin heavy chain (MHC) in a dose- and time-dependent manner. Showing that both long-acting agonist (formoterol) and short-acting agonist (terbutaline) inhibited the induction of MHC protein, whereas β2-AR antagonist (ICI-118,551) upregulated MHC expression, we clearly demonstrated that β2-AR is involved in L6 myoblast differentiation. Furthermore, our pharmacological inhibition study revealed that the PI3K–AKT pathway is the main signaling pathway for myotube formation. Formoterol inhibited the activation of PI3K–AKT signaling, but not that of ERK signaling. Moreover, formoterol selectively inhibited AKT activation by IGF-I, but not by insulin. Collectively, our findings reveal a previously undocumented role of β2-AR activation in modulating the differentiation of L6 myoblasts.
Collapse
Affiliation(s)
- So-Hyeon Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea
| | - Sun-Ju Yi
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hyerim Lee
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ji-Hyun Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea
| | - Myung-Ju Oh
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea
| | - Eun-Ju Song
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea
| | - Kyunghwan Kim
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Byung H Jhun
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
6
|
Arif A, Jia J, Willard B, Li X, Fox PL. Multisite Phosphorylation of S6K1 Directs a Kinase Phospho-code that Determines Substrate Selection. Mol Cell 2019; 73:446-457.e6. [PMID: 30612880 PMCID: PMC6415305 DOI: 10.1016/j.molcel.2018.11.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/16/2018] [Accepted: 11/15/2018] [Indexed: 01/02/2023]
Abstract
Multisite phosphorylation of kinases can induce on-off or graded regulation of catalytic activity; however, its influence on substrate specificity remains unclear. Here, we show that multisite phosphorylation of ribosomal protein S6 kinase 1 (S6K1) alters target selection. Agonist-inducible phosphorylation of glutamyl-prolyl tRNA synthetase (EPRS) by S6K1 in monocytes and adipocytes requires not only canonical phosphorylation at Thr389 by mTORC1 but also phosphorylation at Ser424 and Ser429 in the C terminus by cyclin-dependent kinase 5 (Cdk5). S6K1 phosphorylation at these additional sites induces a conformational switch and is essential for high-affinity binding and phosphorylation of EPRS, but not canonical S6K1 targets, e.g., ribosomal protein S6. Unbiased proteomic analysis identified additional targets phosphorylated by multisite phosphorylated S6K1 in insulin-stimulated adipocytes-namely, coenzyme A synthase, lipocalin 2, and cortactin. Thus, embedded within S6K1 is a target-selective kinase phospho-code that integrates signals from mTORC1 and Cdk5 to direct an insulin-stimulated, post-translational metabolon determining adipocyte lipid metabolism.
Collapse
Affiliation(s)
- Abul Arif
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Orthopedics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Jie Jia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Belinda Willard
- Lerner Research Institute Proteomics and Metabolomics Core, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
7
|
Lampropoulou E, Logoviti I, Koutsioumpa M, Hatziapostolou M, Polytarchou C, Skandalis SS, Hellman U, Fousteris M, Nikolaropoulos S, Choleva E, Lamprou M, Skoura A, Megalooikonomou V, Papadimitriou E. Cyclin-dependent kinase 5 mediates pleiotrophin-induced endothelial cell migration. Sci Rep 2018; 8:5893. [PMID: 29651006 PMCID: PMC5897396 DOI: 10.1038/s41598-018-24326-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/22/2018] [Indexed: 12/21/2022] Open
Abstract
Pleiotrophin (PTN) stimulates endothelial cell migration through binding to receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ) and ανβ3 integrin. Screening for proteins that interact with RPTPβ/ζ and potentially regulate PTN signaling, through mass spectrometry analysis, identified cyclin-dependent kinase 5 (CDK5) activator p35 among the proteins displaying high sequence coverage. Interaction of p35 with the serine/threonine kinase CDK5 leads to CDK5 activation, known to be implicated in cell migration. Protein immunoprecipitation and proximity ligation assays verified p35-RPTPβ/ζ interaction and revealed the molecular association of CDK5 and RPTPβ/ζ. In endothelial cells, PTN activates CDK5 in an RPTPβ/ζ- and phosphoinositide 3-kinase (PI3K)-dependent manner. On the other hand, c-Src, ανβ3 and ERK1/2 do not mediate the PTN-induced CDK5 activation. Pharmacological and genetic inhibition of CDK5 abolished PTN-induced endothelial cell migration, suggesting that CDK5 mediates PTN stimulatory effect. A new pyrrolo[2,3-α]carbazole derivative previously identified as a CDK1 inhibitor, was found to suppress CDK5 activity and eliminate PTN stimulatory effect on cell migration, warranting its further evaluation as a new CDK5 inhibitor. Collectively, our data reveal that CDK5 is activated by PTN, in an RPTPβ/ζ-dependent manner, regulates PTN-induced cell migration and is an attractive target for the inhibition of PTN pro-angiogenic properties.
Collapse
Affiliation(s)
- Evgenia Lampropoulou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, GR26504, Patras, Greece
| | - Ioanna Logoviti
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, GR26504, Patras, Greece
| | - Marina Koutsioumpa
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, GR26504, Patras, Greece.,Center for Systems Biomedicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Maria Hatziapostolou
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom
| | - Christos Polytarchou
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom
| | - Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, GR26504, Patras, Greece.,Ludwig Institute for Cancer Research, Uppsala University, Uppsala, SE-751-05, Sweden
| | - Ulf Hellman
- Ludwig Institute for Cancer Research, Uppsala University, Uppsala, SE-751-05, Sweden
| | - Manolis Fousteris
- Laboratory of Medicinal Chemistry, Department of Pharmacy, University of Patras, GR26504, Patras, Greece
| | - Sotirios Nikolaropoulos
- Laboratory of Medicinal Chemistry, Department of Pharmacy, University of Patras, GR26504, Patras, Greece
| | - Efrosini Choleva
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, GR26504, Patras, Greece
| | - Margarita Lamprou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, GR26504, Patras, Greece
| | - Angeliki Skoura
- Computer Engineering and Informatics Department, University of Patras, Patras, Greece
| | | | - Evangelia Papadimitriou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, GR26504, Patras, Greece.
| |
Collapse
|
8
|
Flamini V, Ghadiali RS, Antczak P, Rothwell A, Turnbull JE, Pisconti A. The Satellite Cell Niche Regulates the Balance between Myoblast Differentiation and Self-Renewal via p53. Stem Cell Reports 2018; 10:970-983. [PMID: 29429962 PMCID: PMC5918193 DOI: 10.1016/j.stemcr.2018.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/18/2022] Open
Abstract
Satellite cells are adult muscle stem cells residing in a specialized niche that regulates their homeostasis. How niche-generated signals integrate to regulate gene expression in satellite cell-derived myoblasts is poorly understood. We undertook an unbiased approach to study the effect of the satellite cell niche on satellite cell-derived myoblast transcriptional regulation and identified the tumor suppressor p53 as a key player in the regulation of myoblast quiescence. After activation and proliferation, a subpopulation of myoblasts cultured in the presence of the niche upregulates p53 and fails to differentiate. When satellite cell self-renewal is modeled ex vivo in a reserve cell assay, myoblasts treated with Nutlin-3, which increases p53 levels in the cell, fail to differentiate and instead become quiescent. Since both these Nutlin-3 effects are rescued by small interfering RNA-mediated p53 knockdown, we conclude that a tight control of p53 levels in myoblasts regulates the balance between differentiation and return to quiescence.
Collapse
Affiliation(s)
- Valentina Flamini
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Rachel S Ghadiali
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Philipp Antczak
- Department of Functional Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; Computational Biology Facility, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Amy Rothwell
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Jeremy E Turnbull
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Addolorata Pisconti
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
9
|
Compound C enhances tau phosphorylation at Serine396 via PI3K activation in an AMPK and rapamycin independent way in differentiated SH-SY5Y cells. Neurosci Lett 2018; 670:53-61. [DOI: 10.1016/j.neulet.2018.01.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 11/21/2022]
|
10
|
Wei C, Li L, Su H, Xu L, Lu J, Zhang L, Liu W, Ren H, Du L. Identification of the crucial molecular events during the large-scale myoblast fusion in sheep. Physiol Genomics 2014; 46:429-40. [DOI: 10.1152/physiolgenomics.00184.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It is well known that in sheep most myofibers are formed before birth; however, the crucial myogenic stage and the cellular and molecular mechanisms underpinning phenotypic variation of fetal muscle development remain to be ascertained. We used histological, microarray, and quantitative real-time PCR (qPCR) methods to examine the developmental characteristics of fetal muscle at 70, 85, 100, 120, and 135 days of gestation in sheep. We show that day 100 is an important checkpoint for change in muscle transcriptome and histomorphology in fetal sheep and that the period of 85–100 days is the vital developmental stage for large-scale myoblast fusion. Furthermore, we identified the cis-regulatory motifs for E2F1 or MEF2A in a list of decreasingly or increasingly expressed genes between 85 and 100 days, respectively. Further analysis demonstrated that the mRNA and phosphorylated protein levels of E2F1 and MEF2A significantly declined with myogenic progression in vivo and in vitro. qRT-PCR analysis indicated that PI3K and FST, as targets of E2F1, may be involved in myoblast differentiation and fusion and that downregulation of MEF2A contributes to transition of myofiber types by differential regulation of the target genes involved at the stage of 85–100 days. We clarify for the first time the timing of myofiber proliferation and development during gestation in sheep, which would be beneficial to meat sheep production. Our findings present a repertoire of gene expression in muscle during large-scale myoblast fusion at transcriptome-wide level, which contributes to elucidate the regulatory network of myogenic differentiation.
Collapse
Affiliation(s)
- Caihong Wei
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Li
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China; and
| | - Hongwei Su
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Lingyang Xu
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Lu
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Zhang
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenzhong Liu
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Hangxing Ren
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, China
| | - Lixin Du
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Jiang Y, Singh P, Yin H, Zhou YX, Gui Y, Wang DZ, Zheng XL. Opposite roles of myocardin and atrogin-1 in L6 myoblast differentiation. J Cell Physiol 2013; 228:1989-95. [PMID: 23526547 DOI: 10.1002/jcp.24365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 03/04/2013] [Indexed: 12/15/2022]
Abstract
L6 rat myoblasts undergo differentiation and myotube formation when cultured in medium containing a low-concentration of serum, but the underlying mechanism is not well understood. The role of atrogin-1, an E3 ligase with well-characterized roles in muscle atrophy, has not been defined in muscle differentiation. Myocardin is a coactivator of serum response factor (SRF), which together promotes smooth muscle differentiation. Myocardin is transiently expressed in skeletal muscle progenitor cells with inhibitory effects on the expression of myogenin and muscle differentiation. It remains unknown whether myocardin, which undergoes ubiquitination degradation, plays a role in L6 cell differentiation. The current study aimed to investigate the potential roles of myocardin and atrogin-1 in differentiation of L6 cells. As reported by many others, shifting to medium containing 2% serum induced myotube formation of L6 cells. Differentiation was accompanied by up-regulation of atrogin-1 and down-regulation of myocardin, suggesting that both may be involved in muscle differentiation. As expected, over-expression of atrogin-1 stimulated the expression of troponin T and myogenin and differentiation of the L6 myoblasts. Co-expression of myocardin with atrogin-1 inhibited atrogin-1-induced myogenin expression. Over-expression of atrogin-1 decreased myocardin protein level, albeit without affecting its mRNA level. Small-interfering RNA-mediated knockdown of atrogin-1 increased myocardin protein. Consistently, ectopic expression of myocardin inhibited myogenic differentiation. Unexpectedly, myocardin decreased the expression of atrogin-1 without involving Foxo1. Taken together, our results have demonstrated that atrogin-1 plays a positive role in skeletal muscle differentiation through down-regulation of myocardin.
Collapse
Affiliation(s)
- Yulan Jiang
- Department of Biochemistry & Molecular Biology, The University of Calgary, Calgary, Albeta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Tang Z, Bereczki E, Zhang H, Wang S, Li C, Ji X, Branca RM, Lehtiö J, Guan Z, Filipcik P, Xu S, Winblad B, Pei JJ. Mammalian target of rapamycin (mTor) mediates tau protein dyshomeostasis: implication for Alzheimer disease. J Biol Chem 2013; 288:15556-70. [PMID: 23585566 DOI: 10.1074/jbc.m112.435123] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Previous evidence from post-mortem Alzheimer disease (AD) brains and drug (especially rapamycin)-oriented in vitro and in vivo models implicated an aberrant accumulation of the mammalian target of rapamycin (mTor) in tangle-bearing neurons in AD brains and its role in the formation of abnormally hyperphosphorylated tau. Compelling evidence indicated that the sequential molecular events such as the synthesis and phosphorylation of tau can be regulated through p70 S6 kinase, the well characterized immediate downstream target of mTor. In the present study, we further identified that the active form of mTor per se accumulates in tangle-bearing neurons, particularly those at early stages in AD brains. By using mass spectrometry and Western blotting, we identified three phosphoepitopes of tau directly phosphorylated by mTor. We have developed a variety of stable cell lines with genetic modification of mTor activity using SH-SY5Y neuroblastoma cells as background. In these cellular systems, we not only confirmed the tau phosphorylation sites found in vitro but also found that mTor mediates the synthesis and aggregation of tau, resulting in compromised microtubule stability. Changes of mTor activity cause fluctuation of the level of a battery of tau kinases such as protein kinase A, v-Akt murine thymoma viral oncogene homolog-1, glycogen synthase kinase 3β, cyclin-dependent kinase 5, and tau protein phosphatase 2A. These results implicate mTor in promoting an imbalance of tau homeostasis, a condition required for neurons to maintain physiological function.
Collapse
Affiliation(s)
- Zhi Tang
- KI-Alzheimer Disease Research Center, Karolinska Institutet, Novum, SE 14186 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kurebayashi Y, Nagai S, Ikejiri A, Koyasu S. Recent advances in understanding the molecular mechanisms of the development and function of Th17 cells. Genes Cells 2013; 18:247-65. [PMID: 23383714 PMCID: PMC3657121 DOI: 10.1111/gtc.12039] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/26/2012] [Indexed: 12/13/2022]
Abstract
IL-17-producing T helper (Th17) cells comprise a distinct Th subset involved in epithelial cell- and neutrophil-mediated immune responses against extracellular microbes. At the same time, Th17 cells play significant roles in the development of autoimmune diseases including rheumatoid arthritis and multiple sclerosis. Since the identification of Th17 cells approximately a decade ago, the molecular mechanisms of their differentiation have been intensively studied and a number of signaling cascades and transcription factors have been shown to be involved. Here, we review the current knowledge regarding the function of Th17 cells in vivo as well as several key concepts for the molecular mechanisms of Th17 differentiation. We also discuss the emerging roles of phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin complex 1 (mTORC1) and hypoxia-inducible factor 1 (HIF-1) in the differentiation of Th17 cells.
Collapse
Affiliation(s)
- Yutaka Kurebayashi
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | | | | | | |
Collapse
|
14
|
Ge Y, Chen J. Mammalian target of rapamycin (mTOR) signaling network in skeletal myogenesis. J Biol Chem 2012; 287:43928-35. [PMID: 23115234 DOI: 10.1074/jbc.r112.406942] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mammalian (or mechanistic) target of rapamycin (mTOR) regulates a wide range of cellular and developmental processes by coordinating signaling responses to mitogens, nutrients, and various stresses. Over the last decade, mTOR has emerged as a master regulator of skeletal myogenesis, controlling multiple stages of the myofiber formation process. In this minireview, we present an emerging view of the signaling network underlying mTOR regulation of myogenesis, which contrasts with the well established mechanisms in the regulation of cell and muscle growth. Current questions for future studies are also highlighted.
Collapse
Affiliation(s)
- Yejing Ge
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
15
|
Obi S, Masuda H, Shizuno T, Sato A, Yamamoto K, Ando J, Abe Y, Asahara T. Fluid shear stress induces differentiation of circulating phenotype endothelial progenitor cells. Am J Physiol Cell Physiol 2012; 303:C595-606. [PMID: 22744008 DOI: 10.1152/ajpcell.00133.2012] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endothelial progenitor cells (EPCs) are mobilized from bone marrow to peripheral blood, and contribute to angiogenesis in tissue. In the process, EPCs are exposed to shear stress generated by blood flow and tissue fluid flow. Our previous study showed that shear stress induces differentiation of mature EPCs in adhesive phenotype into mature endothelial cells and, moreover, arterial endothelial cells. In this study we investigated whether immature EPCs in a circulating phenotype differentiate into mature EPCs in response to shear stress. When floating-circulating phenotype EPCs derived from ex vivo expanded human cord blood were exposed to controlled levels of shear stress in a flow-loading device, the bioactivities of adhesion, migration, proliferation, antiapoptosis, tube formation, and differentiated type of EPC colony formation increased. The surface protein expression rate of the endothelial markers VEGF receptor 1 (VEGF-R1) and -2 (VEGF-R2), VE-cadherin, Tie2, VCAM1, integrin α(v)/β(3), and E-selectin increased in shear-stressed EPCs. The VEGF-R1, VEGF-R2, VE-cadherin, and Tie2 protein increases were dependent on the magnitude of shear stress. The mRNA levels of VEGF-R1, VEGF-R2, VE-cadherin, Tie2, endothelial nitric oxide synthase, matrix metalloproteinase 9, and VEGF increased in shear-stressed EPCs. Inhibitor analysis showed that the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signal transduction pathway is a potent activator of adhesion, proliferation, tube formation, and differentiation in response to shear stress. Western blot analysis revealed that shear stress activated the VEGF-R2 phosphorylation in a ligand-independent manner. These results indicate that shear stress increases differentiation, adhesion, migration, proliferation, antiapoptosis, and vasculogenesis of circulating phenotype EPCs by activation of VEGF-R2 and the PI3K/Akt/mTOR signal transduction pathway.
Collapse
Affiliation(s)
- Syotaro Obi
- Department of Regenerative Medicine Science, Tokai University School of Medicine, Isehara, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Woo DH, Yun SJ, Kim EK, Ha JM, Shin HK, Bae SS. Regulation of Skeletal Muscle Differentiation by Akt. ACTA ACUST UNITED AC 2012. [DOI: 10.5352/jls.2012.22.4.447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Kurebayashi Y, Nagai S, Ikejiri A, Ohtani M, Ichiyama K, Baba Y, Yamada T, Egami S, Hoshii T, Hirao A, Matsuda S, Koyasu S. PI3K-Akt-mTORC1-S6K1/2 axis controls Th17 differentiation by regulating Gfi1 expression and nuclear translocation of RORγ. Cell Rep 2012; 1:360-73. [PMID: 22832227 DOI: 10.1016/j.celrep.2012.02.007] [Citation(s) in RCA: 255] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/06/2012] [Accepted: 02/15/2012] [Indexed: 02/02/2023] Open
Abstract
The PI3K-Akt-mTORC1 axis contributes to the activation, survival, and proliferation of CD4(+) T cells upon stimulation through TCR and CD28. Here, we demonstrate that the suppression of this axis by deletion of p85α or PI3K/mTORC1 inhibitors as well as T cell-specific deletion of raptor, an essential component of mTORC1, impairs Th17 differentiation in vitro and in vivo in a S6K1/2-dependent fashion. Inhibition of PI3K-Akt-mTORC1-S6K1 axis impairs the downregulation of Gfi1, a negative regulator of Th17 differentiation. Furthermore, we demonstrate that S6K2, a nuclear counterpart of S6K1, is induced by the PI3K-Akt-mTORC1 axis, binds RORγ, and carries RORγ to the nucleus. These results point toward a pivotal role of PI3K-Akt-mTORC1-S6K1/2 axis in Th17 differentiation.
Collapse
Affiliation(s)
- Yutaka Kurebayashi
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinanomachi, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Di Fulvio M, Frondorf K, Henkels KM, Grunwald WC, Cool D, Gomez-Cambronero J. Phospholipase D2 (PLD2) shortens the time required for myeloid leukemic cell differentiation: mechanism of action. J Biol Chem 2011; 287:393-407. [PMID: 22094461 DOI: 10.1074/jbc.m111.259465] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell differentiation is compromised in acute leukemias. We report that mammalian target of rapamycin (mTOR) and S6 kinase (S6K) are highly expressed in the undifferentiated promyelomonocytic leukemic HL-60 cell line, whereas PLD2 expression is minimal. The expression ratio of PLD2 to mTOR (or to S6K) is gradually inverted upon in vitro induction of differentiation toward the neutrophilic phenotype. We present three ways that profoundly affect the kinetics of differentiation as follows: (i) simultaneous overexpression of mTOR (or S6K), (ii) silencing of mTOR via dsRNA-mediated interference or inhibition with rapamycin, and (iii) PLD2 overexpression. The last two methods shortened the time required for differentiation. By determining how PLD2 participates in cell differentiation, we found that PLD2 interacts with and activates the oncogene Fes/Fps, a protein-tyrosine kinase known to be involved in myeloid cell development. Fes activity is elevated with PLD2 overexpression, phosphatidic acid or phosphatidylinositol bisphosphate. Co-immunoprecipitation indicates a close PLD2-Fes physical interaction that is negated by a Fes-R483K mutant that incapacitates its Src homology 2 domain. All these suggest for the first time the following mechanism: mTOR/S6K down-regulation→PLD2 overexpression→PLD2/Fes association→phosphatidic acid-led activation of Fes kinase→granulocytic differentiation. Differentiation shortening could have a clinical impact on reducing the time of return to normalcy of the white cell counts after chemotherapy in patients with acute promyelocytic leukemia.
Collapse
Affiliation(s)
- Mauricio Di Fulvio
- Department of Biochemistry and Molecular Biology, Wright State University School Medicine, Dayton, Ohio, 45435
| | - Kathleen Frondorf
- Department of Biochemistry and Molecular Biology, Wright State University School Medicine, Dayton, Ohio, 45435
| | - Karen M Henkels
- Department of Biochemistry and Molecular Biology, Wright State University School Medicine, Dayton, Ohio, 45435
| | - William C Grunwald
- Department of Pharmacology and Toxicology, Wright State University School Medicine, Dayton, Ohio 45435
| | - David Cool
- Department of Pharmacology and Toxicology, Wright State University School Medicine, Dayton, Ohio 45435
| | - Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School Medicine, Dayton, Ohio, 45435.
| |
Collapse
|
19
|
Hakuno F, Yamauchi Y, Kaneko G, Yoneyama Y, Nakae J, Chida K, Kadowaki T, Yamanouchi K, Nishihara M, Takahashi SI. Constitutive expression of insulin receptor substrate (IRS)-1 inhibits myogenic differentiation through nuclear exclusion of Foxo1 in L6 myoblasts. PLoS One 2011; 6:e25655. [PMID: 21991327 PMCID: PMC3185002 DOI: 10.1371/journal.pone.0025655] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 09/09/2011] [Indexed: 11/19/2022] Open
Abstract
Insulin-like growth factors (IGFs) are well known to play essential roles in enhancement of myogenic differentiation. In this report we showed that initial IGF-I signal activation but long-term IGF-1 signal termination are required for myogenic differentiation. L6 myoblast stably transfected with myc-epitope tagged insulin receptor substrate-1, myc-IRS-1 (L6-mIRS1) was unable to differentiate into myotubes, indicating that IRS-1 constitutive expression inhibited myogenesis. To elucidate the molecular mechanisms underlying myogenic inhibition, IGF-I signaling was examined. IGF-I treatment of control L6 cells for 18 h resulted in a marked suppression of IGF-I stimulated IRS-1 association with the p85 PI 3-kinase and suppression of activation of Akt that correlated with a down regulation of IRS-1 protein. L6-mIRS1 cells, in contrast, had sustained high levels of IRS-1 protein following 18 h of IGF-I treatment with persistent p85 PI 3-kinase association with IRS-1, Akt phosphorylation and phosphorylation of the downstream Akt substrate, Foxo1. Consistent with Foxo1 phosphorylation, Foxo1 protein was excluded from the nuclei in L6-mIRS1 cells, whereas Foxo1 was localized in the nuclei in control L6 cells during induction of differentiation. In addition, L6 cells stably expressing a dominant-interfering form of Foxo1, Δ256Foxo1 (L6-Δ256Foxo1) were unable to differentiate into myotubes. Together, these data demonstrate that IGF-I regulation of Foxo1 nuclear localization is essential for the myogenic program in L6 cells but that persistent activation of IGF-1 signaling pathways results in a negative feedback to prevent myogenesis.
Collapse
Affiliation(s)
- Fumihiko Hakuno
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoko Yamauchi
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Gen Kaneko
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yosuke Yoneyama
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Jun Nakae
- Frontier Medicine on Metabolic Syndrome, Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kazuhiro Chida
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tatsuhiko Kadowaki
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Medical Science, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masugi Nishihara
- Department of Veterinary Medical Science, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
20
|
The myogenic kinome: protein kinases critical to mammalian skeletal myogenesis. Skelet Muscle 2011; 1:29. [PMID: 21902831 PMCID: PMC3180440 DOI: 10.1186/2044-5040-1-29] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 09/08/2011] [Indexed: 12/13/2022] Open
Abstract
Myogenesis is a complex and tightly regulated process, the end result of which is the formation of a multinucleated myofibre with contractile capability. Typically, this process is described as being regulated by a coordinated transcriptional hierarchy. However, like any cellular process, myogenesis is also controlled by members of the protein kinase family, which transmit and execute signals initiated by promyogenic stimuli. In this review, we describe the various kinases involved in mammalian skeletal myogenesis: which step of myogenesis a particular kinase regulates, how it is activated (if known) and what its downstream effects are. We present a scheme of protein kinase activity, similar to that which exists for the myogenic transcription factors, to better clarify the complex signalling that underlies muscle development.
Collapse
|
21
|
Jaafar R, Zeiller C, Pirola L, Di Grazia A, Naro F, Vidal H, Lefai E, Némoz G. Phospholipase D regulates myogenic differentiation through the activation of both mTORC1 and mTORC2 complexes. J Biol Chem 2011; 286:22609-21. [PMID: 21525000 DOI: 10.1074/jbc.m110.203885] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
How phospholipase D (PLD) is involved in myogenesis remains unclear. At the onset of myogenic differentiation of L6 cells induced by the PLD agonist vasopressin in the absence of serum, mTORC1 complex was rapidly activated, as reflected by phosphorylation of S6 kinase1 (S6K1). Both the long (p85) and short (p70) S6K1 isoforms were phosphorylated in a PLD1-dependent way. Short rapamycin treatment specifically inhibiting mTORC1 suppressed p70 but not p85 phosphorylation, suggesting that p85 might be directly activated by phosphatidic acid. Vasopressin stimulation also induced phosphorylation of Akt on Ser-473 through PLD1-dependent activation of mTORC2 complex. In this model of myogenesis, mTORC2 had a positive role mostly unrelated to Akt activation, whereas mTORC1 had a negative role, associated with S6K1-induced Rictor phosphorylation. The PLD requirement for differentiation can thus be attributed to its ability to trigger via mTORC2 activation the phosphorylation of an effector that could be PKCα. Moreover, PLD is involved in a counter-regulation loop expected to limit the response. This study thus brings new insights in the intricate way PLD and mTOR cooperate to control myogenesis.
Collapse
|
22
|
Woo JH, Kim MJ, Kim HS. Phosphoinositide 3-kinase regulates myogenin expression at both the transcriptional and post-transcriptional level during myogenesis. Anim Cells Syst (Seoul) 2010. [DOI: 10.1080/19768354.2010.496541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
23
|
Beh JE, Latip J, Abdullah MP, Ismail A, Hamid M. Scoparia dulcis (SDF7) endowed with glucose uptake properties on L6 myotubes compared insulin. JOURNAL OF ETHNOPHARMACOLOGY 2010; 129:23-33. [PMID: 20193753 DOI: 10.1016/j.jep.2010.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/31/2009] [Accepted: 02/08/2010] [Indexed: 05/28/2023]
Abstract
AIM OF THE STUDY Insulin stimulates glucose uptake and promotes the translocation of glucose transporter 4 (Glut 4) to the plasma membrane on L6 myotubes. The aim of this study is to investigate affect of Scoparia dulcis Linn water extracts on glucose uptake activity and the Glut 4 translocation components (i.e., IRS-1, PI 3-kinase, PKB/Akt2, PKC and TC 10) in L6 myotubes compared to insulin. MATERIALS AND METHODS Extract from TLC fraction-7 (SDF7) was used in this study. The L6 myotubes were treated by various concentrations of SDF7 (1 to 50 microg/ml) and insulin (1 to 100 nM). The glucose uptake activities of L6 myotubes were evaluated using 2-Deoxy-D-glucose uptake assay in with or without fatty acid-induced medium. The Glut 4 translocation components in SDF7-treated L6 myotubes were detected using immunoblotting and quantified by densitometry compared to insulin. Plasma membrane lawn assay and glycogen colorimetry assay were carried out in SDF7- and insulin-treated L6 myotubes in this study. RESULTS Here, our data clearly shows that SDF7 possesses glucose uptake properties on L6 myotubes that are dose-dependent, time-dependent and plasma membrane Glut 4 expression-dependent. SDF7 successfully stimulates glucose uptake activity as potent as insulin at a maximum concentration of 50 microg/ml at 480 min on L6 myotubes. Furthermore, SDF7 stimulates increased Glut 4 expression and translocation to plasma membranes at equivalent times. Even in the insulin resistance stage (free fatty acids-induced), SDF7-treated L6 myotubes were found to be more capable at glucose transport than insulin treatment. CONCLUSIONS Thus, we suggested that Scoparia dulcis has the potential to be categorized as a hypoglycemic medicinal plant based on its good glucose transport properties.
Collapse
Affiliation(s)
- Joo Ee Beh
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | | | | | | | | |
Collapse
|
24
|
Hypoxia converts the myogenic action of insulin-like growth factors into mitogenic action by differentially regulating multiple signaling pathways. Proc Natl Acad Sci U S A 2010; 107:5857-62. [PMID: 20231451 DOI: 10.1073/pnas.0909570107] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Insulin-like growth factors (IGFs) stimulate myoblast proliferation and differentiation. It remains elusive how these mutually exclusive cellular responses are elicited by the same growth factor. Here we report that whereas IGF promotes myoblast differentiation under normoxia, it stimulates proliferation under hypoxia. Hypoxia activates the HIF-1 transcriptional program and knockdown of HIF-1alpha changes the mitogenic action of IGF into myogenic action under hypoxia. Conversely, overexpression of HIF-1alpha abolishes the myogenic effect of IGF under normoxia. Under normoxia, IGF activates the Akt-mTOR, p38, and Erk1/2 MAPK pathways. Hypoxia suppresses basal and IGF-induced Akt-mTOR and p38 activity, whereas it enhances and prolongs IGF-induced Erk1/2 activation in a HIF-1-dependent fashion. Activation of Akt-mTOR and p38 promotes myogenesis, and p38 also inhibits proliferation. Activation of Erk stimulates myoblast proliferation but inhibits differentiation. These results suggest that hypoxia converts the myogenic action of IGFs into mitogenic action by differentially regulating multiple signaling pathways via HIF-1-dependent mechanisms. Our findings provide a mechanistic explanation for the paradoxical actions of IGFs during myogenesis and reveal a novel mechanism by which cells sense and integrate growth factor signals and oxygen availability in their microenvironments.
Collapse
|
25
|
Abstract
The retinoblastoma tumor suppressor gene (RB-1) is a key regulator of cellular senescence. Expression of the retinoblastoma protein (pRB) in human tumor cells that lack it results in senescence-like changes. The induction of the senescent phenotype by pRB requires the postmitotic kinase CDK5, the best known function of which is in neuronal development and postmitotic neuronal activities. Activation of CDK5 in neurons depends on its activators p35 and p39; however, little is known about how CDK5 is activated in non-neuronal senescent cells. Here we report that p35 is required for the activation of CDK5 in the process of cellular senescence. We demonstrate that: (i) p35 is expressed in osteosarcoma cells, (ii) p35 is required for CDK5 activation induced by pRB during senescence, (iii) p35 is required for the senescent morphological changes in which CDK5 is known to be involved as well as for expression of the senescence secretome, and (iv) p35 is up-regulated in senescing cells. Taken together, these results suggest that p35 is at least one of the activators of CDK5 that is mobilized in the process of cellular senescence, which may provide insight into cancer cell proliferation and future cancer therapeutics.
Collapse
Affiliation(s)
- Daqin Mao
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
26
|
Lim JA, Woo JH, Kim HS. Phosphoinositide 3-kinase/Akt signalling is responsible for the differential susceptibility of myoblasts and myotubes to menadione-induced oxidative stress. Free Radic Res 2009; 42:798-806. [DOI: 10.1080/10715760802429021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
27
|
Abdel-Malak NA, Mofarrahi M, Mayaki D, Khachigian LM, Hussain SNA. Early growth response-1 regulates angiopoietin-1-induced endothelial cell proliferation, migration, and differentiation. Arterioscler Thromb Vasc Biol 2008; 29:209-16. [PMID: 19112164 DOI: 10.1161/atvbaha.108.181073] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Angiopoietin-1 (Ang-1) is an important regulator of angiogenesis in endothelial cells. It promotes migration, proliferation, and differentiation of cells, although the regulating factors involved in these processes remain unclear. In this study, we evaluated the contribution of the transcription factor early growth response-1 (Egr-1) to Ang-1-induced angiogenesis in human umbilical vein endothelial cells (HUVECs). METHODS AND RESULTS Expression of Egr-1 was evaluated with real-time PCR and immunoblotting, whereas Egr-1 DNA binding activity was monitored with electrophoretic mobility shift assays. Cell migration was measured with wound healing and Boyden chamber assays, whereas cell proliferation and differentiation of cells into capillary-like tube structures were monitored with cell counting, BrdU incorporation and Matrigels. To selectively inhibit Egr-1 expression, we used both siRNA oligonucleotides and specific DNAzymes. Egr-1 mRNA expression rose approximately 9-fold within 2 hours of Ang-1 exposure and declined thereafter. Upregulation of Egr-1 expression was accompanied by an increase in nuclear mobilization and augmented DNA binding. These processes were mediated through the Erk1/2, PI-3 kinase/AKT, and mTOR pathways. Knockdown of Egr-1 expression completely abrogated Ang-1-induced endothelial migration and significantly reduced proliferation and capillary-like tube formation of HUVECs that overexpress Ang-1. CONCLUSIONS Ang-1 triggers significant and transient induction of Egr-1, and Egr-1 contributes to Ang-1-induced endothelial cell migration and proliferation.
Collapse
Affiliation(s)
- Nelly A Abdel-Malak
- Critical Care Division, Department of Medicine, McGill University Health Centre, McGill University, Montreal, Québec, Canada
| | | | | | | | | |
Collapse
|
28
|
Cabodi S, Morello V, Masi A, Cicchi R, Broggio C, Distefano P, Brunelli E, Silengo L, Pavone F, Arcangeli A, Turco E, Tarone G, Moro L, Defilippi P. Convergence of integrins and EGF receptor signaling via PI3K/Akt/FoxO pathway in early gene Egr-1 expression. J Cell Physiol 2008; 218:294-303. [PMID: 18844239 DOI: 10.1002/jcp.21603] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The early gene early growth response (Egr-1), a broadly expressed member of the zing-finger family of transcription factors, is induced in many cell types by a variety of growth and differentiation stimuli, including epidermal growth factor (EGF). Here we demonstrate that Egr-1 expression is mainly regulated by integrin-mediated adhesion. Integrin-dependent adhesion plays a dual role in Egr-1 regulation, either being sufficient "per se" to induce Egr-1, or required for EGF-dependent expression of Egr-1, which occurs only in adherent cells and not in cells in suspension. To dissect the molecular basis of integrin-dependent Egr-1 regulation, we show by FLIM-based FRET that in living cells beta1-integrin associates with the EGF receptor (EGFR) and that EGF further increases the extent complex formation. Interestingly, Egr-1 induction depends on integrin-dependent PI3K/Akt activation, as indicated by the decrease in Egr-1 levels in presence of the pharmacological inhibitor LY294002, the kinase-defective Akt mutant and Akt1/2 shRNAs. Indeed, upon adhesion activated Akt translocates into the nucleus and phosphorylates FoxO1, a Forkhead transcription factors. Consistently, FoxO1silencing results in Egr-1-increased levels, indicating that FoxO1 behaves as a negative regulator of Egr-1 expression. These data demonstrate that integrin/EGFR cross-talk is required for expression of Egr-1 through a novel regulatory cascade involving the activation of the PI3K/Akt/Forkhead pathway.
Collapse
Affiliation(s)
- Sara Cabodi
- Centro di Biotecnologie Molecolari and Dipartimento di Genetica, Biologia e Biochimica, Università di Torino, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Figliola R, Busanello A, Vaccarello G, Maione R. Regulation of p57KIP2 during Muscle Differentiation: Role of Egr1, Sp1 and DNA Hypomethylation. J Mol Biol 2008; 380:265-77. [DOI: 10.1016/j.jmb.2008.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 04/29/2008] [Accepted: 05/02/2008] [Indexed: 11/15/2022]
|
30
|
Rosales JL, Sarker K, Ho N, Broniewska M, Wong P, Cheng M, van der Hoorn FA, Lee KY. ODF1 Phosphorylation by Cdk5/p35 Enhances ODF1-OIP1 Interaction. Cell Physiol Biochem 2008; 20:311-8. [PMID: 17762160 DOI: 10.1159/000107517] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2007] [Indexed: 11/19/2022] Open
Abstract
Cdk5 and p35 are integral components of the sperm tail outer dense fibers (ODFs), which contribute to the distinct morphology and function of the sperm tail. In this study, we sought to characterize and investigate the significance of Cdk5/p35 association with ODFs. We show that ODF2 interacts with Cdk5 and p35 but not with the Cdk5/p35 heterodimer. By using deletion mutants, the ODF2 binding region in p35 was mapped to residues 122 to 198. This overlaps the Cdk5 binding region in p35, explaining the inability of ODF2 to bind to the Cdk5/p35 complex. In vitro phosphorylation assay showed that although Cdk5/p35 does not phosphorylate ODF2, it phosphorylates ODF1. Mass spectrometry revealed that Cdk5/p35 specifically phosphorylates Ser193 in the ODF1 C-terminal region containing the Cys-X-Pro motif, the interaction site for the novel RING finger protein, ODF1 interacting protein (OIP1), a candidate E3 ubiquitin ligase, that also localizes in the sperm tail. Cdk5 phosphorylation of ODF1 Ser193 results in enhanced ODF1-OIP1 interaction. These findings suggest that Cdk5 may be important in promoting ODF1 degradation, and potentially, the detachment and fragmentation of the sperm tail following fertilization.
Collapse
Affiliation(s)
- Jesusa L Rosales
- Department of Cell Biology and Anatomy, Southern Alberta Cancer Research and Hotchkiss Brain Institutes, The University of Calgary, Calgary, Canada
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Di Paolo S, Leogrande D, Teutonico A, Ranieri E, Saldarelli M, Gesualdo L, Schena PF. In Reply. Am J Kidney Dis 2008. [DOI: 10.1053/j.ajkd.2007.12.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Suenaga T, Arase H, Yamasaki S, Kohno M, Yokosuka T, Takeuchi A, Hattori T, Saito T. Cloning of B cell-specific membrane tetraspanning molecule BTS possessing B cell proliferation-inhibitory function. Eur J Immunol 2007; 37:3197-207. [PMID: 17948262 DOI: 10.1002/eji.200737052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lymphocyte proliferation is regulated by signals through antigen receptors, co-stimulatory receptors, and other positive and negative modulators. Several membrane tetraspanning molecules are also involved in the regulation of lymphocyte growth and death. We cloned a new B cell-specific tetraspanning (BTS) membrane molecule, which is similar to CD20 in terms of expression, structure and function. BTS is specifically expressed in the B cell line and its expression is increased after the pre-B cell stage. BTS is expressed in intracellular granules and on the cell surface. Overexpression of BTS in immature B cell lines induces growth retardation through inhibition of cell cycle progression and cell size increase without inducing apoptosis. This inhibitory function is mediated predominantly by the N terminus of BTS. The development of mature B cells is inhibited in transgenic mice expressing BTS, suggesting that BTS is involved in the in vivo regulation of B cells. These results indicate that BTS plays a role in the regulation of cell division and B cell growth.
Collapse
Affiliation(s)
- Tadahiro Suenaga
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Wu H, Wang X, Liu S, Wu Y, Zhao T, Chen X, Zhu L, Wu Y, Ding X, Peng X, Yuan J, Wang X, Fan W, Fan M. Sema4C participates in myogenic differentiation in vivo and in vitro through the p38 MAPK pathway. Eur J Cell Biol 2007; 86:331-44. [PMID: 17498836 DOI: 10.1016/j.ejcb.2007.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 03/03/2007] [Accepted: 03/05/2007] [Indexed: 11/19/2022] Open
Abstract
Sema4C is a member of transmembrane semaphorin proteins which regulate axonal guidance in the developing nervous system. The expression of Sema4C was dramatically induced not only during differentiation of C2C12 mouse myoblasts, but also during injury-induced skeletal muscle regeneration. C2C12 cells stably or transiently expressing Sema4C both showed increased myogenic differentiation reflected by accelerated myotube formation and expression of muscle-specific proteins. Overexpression of Sema4C elicited p38 phosphorylation directly, and the effects of Sema4C during myogenic differentiation could be abolished by the p38alpha-specific inhibitor SB203580. Knockdown of Sema4C by siRNA transfection during C2C12 myoblasts differentiation could suppress the phosphorylation of p38 followed by dramatically diminished myotube formation. Sema4C could activate the myogenin promoter during myogenic differentiation. This activation could be abolished by p38 inhibitor SB203580. Taken together, these observations reveal novel functional potentialities of Sema4C which suggest that Sema4C promotes terminal myogenic differentiation in a p38 MAPK-dependent manner.
Collapse
Affiliation(s)
- Haitao Wu
- Department of Brain Protection & Plasticity Research, Beijing Institute of Basic Medical Sciences, Taiping Road 27, Beijing 100850, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ogura T, Tanaka Y, Nakata T, Namikawa T, Kataoka H, Ohtsubo Y. Simvastatin reduces insulin-like growth factor-1 signaling in differentiating C2C12 mouse myoblast cells in an HMG-CoA reductase inhibition-independent manner. J Toxicol Sci 2007; 32:57-67. [PMID: 17327694 DOI: 10.2131/jts.32.57] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase occasionally cause myopathy characterized by weakness, pain, and elevated serum creatine phosphokinase (CK). In this study, we investigated the effects of simvastatin, an HMG-CoA reductase inhibitor, on the viability and insulin-like growth factor-1 (IGF-1) signaling in differentiating C2C12 mouse myoblast cells. Simvastatin decreased cell viability and CK activity, a marker of myogenesis, in differentiating cells in a dose-dependent manner. Although the simvastatin-induced decrease in viability in proliferating and differentiated cells was completely abolished by mevalonate or geranylgeranyl-pyrophosphate, the inhibitory effects of simvastatin in differentiating cells were not abolished by mevalonate or isoprenoid derivatives of mevalonate. Moreover, the sensitivity of differentiating cells to simvastatin regarding cell viability was about 7 times higher than that of proliferating cells. After induction of differentiation in the presence of 1 microM simvastatin for 2 days, IGF-1-induced activation of ERK1/2 and Akt was significantly decreased. Although mRNA expression of the IGF-1 receptor beta-chain (IGF-1R beta) did not change, protein level of the 200 kDa IGF-1Rbeta precursor was significantly increased by simvastatin in a dose-dependent manner. Mevalonate did not abolish the effect of simvastatin on IGF-1Rbeta expression. These results suggest that simvastatin decreases IGF-1 signaling via a regulation of the post-translational modification of IGF-1Rbeta in an HMG-CoA reductase inhibition-independent manner.
Collapse
Affiliation(s)
- Takeharu Ogura
- Biological Research Department, Sawai Pharmaceutical Co., Ltd., 5-2-30 Miyahara, Yodogawa-Ku, Osaka 532-0003, Japan.
| | | | | | | | | | | |
Collapse
|
35
|
Bogush A, Pedrini S, Pelta-Heller J, Chan T, Yang Q, Mao Z, Sluzas E, Gieringer T, Ehrlich ME. AKT and CDK5/p35 Mediate Brain-derived Neurotrophic Factor Induction of DARPP-32 in Medium Size Spiny Neurons in Vitro. J Biol Chem 2007; 282:7352-9. [PMID: 17209049 DOI: 10.1074/jbc.m606508200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mature striatal medium size spiny neurons express the dopamine and cyclic AMP-regulated phosphoprotein, 32 kDa (DARPP-32), but little is known about the mechanisms regulating its levels or the specification of fully differentiated neuronal subtypes. Cell extrinsic molecules that increase DARPP-32 mRNA and/or protein levels include brain-derived neurotrophic factor (BDNF), retinoic acid, and estrogen. DARPP-32 induction by BDNF in vitro requires phosphatidylinositide 3-kinase (PI3K), but inhibition of phosphorylation of protein kinase B/Akt does not entirely abolish expression of DARPP-32. Moreover, the requirement for Akt has not been established. Using pharmacologic inhibitors of PI3K, Akt, and cyclin-dependent kinase 5 (cdk5) and constitutively active and dominant negative PI3K, Akt, cdk5, and p35 viruses in cultured striatal neurons, we measured BDNF-induced levels of DARPP-32 protein and/or mRNA. We demonstrated that both the PI3K/Akt/mammalian target of rapamycin and the cdk5/p35 signal transduction pathways contribute to the induction of DARPP-32 protein levels by BDNF and that the effects are on both the transcriptional and translational levels. It also appears that PI3K is upstream of cdk5/p35, and its activation can lead to an increase in p35 protein levels. These data support the presence of multiple signal transduction pathways mediating expression of DARPP-32 in vitro, including a novel, important pathway via by which PI3K regulates the contribution of cdk5/p35.
Collapse
Affiliation(s)
- Alexey Bogush
- Farber Institute for Neurosciences and Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase with a multitude of functions. Although Cdk5 is widely expressed, it has been studied most extensively in neurons. Since its initial characterization, the fundamental contribution of Cdk5 to an impressive range of neuronal processes has become clear. These phenomena include neural development, dopaminergic function and neurodegeneration. Data from different fields have recently converged to provide evidence for the participation of Cdk5 in synaptic plasticity, learning and memory. In this review, we consider recent data implicating Cdk5 in molecular and cellular mechanisms underlying synaptic plasticity. We relate these findings to its emerging role in learning and memory. Particular attention is paid to the activation of Cdk5 by p25, which enhances hippocampal synaptic plasticity and memory, and suggests formation of p25 as a physiological process regulating synaptic plasticity and memory.
Collapse
Affiliation(s)
- Marco Angelo
- Wolfson Institute for Biomedical Research, University College London, London, UK.
| | | | | |
Collapse
|
37
|
Abstract
Cyclin-dependent kinase 5 (Cdk5) is recognized as an essential molecule in the brain, where it regulates several neuronal activities, including cytoskeletal remodeling and synaptic transmission. While activity of Cdk5 has primarily been associated with neurons, there are now substantial data indicating that the kinase's activity and function are more general. An increasing body of evidence has established Cdk5 kinase activity, the presence of the Cdk5 activators, p35 and p39, and Cdk5 functions in non-neuronal cells, including myocytes, pancreatic beta-cells, monocytic and neutrophilic leucocytes, glial cells and germ cells. In this review, we present the diverse roles of Cdk5 in several extraneuronal paradigms. The unique properties of each of the different cell types appear to involve distinct means of Cdk5 regulation and function. The potential mechanisms through which Cdk5 regulates extraneuronal cell activities such as exocytosis, gene transcription, wound healing and senescence are discussed.
Collapse
Affiliation(s)
- Jesusa L Rosales
- Department of Cell Biology and Anatomy, The Southern Alberta Cancer Research and Hotchkiss Brain Institutes, The University of Calgary, Calgary, Alberta, Canada.
| | | |
Collapse
|
38
|
Keren A, Tamir Y, Bengal E. The p38 MAPK signaling pathway: a major regulator of skeletal muscle development. Mol Cell Endocrinol 2006; 252:224-30. [PMID: 16644098 DOI: 10.1016/j.mce.2006.03.017] [Citation(s) in RCA: 259] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Skeletal muscle development is regulated by extracellular growth factors that transmit largely unknown signals into the cell affecting the muscle-transcription program. One intracellular signaling pathway activated during the differentiation of myogenic cell lines is p38 mitogen-activated protein kinase (MAPK). As a result of modifying the activity of p38 in myoblasts, the pathway proved essential for the expression of muscle-specific genes. P38 affects the activities of transcription factors from the MyoD and MEF2 families and participates in the remodeling of chromatin at specific muscle-regulatory regions. P38 cooperates with the myogenic transcription factors in the activation of a subset of late-transcribed genes, hence contributing to the temporal expression of genes during differentiation. Recent developmental studies with mouse and Xenopus embryos, substantiated and further extended the essential role of p38 in myogenesis. Evidence exists supporting the crucial role for p38 signaling in activating MEF2 transcription factors during somite development in mice. In Xenopus, p38 signaling was shown to be needed for the early expression of Myf5 and for the expression of several muscle structural genes. The emerging data indicate that p38 participates in several stages of the myogenic program.
Collapse
Affiliation(s)
- Aviad Keren
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, P.O. Box 9649, Haifa 31096, Israel
| | | | | |
Collapse
|
39
|
Bastien J, Plassat JL, Payrastre B, Rochette-Egly C. The phosphoinositide 3-kinase/Akt pathway is essential for the retinoic acid-induced differentiation of F9 cells. Oncogene 2006; 25:2040-7. [PMID: 16288212 DOI: 10.1038/sj.onc.1209241] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retinoic acid (RA) induces cell growth arrest and differentiation through two families of nuclear receptors, the RARs and the RXRs. The phosphoinositide 3-kinase (PI3K)/Akt pathway also plays key roles in these processes, that is, cell cycle progression, cell differentiation and cell survival. We report that, in mouse embryocarcinoma cells (F9 cells), RA induces an early activation of PI3K and Akt via an increase in the expression of the p85alpha regulatory subunit. This effect is followed by an inhibition of Akt. Both effects require the integrity of the RA pathway as they are not observed in RA-resistant RARgamma null cells. We propose a model through which RA induces a biphasic regulation of Akt with an activation participating to the differentiation process, followed by an inhibition, which has been correlated to the RA-induced growth arrest.
Collapse
Affiliation(s)
- J Bastien
- Department of Cell Biology and Signal Transduction. Institut de Génétique et de Biologie Moléculaire et Cellulaire CNRS/INSERM /ULP, Illkirch Cedex, France
| | | | | | | |
Collapse
|
40
|
Chintharlapalli S, Papineni S, Baek SJ, Liu S, Safe S. 1,1-Bis(3'-indolyl)-1-(p-substitutedphenyl)methanes are peroxisome proliferator-activated receptor gamma agonists but decrease HCT-116 colon cancer cell survival through receptor-independent activation of early growth response-1 and nonsteroidal anti-inflammatory drug-activated gene-1. Mol Pharmacol 2005; 68:1782-92. [PMID: 16155208 DOI: 10.1124/mol.105.017046] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
1,1-Bis-(3'-indolyl)-1-(p-substitutedphenyl)methanes containing p-trifluoromethyl (DIM-C-pPhCF3), p-t-butyl (DIM-C-pPhtBu), and phenyl (DIM-C-pPhC6H5) substituents decrease survival of HCT-116 colon cancer cells and activate peroxisome proliferator-activated receptor (PPAR) gamma in this and other cancer cell lines. These PPARgamma-active compounds had minimal effects on expression of cell cycle proteins and did not induce caveolin-1 in HCT-116 cells. However, these compounds induced nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1) and apoptosis in HCT-116 cells, and in time-course studies, the PPARgamma agonists maximally induced early growth response-1 (Egr-1) protein within 2 h, whereas a longer time course was observed for induction of NAG-1 protein. These data, coupled with deletion and mutation analysis of both the Egr-1 and NAG-1 gene promoters, indicate that activation of NAG-1 by these compounds was dependent on prior induction of Egr-1, and induction of these responses was PPARgamma-independent. Results of kinase inhibitor studies also demonstrated that activation of Egr-1/NAG-1 by methylene-substituted diindolylmethanes (C-DIMs) was phosphatidylinositol 3-kinase-dependent, and this represents a novel receptor-independent pathway for C-DIM-induced growth inhibition and apoptosis in colon cancer cells.
Collapse
Affiliation(s)
- Sudhakar Chintharlapalli
- Deparmtent of Biochemistry and Biphysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | | | | | | | | |
Collapse
|