1
|
Tang Q, Hu G, Sang Y, Chen Y, Wei G, Zhu M, Chen M, Li S, Liu R, Peng Z. Therapeutic targeting of PLK1 in TERT promoter-mutant hepatocellular carcinoma. Clin Transl Med 2024; 14:e1703. [PMID: 38769666 PMCID: PMC11106514 DOI: 10.1002/ctm2.1703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Hotspot mutations in the promoter of telomerase reverse transcriptase (TERT) gene are the most common genetic variants in hepatocellular carcinoma (HCC) and associated with poor prognosis of the disease. However, no drug was currently approved for treating TERT promoter mutation positive HCC patients. Here, we aim to explore the potential therapeutic strategy for targeting TERT promoter mutation in HCC. METHODS The Liver Cancer Model Repository database was used for screening potential drugs to selectively suppress the growth of TERT promoter mutant HCC cells. RNA-seq, CRISPR-Cas9 technology and siRNA transfection were performed for mechanistic studies. Cell counting kit-8 (CCK8) assay and the xenograft tumour models were used for cell growth detection in vitro and in vivo, respectively. Cell apoptosis and cell cycle arrest were analysed by Annexin V-FITC staining and/or propidium iodide staining. RESULTS PLK1 inhibitors were remarkably more sensitive to HCC cells harbouring TERT promoter mutation than wild-type cells in vitro and in vivo, which were diminished after TERT promoter mutation was edited to the wild-type nucleotide. Comparing the HCC cells with wild-type promoter of TERT, PLK1 inhibitors specifically downregulated Smad3 to regulate TERT for inducing apoptosis and G2/M arrest in TERT mutant HCC cells. Moreover, knockout of Smad3 counteracted the effects of PLK1 inhibitors in TERT mutant HCC cells. Finally, a cooperative effect of PLK1 and Smad3 inhibition was observed in TERT mutant cells. CONCLUSIONS PLK1 inhibition selectively suppressed the growth of TERT mutant HCC cells through Smad3, thus contributed to discover a novel therapeutic strategy to treat HCC patients harbouring TERT promoter mutations. KEY POINTS TERT promoter mutation confers sensitivity to PLK1 inhibitors in HCC. The selective growth inhibition of TERT mutant HCC cells induced by PLK1 inhibitor was mediated by Smad3. Combined inhibition of PLK1 and Smad3 showed a cooperative anti-tumor effect in TERT mutant HCC cells.
Collapse
Affiliation(s)
- Qin Tang
- Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Guanghui Hu
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Ye Sang
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yulu Chen
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Guangyan Wei
- Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Meiyan Zhu
- Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Mengke Chen
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Shiyong Li
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Rengyun Liu
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Zhenwei Peng
- Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Cancer CenterThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
2
|
Rana PS, Soler DC, Kort J, Driscoll JJ. Targeting TGF-β signaling in the multiple myeloma microenvironment: Steering CARs and T cells in the right direction. Front Cell Dev Biol 2022; 10:1059715. [PMID: 36578789 PMCID: PMC9790996 DOI: 10.3389/fcell.2022.1059715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) remains a lethal hematologic cancer characterized by the expansion of transformed plasma cells within the permissive bone marrow (BM) milieu. The emergence of relapsed and/or refractory MM (RRMM) is provoked through clonal evolution of malignant plasma cells that harbor genomic, metabolic and proteomic perturbations. For most patients, relapsed disease remains a major cause of overall mortality. Transforming growth factors (TGFs) have pleiotropic effects that regulate myelomagenesis as well as the emergence of drug resistance. Moreover, TGF-β modulates numerous cell types present with the tumor microenvironment, including many immune cell types. While numerous agents have been FDA-approved over the past 2 decades and significantly expanded the treatment options available for MM patients, the molecular mechanisms responsible for drug resistance remain elusive. Multiple myeloma is uniformly preceded by a premalignant state, monoclonal gammopathy of unknown significance, and both conditions are associated with progressive deregulation in host immunity characterized by reduced T cell, natural killer (NK) cell and antigen-presenting dendritic cell (DC) activity. TGF-β promotes myelomagenesis as well as intrinsic drug resistance by repressing anti-myeloma immunity to promote tolerance, drug resistance and disease progression. Hence, repression of TGF-β signaling is a prerequisite to enhance the efficacy of current and future immunotherapeutics. Novel strategies that incorporate T cells that have been modified to express chimeric antigen receptor (CARs), T cell receptors (TCRs) and bispecific T cell engagers (BiTEs) offer promise to block TGF-β signaling, overcome chemoresistance and enhance anti-myeloma immunity. Here, we describe the effects of TGF-β signaling on immune cell effectors in the bone marrow and emerging strategies to overcome TGF-β-mediated myeloma growth, drug resistance and survival.
Collapse
Affiliation(s)
- Priyanka S. Rana
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States,Case Comprehensive Cancer Center, Cleveland, OH, United States
| | - David C. Soler
- The Brain Tumor and Neuro-Oncology Center, The Center of Excellence for Translational Neuro-Oncology, Department of Neurosurgery, Case Western Reserve University, Cleveland, OH, United States
| | - Jeries Kort
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States,Case Comprehensive Cancer Center, Cleveland, OH, United States,Adult Hematologic Malignancies and Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - James J. Driscoll
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States,Case Comprehensive Cancer Center, Cleveland, OH, United States,Adult Hematologic Malignancies and Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States,*Correspondence: James J. Driscoll,
| |
Collapse
|
3
|
Liu T, Gonzalez De Los Santos F, Hirsch M, Wu Z, Phan SH. Noncanonical Wnt Signaling Promotes Myofibroblast Differentiation in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2021; 65:489-499. [PMID: 34107237 PMCID: PMC8641847 DOI: 10.1165/rcmb.2020-0499oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/08/2021] [Indexed: 11/24/2022] Open
Abstract
The Wnt/β-catenin pathway initiates a signaling cascade that is critical in cell differentiation and the normal development of multiple organ systems. The reactivation of this pathway has been documented in experimental and human idiopathic pulmonary fibrosis, wherein Wnt/β-catenin activation has been implicated in epithelial-cell repair. Furthermore, the canonical ligand Wnt3a is known to induce myofibroblast differentiation; however, the role of noncanonical Wnt ligands remains unclear. This study showed significantly higher levels of Wnt11 expression in cells from both patients with idiopathic pulmonary fibrosis and bleomycin-treated mice, as well as in TGFβ-treated mouse lung fibroblasts. Moreover, Wnt11 induced myofibroblast differentiation as manifested by increased α-SMA (ACTA2) expression, which was similar to that induced by canonical Wnt3a/β-catenin signaling. Further investigation revealed that Wnt11 induction of α-SMA was associated with the activation of JNK (c-Jun N-terminal kinase)/c-Jun signaling and was inhibited by a JNK inhibitor. The potential importance of this signaling pathway was supported by in vivo evidence showing significantly increased levels of Wnt11 and activated JNK in the lungs of mice with bleomycin-induced pulmonary fibrosis. Interestingly, fibroblasts did not express canonical Wnt3a, but treatment of these cells with exogenous Wnt3a induced endogenous Wnt11 and Wnt5a, resulting in repression of the Wnt3a/β-catenin target gene Axin2. These findings suggested that the noncanonical Wnt induction of myofibroblast differentiation mediated by the JNK/c-Jun pathway might play a significant role in pulmonary fibrosis, in addition to or in synergy with canonical Wnt3a/β-catenin signaling. Moreover, Wnt3a activation of noncanonical Wnt signaling might trigger a switch from canonical to noncanonical Wnt signaling to induce myofibroblast differentiation.
Collapse
Affiliation(s)
| | | | - Mitchell Hirsch
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Zhe Wu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | | |
Collapse
|
4
|
Harada M, Hu B, Lu J, Wang J, Rinke AE, Wu Z, Liu T, Phan SH. The dual distinct role of telomerase in repression of senescence and myofibroblast differentiation. Aging (Albany NY) 2021; 13:16957-16973. [PMID: 34253690 PMCID: PMC8312426 DOI: 10.18632/aging.203246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022]
Abstract
Many aging related diseases such as cancer implicate the myofibroblast in disease progression. Furthermore genesis of the myofibroblast is associated with manifestation of cellular senescence of unclear significance. In this study we investigated the role of a common regulator, namely telomerase reverse transcriptase (TERT), in order to evaluate the potential significance of this association between both processes. We analyzed the effects of TERT overexpression or deficiency on expression of CDKN2A and ACTA2 as indicators of senescence and differentiation, respectively. We assess binding of TERT or YB-1, a repressor of both genes, to their promoters. TERT repressed both CDKN2A and ACTA2 expression, and abolished stress-induced expression of both genes. Conversely, TERT deficiency enhanced their expression. Altering CDKN2A expression had no effect on ACTA2 expression. Both TERT and YB-1 were shown to bind the CDKN2A promoter but only YB-1 was shown to bind the ACTA2 promoter. TERT overexpression inhibited CDKN2A promoter activity while stimulating YB-1 expression and activation to repress ACTA2 gene. TERT repressed myofibroblast differentiation and senescence via distinct mechanisms. The latter was associated with TERT binding to the CDKN2A promoter, but not to the ACTA2 promoter, which may require interaction with co-factors such as YB-1.
Collapse
Affiliation(s)
- Masanori Harada
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Respiratory Medicine, Fujieda Municipal General Hospital, Fujieda, Japan
| | - Biao Hu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jeffrey Lu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jing Wang
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Xinjiang Key Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Andrew E Rinke
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zhe Wu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tianju Liu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sem H Phan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
TGF-β Signaling in Cellular Senescence and Aging-Related Pathology. Int J Mol Sci 2019; 20:ijms20205002. [PMID: 31658594 PMCID: PMC6834140 DOI: 10.3390/ijms20205002] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022] Open
Abstract
Aging is broadly defined as the functional decline that occurs in all body systems. The accumulation of senescent cells is considered a hallmark of aging and thought to contribute to the aging pathologies. Transforming growth factor-β (TGF-β) is a pleiotropic cytokine that regulates a myriad of cellular processes and has important roles in embryonic development, physiological tissue homeostasis, and various pathological conditions. TGF-β exerts potent growth inhibitory activities in various cell types, and multiple growth regulatory mechanisms have reportedly been linked to the phenotypes of cellular senescence and stem cell aging in previous studies. In addition, accumulated evidence has indicated a multifaceted association between TGF-β signaling and aging-associated disorders, including Alzheimer’s disease, muscle atrophy, and obesity. The findings regarding these diseases suggest that the impairment of TGF-β signaling in certain cell types and the upregulation of TGF-β ligands contribute to cell degeneration, tissue fibrosis, inflammation, decreased regeneration capacity, and metabolic malfunction. While the biological roles of TGF-β depend highly on cell types and cellular contexts, aging-associated changes are an important additional context which warrants further investigation to better understand the involvement in various diseases and develop therapeutic options. The present review summarizes the relationships between TGF-β signaling and cellular senescence, stem cell aging, and aging-related diseases.
Collapse
|
6
|
Wang Y, Chen S, Yan Z, Pei M. A prospect of cell immortalization combined with matrix microenvironmental optimization strategy for tissue engineering and regeneration. Cell Biosci 2019; 9:7. [PMID: 30627420 PMCID: PMC6321683 DOI: 10.1186/s13578-018-0264-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Cellular senescence is a major hurdle for primary cell-based tissue engineering and regenerative medicine. Telomere erosion, oxidative stress, the expression of oncogenes and the loss of tumor suppressor genes all may account for the cellular senescence process with the involvement of various signaling pathways. To establish immortalized cell lines for research and clinical use, strategies have been applied including internal genomic or external matrix microenvironment modification. Considering the potential risks of malignant transformation and tumorigenesis of genetic manipulation, environmental modification methods, especially the decellularized cell-deposited extracellular matrix (dECM)-based preconditioning strategy, appear to be promising for tissue engineering-aimed cell immortalization. Due to few review articles focusing on this topic, this review provides a summary of cell senescence and immortalization and discusses advantages and limitations of tissue engineering and regeneration with the use of immortalized cells as well as a potential rejuvenation strategy through combination with the dECM approach.
Collapse
Affiliation(s)
- Yiming Wang
- 1Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196 USA.,2Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Song Chen
- 3Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, 610083 Sichuan China
| | - Zuoqin Yan
- 2Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Ming Pei
- 1Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196 USA.,4WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
7
|
Shariati M, Hajigholami S, Veisi Malekshahi Z, Entezari M, Bodaghabadi N, Sadeghizadeh M. Nanocurcumin-Mediated Down-Regulation of Telomerase Via Stimulating TGFβ1 Signaling Pathway in Hepatocellular Carcinoma Cells. IRANIAN BIOMEDICAL JOURNAL 2018; 22:171-9. [PMID: 28992682 PMCID: PMC5889502 DOI: 10.22034/ibj.22.3.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background Curcumin, extracted from turmeric, represents enormous potential to serve as an anticancer agent. Telomerase is viewed as a prominent molecular target of curcumin, and Transforming growth factor-β1 (TGFβ1) has proven to be a major inhibitory signaling pathway for telomerase activity. In the current study, we aimed to explore suppressive effects of nanocurcumin on telomerase expression through TGFβ1 pathway in a hepatocellular carcinoma cell line (Huh7). Methods MTT assay was used to determine the effect of nonocurcumin on viability of Huh7 cells. RT-PCR was used to analyze the gene expression patterns. Results MTT assay revealed that nanocurcumin acts in a dose- and time-dependent manner to diminish the cell viability.
RT-PCR analysis indicated that nanocurcumin results in augmentation of TGFβ1 72 hours post treatment and leads to the reduction of telomerase expression 48 and 72 hours post exposure. Also, up-regulation of Smad3 and E2F1 and down-regulation of Smad7 confirmed the effect of nanocurcumin on intermediate components of TGFβ1 pathway. Furthermore, transfection of the proximal promoter of telomerase triggered a significant reduction in luciferase activity. Conclusion The data from the present study lead us to develop a deeper understanding of the mechanisms underlying nanocurcumin-mediated regulation of telomerase expression, thereby presenting a new perspective to the landscape of using nanocurcumin as a cancer-oriented therapeutic agent.
Collapse
Affiliation(s)
- Molood Shariati
- Department of Molecular Genetics, School of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Samira Hajigholami
- Department of Molecular Genetics, School of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Department of Biology, Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran
| | - Narges Bodaghabadi
- Department of Molecular Genetics, School of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, School of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| |
Collapse
|
8
|
Cassar L, Nicholls C, Pinto AR, Chen R, Wang L, Li H, Liu JP. TGF-beta receptor mediated telomerase inhibition, telomere shortening and breast cancer cell senescence. Protein Cell 2016; 8:39-54. [PMID: 27696331 PMCID: PMC5233610 DOI: 10.1007/s13238-016-0322-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 08/03/2016] [Indexed: 01/09/2023] Open
Abstract
Human telomerase reverse transcriptase (hTERT) plays a central role in telomere lengthening for continuous cell proliferation, but it remains unclear how extracellular cues regulate telomerase lengthening of telomeres. Here we report that the cytokine bone morphogenetic protein-7 (BMP7) induces the hTERT gene repression in a BMPRII receptor- and Smad3-dependent manner in human breast cancer cells. Chonic exposure of human breast cancer cells to BMP7 results in short telomeres, cell senescence and apoptosis. Mutation of the BMPRII receptor, but not TGFbRII, ACTRIIA or ACTRIIB receptor, inhibits BMP7-induced repression of the hTERT gene promoter activity, leading to increased telomerase activity, lengthened telomeres and continued cell proliferation. Expression of hTERT prevents BMP7-induced breast cancer cell senescence and apoptosis. Thus, our data suggest that BMP7 induces breast cancer cell aging by a mechanism involving BMPRII receptor- and Smad3-mediated repression of the hTERT gene.
Collapse
Affiliation(s)
- Lucy Cassar
- Molecular Signaling Laboratory, Department of Immunology, Central Eastern Clinical School, Monash University, Prahran, VIC, 3181, Australia
| | - Craig Nicholls
- Molecular Signaling Laboratory, Department of Immunology, Central Eastern Clinical School, Monash University, Prahran, VIC, 3181, Australia
| | - Alex R Pinto
- Molecular Signaling Laboratory, Department of Immunology, Central Eastern Clinical School, Monash University, Prahran, VIC, 3181, Australia
| | - Ruping Chen
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, 311121, Zhejiang Province, China
| | - Lihui Wang
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, 311121, Zhejiang Province, China
| | - He Li
- Molecular Signaling Laboratory, Department of Immunology, Central Eastern Clinical School, Monash University, Prahran, VIC, 3181, Australia
| | - Jun-Ping Liu
- Molecular Signaling Laboratory, Department of Immunology, Central Eastern Clinical School, Monash University, Prahran, VIC, 3181, Australia. .,Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, 311121, Zhejiang Province, China.
| |
Collapse
|
9
|
Hu B, Liu J, Wu Z, Liu T, Ullenbruch MR, Ding L, Henke CA, Bitterman PB, Phan SH. Reemergence of hedgehog mediates epithelial-mesenchymal crosstalk in pulmonary fibrosis. Am J Respir Cell Mol Biol 2016; 52:418-28. [PMID: 25140582 DOI: 10.1165/rcmb.2014-0108oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Hedgehog signaling plays important roles in cell development and differentiation. In this study, the ability of Sonic Hedgehog (SHH) to induce myofibroblast differentiation was analyzed in isolated human lung fibroblasts, and its in vivo significance was evaluated in rodent bleomycin-induced pulmonary fibrosis. The results showed that SHH could induce myofibroblast differentiation in human lung fibroblasts in a Smo- and Gli1-dependent manner. Gel shift analysis, chromatin immunoprecipitation assay, and site-directed mutagenesis revealed that a Gli1 binding consensus in the α-SMA gene promoter was important for mediating SHH-induced myofibroblast differentiation. Analysis of Hedgehog reemergence in vivo revealed that of all three Hedgehog isoforms, only SHH was significantly induced in bleomycin-injured lung along with Gli1. The induction of SHH was only noted in epithelial cells, and its expression was undetectable in lung fibroblasts or macrophages. transforming growth factor (TGF)-β induced SHH significantly in cultured alveolar epithelial cells, whereas SHH induced TGF-β in lung fibroblasts. Pulmonary fibrosis and α-smooth muscle actin (α-SMA) expression were significantly reduced in mice that were Smo deficient only in type I collagen-expressing cells. Thus, the reemergence of SHH in epithelial cells could result in induction of myofibroblast differentiation in a Smo-dependent manner and subsequent Gli1 activation of the α-SMA promoter.
Collapse
Affiliation(s)
- Biao Hu
- 1 Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; and
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yoo YS, Park S, Gwak J, Ju BG, Oh S. Involvement of transcription repressor Snail in the regulation of human telomerase reverse transcriptase (hTERT) by transforming growth factor-β. Biochem Biophys Res Commun 2015; 465:131-6. [PMID: 26235880 DOI: 10.1016/j.bbrc.2015.07.146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 07/29/2015] [Indexed: 12/28/2022]
Abstract
Human telomerase reverse transcriptase (hTERT), a catalytic subunit of telomerase, is the primary determinant for telomerase enzyme activity, which has been associated with cellular immortality. Expression of the hTERT gene is regulated by various extracellular (external) stimuli and is aberrantly up-regulated in more than 90% of cancers. Here we show that hTERT gene expression was repressed in response to transforming growth factor-β (TGF-β) by a mechanism dependent on transcription factors Snail and c-Myc. TGF-β activated Snail and down-regulated c-Myc gene expression. In addition, ectopic expression of Snail strongly inhibited hTERT promoter activity, although co-expression of c-Myc abrogated this effect. Chromatin immunoprecipitation (ChIP) analysis revealed that TGF-β decreased c-Myc occupancy and dramatically increased recruitment of Snail to the E-box motifs of the hTERT promoter, thereby repressing hTERT expression. Our findings suggest a dynamic alteration in hTERT promoter occupancy by Snail and c-Myc is the mechanistic basis for TGF-β-mediated regulation of hTERT.
Collapse
Affiliation(s)
- Young-Sun Yoo
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 136-702, Republic of Korea
| | - Seoyoung Park
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 136-702, Republic of Korea
| | - Jungsug Gwak
- Research Institute for Basic Science, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742, Republic of Korea
| | - Bong Gun Ju
- Research Institute for Basic Science, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742, Republic of Korea
| | - Sangtaek Oh
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 136-702, Republic of Korea.
| |
Collapse
|
11
|
Wilson B, Novakofski KD, Donocoff RS, Liang YXA, Fortier LA. Telomerase Activity in Articular Chondrocytes Is Lost after Puberty. Cartilage 2014; 5:215-20. [PMID: 26069700 PMCID: PMC4335769 DOI: 10.1177/1947603514537518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Telomere length and telomerase activity are important indicators of cellular senescence and replicative ability. Loss of telomerase is associated with ageing and the development of osteoarthritis. Implantation of telomerase-positive cells, chondrocytes, or stem cells expressing a normal chondrocyte phenotype is desired for cartilage repair procedures. The objective of this study was to identify at what age chondrocytes and at what passage bone marrow-derived mesenchymal stem cells (MSCs) become senescent based on telomerase activity. The effect of osteogenic protein-1 (OP-1) or interleukin-1α (IL-1α) treatment on telomerase activity in chondrocytes was also measured to determine the response to anabolic or catabolic stimuli. METHODS Articular cartilage was collected from horses (n = 12) aged 1 month to 18 years. Chondrocytes from prepubescent horses (<15 months) were treated with OP-1 or IL-1α. Bone marrow aspirate from adult horses was collected and cultured for up to 10 days to isolate MSCs. Telomerase activity was measured using the TeloTAGGG Telomerase PCR ELISA kit. RESULTS Chondrocytes from prepubescent horses were positive for telomerase activity. Treatment with IL-1α resulted in a decrease in chondrocyte telomerase activity; however, treatment with OP-1 did not change telomerase activity. One MSC culture sample was positive for telomerase activity on day 2; all samples were negative for telomerase activity on day 10. CONCLUSIONS These results suggest that chondrocytes from prepubescent donors are potentially more suitable for cartilage repair procedures and that telomerase activity is diminished by anabolic and catabolic cytokine stimulation. If MSCs are utilized in cartilage repair, minimal passaging should be performed prior to implantation.
Collapse
Affiliation(s)
- Brooke Wilson
- Department of Clinical Sciences, Cornell University, Ithaca, NY, USA
| | | | | | | | - Lisa A. Fortier
- Department of Clinical Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
12
|
Sampson N, Berger P, Zenzmaier C. Redox signaling as a therapeutic target to inhibit myofibroblast activation in degenerative fibrotic disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:131737. [PMID: 24701562 PMCID: PMC3950649 DOI: 10.1155/2014/131737] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 01/06/2014] [Indexed: 12/23/2022]
Abstract
Degenerative fibrotic diseases encompass numerous systemic and organ-specific disorders. Despite their associated significant morbidity and mortality, there is currently no effective antifibrotic treatment. Fibrosis is characterized by the development and persistence of myofibroblasts, whose unregulated deposition of extracellular matrix components disrupts signaling cascades and normal tissue architecture leading to organ failure and death. The profibrotic cytokine transforming growth factor beta (TGFβ) is considered the foremost inducer of fibrosis, driving myofibroblast differentiation in diverse tissues. This review summarizes recent in vitro and in vivo data demonstrating that TGF β-induced myofibroblast differentiation is driven by a prooxidant shift in redox homeostasis. Elevated NADPH oxidase 4 (NOX4)-derived hydrogen peroxide (H2O2) supported by concomitant decreases in nitric oxide (NO) signaling and reactive oxygen species scavengers are central factors in the molecular pathogenesis of fibrosis in numerous tissues and organs. Moreover, complex interplay between NOX4-derived H2O2 and NO signaling regulates myofibroblast differentiation. Restoring redox homeostasis via antioxidants or NOX4 inactivation as well as by enhancing NO signaling via activation of soluble guanylyl cyclases or inhibition of phosphodiesterases can inhibit and reverse myofibroblast differentiation. Thus, dysregulated redox signaling represents a potential therapeutic target for the treatment of wide variety of different degenerative fibrotic disorders.
Collapse
Affiliation(s)
- Natalie Sampson
- Division of Experimental Urology, Department of Urology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Peter Berger
- Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Christoph Zenzmaier
- Department of Internal Medicine III, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| |
Collapse
|
13
|
Therapeutic targeting of redox signaling in myofibroblast differentiation and age-related fibrotic disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:458276. [PMID: 23150749 PMCID: PMC3486436 DOI: 10.1155/2012/458276] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/18/2012] [Indexed: 12/22/2022]
Abstract
Myofibroblast activation plays a central role during normal wound healing. Whereas insufficient myofibroblast activation impairs wound healing, excessive myofibroblast activation promotes fibrosis in diverse tissues (including benign prostatic hyperplasia, BPH) leading to organ dysfunction and also promotes a stromal response that supports tumor progression. The incidence of impaired wound healing, tissue fibrosis, BPH, and certain cancers strongly increases with age. This paper summarizes findings from in vitro fibroblast-to-myofibroblast differentiation systems that serve as cellular models to study fibrogenesis of diverse tissues. Supported by substantial in vivo data, a large body of evidence indicates that myofibroblast differentiation induced by the profibrotic cytokine transforming growth factor beta is driven by a prooxidant shift in redox homeostasis due to elevated production of NADPH oxidase 4 (NOX4)-derived hydrogen peroxide and supported by concomitant decreases in nitric oxide/cGMP signaling and reactive oxygen species (ROS) scavenging enzymes. Fibroblast-to-myofibroblast differentiation can be inhibited and reversed by restoring redox homeostasis using antioxidants or NOX4 inactivation as well as enhancing nitric oxide/cGMP signaling via activation of soluble guanylyl cyclases or inhibition of phosphodiesterases. Current evidence indicates the therapeutic potential of targeting the prooxidant shift in redox homeostasis for the treatment of age-related diseases associated with myofibroblast dysregulation.
Collapse
|
14
|
Mangino M, Hwang SJ, Spector TD, Hunt SC, Kimura M, Fitzpatrick AL, Christiansen L, Petersen I, Elbers CC, Harris T, Chen W, Srinivasan SR, Kark JD, Benetos A, El Shamieh S, Visvikis-Siest S, Christensen K, Berenson GS, Valdes AM, Viñuela A, Garcia M, Arnett DK, Broeckel U, Province MA, Pankow JS, Kammerer C, Liu Y, Nalls M, Tishkoff S, Thomas F, Ziv E, Psaty BM, Bis JC, Rotter JI, Taylor KD, Smith E, Schork NJ, Levy D, Aviv A. Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans. Hum Mol Genet 2012; 21:5385-94. [PMID: 23001564 PMCID: PMC3510758 DOI: 10.1093/hmg/dds382] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Leukocyte telomere length (LTL) is associated with a number of common age-related diseases and is a heritable trait. Previous genome-wide association studies (GWASs) identified two loci on chromosomes 3q26.2 (TERC) and 10q24.33 (OBFC1) that are associated with the inter-individual LTL variation. We performed a meta-analysis of 9190 individuals from six independent GWAS and validated our findings in 2226 individuals from four additional studies. We confirmed previously reported associations with OBFC1 (rs9419958 P = 9.1 × 10−11) and with the telomerase RNA component TERC (rs1317082, P = 1.1 × 10−8). We also identified two novel genomic regions associated with LTL variation that map near a conserved telomere maintenance complex component 1 (CTC1; rs3027234, P = 3.6 × 10−8) on chromosome17p13.1 and zinc finger protein 676 (ZNF676; rs412658, P = 3.3 × 10−8) on 19p12. The minor allele of rs3027234 was associated with both shorter LTL and lower expression of CTC1. Our findings are consistent with the recent observations that point mutations in CTC1 cause short telomeres in both Arabidopsis and humans affected by a rare Mendelian syndrome. Overall, our results provide novel insights into the genetic architecture of inter-individual LTL variation in the general population.
Collapse
Affiliation(s)
- Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Niu C, Yip HK. Neuroprotective signaling mechanisms of telomerase are regulated by brain-derived neurotrophic factor in rat spinal cord motor neurons. J Neuropathol Exp Neurol 2011; 70:634-52. [PMID: 21666495 DOI: 10.1097/nen.0b013e318222b97b] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Telomerase can promote neuron survival and can be regulated by growth factors such as brain-derived neurotrophic factor (BDNF). Increases of BDNF expression and telomerase activity after brain injury suggest that telomerase may be involved in BDNF-mediated neuroprotection. We investigated BDNF regulation of telomerase in rat spinal cord motor neurons (SMNs). Our results indicate that BDNF increases telomerase expression and activity levels in SMNs and activates mitogen-activated protein kinase/extracellular signal-regulated kinases 1 and 2 and phosphatidylinositol-3-OH kinase/protein kinase B signals, and their downstream transcription factors nuclear factor-κB, c-Myc, and Sp1. Administration of the tyrosine kinase receptor B inhibitor K-252a, the mitogen-activated protein kinase 1 inhibitor PD98059, and the phosphatidylinositol-3-OH kinase inhibitor LY294002 abolished BDNF-induced upregulation of these transcription factors and telomerase expression. The nuclear factor-κB inhibitor Bay11-7082 also attenuated c-Myc and Sp1 expression and increased telomerase promoter activity. Spinal cord motor neurons with higher telomerase levels induced by BDNF became more resistant to apoptosis; survival of SMNs that overexpressed the catalytic protein component of telomerase with reverse transcriptase activity was also enhanced against apoptosis. The neuronal survival-promoting effect of telomerase was mediated through the regulation of Bcl-2, Bax, p53, and maintenance of mitochondrial membrane potential. Taken together, these data suggest that the neuroprotective effect of BDNF via telomerase is mediated by inhibition of apoptotic pathways.
Collapse
Affiliation(s)
- Chenchen Niu
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | |
Collapse
|
16
|
Liu JP, Chen SM, Cong YS, Nicholls C, Zhou SF, Tao ZZ, Li H. Regulation of telomerase activity by apparently opposing elements. Ageing Res Rev 2010; 9:245-56. [PMID: 20362078 DOI: 10.1016/j.arr.2010.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 03/22/2010] [Accepted: 03/23/2010] [Indexed: 01/08/2023]
Abstract
Telomeres, the ends of chromosomes, undergo frequent remodeling events that are important in cell development, proliferation and differentiation, and neoplastic immortalization. It is not known how the cellular environment influences telomere remodeling, stability, and lengthening or shortening. Telomerase is a ribonucleoprotein complex that maintains and lengthens telomeres in the majority of cancers. Recent studies indicate that a number of factors, including hormones, cytokines, ligands of nuclear receptor, vitamins and herbal extracts have significantly influence telomerase activity and, in some instances, the remodeling of telomeres. This review summarizes the advances in understanding of the positive and negative regulation by extracellular factors of telomerase activity in cancer, stem cells and other systems in mammals.
Collapse
Affiliation(s)
- Jun-Ping Liu
- Molecular Signaling Laboratory, Department of Immunology, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct (AMREP), Commercial Road, Melbourne, Victoria 3004, Australia
| | | | | | | | | | | | | |
Collapse
|
17
|
Cassar L, Li H, Jiang FX, Liu JP. TGF-beta induces telomerase-dependent pancreatic tumor cell cycle arrest. Mol Cell Endocrinol 2010; 320:97-105. [PMID: 20138964 DOI: 10.1016/j.mce.2010.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 01/27/2010] [Accepted: 02/02/2010] [Indexed: 12/21/2022]
Abstract
Recent studies suggest that transforming growth factor beta (TGF-beta) inhibits telomerase activity by repression of the telomerase reverse transcriptase (TERT) gene. In this report, we show that TGF-beta induces TERT repression-dependent apoptosis in pancreatic tumor, vascular smooth muscle, and cervical cancer cell cultures. TGF-beta activates Smad3 signaling, induces TERT gene repression and results in G1/S phase cell cycle arrest and apoptosis. TERT over-expression stimulates the G1/S phase transition and alienates TGF-beta-induced cell cycle arrest and apoptosis. Our data suggest that telomere maintenance is a limiting factor of the transition of the cell cycle. TGF-beta triggers cell cycle arrest and death by a mechanism involving telomerase deregulation of telomere maintenance.
Collapse
Affiliation(s)
- Lucy Cassar
- Department of Immunology, Monash University, Central Clinical School, AMREP, Commercial Road, Melbourne, Victoria 3004, Australia.
| | | | | | | |
Collapse
|
18
|
Liu JP, Nicholls C, Chen SM, Li H, Tao ZZ. Strategies of treating cancer by cytokine regulation of chromosome end remodelling. Clin Exp Pharmacol Physiol 2010; 37:88-92. [DOI: 10.1111/j.1440-1681.2009.05251.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Deville L, Hillion J, Ségal-Bendirdjian E. Telomerase regulation in hematological cancers: a matter of stemness? Biochim Biophys Acta Mol Basis Dis 2009; 1792:229-39. [PMID: 19419697 DOI: 10.1016/j.bbadis.2009.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 01/30/2009] [Accepted: 01/30/2009] [Indexed: 01/02/2023]
Abstract
Human telomerase is a nuclear ribonucleoprotein enzyme complex that catalyzes the synthesis and extension of telomeric DNA. This enzyme is highly expressed and active in most malignant tumors while it is usually not or transiently detectable in normal somatic cells, suggesting that it plays an important role in cellular immortalization and tumorigenesis. As most leukemic cells are generally telomerase-positive and have often shortened telomeres, our understanding of how telomerase is deregulated in these diseases could help to define novel therapies targeting the telomere/telomerase complex. Nonetheless, considering that normal hematopoietic stem cells and some of their progeny do express a functional telomerase, it is tempting to consider such an activity in leukemias as a sustained stemness feature and important to understand how telomere length and telomerase activity are regulated in the various forms of leukemias.
Collapse
Affiliation(s)
- Laure Deville
- INSERM UMR-S 685, Institut d'Hématologie, Hôpital Saint-Louis, 75475 Paris cedex 10, France
| | | | | |
Collapse
|
20
|
Dolgachev VA, Ullenbruch MR, Lukacs NW, Phan SH. Role of stem cell factor and bone marrow-derived fibroblasts in airway remodeling. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:390-400. [PMID: 19147822 DOI: 10.2353/ajpath.2009.080513] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent evidence suggests that bone marrow-derived fibroblasts are involved in airway remodeling in asthma, but the role and mechanism of recruitment of these fibroblasts remains unclear. Stem cell factor (SCF), a key factor in the propagation of hematopoietic stem cells, is important in the process of airway remodeling as well. To test the hypothesis that SCF is involved in the recruitment and differentiation of bone marrow-derived progenitor cells, GFP-bone marrow chimeric mice were created. These mice were then sensitized and chronically challenged with cockroach antigen to induce chronic airway disease. Fluorescence microscopy revealed an influx of significant numbers of GFP-expressing fibroblasts in the airways of these mice, which was confirmed by flow cytometric analysis of cells co-expressing both GFP and collagen I. These cells preferentially expressed c-kit, interleukin-31 receptor, and telomerase reverse transcriptase when compared with control lung-derived fibroblasts. Interestingly, SCF stimulated interleukin-31 receptor expression in bone marrow cells, whereas interleukin-31 strongly induced telomerase reverse transcriptase expression in fibroblasts. Treatment with neutralizing antibodies to SCF significantly reduced airway remodeling and suppressed the recruitment of these bone marrow-derived cells to the lung. Thus SCF in conjunction with interleukin-31 may play a significant role in airway remodeling by promoting the recruitment of bone marrow-derived fibroblast precursors into the lung with the capacity to promote lung myofibroblast differentiation.
Collapse
Affiliation(s)
- Vladislav A Dolgachev
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA.
| | | | | | | |
Collapse
|
21
|
Cassar L, Li H, Pinto AR, Nicholls C, Bayne S, Liu JP. Bone morphogenetic protein-7 inhibits telomerase activity, telomere maintenance, and cervical tumor growth. Cancer Res 2008; 68:9157-66. [PMID: 19010887 DOI: 10.1158/0008-5472.can-08-1323] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Telomere maintenance is critical in tumor cell immortalization. Here, we report that the cytokine bone morphogenetic protein-7 (BMP7) inhibits telomerase activity that is required for telomere maintenance in cervical cancer cells. Application of human recombinant BMP7 triggers a repression of the human telomerase reverse transcriptase (hTERT) gene, shortening of telomeres, and hTERT repression-dependent cervical cancer cell death. Continuous treatment of mouse xenograft tumors with BMP7, or silencing the hTERT gene, results in sustained inhibition of telomerase activity, shortening of telomeres, and tumor growth arrest. Overexpression of hTERT lengthens telomeres and blocks BMP7-induced tumor growth arrest. Thus, BMP7 negatively regulates telomere maintenance, inducing cervical tumor growth arrest by a mechanism of inducing hTERT gene repression.
Collapse
Affiliation(s)
- Lucy Cassar
- Department of Immunology, Central Eastern Clinical School, Monash University, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
22
|
Kyo S, Takakura M, Fujiwara T, Inoue M. Understanding and exploiting hTERT promoter regulation for diagnosis and treatment of human cancers. Cancer Sci 2008; 99:1528-38. [PMID: 18754863 PMCID: PMC11158053 DOI: 10.1111/j.1349-7006.2008.00878.x] [Citation(s) in RCA: 264] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Telomerase activation is a critical step for human carcinogenesis through the maintenance of telomeres, but the activation mechanism during carcinogenesis remains unclear. Transcriptional regulation of the human telomerase reverse transcriptase (hTERT) gene is the major mechanism for cancer-specific activation of telomerase, and a number of factors have been identified to directly or indirectly regulate the hTERT promoter, including cellular transcriptional activators (c-Myc, Sp1, HIF-1, AP2, ER, Ets, etc.) as well as the repressors, most of which comprise tumor suppressor gene products, such as p53, WT1, and Menin. Nevertheless, none of them can clearly account for the cancer specificity of hTERT expression. The chromatin structure via the DNA methylation or modulation of nucleosome histones has recently been suggested to be important for regulation of the hTERT promoter. DNA unmethylation or histone methylation around the transcription start site of the hTERT promoter triggers the recruitment of histone acetyltransferase (HAT) activity, allowing hTERT transcription. These facts prompted us to apply these regulatory mechanisms to cancer diagnostics and therapeutics. Telomerase-specific replicative adenovirus (Telomelysin, OBP-301), in which E1A and E1B genes are driven by the hTERT promoter, has been developed as an oncolytic virus that replicates specifically in cancer cells and causes cell death via viral toxicity. Direct administration of Telomelysin was proved to effectively eradicate solid tumors in vivo, without apparent adverse effects. Clinical trials using Telomelysin for cancer patients with progressive stages are currently ongoing. Furthermore, we incorporated green fluorescent protein gene (GFP) into Telomelysin (TelomeScan, OBP-401). Administration of TelomeScan into the primary tumor enabled the visualization of cancer cells under the cooled charged-coupled device (CCD) camera, not only in primary tumors but also the metastatic foci. This technology can be applied to intraoperative imaging of metastatic lymphnodes. Thus, we found novel tools for cancer diagnostics and therapeutics by utilizing the hTERT promoter.
Collapse
Affiliation(s)
- Satoru Kyo
- Department of Obstetrics and Gynecology, Kanazawa University, Graduate School of Medical Science, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8641, Japan.
| | | | | | | |
Collapse
|
23
|
Petrov VV, van Pelt JF, Vermeesch JR, Van Duppen VJ, Vekemans K, Fagard RH, Lijnen PJ. TGF-beta1-induced cardiac myofibroblasts are nonproliferating functional cells carrying DNA damages. Exp Cell Res 2008; 314:1480-94. [PMID: 18295203 DOI: 10.1016/j.yexcr.2008.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 12/03/2007] [Accepted: 01/09/2008] [Indexed: 01/07/2023]
Abstract
TGF-beta1 induces differentiation and total inhibition of cardiac MyoFb cell division and DNA synthesis. These effects of TGF-beta1 are irreversible. Inhibition of MyoFb proliferation is accompanied with the expression of Smad1, Mad1, p15Ink4B and total inhibition of telomerase activity. Surprisingly, TGF-beta1-activated MyoFbs are growth-arrested not only at G1-phase but also at S-phase of the cell cycle. Staining with TUNEL indicates that these cells carry DNA damages. However, the absolute majority of MyoFbs are non-apoptotic cells as established with two apoptosis-specific methods, flow cytometry and caspase-dependent cleavage of cytokeratin 18. Expression in MyoFbs of proliferative cell nuclear antigen even in the absence of serum confirms that these MyoFbs perform repair of DNA damages. These results suggest that TGF-beta1-activated MyoFbs can be growth-arrested by two checkpoints, the G1/S checkpoint, which prevents cells from entering S-phase and the intra-S checkpoint, which is activated by encountering DNA damage during the S phase or by unrepaired damage that escapes the G1/S checkpoint. Despite carrying of the DNA damages TGF-beta1-activated MyoFbs are highly functional cells producing lysyl oxidase and contracting the collagen matrix.
Collapse
Affiliation(s)
- Victor V Petrov
- Department of Heart Diseases, University of Leuven (KULeuven), Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Gharaee-Kermani M, Hu B, Thannickal VJ, Phan SH, Gyetko MR. Current and emerging drugs for idiopathic pulmonary fibrosis. Expert Opin Emerg Drugs 2007; 12:627-46. [DOI: 10.1517/14728214.12.4.627] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Li H, Liu JP. Mechanisms of action of TGF-beta in cancer: evidence for Smad3 as a repressor of the hTERT gene. Ann N Y Acad Sci 2007; 1114:56-68. [PMID: 17934056 DOI: 10.1196/annals.1396.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transforming growth factor-beta (TGF-beta) induces cell differentiation and suppresses cell proliferation, but the mechanisms underlying the actions of TGF-beta remain to be fully elucidated. Recent studies suggest that TGF-beta suppresses neoplastic cell development by employing Smad3 protein to repress the gene of human telomerase reverse transcriptase (hTERT). In human breast cancer cells, TGF-beta induces rapid phosphorylation and subsequent entry of Smad3 into the nucleus. In the nucleus, Smad3 binds to the hTERT gene promoter directly and inhibits hTERT gene transcription activity. By interacting with c-myc, Smad3 also represses the c-myc gene. Thus, TGF-beta prevents continuous cell proliferation by switching off telomerase activity through Smad3 repression of the hTERT gene and the action of c-myc. Modulating the interface between Smad3 and the hTERT gene, and the potential feedback loop from telomeres to Smad3 via Smurf2, may represent a novel approach to regulate cell lifespan of proliferation.
Collapse
Affiliation(s)
- He Li
- Department of Immunology, AMREP, Monash Medical School, Commercial Road, Prahran, Victoria 3181, Australia.
| | | |
Collapse
|
27
|
Lacerte A, Korah J, Roy M, Yang XJ, Lemay S, Lebrun JJ. Transforming growth factor-beta inhibits telomerase through SMAD3 and E2F transcription factors. Cell Signal 2007; 20:50-9. [PMID: 17881189 DOI: 10.1016/j.cellsig.2007.08.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 08/14/2007] [Indexed: 11/30/2022]
Abstract
Cancer arises from multiple genetic changes within the cell, among which constitutive telomerase activity and attainment of immortality are central. Expression of hTERT, the protein component of telomerase, is increased in most cancer cells. Transforming growth factor-beta (TGFbeta), a potent tumor suppressor, has been reported to regulate hTERT expression. We found that TGFbeta represses hTERT expression in normal and cancer cells and that this effect is mediated through Smad3 but also requires Erk1/2, p38 kinase and histone deacetylase activity. Furthermore, we identified four critical E2F transcription factor binding sites within the hTERT gene promoter that confer the TGFbeta response. Finally, using the E2F-1 knockout model, we showed that loss of E2F-1 abolishes TGFbeta inhibition of telomerase expression. These findings highlight the prominent role of TGFbeta in regulating telomerase expression and identify Smad3 and E2F-1 as critical mediators of TGFbeta effects in both normal and cancer cells.
Collapse
Affiliation(s)
- Annie Lacerte
- Hormones and Cancer Research Unit, Department of Medicine, Royal Victoria Hospital, McGill University, 687 Pine Avenue West, H3A 1A1, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Prade-Houdellier N, Frébet E, Demur C, Gautier EF, Delhommeau F, Bennaceur-Griscelli AL, Gaudin C, Martinel V, Laurent G, Mansat-De Mas V, Beyne-Rauzy O. Human telomerase is regulated by erythropoietin and transforming growth factor-beta in human erythroid progenitor cells. Leukemia 2007; 21:2304-10. [PMID: 17713555 DOI: 10.1038/sj.leu.2404874] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Telomerase catalytic subunit (hTERT) exerts important cellular functions including telomere homeostasis, genetic stability, cell survival and perhaps differentiation. However, the nature of external or internal signals, which regulate hTERT expression in tissues, remains poorly understood. Thus, whereas it has been described that hTERT gene is regulated along the differentiation of primitive myeloid progenitors, the effect of specific cytokines on telomerase expression in each myeloid lineage is currently unknown. Based on these considerations, we have investigated hTERT expression in erythroid cells treated with erythropoietin (EPO) and transforming growth factor beta (TGFbeta), as putative positive and negative regulators, respectively. We describe here that EPO activates hTERT gene transcription in in vitro-expanded primary erythroid precursors as well as in UT7 erythroleukemia cells. In UT7 cells, this study shows also that EPO acts through a JAK2/STAT5/c-myc axis. In contrast, TGFbeta blocks EPO signaling downstream of c-myc induction through a Smad3-dependent mechanism. Finally, hTERT appears to be efficiently regulated by EPO and TGFbeta in an opposite way in erythropoietic cells, arguing for a role of telomerase in red blood cell production.
Collapse
|
29
|
Gharaee-Kermani M, Gyetko MR, Hu B, Phan SH. New Insights into the Pathogenesis and Treatment of Idiopathic Pulmonary Fibrosis: A Potential Role for Stem Cells in the Lung Parenchyma and Implications for Therapy. Pharm Res 2007; 24:819-41. [PMID: 17333393 DOI: 10.1007/s11095-006-9216-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 12/13/2006] [Indexed: 02/06/2023]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive, and often fatal form of interstitial lung disease. It is characterized by injury with loss of lung epithelial cells and abnormal tissue repair, resulting in replacement of normal functional tissue, abnormal accumulation of fibroblasts and myofibroblasts, deposition of extracellular matrix, and distortion of lung architecture which results in respiratory failure. Despite improvements in the diagnostic approach to IPF and active research in recent years, the molecular mechanisms of the disease remain poorly understood. This highly lethal lung disorder continues to pose major clinical challenges since an effective therapeutic regimen has yet to be identified and developed. For example, a treatment modality has been based on the assumption that IPF is a chronic inflammatory disease, yet most available anti-inflammatory drugs are not effective in treating it. Hence researchers are now focusing on understanding alternative underlying mechanisms involved in the pathogenesis of IPF in the hope of discovering potentially new pharmaceutical targets. This paper will focus on lung tissue repair, regeneration, remodeling, and cell types that may be important to consider in therapeutic interventions and includes a more detailed discussion of the potential targets of current therapeutic attack in pulmonary fibrosis. The discovery that adult bone marrow stem cells can contribute to the formation of differentiated cell types in other tissues, especially after injury, implies that they have the potential to participate in tissue remodeling, and perhaps regeneration. The current promise of the use of adult stem cells for tissue regeneration, and the belief that once irreversibly damaged tissue could be restored to a normal functional capacity using stem cell-based therapy, suggests a novel approach for treatment of diverse chronic diseases. However this optimism is tempered by current evidence that the pathogenesis of pulmonary fibrosis may involve the recruitment of bone marrow-derived fibroblasts, which are the key contributors to the pathogenesis of this chronic progressive disorder. Nevertheless, stem cell-related therapies are widely viewed as promising treatment options for patients suffering from various types of pulmonary diseases. Gender mismatched bone marrow or lung transplant recipients serve as natural populations in which to study the role of bone marrow-derived stem cells in recovery from pulmonary diseases. Understanding the mechanism of recruitment of stem cells to sites of injury, and their involvement in tissue repair, regeneration, and remodeling may offer a novel therapeutic target for developing more effective treatments against this fatal disorder. This article reviews the new concepts in the pathogenesis, current and future treatment options of pulmonary fibrosis, and the recent advances regarding the roles of stem cells in lung tissue repair, regeneration, and remodeling.
Collapse
Affiliation(s)
- Mehrnaz Gharaee-Kermani
- Division of Pulmonary Medicine & Critical Care, Department of Internal Medicine, University of Michigan Medical School, 2215 Fuller Rd. VAMC 11R, Ann Arbor, Michigan 48105, USA.
| | | | | | | |
Collapse
|
30
|
Liu JP, Cassar L, Pinto A, Li H. Mechanisms of cell immortalization mediated by EB viral activation of telomerase in nasopharyngeal carcinoma. Cell Res 2006; 16:809-17. [PMID: 17016469 DOI: 10.1038/sj.cr.7310098] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common cancer in Southern China and Southeast Asia. The disease is a poorly differentiated carcinoma without effective cure, and the mechanism underlying its development remains largely unknown. Of several factors identified in NPC aetiology in recent years, Epstein-Barr virus (EBV) infection has emerged to be most important. In almost all NPC cells, EBV uses several intracellular mechanisms to cause oncogenic evolution of the infected cells. One such mechanism by which EBV infection induces cellular immortalization is believed to be through the activation of telomerase, an enzyme that is normally repressed but becomes activated during cancer development. Studies show that greater than 85% of primary NPC display high telomerase activity by mechanisms involving EBV infection, consistent with the notion that EBV is commonly involved in inducing cell immortalization. More recently, different EBV proteins have been shown to activate or inhibit the human telomerase reverse transcriptase gene, by modulating intracellular signalling pathways. These findings suggest a new model with a number of challenges towards our understanding, molecular targeting and therapeutic intervention in NPC.
Collapse
Affiliation(s)
- Jun-Ping Liu
- Department of Immunology, Central Eastern Clinical School, Monash University, AMREP, Commercial Road, Prahran, Melbourne, Victoria 3181, Australia.
| | | | | | | |
Collapse
|
31
|
Zhang Z, Yang X, Zhang Y, Zeng B, Wang S, Zhu T, Roden RBS, Chen Y, Yang R. Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clin Cancer Res 2006; 12:4933-9. [PMID: 16914582 DOI: 10.1158/1078-0432.ccr-05-2831] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To determine whether -CONH-(CH(2))(6)-NH(3)(+)Cl(-) functionalized single-walled carbon nanotubes (SWNT) carrying complexed small interfering RNA (siRNA) can enter into tumor cells, wherein they release the siRNA to silence the targeted gene. EXPERIMENTAL DESIGN -CONH-(CH(2))(6)-NH(3)(+)Cl(-) was used to mediate the conjugation of telomerase reverse transcriptase (TERT) siRNA to SWNTs. The ability of TERT siRNA delivered via SWNT complexes to silence the expression of TERT was assessed by their effects on the proliferation and growth of tumor cells both in vitro and in mouse models. RESULTS The functionalized SWNTs -CONH-(CH(2))(6)-NH(3)(+)Cl(-) could facilitate the coupling of siRNAs that specifically target murine TERT expression to form the mTERT siRNA:SWNT+ complex. These functionalized SWNTs rapidly entered three cultured murine tumor cell lines, suppressed mTERT expression, and produced growth arrest. Injection of mTERT siRNA:SWNT+ complexes into s.c. Lewis lung tumors reduced tumor growth. Furthermore, human TERT siRNA:SWNT+ complexes also suppressed the growth of human HeLa cells both in vitro and when injected into tumors in nude mice. CONCLUSIONS -CONH-(CH(2))(6)-NH(3)(+)Cl(-) functionalized SWNTs carry complexed siRNA into tumor cells, wherein they release the siRNA from the nanotube sidewalls to silence the targeted gene. The -CONH-(CH(2))(6)-NH(3)(+)Cl(-) functionalized SWNTs may represent a new class of molecular transporters applicable for siRNA therapeutics.
Collapse
Affiliation(s)
- Zhuohan Zhang
- Department of Immunology, College of Medicine, Nankai University, Tianjin, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hu B, Wu Z, Liu T, Ullenbruch MR, Jin H, Phan SH. Gut-enriched Krüppel-like factor interaction with Smad3 inhibits myofibroblast differentiation. Am J Respir Cell Mol Biol 2006; 36:78-84. [PMID: 16858008 PMCID: PMC1899300 DOI: 10.1165/rcmb.2006-0043oc] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Gut-enriched Krüppel-like factor (GKLF) has been reported to partially inhibit alpha-smooth muscle actin (alpha-SMA) gene transcription by competing for binding to the TGF-beta control element (TCE) with known activators such as Sp1 and other Krüppel-like factors. This incomplete inhibition via the TCE suggests an additional mechanism, which was evaluated in this study. The results showed that an alpha-SMA promoter mutated in the TCE remained susceptible to inhibition by GKLF in rat lung fibroblasts consistent with the existence of an additional TCE-independent mechanism. Since TGF-beta- induced alpha-SMA expression is Smad3-dependent, potential interaction between GKLF and Smad3 was examined as a basis for this additional inhibitory mechanism. Co-immunoprecipitation and yeast two-hybrid assays revealed that GKLF could bind Smad3 through the Smad3 MH2 domain. Electrophoretic mobility shift assays and ChIP assay indicated that this GKLF-Smad3 interaction inhibited Smad3 binding to the Smad3-binding element (SBE) in the alpha-SMA promoter, and the activity of an SBE containing artificial promoter. Further analysis using smad3(-/-) fibroblasts confirmed that the TCE-independent inhibition by GKLF was dependent on Smad3. These data taken together suggest that in addition to inhibition via the TCE, GKLF represses alpha-SMA gene expression by interacting with Smad3 to prevent Smad3 binding to the SBE. It represents the first evidence to directly link GKLF with Smad3, a key intracellular mediator of TGF-beta signaling, which should lead to a clearer understanding of the mechanism of how GKLF regulates TGF-beta-induced gene expression.
Collapse
Affiliation(s)
- Biao Hu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109-0602, USA
| | | | | | | | | | | |
Collapse
|
33
|
Pardali K, Moustakas A. Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta Rev Cancer 2006; 1775:21-62. [PMID: 16904831 DOI: 10.1016/j.bbcan.2006.06.004] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2006] [Revised: 06/24/2006] [Accepted: 06/26/2006] [Indexed: 02/07/2023]
Abstract
Transforming growth factor-beta (TGF-beta) is a secreted polypeptide that signals via receptor serine/threonine kinases and intracellular Smad effectors. TGF-beta inhibits proliferation and induces apoptosis in various cell types, and accumulation of loss-of-function mutations in the TGF-beta receptor or Smad genes classify the pathway as a tumor suppressor in humans. In addition, various oncogenic pathways directly inactivate the TGF-beta receptor-Smad pathway, thus favoring tumor growth. On the other hand, all human tumors overproduce TGF-beta whose autocrine and paracrine actions promote tumor cell invasiveness and metastasis. Accordingly, TGF-beta induces epithelial-mesenchymal transition, a differentiation switch that is required for transitory invasiveness of carcinoma cells. Tumor-derived TGF-beta acting on stromal fibroblasts remodels the tumor matrix and induces expression of mitogenic signals towards the carcinoma cells, and upon acting on endothelial cells and pericytes, TGF-beta regulates angiogenesis. Finally, TGF-beta suppresses proliferation and differentiation of lymphocytes including cytolytic T cells, natural killer cells and macrophages, thus preventing immune surveillance of the developing tumor. Current clinical approaches aim at establishing novel cancer drugs whose mechanisms target the TGF-beta pathway. In conclusion, TGF-beta signaling is intimately implicated in tumor development and contributes to all cardinal features of tumor cell biology.
Collapse
Affiliation(s)
- Katerina Pardali
- Ludwig Institute for Cancer Research, Box 595 Biomedical Center, Uppsala University, SE-751 24 Uppsala, Sweden
| | | |
Collapse
|
34
|
McMahon S, Charbonneau M, Grandmont S, Richard DE, Dubois CM. Transforming growth factor beta1 induces hypoxia-inducible factor-1 stabilization through selective inhibition of PHD2 expression. J Biol Chem 2006; 281:24171-81. [PMID: 16815840 DOI: 10.1074/jbc.m604507200] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The hypoxia-inducible transcription factor-1 (HIF-1) is central to a number of pathological processes through the induction of specific genes such as vascular endothelial growth factor (VEGF). Even though HIF-1 is highly regulated by cellular oxygen levels, other elements of the inflammatory and tumor microenvironment were shown to influence its activity under normal oxygen concentration. Among others, recent studies indicated that transforming growth factor (TGF) beta increases the expression of the regulatory HIF-1alpha subunit, and induces HIF-1 DNA binding activity. Here, we demonstrate that TGFbeta acts on HIF-1alpha accumulation and activity by increasing HIF-1alpha protein stability. In particular, we demonstrate that TGFbeta markedly and specifically decreases both mRNA and protein levels of a HIF-1alpha-associated prolyl hydroxylase (PHD), PHD2, through the Smad signaling pathway. As a consequence, the degradation of HIF-1alpha was inhibited as determined by impaired degradation of a reporter protein containing the HIF-1alpha oxygen-dependent degradation domain encompassing the PHD-targeted prolines. Moreover, inhibition of the TGFbeta1 converting enzyme, furin, resulted in increased PHD2 expression, and decreased basal HIF-1alpha and VEGF levels, suggesting that endogenous production of bioactive TGFbeta1 efficiently regulates HIF-1-targeted genes. This was reinforced by results from HIF-1alpha knock-out or HIF-1alpha-inhibited cells that show impairment in VEGF production in response to TGFbeta. This study reveals a novel mechanism by which a growth factor controls HIF-1 stability, and thereby drives the expression of specific genes, through the regulation of PHD2 levels.
Collapse
Affiliation(s)
- Stephanie McMahon
- Immunology Division, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | |
Collapse
|
35
|
Li H, Xu D, Li J, Berndt MC, Liu JP. Transforming growth factor beta suppresses human telomerase reverse transcriptase (hTERT) by Smad3 interactions with c-Myc and the hTERT gene. J Biol Chem 2006; 281:25588-600. [PMID: 16785237 DOI: 10.1074/jbc.m602381200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Telomerase underpins stem cell renewal and proliferation and is required for most neoplasia. Recent studies suggest that hormones and growth factors play physiological roles in regulating telomerase activity. In this report we show a rapid repression of the telomerase reverse transcriptase (TERT) gene by transforming growth factor beta (TGF-beta) in normal and neoplastic cells by a mechanism depending on the intracellular signaling protein Smad3. In human breast cancer cells TGF-beta induces rapid entry of Smad3 into the nucleus where it binds to the TERT gene promoter and represses TERT gene transcription. Silencing Smad3 gene expression or genetically deleting the Smad3 gene disrupts TGF-beta repression of TERT gene expression. Expression of the Smad3 antagonist, Smad7, also interrupts TGF-beta-mediated Smad3-induced repression of the TERT gene. Mutational analysis identified the Smad3 site on the TERT gene promoter, mediating TERT repression. In response to TGF-beta, Smad3 binds to c-Myc; knocking down c-Myc, Smad3 does not bind to the TERT gene, suggesting that c-Myc recruits Smad3 to the TERT promoter. Thus, TGF-beta negatively regulates telomerase activity via Smad3 interactions with c-Myc and the TERT gene promoter. Modifying the interaction between Smad3 and TERT gene may, thus, lead to novel strategies to regulate telomerase.
Collapse
Affiliation(s)
- He Li
- Department of Immunology and Monash Institute of Medical Research, Monash University, Melbourne, Victoria 3181, Australia
| | | | | | | | | |
Collapse
|