1
|
He W, Zhang J, Wen S, Li Y, Shen L, Zhou T, Wen Q, Fan Y. Epigenetic identification of LTBP4 as a putative tumor suppressor in breast cancer. Epigenomics 2024; 16:999-1012. [PMID: 39193795 PMCID: PMC11404579 DOI: 10.1080/17501911.2024.2388017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Aim: To explore the LTBP4's expression, prognostic significance and molecular mechanism of action in breast cancer (BC).Methods: On the basis of omics datasets and experiments, we conducted a synthetical analysis of LTBP4 in BC.Results & conclusion: LTBP4 was downregulated in BC with high promoter methylation and low genetic alteration. DNA methylation was negatively associated with LTBP4 mRNA expression. Higher LTBP4 associated with better survival. LTBP4 was enrichment in extracellular matrix receptor interactions, cell adhesion molecules, cell cycle and MAPK pathway. LTBP4 expression and methylation were positively and negatively associated with tumor infiltrating immune cells, respectively. In conclusion, LTBP4 is a putative tumor suppressor in BC, which expression is regulated by DNA methylation and relates with prognosis.
Collapse
Affiliation(s)
- Wenfeng He
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, PR China
| | - Jingheng Zhang
- Department of Oncology, The People’s Hospital of Luzhou, 646000, Luzhou, PR China
| | - Siyuan Wen
- Faculty of Clinical Medicine, Southwest Medical University, 646000, Luzhou, PR China
| | - Ying Li
- Faculty of Clinical Medicine, Southwest Medical University, 646000, Luzhou, PR China
| | - Lin Shen
- Faculty of Clinical Medicine, Southwest Medical University, 646000, Luzhou, PR China
| | - Tiejun Zhou
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, PR China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, PR China
| | - Yu Fan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, PR China
| |
Collapse
|
2
|
Loaiza-Moss J, Braun U, Leitges M. Transcriptome Profiling of Mouse Embryonic Fibroblast Spontaneous Immortalization: A Comparative Analysis. Int J Mol Sci 2024; 25:8116. [PMID: 39125691 PMCID: PMC11311763 DOI: 10.3390/ijms25158116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Cell immortalization, a hallmark of cancer development, is a process that cells can undergo on their path to carcinogenesis. Spontaneously immortalized mouse embryonic fibroblasts (MEFs) have been used for decades; however, changes in the global transcriptome during this process have been poorly described. In our research, we characterized the poly-A RNA transcriptome changes after spontaneous immortalization. To this end, differentially expressed genes (DEGs) were screened using DESeq2 and characterized by gene ontology enrichment analysis and protein-protein interaction (PPI) network analysis to identify the potential hub genes. In our study, we identified changes in the expression of genes involved in proliferation regulation, cell adhesion, immune response and transcriptional regulation in immortalized MEFs. In addition, we performed a comparative analysis with previously reported MEF immortalization data, where we propose a predicted gene regulatory network model in immortalized MEFs based on the altered expression of Mapk11, Cdh1, Chl1, Zic1, Hoxd10 and the novel hub genes Il6 and Itgb2.
Collapse
Affiliation(s)
| | | | - Michael Leitges
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. Johns, NL A1B 3V6, Canada; (J.L.-M.); (U.B.)
| |
Collapse
|
3
|
Shi Q, Huang Z, Kuang Y, Wang C, Fang X, Hu X. Forkhead box E1, frequently downregulted by promoter methylation, inhibits colorectal cancer cell growth and migration. Cancer Cell Int 2024; 24:169. [PMID: 38734646 PMCID: PMC11088116 DOI: 10.1186/s12935-024-03352-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Forkhead box E1 (FOXE1), also known as thyroid transcription factor 2 (TTF-2), belongs to a large family of forkhead transcription factors. It plays important roles in embryogenesis, cell growth, and differentiation. Cancer-specific FOXE1 hypermethylation events have been identified in several cancers. However, the expression and function of FOXE1 in the tumorigenesis of colorectal cancer remain still unknown. In this study, we examined FOXE1 expression and methylation in normal colon mucosa, colorectal cancer (CRC) cell lines, and primary tumors by immunohistochemistry, semi-quantitative RT-PCR, methylation-specific PCR, and bisulfite genomic sequencing. We found that FOXE1 was frequently methylated and silenced in CRC cell lines and was downregulated in CRC tissues compared with paired adjacent non-tumor tissues. Meanwhile, low FOXE1 expression was significantly correlated with lymph node metastasis and advanced TNM stages, indicating its potential as a tumor marker. Subsequently, we established colon cancer cell lines with stable FOXE1 expression to observe the biological effect on colorectal cancer, including cell growth, migration, actin cytoskeleton, and growth of human colorectal xenografts in nude mice. Ectopic expression of FOXE1 could suppress tumor cell growth and migration and affect the organization of the actin cytoskeleton together with suppressing tumorigenicity in vivo. FOXE1 methylation was frequently seen in association with a complete absence of or downregulated gene expression, and FOXE1 plays a suppressive role in the development and progression of colorectal cancer.
Collapse
Affiliation(s)
- Qinlan Shi
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Zhongting Huang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Yeye Kuang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Chan Wang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Xiao Fang
- Department of Anesthesiology, Sir Run Shaw Hospital,, Zhejiang University, Hangzhou, China.
| | - Xiaotong Hu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
- Department of Pathology, Sir Run Run Shaw Hospital,, Zhejiang University, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
4
|
Yang R, Yang N, Yin P, Xue Z, Sun F, Fan R, Liang J, Lv X, Wu S, Sun L. PCDH8 is a novel prognostic biomarker in thyroid cancer and promotes cell proliferation and viability. Funct Integr Genomics 2024; 24:35. [PMID: 38368303 PMCID: PMC10874333 DOI: 10.1007/s10142-024-01312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Protocadherin 8 (PCDH8), a calcium-dependent transmembrane protein in the protocadherin family, regulates cell adhesion and signal transduction. While some studies have provided indirect evidence that PCDH8 has cancer-promoting properties, this association is controversial. In particular, its involvement in thyroid cancer (THCA) remains unclear. We aimed to elucidate the role of PCDH8 in THCA using bioinformatic analysis. Subsequently, the results were experimentally validated. The analysis conducted using the R programming language and online web tools explored PCDH8 expression levels, prognostic, and clinical implications, and its relationship with the tumor immune microenvironment in THCA. Furthermore, we examined the association between PCDH8 and co-expressed genes, highlighting their involvement in several biological processes relevant to THCA. The potential of PCDH8 as a therapeutic target for this pathology was also explored. Immunohistochemical (IHC) staining was performed on samples from 98 patients with THCA, and experimental validation was carried out. PCDH8 was significantly elevated in cancer tissues and associated with poor prognosis, several clinical factors, and immune cell and checkpoint abundance. Cox regression and survival analyses, together with Receiver Operating Curves (ROC) indicated that PCDH8 was an independent prognostic factor for THCA. Furthermore, PCDH8 impacts cell viability and proliferation, promoting tumorigenesis. Also, it influences tumor cell sensitivity to various drugs. Thus, PCDH8 might be a potential therapeutic target for THCA. IHC, cell culture, MTT, and colony formation experiments further confirmed our findings. This analysis provided insights into the potential carcinogenic role of PCDH8 in THCA, as it impacts cell viability and proliferation. Thus, PCDH8 might play an important role in its prognosis, immune infiltration, and diagnosis.
Collapse
Affiliation(s)
- Ruida Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Nan Yang
- Department of Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Pan Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Zihan Xue
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Feidi Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Ruihan Fan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - JiaFu Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Xinru Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Shaobo Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Liankang Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
5
|
Kwon H, Jung YJ, Lee Y, Son GH, Kim HO, Maeng YS, Kwon JY. Impaired Angiogenic Function of Fetal Endothelial Progenitor Cells via PCDH10 in Gestational Diabetes Mellitus. Int J Mol Sci 2023; 24:16082. [PMID: 38003275 PMCID: PMC10671254 DOI: 10.3390/ijms242216082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Maternal hyperglycemia, induced by gestational diabetes mellitus (GDM), has detrimental effects on fetal vascular development, ultimately increasing the risk of cardiovascular diseases in offspring. The potential underlying mechanisms through which these complications occur are due to functional impairment and epigenetic changes in fetal endothelial progenitor cells (EPCs), which remain less defined. We confirm that intrauterine hyperglycemia leads to the impaired angiogenic function of fetal EPCs, as observed through functional assays of outgrowth endothelial cells (OECs) derived from fetal EPCs of GDM pregnancies (GDM-EPCs). Notably, PCDH10 expression is increased in OECs derived from GDM-EPCs, which is associated with the inhibition of angiogenic function in fetal EPCs. Additionally, increased PCDH10 expression is correlated with the hypomethylation of the PCDH10 promoter. Our findings demonstrate that in utero exposure to GDM can induce angiogenic dysfunction in fetal EPCs through altered gene expression and epigenetic changes, consequently increasing the susceptibility to cardiovascular diseases in the offspring of GDM mothers.
Collapse
Affiliation(s)
- Hayan Kwon
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.); (Y.J.J.); (Y.L.)
| | - Yun Ji Jung
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.); (Y.J.J.); (Y.L.)
| | - Yeji Lee
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.); (Y.J.J.); (Y.L.)
| | - Ga-Hyun Son
- Department of Obstetrics and Gynecology, Kangnam Sacred Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea;
| | - Hyun Ok Kim
- Korea Cell-Based Artificial Blood Project, Regenerative Medicine Acceleration Foundation, Seoul 04512, Republic of Korea;
| | - Yong-Sun Maeng
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.); (Y.J.J.); (Y.L.)
| | - Ja-Young Kwon
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.); (Y.J.J.); (Y.L.)
| |
Collapse
|
6
|
Zhen Y, Pavez M, Li X. The role of Pcdh10 in neurological disease and cancer. J Cancer Res Clin Oncol 2023; 149:8153-8164. [PMID: 37058252 PMCID: PMC10374755 DOI: 10.1007/s00432-023-04743-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Protocadherin 10 (PCDH 10), a member of the superfamily of protocadherins, is a Ca2+-dependent homophilic cell-cell adhesion molecule expressed on the surface of cell membranes. Protocadherin 10 plays a critical role in the central nervous system including in cell adhesion, formation and maintenance of neural circuits and synapses, regulation of actin assembly, cognitive function and tumor suppression. Additionally, Pcdh10 can serve as a non-invasive diagnostic and prognostic indicator for various cancers. METHODS This paper collects and reviews relevant literature in Pubmed. CONCLUSION This review describes the latest research understanding the role of Pcdh10 in neurological disease and human cancer, highlighting the importance of scrutinizing its properties for the development of targeted therapies and identifying a need for further research to explore Pcdh10 functions in other pathways, cell types and human pathologies.
Collapse
Affiliation(s)
- Yilan Zhen
- Menzies Institute for Medical Research, University of Tasmania, Liverpool street, Hobart, 7000, Australia
| | - Macarena Pavez
- Department of Anatomy, University of Otago, Dunedin, Otago, New Zealand.
| | - Xinying Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.
- School of Life Sciences, Anhui Medical University, Hefei, People's Republic of China.
| |
Collapse
|
7
|
Li L, Shu XS, Geng H, Ying J, Guo L, Luo J, Xiang T, Wu L, Ma BBY, Chan ATC, Zhu X, Ambinder RF, Tao Q. A novel tumor suppressor encoded by a 1p36.3 lncRNA functions as a phosphoinositide-binding protein repressing AKT phosphorylation/activation and promoting autophagy. Cell Death Differ 2023; 30:1166-1183. [PMID: 36813924 PMCID: PMC10154315 DOI: 10.1038/s41418-023-01129-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
Peptides/small proteins, encoded by noncanonical open reading frames (ORF) of previously claimed non-coding RNAs, have recently been recognized possessing important biological functions, but largely uncharacterized. 1p36 is an important tumor suppressor gene (TSG) locus frequently deleted in multiple cancers, with critical TSGs like TP73, PRDM16, and CHD5 already validated. Our CpG methylome analysis identified a silenced 1p36.3 gene KIAA0495, previously thought coding long non-coding RNA. We found that the open reading frame 2 of KIAA0495 is actually protein-coding and translating, encoding a small protein SP0495. KIAA0495 transcript is broadly expressed in multiple normal tissues, but frequently silenced by promoter CpG methylation in multiple tumor cell lines and primary tumors including colorectal, esophageal and breast cancers. Its downregulation/methylation is associated with poor survival of cancer patients. SP0495 induces tumor cell apoptosis, cell cycle arrest, senescence and autophagy, and inhibits tumor cell growth in vitro and in vivo. Mechanistically, SP0495 binds to phosphoinositides (PtdIns(3)P, PtdIns(3,5)P2) as a lipid-binding protein, inhibits AKT phosphorylation and its downstream signaling, and further represses oncogenic AKT/mTOR, NF-κB, and Wnt/β-catenin signaling. SP0495 also regulates the stability of autophagy regulators BECN1 and SQSTM1/p62 through modulating phosphoinositides turnover and autophagic/proteasomal degradation. Thus, we discovered and validated a 1p36.3 small protein SP0495, functioning as a novel tumor suppressor regulating AKT signaling activation and autophagy as a phosphoinositide-binding protein, being frequently inactivated by promoter methylation in multiple tumors as a potential biomarker.
Collapse
Affiliation(s)
- Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Xing-Sheng Shu
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- School of Medicine, Shenzhen University Health Science Center, Shenzhen, China
| | - Hua Geng
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jianming Ying
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Pathology, Cancer Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Lei Guo
- Department of Pathology, Cancer Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Luo
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tingxiu Xiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing University Cancer Hospital, Chongqing, China
| | - Longtao Wu
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Brigette B Y Ma
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Anthony T C Chan
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiaofeng Zhu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Richard F Ambinder
- Johns Hopkins Singapore and Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
- Johns Hopkins Singapore and Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Siamoglou S, Boers R, Koromina M, Boers J, Tsironi A, Chatzilygeroudi T, Lazaris V, Verigou E, Kourakli A, van IJcken WFJ, Gribnau J, Symeonidis A, Patrinos GP. Genome-wide analysis toward the epigenetic aetiology of myelodysplastic syndrome disease progression and pharmacoepigenomic basis of hypomethylating agents drug treatment response. Hum Genomics 2023; 17:37. [PMID: 37098643 PMCID: PMC10127336 DOI: 10.1186/s40246-023-00483-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/05/2023] [Indexed: 04/27/2023] Open
Abstract
Myelodysplastic syndromes (MDS) consist of a group of hematological malignancies characterized by ineffective hematopoiesis, cytogenetic abnormalities, and often a high risk of transformation to acute myeloid leukemia (AML). So far, there have been only a very limited number of studies assessing the epigenetics component contributing to the pathophysiology of these disorders, but not a single study assessing this at a genome-wide level. Here, we implemented a generic high throughput epigenomics approach, using methylated DNA sequencing (MeD-seq) of LpnPI digested fragments to identify potential epigenomic targets associated with MDS subtypes. Our results highlighted that PCDHG and ZNF gene families harbor potential epigenomic targets, which have been shown to be differentially methylated in a variety of comparisons between different MDS subtypes. Specifically, CpG islands, transcription start sites and post-transcriptional start sites within ZNF124, ZNF497 and PCDHG family are differentially methylated with fold change above 3,5. Overall, these findings highlight important aspects of the epigenomic component of MDS syndromes pathogenesis and the pharmacoepigenomic basis to the hypomethylating agents drug treatment response, while this generic high throughput whole epigenome sequencing approach could be readily implemented to other genetic diseases with a strong epigenetic component.
Collapse
Affiliation(s)
- Stavroula Siamoglou
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, University of Patras, School of Health Sciences, University Campus, 265 04, Rion, Patras, Greece
| | - Ruben Boers
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Maria Koromina
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, University of Patras, School of Health Sciences, University Campus, 265 04, Rion, Patras, Greece
| | - Joachim Boers
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Anna Tsironi
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, University of Patras, School of Health Sciences, University Campus, 265 04, Rion, Patras, Greece
| | - Theodora Chatzilygeroudi
- Hematology Division, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | - Vasileios Lazaris
- Hematology Division, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | - Evgenia Verigou
- Hematology Division, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | - Alexandra Kourakli
- Hematology Division, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | | | - Joost Gribnau
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Argiris Symeonidis
- Hematology Division, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | - George P Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, University of Patras, School of Health Sciences, University Campus, 265 04, Rion, Patras, Greece.
- Department of Genetics and Genomics, United Arab Emirates University, College of Medicine and Health Sciences, Al-Ain, Abu Dhabi, United Arab Emirates.
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
9
|
Mahmoudian RA, Akhlaghipour I, Lotfi M, Shahidsales S, Moghbeli M. Circular RNAs as the pivotal regulators of epithelial-mesenchymal transition in gastrointestinal tumor cells. Pathol Res Pract 2023; 245:154472. [PMID: 37087995 DOI: 10.1016/j.prp.2023.154472] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Gastrointestinal (GI) cancers, as the most common human malignancies are always considered one of the most important health challenges in the world. Late diagnosis in advanced tumor stages is one of the main reasons for the high mortality rate and treatment failure in these patients. Therefore, investigating the molecular pathways involved in GI tumor progression is required to introduce the efficient markers for the early tumor diagnosis. Epithelial-mesenchymal transition (EMT) is one of the main cellular mechanisms involved in the GI tumor metastasis. Non-coding RNAs (ncRNAs) are one of the main regulatory factors in EMT process. Circular RNAs (circRNAs) are a group of covalently closed loop ncRNAs that have higher stability in body fluids compared with other ncRNAs. Considering the importance of circRNAs in regulation of EMT process, in the present review we discussed the role of circRNAs in EMT process during GI tumor invasion. It has been reported that circRNAs mainly affect the EMT process through the regulation of EMT-specific transcription factors and signaling pathways such as WNT, PI3K/AKT, TGF-β, and MAPK. This review can be an effective step in introducing a circRNA/EMT based diagnostic panel marker for the early tumor detection among GI cancer patients.
Collapse
Affiliation(s)
- Reihaneh Alsadat Mahmoudian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Ning Y, Deng C, Li C, Peng W, Yan C, Ran J, Chen W, Liu Y, Xia J, Ye L, Wei Z, Xiang T. PCDH20 inhibits esophageal squamous cell carcinoma proliferation and migration by suppression of the mitogen-activated protein kinase 9/AKT/β-catenin pathway. Front Oncol 2022; 12:937716. [PMID: 36248995 PMCID: PMC9555239 DOI: 10.3389/fonc.2022.937716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Aberrant protocadherins (PCDHs) expression trigger tumor invasion and metastasis. PCDH20 anti-tumor functions in various tumor have been identified. Tumor suppression is due to Wnt/β-catenin pathway antagonism and may be suppressed caused by PCDH20 downregulation through promotor methylation, whereas PCDH20 effects and regulation mechanism in esophageal squamous cell carcinoma (ESCC) remains elusive. We analyzed PCDH20 effects on ESCC and underlying action mechanisms for PCDH20. We test PCDH20 expression in ESCC tissues and cells by semi-quantitative PCR (RT-PCR) and q-PCR (real-time quantitative polymerase chain reaction). MSP (methylation-specific PCR) was carried out to assess the methylation of PCDH20 in ESCC cells and tissues. Anti-tumor effects of PCDH20 in vitro were assessed by clone formation assay, CCK8 assay, Transwell assay, and flow cytometry. Nude mice tumorigenicity was used to assess PCDH20 anti-tumor effect in vivo. Online database, qPCR, and Western blotting were used to identify the downregulation of MAP3K9 by PCDH20, associated with AKT/β-catenin signaling inactivation. We found that PCDH20 expression was dramatically attenuated in esophageal cancer tissues and cells, maybe due to promotor methylation, and ectopic PCDH20 expression suppressed ESCC malignant biological phenotypes. PCDH20 exerted anti-tumor effects by MAP3K9 downregulation, which suppressed AKT/β-catenin signaling in ESCC cells.ConclusionPCDH20 was a tumor suppressor gene, which antagonized AKT/β-catenin signaling pathway in ESCC by decreasing MAP3K9.
Collapse
Affiliation(s)
- Yijiao Ning
- Gastrointestinal Surgical Unit, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chaoqun Deng
- Gastrointestinal Surgical Unit, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunhong Li
- Department of Oncology, Suining Central Hospital, Suining, China
- *Correspondence: Tingxiu Xiang, ; Chunhong Li,
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chun Yan
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Ran
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Weihong Chen
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujia Liu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiuyi Xia
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Ye
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengqiang Wei
- Gastrointestinal Surgical Unit, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingxiu Xiang
- Gastrointestinal Surgical Unit, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Tingxiu Xiang, ; Chunhong Li,
| |
Collapse
|
11
|
Xu QR, Du XH, Huang TT, Zheng YC, Li YL, Huang DY, Dai HQ, Li EM, Fang WK. Role of Cell-Cell Junctions in Oesophageal Squamous Cell Carcinoma. Biomolecules 2022; 12:biom12101378. [PMID: 36291586 PMCID: PMC9599896 DOI: 10.3390/biom12101378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Cell-cell junctions comprise various structures, including adherens junctions, tight junctions, desmosomes, and gap junctions. They link cells to each other in tissues and regulate tissue homeostasis in critical cellular processes. Recent advances in cell-cell junction research have led to critical discoveries. Cell-cell adhesion components are important for the invasion and metastasis of tumour cells, which are not only related to cell-cell adhesion changes, but they are also involved in critical molecular signal pathways. They are of great significance, especially given that relevant molecular mechanisms are being discovered, there are an increasing number of emerging biomarkers, targeted therapies are becoming a future therapeutic concern, and there is an increased number of therapeutic agents undergoing clinical trials. Oesophageal squamous cell carcinoma (ESCC), the most common histological subtype of oesophageal cancer, is one of the most common cancers to affect epithelial tissue. ESCC progression is accompanied by the abnormal expression or localisation of components at cell-cell junctions. This review will discuss the recent scientific developments related to the molecules at cell-cell junctions and their role in ESCC to offer valuable insights for readers, provide a global view of the relationships between position, construction, and function, and give a reference for future mechanistic studies, diagnoses, and therapeutic developments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - En-Min Li
- Correspondence: (E.-M.L.); (W.-K.F.)
| | | |
Collapse
|
12
|
Molecular Classification of Hepatocellular Carcinoma Using Wnt-Hippo Signaling Pathway-Related Genes. Cancers (Basel) 2022; 14:cancers14194580. [PMID: 36230503 PMCID: PMC9559216 DOI: 10.3390/cancers14194580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary The characters of Taiwanese hepatocellular carcinoma (HCC) are different from other parts of the world. We characterized the molecular features of HCC using a newly developed classification system based on the expression of the Wnt–Hippo signaling pathway-related genes. We analyzed the data in terms of prognostic value, transcriptome features, immune infiltration, and clinical characteristics, and compared the resulting subclasses with previously published classifications. A new molecular classification method based on a 272 gene panel of Wnt–Hippo pathways that may provide a new target for the treatment. Abstract In Taiwan, a combination of hepatitis B and C infection, economic boom-related food and alcohol overconsumption, and Chinese medicine prescriptions has led to a high rate of hepatocellular carcinoma (HCC). However, the causative factors and underlying tumor biology for this unique HCC environment have not been identified. Wnt and Hippo signaling pathways play an important regulatory role in HCC development, and their functions are generally considered as positive and negative regulators of cell proliferation, respectively. In this study, we characterized the molecular features of HCC using a newly developed classification system based on the expression of the Wnt–Hippo signaling pathway-related genes. RNA sequencing (RNA-Seq) was performed on liver tumor tissues from 100 patients with liver cancer. RNA-Seq data for 272 previously characterized Wnt–Hippo signaling pathway-related genes were used for hierarchical clustering. We analyzed the data in terms of prognostic value, transcriptome features, immune infiltration, and clinical characteristics, and compared the resulting subclasses with previously published classifications. Four subclasses of HCC (HCCW1–4) were identified. Subclass HCCW1 displayed the highest PCDHB4 expression. Subclass HCCW2 displayed lower Edmondson–Steiner grades (I and II) and CTNNB1 mutation frequencies. Subclass HCCW3 was associated with a good prognosis, the highest PCDHGB7 expression, high CD8+ naïve T cells abundance, and relatively low TP53 mutation rates. Subclass HCCW4 was associated with a poor prognosis, the highest PCDHB2 and PCDHB6 expression, a relatively high abundance of Th1 cells, NKT and class-switched memory B cells, relatively low enrichment of cDC, iDC, and CD4+ memory T cells, and high Edmondson–Steiner grades (III and IV). We also identified Wnt–Hippo signaling pathway-related genes that may influence immune cell infiltration. We developed a panel of 272 Wnt–Hippo signaling pathway-related genes to classify HCC into four groups based on Taiwanese HCC and The Cancer Genome Atlas Liver Hepatocellular Carcinoma datasets. This novel molecular classification system may aid the treatment of HCC.
Collapse
|
13
|
Chu S, Avery A, Yoshimoto J, Bryan JN. Genome wide exploration of the methylome in aggressive B-cell lymphoma in Golden Retrievers reveals a conserved hypermethylome. Epigenetics 2022; 17:2022-2038. [PMID: 35912844 PMCID: PMC9665123 DOI: 10.1080/15592294.2022.2105033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Few recurrent DNA mutations are seen in aggressive canine B cell lymphomas (cBCL), suggesting other frequent drivers. The methylated island recovery assay (MIRA-seq) or methylated CpG-binding domain sequencing (MBD-seq) was used to define the genome-wide methylation profiles in aggressive cBCL in Golden Retrievers to determine if cBCL can be better defined by epigenetic changes than by DNA mutations. DNA hypermethylation patterns were relatively homogenous within cBCL samples in Golden Retrievers, in different breeds and in geographical regions. Aberrant hypermethylation is thus suspected to be a central and early event in cBCL lymphomagenesis. Distinct subgroups within cBCL in Golden Retrievers were not identified with DNA methylation profiles. In comparison, the methylome profile of human DLBCL (hDLBCL) is relatively heterogeneous. Only moderate similarity between hDLBCL and cBCL was seen and cBCL likely cannot be accurately classified into the subtypes seen in hDLBCL. Genes with hypermethylated regions in the promoter-TSS-first exon of cBCL compared to normal B cells often also had additional hyper- and hypomethylated regions distributed throughout the gene suggesting non-randomized repeat targeting of key genes by epigenetic mechanisms. The prevalence of hypermethylation in transcription factor families in aggressive cBCL may represent a fundamental step in lymphomagenesis.
Collapse
Affiliation(s)
- Shirley Chu
- Department of Veterinary Medicine and Surgery, University of Missouri, 900 E. Campus Drive, Columbia, MO, USA
| | - Anne Avery
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Janna Yoshimoto
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jeffrey N Bryan
- Department of Veterinary Medicine and Surgery, University of Missouri, 900 E. Campus Drive, Columbia, MO, USA
| |
Collapse
|
14
|
Wang X, Zhou Y, Wang C, Zhao Y, Cheng Y, Yu S, Li X, Zhang W, Zhang Y, Quan H. HCV Core protein represses DKK3 expression via epigenetic silencing and activates the Wnt/β-catenin signaling pathway during the progression of HCC. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:1998-2009. [PMID: 35768685 DOI: 10.1007/s12094-022-02859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022]
Abstract
The Wnt/β-catenin signaling pathway is frequently activated in hepatocellular carcinoma (HCC). A number of studies have focused on the aberrant hypermethylation of the DKK family proteins and its role in regulating the activation of specific signaling pathways. However, the exact way by which DKK regulates the signaling pathway caused by Core protein of HCV has not been reported. In the present study, we evaluated the expression level of DKK and its aberrant promoter methylation to investigate the involvement of epigenetic regulation in hepatoma cell lines. The transcription and protein expression of DKK1 was significantly increased, whereas the transcription and protein expression levels of DKK2, DKK3, and DKK4 were significantly decreased following overexpression of Core protein. Pyrosequencing indicated that hypermethylation of DKK3 was increased. This was associated with increased expression of Dnmt1. The investigation of the molecular mechanism indicated that HCV Core protein interacted with Dnmt1, which combined with the promoter of DKK3, leading to methylation of DKK3. Functional studies indicated that Core protein promoted the growth, migration and invasion of cancer cells. However, upregulation of the expression of DKK3 and/or the knockdown of the expression of Dnmt1 inhibited the growth, migration and invasion of cancer cells. Taken together, the data indicated that epigenetic silencing of DKK3 caused by Dnmt1 activated the Wnt/β-catenin pathway in HCV Core-mediated HCC. Therefore, DKK3 may be a potential diagnostic and therapeutic target for HCC.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yun Zhou
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Chunfu Wang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yanyan Zhao
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yan Cheng
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Suhuai Yu
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Xiaofeng Li
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Wenjing Zhang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Ying Zhang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Huiqin Quan
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
15
|
Protocadherin 15 suppresses oligodendrocyte progenitor cell proliferation and promotes motility through distinct signalling pathways. Commun Biol 2022; 5:511. [PMID: 35637313 PMCID: PMC9151716 DOI: 10.1038/s42003-022-03470-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) express protocadherin 15 (Pcdh15), a member of the cadherin superfamily of transmembrane proteins. Little is known about the function of Pcdh15 in the central nervous system (CNS), however, Pcdh15 expression can predict glioma aggression and promote the separation of embryonic human OPCs immediately following a cell division. Herein, we show that Pcdh15 knockdown significantly increases extracellular signal-related kinase (ERK) phosphorylation and activation to enhance OPC proliferation in vitro. Furthermore, Pcdh15 knockdown elevates Cdc42-Arp2/3 signalling and impairs actin kinetics, reducing the frequency of lamellipodial extrusion and slowing filopodial withdrawal. Pcdh15 knockdown also reduces the number of processes supported by each OPC and new process generation. Our data indicate that Pcdh15 is a critical regulator of OPC proliferation and process motility, behaviours that characterise the function of these cells in the healthy CNS, and provide mechanistic insight into the role that Pcdh15 might play in glioma progression. Protocadherin 15 promotes lamellipodial and filopodial dynamics in oligodendrocyte progenitor cells by regulating Cdc42-Arp2/3 activity, but also suppresses ERK1/2 phosphorylation to reduce proliferation.
Collapse
|
16
|
Kleinberger I, Sanders E, Staes K, Van Troys M, Hirano S, Hochepied T, Lemeire K, Martens L, Ampe C, van Roy F. Innovative mouse models for the tumor suppressor activity of Protocadherin-10 isoforms. BMC Cancer 2022; 22:451. [PMID: 35468745 PMCID: PMC9040349 DOI: 10.1186/s12885-022-09381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 03/02/2022] [Indexed: 11/12/2022] Open
Abstract
Background Nonclustered mouse protocadherin genes (Pcdh) encode proteins with a typical single ectodomain and a cytoplasmic domain with conserved motifs completely different from those of classic cadherins. Alternative splice isoforms differ in the size of these cytoplasmic domains. In view of the compelling evidence for gene silencing of protocadherins in human tumors, we started investigations on Pcdh functions in mouse cancer models. Methods For Pcdh10, we generated two mouse lines: one with floxed exon 1, leading to complete Pcdh10 ablation upon Cre action, and one with floxed exons 2 and 3, leading to ablation of only the long isoforms of Pcdh10. In a mouse medulloblastoma model, we used GFAP-Cre action to locally ablate Pcdh10 in combination with Trp53 and Rb1 ablation. From auricular tumors, that also arose, we obtained tumor-derived cell lines, which were analyzed for malignancy in vitro and in vivo. By lentiviral transduction, we re-expressed Pcdh10 cDNAs. RNA-Seq analyses were performed on these cell families. Results Surprisingly, not only medulloblastomas were generated in our model but also tumors of tagged auricles (pinnae). For both tumor types, ablation of either all or only long isoforms of Pcdh10 aggravated the disease. We argued that the perichondrial stem cell compartment is at the origin of the pinnal tumors. Immunohistochemical analysis of these tumors revealed different subtypes. We obtained several pinnal-tumor derived (PTD) cell lines and analyzed these for anchorage-independent growth, invasion into collagen matrices, tumorigenicity in athymic mice. Re-expression of either the short or a long isoform of Pcdh10 in two PTD lines counteracted malignancy in all assays. RNA-Seq analyses of these two PTD lines and their respective Pcdh10-rescued cell lines allowed to identify many interesting differentially expressed genes, which were largely different in the two cell families. Conclusions A new mouse model was generated allowing for the first time to examine the remarkable tumor suppression activity of protocadherin-10 in vivo. Despite lacking several conserved motifs, the short isoform of Pcdh10 was fully active as tumor suppressor. Our model contributes to scrutinizing the complex molecular mechanisms of tumor initiation and progression upon PCDH10 silencing in many human cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09381-y.
Collapse
Affiliation(s)
- Irene Kleinberger
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,VIB-UGent Center for Inflammation Research (IRC), VIB, 9052, Ghent, Belgium
| | - Ellen Sanders
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,VIB-UGent Center for Inflammation Research (IRC), VIB, 9052, Ghent, Belgium
| | - Katrien Staes
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,VIB-UGent Center for Inflammation Research (IRC), VIB, 9052, Ghent, Belgium
| | - Marleen Van Troys
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9052, Ghent, Belgium
| | - Shinji Hirano
- Department of Cell Biology, Kansai Medical University, Hirakata City, Osaka, 573-1010, Japan
| | - Tino Hochepied
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,VIB-UGent Center for Inflammation Research (IRC), VIB, 9052, Ghent, Belgium
| | - Kelly Lemeire
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,VIB-UGent Center for Inflammation Research (IRC), VIB, 9052, Ghent, Belgium
| | - Liesbet Martens
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,VIB-UGent Center for Inflammation Research (IRC), VIB, 9052, Ghent, Belgium
| | - Christophe Ampe
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9052, Ghent, Belgium
| | - Frans van Roy
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium. .,VIB-UGent Center for Inflammation Research (IRC), VIB, 9052, Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), 9052, Ghent, Belgium.
| |
Collapse
|
17
|
Yang H, Qin G, Luo Z, Kong X, Gan C, Zhang R, Jiang W. MFSD4A inhibits the malignant progression of nasopharyngeal carcinoma by targeting EPHA2. Cell Death Dis 2022; 13:332. [PMID: 35410462 PMCID: PMC9001682 DOI: 10.1038/s41419-022-04793-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/03/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022]
Abstract
DNA Methylation can lead to abnormal gene expression. In the present study, we investigated whether the expression of methylated MFSD4A (major facilitator superfamily domain containing 4 A) was downregulated in nasopharyngeal carcinoma (NPC) and whether it is associated with malignant progression and poor prognosis of NPC. Bioinformatic analysis, bisulfite pyrosequencing, quantitative real-time reverse transcription PCR, and western blotting assays were performed to explore the relationship between hypermethylation of MFSD4A and its expression in NPC. The role of MFSD4A in NPC was verified by Cell Cycle Kit 8, transwell assays and flow cytometry in vitro and by animal experiments in vivo. Mass spectrometry, co-immunoprecipitation, and immunofluorescence assays were applied to explore the mechanism by which MFSD4A inhibits NPC. The prognostic significance of MFSD4A or EPHA2 was investigated by immunohistochemical analysis of clinical specimens. Hypermethylation of the promoter region of MFSD4A led to decreased expression of MFSD4A. When MFSD4A expression was upregulated or downregulated, the proliferation, apoptosis, migration, and invasion abilities of NPC cells were altered accordingly. Mechanistically, MFSD4A could specifically bind to and degrade EPH receptor A2 (EPHA2) by recruiting ring finger protein 149 (RNF149), which led to alterations in the EPHA2-mediated PI3K-AKT-ERK1/2 pathway and epithelial-mesenchymal transition (EMT), thereby affecting NPC progression. Clinically, high MFSD4A expression or low-EPHA2 expression was associated with better prognosis for patients with NPC. In all, reduced MFSD4A expression in NPC is caused by promoter hypermethylation. MFSD4A or EPHA2 expression is associated with the malignant biological behavior and prognosis of NPC. MFSD4A is a promising potential therapeutic target for NPC.
Collapse
|
18
|
Yu J, Pham TT, Wandrey N, Daly M, Karam SD. Multimodality Management of EBV-Associated Nasopharyngeal Carcinoma. Cancers (Basel) 2021; 13:6078. [PMID: 34885187 PMCID: PMC8657235 DOI: 10.3390/cancers13236078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 12/24/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a rare cancer of the nasopharyngeal mucosa with a specific geographic predisposition. NPC is often associated with Epstein-Barr Virus (EBV) infection and as a result contains many characteristic biomarkers. Treatment of locally-contained NPC is generally achieved through use of radiotherapy (RT), as part of a multimodality treatment regimen. Induction chemotherapy followed by concurrent RT and platinum-based chemotherapy regimen has emerged as the definitive treatment of choice for locoregionally-advanced NPC. Recently, immunotherapy is finding a role in the treatment of recurrent or metastatic NPC. Immune checkpoint blockade therapies targeted against the programmed death-1 (PD-1) receptor have demonstrated efficacy in early phase clinical trials, with ongoing phase III trials in effect. Biomarkers for treatment efficacy remain an ongoing area of investigation, with important prognostic implications on the horizon.
Collapse
Affiliation(s)
- Justin Yu
- Department of Otolaryngology, Head and Neck Surgery, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (J.Y.); (T.T.P.)
| | - Tiffany T. Pham
- Department of Otolaryngology, Head and Neck Surgery, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (J.Y.); (T.T.P.)
| | - Narine Wandrey
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (N.W.); (M.D.)
| | - Mackenzie Daly
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (N.W.); (M.D.)
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (N.W.); (M.D.)
| |
Collapse
|
19
|
Guo P, Liu X, Zhang P, He Z, Li Z, Alini M, Richards RG, Grad S, Stoddart MJ, Zhou G, Zou X, Chan D, Tian W, Chen D, Gao M, Zhou Z, Liu S. A single-cell transcriptome of mesenchymal stromal cells to fabricate bioactive hydroxyapatite materials for bone regeneration. Bioact Mater 2021; 9:281-298. [PMID: 34820571 PMCID: PMC8586438 DOI: 10.1016/j.bioactmat.2021.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 01/07/2023] Open
Abstract
The osteogenic microenvironment of bone-repairing materials plays a key role in accelerating bone regeneration but remains incompletely defined, which significantly limits the application of such bioactive materials. Here, the transcriptional landscapes of different osteogenic microenvironments, including three-dimensional (3D) hydroxyapatite (HA) scaffolds and osteogenic medium (OM), for mesenchymal stromal cells (MSCs) in vitro were mapped at single-cell resolution. Our findings suggested that an osteogenic process reminiscent of endochondral ossification occurred in HA scaffolds through sequential activation of osteogenic-related signaling pathways, along with inflammation and angiogenesis, but inhibition of adipogenesis and fibrosis. Moreover, we revealed the mechanism during OM-mediated osteogenesis involves the ZBTB16 and WNT signaling pathways. Heterogeneity of MSCs was also demonstrated. In vitro ossification of LRRC75A+ MSCs was shown to have better utilization of WNT-related ossification process, and PCDH10+ MSCs with superiority in hydroxyapatite-related osteogenic process. These findings provided further understanding of the cellular activity modulated by OM conditions and HA scaffolds, providing new insights for the improvement of osteogenic biomaterials. This atlas provides a blueprint for research on MSC heterogeneity and the osteogenic microenvironment of HA scaffolds and a database reference for the application of bioactive materials for bone regeneration.
Collapse
Affiliation(s)
- Peng Guo
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xizhe Liu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Penghui Zhang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhongyuan He
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | | | | | | - Guangqian Zhou
- Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Danny Chan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wei Tian
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan Hospital, Beijing, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan Hospital, Beijing, China
- Corresponding author.
| | - Manman Gao
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Sport Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Corresponding author. Department of Sport Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China.
| | - Zhiyu Zhou
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Corresponding author. Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| | - Shaoyu Liu
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Zhou J, Wang L, Sun Q, Chen R, Zhang C, Yang P, Tan Y, Peng C, Wang T, Jin C, Ji J, Jin K, Sun Y. Hsa_circ_0001666 suppresses the progression of colorectal cancer through the miR-576-5p/PCDH10 axis. Clin Transl Med 2021; 11:e565. [PMID: 34841662 PMCID: PMC8567033 DOI: 10.1002/ctm2.565] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Though circular RNAs, new non-coding RNA classes have demonstrated that they have an essential role in the initiation as well as development of CRC (colorectal cancer), whereas in CRC the function and mechanism of hsa_circ_0001666 are less known. METHODS Hsa_circ_0001666 was identified by bioinformatics analysis of a circRNA microarray from the GEO database, and its expression in both CRC cell lines and tissues was analysed. A series of in vitro along with in vivo experiments were carried out for exploring the hsa_circ_0001666 functions, including transwell, wound healing, flow cytometry, colony formation, Edu, CCK-8, soft agar colony formation, tumor xenografts and lung/liver metastasis in mice. RNA pull-down, RIP (RNA immunoprecipitation), luciferase reporter assay, FISH (fluorescence in situ hybridization) and rescue experiments were used for determining the correlation among hsa_circ_0001666, miR-576-5p and PCDH10. RESULTS Hsa_circ_0001666 was downregulated in both CRC cell lines along with tumour tissues. A higher expression level of hsa_circ_0001666 indicated a better clinical prognosis in patients with CRC. Hsa_circ_0001666 knockdown significantly supported CRC cell proliferation along with invasion and inhibited cell apoptosis in vitro. Hsa_circ_0001666 knockdown accelerated the CRC growth and metastasis in vivo. Moreover, the mechanistic study showed that hsa_circ_0001666, acting as 'ceRNA' of miR-576-5p, prevented PCDH10 downregulation, as well as suppressed EMT and stemness of CRC cells, and the Wnt/β-catenin signalling pathway. Inhibiting miR-576-5p or overexpressing PCDH10 could reverse phenotypic changes caused by knocking down of hsa_circ_0001666. CONCLUSIONS Hsa_circ_0001666 suppresses CRC progression through the miR-576-5p/PCDH10 axis and may provide a new insight for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Jiahui Zhou
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Lu Wang
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Qingyang Sun
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ranran Chen
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Chuan Zhang
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Peng Yang
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yuqian Tan
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Chaofan Peng
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Tuo Wang
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Chi Jin
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jiangzhou Ji
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Kangpeng Jin
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yueming Sun
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
21
|
Pulverer W, Kruusmaa K, Schönthaler S, Huber J, Bitenc M, Bachleitner-Hofmann T, Bhangu JS, Oehler R, Egger G, Weinhäusel A. Multiplexed DNA Methylation Analysis in Colorectal Cancer Using Liquid Biopsy and Its Diagnostic and Predictive Value. Curr Issues Mol Biol 2021; 43:1419-1435. [PMID: 34698107 PMCID: PMC8929153 DOI: 10.3390/cimb43030100] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Early diagnosis of colorectal cancer (CRC) is of high importance as prognosis depends on tumour stage at the time of diagnosis. Detection of tumour-specific DNA methylation marks in cfDNA has several advantages over other approaches and has great potential for solving diagnostic needs. We report here the identification of DNA methylation biomarkers for CRC and give insights in our methylation-sensitive restriction enzyme coupled qPCR (MSRE-qPCR) system. Targeted microarrays were used to investigate the DNA methylation status of 360 cancer-associated genes. Validation was done by qPCR-based approaches. A focus was on investigating marker performance in cfDNA from 88 patients (44 CRC, 44 controls). Finally, the workflow was scaled-up to perform 180plex analysis on 110 cfDNA samples, to identify a DNA methylation signature for advanced colonic adenomas (AA). A DNA methylation signature (n = 44) was deduced from microarray experiments and confirmed by quantitative methylation-specific PCR (qMSP) and by MSRE-qPCR, providing for six genes’ single areas under the curve (AUC) values of >0.85 (WT1, PENK, SPARC, GDNF, TMEFF2, DCC). A subset of the signatures can be used for patient stratification and therapy monitoring for progressed CRC with liver metastasis using cfDNA. Furthermore, we identified a 35-plex classifier for the identification of AAs with an AUC of 0.80.
Collapse
Affiliation(s)
- Walter Pulverer
- Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (S.S.); (J.H.); (A.W.)
- Correspondence: (W.P.); (K.K.)
| | - Kristi Kruusmaa
- Universal Diagnostics S.L., 41013 Seville, Spain;
- Correspondence: (W.P.); (K.K.)
| | - Silvia Schönthaler
- Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (S.S.); (J.H.); (A.W.)
| | - Jasmin Huber
- Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (S.S.); (J.H.); (A.W.)
| | - Marko Bitenc
- Universal Diagnostics S.L., 41013 Seville, Spain;
- Geneplanet d.o.o., 1000 Ljubljana, Slovenia
| | | | - Jagdeep Singh Bhangu
- Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria; (T.B.-H.); (J.S.B.); (R.O.)
| | - Rudolf Oehler
- Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria; (T.B.-H.); (J.S.B.); (R.O.)
| | - Gerda Egger
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria;
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria
| | - Andreas Weinhäusel
- Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (S.S.); (J.H.); (A.W.)
| |
Collapse
|
22
|
Piao XM, Kang H, Kim WJ, Yun SJ. Prominence of urinary biomarkers for bladder cancer in the COVID-19 era: From the commercially available to new prospective candidates. Investig Clin Urol 2021; 62:500-519. [PMID: 34488250 PMCID: PMC8421991 DOI: 10.4111/icu.20210194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/24/2021] [Accepted: 06/07/2021] [Indexed: 12/21/2022] Open
Abstract
Molecular markers detected in urine may improve our understanding of the evolution of bladder cancer (BCa) and its micro- and macroenvironment. Detection of such markers will identify disease earlier, allow stratification of patients according to risk, and improve prognostication and prediction of outcomes, thereby facilitating targeted therapy. However, current guidelines have yet to embrace such markers for routine management of BCa, and most research studies have focused on urine-based tumor markers. In this review, we summarize known urinary biomarkers for BCa and highlight newly identified molecules. We then discuss the challenges that must be overcome to incorporate these markers into clinical care.
Collapse
Affiliation(s)
- Xuan-Mei Piao
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Howon Kang
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
- Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
- Institute of Urotech, Cheongju, Korea
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
- Department of Urology, Chungbuk National University Hospital, Cheongju, Korea.
| |
Collapse
|
23
|
Elpek GO. Molecular pathways in viral hepatitis-associated liver carcinogenesis: An update. World J Clin Cases 2021; 9:4890-4917. [PMID: 34307543 PMCID: PMC8283590 DOI: 10.12998/wjcc.v9.i19.4890] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/14/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of cancer among primary malignant tumors of the liver and is a consequential cause of cancer-related deaths worldwide. In recent years, uncovering the molecular mechanisms involved in the development and behavior of this tumor has led to the identification of multiple potential treatment targets. Despite the vast amount of data on this topic, HCC remains a challenging tumor to treat due to its aggressive behavior and complex molecular profile. Therefore, the number of studies aiming to elucidate the mechanisms involved in both carcinogenesis and tumor progression in HCC continues to increase. In this context, the close association of HCC with viral hepatitis has led to numerous studies focusing on the direct or indirect involvement of viruses in the mechanisms contributing to tumor development and behavior. In line with these efforts, this review was undertaken to highlight the current understanding of the molecular mechanisms by which hepatitis B virus (HBV) and hepatitis C virus (HCV) participate in oncogenesis and tumor progression in HCC and summarize new findings. Cumulative evidence indicates that HBV DNA integration promotes genomic instability, resulting in the overexpression of genes related to cancer development, metastasis, and angiogenesis or inactivation of tumor suppressor genes. In addition, genetic variations in HBV itself, especially preS2 deletions, may play a role in malignant transformation. Epigenetic dysregulation caused by both viruses might also contribute to tumor formation and metastasis by modifying the methylation of DNA and histones or altering the expression of microRNAs. Similarly, viral proteins of both HBV and HCV can affect pathways that are important anticancer targets. The effects of these two viruses on the Hippo-Yap-Taz pathway in HCC development and behavior need to be investigated. Additional, comprehensive studies are also needed to determine these viruses' interaction with integrins, farnesoid X, and the apelin system in malignant transformation and tumor progression. Although the relationship of persistent inflammation caused by HBV and HCV hepatitis with carcinogenesis is well defined, further studies are warranted to decipher the relationship among inflammasomes and viruses in carcinogenesis and elucidate the role of virus-microbiota interactions in HCC development and progression.
Collapse
Affiliation(s)
- Gulsum Ozlem Elpek
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| |
Collapse
|
24
|
Xing Y, Sun X, Li F, Jiang X, Jiang A, Li X, Lv R, Shao L. Long non-coding RNA (lncRNA) HOXB-AS3 promotes cell proliferation and inhibits apoptosis by regulating ADAM9 expression through targeting miR-498-5p in endometrial carcinoma. J Int Med Res 2021; 49:3000605211013548. [PMID: 34187214 PMCID: PMC8258772 DOI: 10.1177/03000605211013548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective Long non-coding RNA (lncRNA) expression is closely related to the pathogenesis and progression of various tumors. In this study, we investigated the mechanisms of lncRNA HOXB cluster antisense RNA 3 (HOXB-AS3), miRNA(miR)-498-5p, and disintegrin and metalloproteinase domain-containing protein 9 (ADAM9) in endometrial carcinoma (EC) cells. Methods The expression levels of lncRNA HOXB-AS3 in EC tissues and cells were detected using RT-qPCR assays. The effects of HOXB-AS3 knockdown on EC cell proliferation and apoptosis were measured using CCK-8 assays, colony formation assays, and flow cytometry. In addition, putative miR-498-5p binding sites were identified in HOXB-AS3 and ADAM9. The targeted relationships were further verified using dual-luciferase reporter and RNA pull-down assays. Results HOXB-AS3 expression was upregulated in EC tissues and cells. EC cell proliferation and viability decreased significantly in HOXB-AS3 knockdown groups. A putative miR-498-5p binding site in HOXB-AS3 was verified. Inhibition of miR-498-5p rescued the effects of HOXB-AS3 knockdown on cell proliferation and apoptosis. Finally, ADAM9 was verified as a direct target gene of miR-498-5p. Conclusions Our results suggest that lncRNA HOXB-AS3 is highly expressed in EC tissues and cells. Downregulation of HOXB-AS3 inhibits cell proliferation and promotes apoptosis in EC cells. HOXB-AS3 can upregulate ADAM9 expression by sponging miR-498-5p.
Collapse
Affiliation(s)
- Ying Xing
- Department of General Medicine, Wulidun Neighborhood Community Health Service Center Affiliated with the Fifth Hospital of Wuhan, Wuhan, Hubei, China
| | - Xianhua Sun
- Department of General Medicine, Wulidun Neighborhood Community Health Service Center Affiliated with the Fifth Hospital of Wuhan, Wuhan, Hubei, China
| | - Feng Li
- Department of Infectious Disease, Red Cross Society Hospital of Wuhan (Wuhan No.11 Hospital), Wuhan, Hubei, China
| | - Xuan Jiang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Qingdao women and children's Hospital, Qingdao, Shandong, China
| | - Afang Jiang
- Department of Hematology-oncology and Nephrology, Changyi People's Hospital, Shandong, China
| | - Xiaofan Li
- Department of Infectious Disease, Red Cross Society Hospital of Wuhan (Wuhan No.11 Hospital), Wuhan, Hubei, China
| | - Ruiting Lv
- Department of Ophthalmology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liwei Shao
- Department of Ophthalmology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
25
|
Protocadherin alpha 3 inhibits lung squamous cell carcinoma metastasis and epithelial-mesenchymal transition. Genes Genomics 2021; 44:211-218. [PMID: 34086268 DOI: 10.1007/s13258-021-01113-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 05/07/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Lung squamous cell carcinoma (LUSC) is associated with poor clinical prognosis and lacks available targeted therapy. Given that the major threat of cancer is metastasis, delineation of the molecular mechanism underlying it would help devise therapeutic strategies. OBJECTIVE To investigate the functional role of protocadherin alpha 3 (PCDHA3) in LUSC, as well as investigate the underlying molecular mechanism. METHODS Data for PCDHA3 expression and clinical information in The Cancer Genome Atlas (TCGA) were extracted and analyzed in the UALCAN platform. Expression levels of PCDHA3 in LUSC cell lines were analyzed via RT-PCR and western blot. Overexpression of PCDHA3 was conducted via plasmid transfection. CCK-8 and cell cycle assays were utilized to investigate effect of PCDHA3 on cell proliferation. Transwell assay was used to detect migration and invasion. The underlying mechanism was demonstrated via western blot analysis. RESULTS Our data indicate that PCDHA3 was low expressed in three kinds of LUSC cell lines and best in H520 cells. Furthermore, overexpression of PCDHA3 could significantly impair LUSC cells proliferation, invasion and migration. Moreover, PCHDA3 repressed the biomarkers of mesenchymal (N-cadherin, fibronectin and vimentin) and increased expression of epithelial markers (E-cadherin and α-catenin). On the other hand, PCDHA3 overexpression partially blocked epithelial-mesenchymal transition. CONCLUSIONS PCDHA3 suppressed the LUSC cells proliferation, invasion and migration via inhibiting the expression of EMT signatures, suggesting that PCDHA3 could serve as a valuable therapeutic target for LUSC therapy.
Collapse
|
26
|
Xu M, Liu C, Pu L, Lai J, Li J, Ning Q, Liu X, Deng S. Systemic analysis of the expression levels and prognosis of breast cancer-related cadherins. Exp Biol Med (Maywood) 2021; 246:1706-1720. [PMID: 33899544 DOI: 10.1177/15353702211010417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cadherins form connection between cells, facilitate communication, and serve as essential agents in the progression of multiple cancers. Over 100 cadherins have been identified and they are mainly divided into four groups: classical cadherins (CDHs), protocadherins (PCDHs), desmosomal (DSC), and cadherin-related proteins. Accumulating evidence has indicated that several members of the cadherins are involved in breast cancer development. Nevertheless, the expression profiles and corresponding prognostic outcomes of these breast cancer-related cadherins are yet to be analyzed. Here, we examined the expression levels and prognostic potential of these breast cancer-related cadherins from the specific databases viz. oncomine, gene expression profiling interactive analysis, human protein atlas, UALCAN, Kaplan-Meier Plotter, and cBioPortal. We found that the CDH2/11 levels were higher in breast cancer tissues, compared to healthy breast tissues, whereas with CDH3-5, PCDH8/10, and DSC3, the levels were lower in the former than in the latter. Additionally, for CDH1/6/13/17/23, PCDH7, and FAT4, trancript level alterations between breast cancer and healthy tissues varied across different databases. The CDH1 protein levels were elevated in breast cancer tissues versus healthy breast tissues, whereas the protein levels of CDH3/11 and PCDH8/10 were reduced in breast cancer, compared to healthy breast tissues. For CDH15 and CDH23, the expression levels paralleled tumor stage. Survival analysis, using the Kaplan-Meier Plotter database, demonstrated that elevated CDH1-3 levels correlated with diminished relapse-free survival in breast cancer patients. Alternately, enhanced CDH4-6/15/17/23, PCDH10, DSC3, and FAT4 levels estimated a rise in relapse-free survival of breast cancer patients. These data suggest CDH1-3 to be a promising target for breast cancer precision therapy and CDH4-6/15/17/23, PCDH10, DSC3, and FAT4 to be novel biomarkers for breast cancer prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Qianwen Ning
- Mental Health Institute, North Sichuan Medical College, Sichuan 637000, China
| | - Xin Liu
- Mental Health Institute, North Sichuan Medical College, Sichuan 637000, China
| | | |
Collapse
|
27
|
Zeisel MB, Guerrieri F, Levrero M. Host Epigenetic Alterations and Hepatitis B Virus-Associated Hepatocellular Carcinoma. J Clin Med 2021; 10:jcm10081715. [PMID: 33923385 PMCID: PMC8071488 DOI: 10.3390/jcm10081715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary malignancy of the liver and a leading cause of cancer-related deaths worldwide. Although much progress has been made in HCC drug development in recent years, treatment options remain limited. The major cause of HCC is chronic hepatitis B virus (HBV) infection. Despite the existence of a vaccine, more than 250 million individuals are chronically infected by HBV. Current antiviral therapies can repress viral replication but to date there is no cure for chronic hepatitis B. Of note, inhibition of viral replication reduces but does not eliminate the risk of HCC development. HBV contributes to liver carcinogenesis by direct and indirect effects. This review summarizes the current knowledge of HBV-induced host epigenetic alterations and their association with HCC, with an emphasis on the interactions between HBV proteins and the host cell epigenetic machinery leading to modulation of gene expression.
Collapse
Affiliation(s)
- Mirjam B. Zeisel
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), 69003 Lyon, France;
- Correspondence: (M.B.Z.); (M.L.)
| | - Francesca Guerrieri
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), 69003 Lyon, France;
| | - Massimo Levrero
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), 69003 Lyon, France;
- Hospices Civils de Lyon, Hôpital Croix Rousse, Service d’Hépato-Gastroentérologie, 69004 Lyon, France
- Correspondence: (M.B.Z.); (M.L.)
| |
Collapse
|
28
|
Seo SI, Yoon JH, Byun HJ, Lee SK. HOTAIR Induces Methylation of PCDH10, a Tumor Suppressor Gene, by Regulating DNMT1 and Sponging with miR-148b in Gastric Adenocarcinoma. Yonsei Med J 2021; 62:118-128. [PMID: 33527791 PMCID: PMC7859685 DOI: 10.3349/ymj.2021.62.2.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
PURPOSE HOX transcript antisense intergenic RNA (HOTAIR), as a long non-coding RNA, has been reported to regulate carcinogenesis by epigenetic mechanism in various cancers. Protocadherin 10 (PCDH10) is one of the well-known tumor suppressor genes, and is frequently methylated in gastric cancers (GC). We aimed to investigate the detailed pathway of how HOTAIR contributes to the target gene in gastric carcinogenesis. MATERIALS AND METHODS We investigated the mechanism of HOTAIR on carcinogenesis and metastasis of GC. Methylation-specific PCR was performed to identify the interaction between HOTAIR and PCDH10. In addition, we investigated the interaction between miR-148b and HOTAIR by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. RESULTS The expression of HOTAIR was significantly upregulated in GC tissues (p<0.05) and GC cell lines (p<0.01), while PCDH10 was downregulated in GC tissues (p<0.05). The knockdown of HOTAIR (si-HOTAIR1 and 2) significantly upregulated the mRNA/protein expression of PCDH10 and reduced the methylation of PCDH10 compared to the control in MKN 28 and MKN 74. Si-HOTAIR1 and 2 significantly reduced DNA methyltransferase 1 (DNMT1) expression, and overexpression of HOTAIR increased DNMT1 expression. In RIP, we found that miR-148b interacted with HOTAIR. Si-HOTAIRs increased miR-148b expression, and miR-148b mimic inversely reduced HOTAIR expression. Si-HOTAIRs and miR-148b mimic reduced DNMT1 expression and increased PCDH10 expression compared to the control. CONCLUSION This study demonstrated that HOTAIR interacts with miR-148b and DNMT1, eventually leading to PCDH10 methylation, which contributes to the progression of GC. Our findings provide a better understanding for detailed pathway of HOTAIR in epigenetic mechanism of GC.
Collapse
Affiliation(s)
- Seung In Seo
- Department of Internal Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
- Department of Medicine, The Graduate School, Yonsei University, Seoul, Korea
| | - Jung Ho Yoon
- Division of Gastroenterology, Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
| | - Hyo Joo Byun
- Division of Gastroenterology, Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Sang Kil Lee
- Division of Gastroenterology, Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea.
| |
Collapse
|
29
|
Abstract
Hepatitis B virus (HBV) is a major cause of hepatocellular carcinoma (HCC). There are approximately 250 million people in the world that are chronically infected by this virus, resulting in nearly 1 million deaths every year. Many of these patients die from severe liver diseases, including HCC. HBV may induce HCC through the induction of chronic liver inflammation, which can cause oxidative stress and DNA damage. However, many studies also indicated that HBV could induce HCC via the alteration of hepatocellular physiology that may involve genetic and epigenetic changes of the host DNA, the alteration of cellular signaling pathways, and the inhibition of DNA repair mechanisms. This alteration of cellular physiology can lead to the accumulation of DNA damages and the promotion of cell cycles and predispose hepatocytes to oncogenic transformation.
Collapse
Affiliation(s)
- Jiyoung Lee
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA, 90033, USA
| | - Kuen-Nan Tsai
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA, 90033, USA
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA, 90033, USA.
| |
Collapse
|
30
|
Xu M, Zhu J, Liu S, Wang C, Shi Q, Kuang Y, Fang X, Hu X. FOXD3, frequently methylated in colorectal cancer, acts as a tumor suppressor and induces tumor cell apoptosis under ER stress via p53. Carcinogenesis 2020; 41:1253-1262. [PMID: 31784734 DOI: 10.1093/carcin/bgz198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/25/2019] [Accepted: 11/28/2019] [Indexed: 01/05/2023] Open
Abstract
Forkhead box D3 (FOXD3), an important member of the forkhead box transcription factor family, has many biological functions. However, the role and signaling pathways of FOXD3 in colorectal cancer (CRC) are still unclear. We examined FOXD3 expression and methylation in normal colon mucosa, CRC cell lines and primary tumors by reverse transcription-polymerase chain reaction, methylation-specific PCR and bisulfite genomic sequencing. We also evaluated its tumor-suppressive function by examining its modulation of apoptosis under endoplasmic reticulum (ER) stress in CRC cells. The FOXD3 target signal pathway was identified by western blotting, immunofluorescence and chromatin immunoprecipitation. We found that FOXD3 was frequently methylated and silenced in CRC cell lines and was downregulated in CRC tissues compared with paired adjacent non-tumor tissues. Meanwhile, low FOXD3 protein expression was significantly correlated with poor histopathological grading, lymph node metastasis and poor prognosis of patients, indicating its potential as a tumor marker that may be of potential value as a therapeutic target for CRC. Moreover, restoration of FOXD3 expression inhibited the proliferation and migration of tumor cells. FOXD3 also increased mitochondrial apoptosis through the unfolded protein response under ER stress. Furthermore, we found that FOXD3 could bind directly to the promoter of p53 and enhance its expression. Knockdown of p53 impaired the effect of apoptosis induced by FOXD3. In conclusion, we showed for the first time that FOXD3, which is frequently methylated in CRC, acted as a tumor suppressor inducing tumor cell apoptosis under ER stress via p53.
Collapse
Affiliation(s)
- Ming Xu
- Department of General Surgery and Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jing Zhu
- Department of Oncology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuiping Liu
- Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Chan Wang
- Department of Pathology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Qinglan Shi
- Department of Pathology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yeye Kuang
- Department of Pathology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiao Fang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiaotong Hu
- Department of Pathology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Wang C, Liu S, Kuang Y, Hu X, Fang X. Downregulation of ZNF365 by methylation predicts poor prognosis in patients with colorectal cancer by decreasing phospho-p53 (Ser15) expression. Oncol Lett 2020; 20:85. [PMID: 32863918 PMCID: PMC7436887 DOI: 10.3892/ol.2020.11946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 06/26/2020] [Indexed: 01/11/2023] Open
Abstract
ZNF365 is a transcription factor that plays important roles in different types of cancer, such as colorectal cancer, breast cancer and hepatocellular carcinoma. ZNF365 can promote stalled replication fork recovery to prevent genomic instability, which is a notable feature of sporadic and hereditary types of cancers. However, the function of ZNF365 in the tumor progression of colorectal cancer (CRC) remains unclear. Thus, immunohistochemical staining was used to investigate the association between ZNF365 expression and the clinicopathological characteristics of patients with colorectal cancer. The results demonstrated that ZNF365 protein was strongly expressed in the nucleus and cytoplasm of normal colorectal mucosa. Furthermore ZNF365, which is methylated and downregulated in most cancer cell lines and tissues, was significantly associated with lymph node metastasis (P=0.015), depth of invasion (P=0.031) and histopathological grading (P=0.042). A positive correlation was observed between ZNF365 expression and phosphorylated (P)-p53 (Ser15) protein expression (r=0.18; P=0.038). Survival analysis indicated that patients with high ZNF365 expression had a higher survival rate than those with low ZNF365 expression (P=0.009), suggesting that ZNF365 may be an independent prognostic factor for survival in colorectal cancer (P=0.046). Taken together, the results of the present study demonstrated that ZNF365 was frequently inactivated by promoter methylation and independently predicted poor prognosis in patients with colorectal cancer by downregulating P-p53 (Ser15) expression.
Collapse
Affiliation(s)
- Chan Wang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Shuiping Liu
- Department of Cancer Pharmacology and Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310012, P.R. China
| | - Yeye Kuang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Xiaotong Hu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China.,Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Xiao Fang
- Department of Anesthesiology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
32
|
Lozano F, Raventos CX, Carrion A, Trilla E, Morote J. Current status of genetic urinary biomarkers for surveillance of non-muscle invasive bladder cancer: a systematic review. BMC Urol 2020; 20:99. [PMID: 32664878 PMCID: PMC7362437 DOI: 10.1186/s12894-020-00670-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/08/2020] [Indexed: 01/22/2023] Open
Abstract
Background Genetic biomarkers are a promising and growing field in the management of bladder cancer in all stages. The aim of this paper is to understand the role of genetic urinary biomarkers in the follow up of patients with non muscle invasive bladder cancer where there is increasing evidence that they can play a role in avoiding invasive techniques. Methods Following PRISMA criteria, we have performed a systematic review. The search yielded 164 unique articles, of which 21 articles were included involving a total of 7261 patients. Sixteen of the articles were DNA based biomarkers, analyzing different methylations, microsatellite aberrations and gene mutations. Five articles studied the role of RNA based biomarkers, based on measuring levels of different combinations of mRNA. QUADAS2 critical evaluation of each paper has been reported. Results There are not randomized control trials comparing any biomarker with the gold standard follow-up, and the level of evidence is 2B in almost all the studies. Negative predictive value varies between 55 and 98.5%, being superior in RNA based biomarkers. Conclusions Although cystoscopy and cytology are the gold standard for non muscle invasive bladder cancer surveillance, genetic urinary biomarkers are a promising tool to avoid invasive explorations to the patients with a safe profile of similar sensitivity and negative predictive value. The accuracy that genetic biomarkers can offer should be taken into account to modify the paradigm of surveillance in non muscle invasive bladder cancer patients, especially in high-risk ones where many invasive explorations are recommended and biomarkers experiment better results.
Collapse
Affiliation(s)
- F Lozano
- Urology Department, Vall d'Hebron University Hospital, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain. .,Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - C X Raventos
- Urology Department, Vall d'Hebron University Hospital, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - A Carrion
- Urology Department, Vall d'Hebron University Hospital, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - E Trilla
- Urology Department, Vall d'Hebron University Hospital, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - J Morote
- Urology Department, Vall d'Hebron University Hospital, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
33
|
Pancho A, Aerts T, Mitsogiannis MD, Seuntjens E. Protocadherins at the Crossroad of Signaling Pathways. Front Mol Neurosci 2020; 13:117. [PMID: 32694982 PMCID: PMC7339444 DOI: 10.3389/fnmol.2020.00117] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
Protocadherins (Pcdhs) are cell adhesion molecules that belong to the cadherin superfamily, and are subdivided into clustered (cPcdhs) and non-clustered Pcdhs (ncPcdhs) in vertebrates. In this review, we summarize their discovery, expression mechanisms, and roles in neuronal development and cancer, thereby highlighting the context-dependent nature of their actions. We furthermore provide an extensive overview of current structural knowledge, and its implications concerning extracellular interactions between cPcdhs, ncPcdhs, and classical cadherins. Next, we survey the known molecular action mechanisms of Pcdhs, emphasizing the regulatory functions of proteolytic processing and domain shedding. In addition, we outline the importance of Pcdh intracellular domains in the regulation of downstream signaling cascades, and we describe putative Pcdh interactions with intracellular molecules including components of the WAVE complex, the Wnt pathway, and apoptotic cascades. Our overview combines molecular interaction data from different contexts, such as neural development and cancer. This comprehensive approach reveals potential common Pcdh signaling hubs, and points out future directions for research. Functional studies of such key factors within the context of neural development might yield innovative insights into the molecular etiology of Pcdh-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Anna Pancho
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tania Aerts
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuela D Mitsogiannis
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Cervena K, Siskova A, Buchler T, Vodicka P, Vymetalkova V. Methylation-Based Therapies for Colorectal Cancer. Cells 2020; 9:E1540. [PMID: 32599894 PMCID: PMC7349319 DOI: 10.3390/cells9061540] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 02/08/2023] Open
Abstract
Colorectal carcinogenesis (CRC) is caused by the gradual long-term accumulation of both genetic and epigenetic changes. Recently, epigenetic alterations have been included in the classification of the CRC molecular subtype, and this points out their prognostic impact. As epigenetic modifications are reversible, they may represent relevant therapeutic targets. DNA methylation, catalyzed by DNA methyltransferases (DNMTs), regulates gene expression. For many years, the deregulation of DNA methylation has been considered to play a substantial part in CRC etiology and evolution. Despite considerable advances in CRC treatment, patient therapy response persists as limited, and their profit from systemic therapies are often hampered by the introduction of chemoresistance. In addition, inter-individual changes in therapy response in CRC patients can arise from their specific (epi)genetic compositions. In this review article, we summarize the options of CRC treatment based on DNA methylation status for their predictive value. This review also includes the therapy outcomes based on the patient's methylation status in CRC patients. In addition, the current challenge of research is to develop therapeutic inhibitors of DNMT. Based on the essential role of DNA methylation in CRC development, the application of DNMT inhibitors was recently proposed for the treatment of CRC patients, especially in patients with DNA hypermethylation.
Collapse
Affiliation(s)
- Klara Cervena
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Anna Siskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic;
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
35
|
Shinjo K, Hara K, Nagae G, Umeda T, Katsushima K, Suzuki M, Murofushi Y, Umezu Y, Takeuchi I, Takahashi S, Okuno Y, Matsuo K, Ito H, Tajima S, Aburatani H, Yamao K, Kondo Y. A novel sensitive detection method for DNA methylation in circulating free DNA of pancreatic cancer. PLoS One 2020; 15:e0233782. [PMID: 32520974 PMCID: PMC7286528 DOI: 10.1371/journal.pone.0233782] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/12/2020] [Indexed: 12/26/2022] Open
Abstract
Despite recent advances in clinical treatment, pancreatic cancer remains a highly lethal malignancy. In order to improve the survival rate of patients with pancreatic cancer, the development of non-invasive diagnostic methods using effective biomarkers is urgently needed. Here, we developed a highly sensitive method to detect DNA methylation in cell-free (cf)DNA samples based on the enrichment of methyl-CpG binding (MBD) protein coupled with a digital PCR method (MBD–ddPCR). Five DNA methylation markers for the diagnosis of pancreatic cancer were identified through DNA methylation microarray analysis in 37 pancreatic cancers. The sensitivity and specificity of the five markers were validated in another independent cohort of pancreatic cancers (100% and 100%, respectively; n = 46) as well as in The Cancer Genome Atlas data set (96% and 90%, respectively; n = 137). MBD–ddPCR analysis revealed that DNA methylation in at least one of the five markers was detected in 23 (49%) samples of cfDNA from 47 patients with pancreatic cancer. Further, a combination of DNA methylation markers and the KRAS mutation status improved the diagnostic capability of this method (sensitivity and specificity, 68% and 86%, respectively). Genome-wide MBD-sequencing analysis in cancer tissues and corresponding cfDNA revealed that more than 80% of methylated regions were overlapping; DNA methylation profiles of cancerous tissues and cfDNA significantly correlated with each other (R = 0.97). Our data indicate that newly developed MBD–ddPCR is a sensitive method to detect cfDNA methylation and that using five marker genes plus KRAS mutations may be useful for the detection of pancreatic cancers.
Collapse
Affiliation(s)
- Keiko Shinjo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuo Hara
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Genta Nagae
- Genome Science Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Takayoshi Umeda
- Genome Science Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Keisuke Katsushima
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miho Suzuki
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiteru Murofushi
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuta Umezu
- Department of Computer Science, Nagoya Institute of Technology, Nagoya, Japan.,School of Information and Data Sciences, Nagasaki University, Nagasaki, Japan
| | - Ichiro Takeuchi
- Department of Computer Science, Nagoya Institute of Technology, Nagoya, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yusuke Okuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidemi Ito
- Division of Cancer Information and Control, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Descriptive Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shoji Tajima
- Laboratory of Epigenetics, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Hiroyuki Aburatani
- Genome Science Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kenji Yamao
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Japan.,Department of Gastroenterology, Narita Memorial Hospital, Toyohashi, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
36
|
Zhai S, Lin S, Lin Z, Xu J, Ji T, Chen K, Wu K, Liu H, Ying H, Fei W, Wang J, Fu G, Wang Y, Hu X, Cai X. eIF4EBP3 was downregulated by methylation and acted as a tumor suppressor by targeting eIF4E/β-catenin in gastric cancer. Gastric Cancer 2020; 23:483-496. [PMID: 31853750 DOI: 10.1007/s10120-019-01030-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Epigenetic aberrations of tumor suppressor genes (TSGs), particularly DNA methylation, are frequently involved in the pathogenesis of gastric cancer (GC). Through a methylome study, we identified eIF4EBP3 as a methylated gene in GC. However, the role of eIF4EBP3 in GC progression has not been explored. METHODS The expression and promoter region methylation of eIF4EBP3 in GC and healthy tissues were analyzed in public datasets. eIF4EBP3 expression in GC was detected by semi-quantitative RT-PCR, western blot and immunohistochemistry. We also studied epigenetic alterations and functions in GC. The effects of eIF4EBP3 on cell proliferation, migration and invasion were conducted by functional experiments in vitro and in vivo. Label-free proteomic analysis was applied to identify targets of eIF4EBP3. RESULTS The expression level of eIF4EBP3 was downregulated in gastric cancer due to promoter region methylation, and was associated with poor survival and tumor progression. Ectopic expression of eIF4EBP3 significantly inhibited tumor cell growth, migration and invasion both in vitro and in vivo. Label-free proteomic analysis indicated eIF4EBP3 downregulated the protein level of β-catenin, which was confirmed by western blot. Overexpression of β-catenin reversed the inhibitory effects of eIF4EBP3 on cell growth and migration, indicating that eIF4EBP3 acts on GC cells by targeting the eIF4E/β-catenin axis. CONCLUSION These results suggest that eIF4EBP3 is a novel TSG methylated in gastric cancer that may play important roles in GC development and liver metastasis and indicate eIF4EBP3 as a potential metastasis and survival biomarker for GC.
Collapse
Affiliation(s)
- Shuting Zhai
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Shuang Lin
- Department of Lung Transplantation, Department of Thoracic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Zhongjie Lin
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Junjie Xu
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Tong Ji
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Ke Chen
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Ke Wu
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Hui Liu
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Hanning Ying
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Weiqiang Fei
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Jin Wang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Guoxiang Fu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Yifan Wang
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China.
| | - Xiaotong Hu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, Zhejiang, China.
| | - Xiujun Cai
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
37
|
Zhou DN, Ye CS, Yang QQ, Deng YF. Integrated analysis of transcriptome profiling predicts potential lncRNA and circRNA targets in human nasopharyngeal carcinoma. Oncol Lett 2020; 19:3123-3136. [PMID: 32218863 PMCID: PMC7068695 DOI: 10.3892/ol.2020.11412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/08/2019] [Indexed: 01/08/2023] Open
Abstract
Non-coding RNAs (ncRNAs) regulate numerous genes and influence the progression of various human diseases, including cancer. The role of regulatory ncRNAs implicated in nasopharyngeal carcinoma (NPC), as well as their target genes, remains unclear. The present study aimed to investigate specific long non-coding (lnc)RNAs, circular RNAs (circRNAs) and mRNAs associated with the molecular pathogenesis of NPC, and to predict the underlying target genes of specific lncRNAs and circRNAs. The expression levels of lncRNAs, circRNAs and mRNAs in NPC and chronic nasopharyngitis tissues were detected and analyzed using microarray and bioinformatics techniques. A total of 2.80% lncRNAs (425 upregulated and 431 downregulated) were significantly differentially expressed (DE) between the two tissue types. Additionally, 0.96% circRNAs (18 upregulated and 13 downregulated) were significantly DE, while 2.94% mRNAs (426 upregulated and 341 downregulated) were significantly DE between the two tissue types. In total, 420 NPC-associated nearby encoding genes (196 up- and 224 downregulated) of the DE lncRNAs were identified. Overlap analysis identified 23 DE circRNAs and their corresponding target genes, with 37 microRNAs and 50 mRNAs, from which 14 interaction networks were constructed. Subsequent pathway analysis revealed 221 DE target genes corresponding to 31 key signaling pathways associated with NPC, 14 of which may represent hub genes associated with NPC pathophysiology. Thus, certain lncRNAs, circRNAs and mRNAs are aberrantly expressed in NPC tissues, and partially specific lncRNAs, circRNAs and their target genes may influence the tumorigenesis and progression of NPC. Target prediction and regulatory network identification may help to determine the pathogenic mechanisms of NPC.
Collapse
Affiliation(s)
- Dong-Ni Zhou
- Department of Pathology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Chun-Sheng Ye
- Department of Otolaryngology-Head and Neck Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Qing-Qing Yang
- Department of Otolaryngology-Head and Neck Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Yan-Fei Deng
- Department of Otolaryngology-Head and Neck Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, P.R. China.,Department of Otolaryngology-Head and Neck Surgery, Union School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
38
|
Sun R, Xiang T, Tang J, Peng W, Luo J, Li L, Qiu Z, Tan Y, Ye L, Zhang M, Ren G, Tao Q. 19q13 KRAB zinc-finger protein ZNF471 activates MAPK10/JNK3 signaling but is frequently silenced by promoter CpG methylation in esophageal cancer. Theranostics 2020; 10:2243-2259. [PMID: 32089740 PMCID: PMC7019175 DOI: 10.7150/thno.35861] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Zinc-finger proteins (ZFPs) are the largest transcription factor family in mammals, involved in the regulation of multiple physiologic processes including cell differentiation, proliferation, apoptosis and neoplastic transformation. Approximately one-third of ZFPs are Krüppel-associated box domain (KRAB)-ZFPs. Methods: ZNF471 expression and methylation were detected by reverse-transcription PCR and methylation-specific PCR. The impact and mechanism of ectopic ZNF471 expression in esophageal squamous cell carcinoma (ESCC) cells was evaluated in vitro and in vivo. Results: We identified a 19q13 KRAB-ZFP, ZNF471, as a methylated target in ESCC. We further found that ZNF471 is significantly downregulated in ESCC tissues compared with adjacent non-cancer tissues, due to its aberrant promoter CpG methylation, and further confirmed by methylation analysis and treatment with demethylation agent. Restoration of ZNF471 expression in silenced ESCC cells significantly altered cell morphology, induced apoptosis and G0/G1 arrest, and inhibited tumor cell colony formation, viability, migration and invasion. Importantly, ZNF471 was found to activate the expression of MAPK10/JNK3 and PCDH family genes, and further enhance MAPK10 signaling and downstream gene expression through binding to the MAPK10/JNK3 promoter. Conclusion: Our results demonstrate that ZNF471 is an important tumor suppressor and loss of ZNF471 functions hampers MAPK10/JNK3 signaling during esophageal carcinogenesis.
Collapse
|
39
|
Thanh Nha Uyen L, Amano Y, Al-Kzayer LFY, Kubota N, Kobayashi J, Nakazawa Y, Koike K, Sakashita K. PCDH17 functions as a common tumor suppressor gene in acute leukemia and its transcriptional downregulation is mediated primarily by aberrant histone acetylation, not DNA methylation. Int J Hematol 2019; 111:451-462. [PMID: 31865541 DOI: 10.1007/s12185-019-02799-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022]
Abstract
We recently reported that methylation of PCDH17 gene is found in 30% of children with B-cell precursor acute lymphoblastic leukemia (ALL), and is significantly correlated to event-free or overall survival. We here evaluated PCDH17 mRNA expression in pediatric acute myeloid leukemia (AML) and ALL. PCDH17 mRNA expression levels in children with ALL/AML were lower than those in healthy counterparts. We next elucidated the mechanism underlying down-regulation of PCDH17 mRNA, using myeloid and lymphoid leukemic cell lines. Treatment with the histone deacetylase inhibitor trichostatin A (TSA) resulted in restoration of PCDH17 mRNA expression and growth inhibition in K562, HL60, REH, and RCH-ACV cell lines. Upregulation of PCDH17 mRNA expression resulted from histone H3 acetylation. Knockdown of the PCDH17 gene, caused by transduction of PCDH17-targeted shRNA, significantly enhanced the proliferation of KU812 cells. Meanwhile, overexpression of PCDH17 via retroviral-particle transfection substantially inhibited the growth of Kasumi1 cells. The fold-increase in PCDH17 mRNA expression mediated by 5-azacytidine, an inhibitor of DNA methyltransferase, was fundamentally lower than that produced by TSA. In conclusion, our results suggest that PCDH17 gene functions as a common tumor suppressor gene in leukemic cells, and that histone deacetylase inhibitors re-express PCDH17 mRNA to a greater extent than demethylation reagents.
Collapse
Affiliation(s)
- Le Thanh Nha Uyen
- Department of Medical Genetics, Hue University of Medicine and Pharmacy, Hue, Vietnam.,Department of Pediatrics, Shinshu University School of Medicine, Matsumoto,, Nagano, Japan
| | - Yuji Amano
- Department of Microbiology and Immunology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | | | - Noriko Kubota
- Department of Laboratory Medicine, Nagano Children's Hospital, Azumino, Japan
| | - Jun Kobayashi
- Department of Laboratory Medicine, Nagano Children's Hospital, Azumino, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto,, Nagano, Japan
| | - Kenichi Koike
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto,, Nagano, Japan.,Shinonoi General Hospital, Minami Nagano Center, Nagano, Japan
| | - Kazuo Sakashita
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto,, Nagano, Japan. .,Department of Hematology and Oncology, Nagano Children's Hospital, 3100 Toyoshina, Azumino, Nagano, Japan.
| |
Collapse
|
40
|
Shang BQ, Li ML, Quan HY, Hou PF, Li ZW, Chu SF, Zheng JN, Bai J. Functional roles of circular RNAs during epithelial-to-mesenchymal transition. Mol Cancer 2019; 18:138. [PMID: 31526370 PMCID: PMC6745795 DOI: 10.1186/s12943-019-1071-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer has become a major health issue worldwide, contributing to a high mortality rate. Tumor metastasis is attributed to the death of most patients. Epithelial-to-mesenchymal transition (EMT) plays a vital role in inducing metastasis. During EMT, epithelial cells lose their characteristics, such as cell-to-cell adhesion and cell polarity, and cells gain motility, migratory potential, and invasive properties to become mesenchymal stem cells. Circular RNAs (circRNAs) are closely associated with tumor metastasis and patient prognosis, as revealed by increasing lines of evidence. CircRNA is a type of single-stranded RNA that forms a covalently closed continuous loop. CircRNAs are insensitive to ribonucleases and are widespread in body fluids. This work is the first review on EMT-related circRNAs. In this review, we briefly discuss the characteristics and functions of circRNAs. The correlation of circRNAs with EMT has been reported, and we discuss the ways circRNAs can regulate EMT progression through EMT transcription factors, EMT-related signaling pathways, and other mechanisms. This work summarizes current studies on EMT-related circRNAs in various cancers and provides a theoretical basis for the use of EMT-related circRNAs in targeted management and therapy.
Collapse
Affiliation(s)
- Bing-Qing Shang
- Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Min-Le Li
- Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Hao-Yu Quan
- Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Ping-Fu Hou
- Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Zhong-Wei Li
- Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Su-Fang Chu
- Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Jun-Nian Zheng
- Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China.
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China.
| |
Collapse
|
41
|
Barchitta M, Maugeri A, Li Destri G, Basile G, Agodi A. Epigenetic Biomarkers in Colorectal Cancer Patients Receiving Adjuvant or Neoadjuvant Therapy: A Systematic Review of Epidemiological Studies. Int J Mol Sci 2019; 20:ijms20153842. [PMID: 31390840 PMCID: PMC6696286 DOI: 10.3390/ijms20153842] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) represents the third-most common cancer worldwide and one of the main challenges for public health. Despite great strides in the application of neoadjuvant and adjuvant therapies for rectal and colon cancer patients, each of these treatments is still associated with certain adverse effects and different response rates. Thus, there is an urgent need for identifying novel potential biomarkers that might guide personalized treatments for specific subgroups of patients. However, until now, there are no biomarkers to predict the manifestation of adverse effects and the response to treatment in CRC patients. Herein, we provide a systematic review of epidemiological studies investigating epigenetic biomarkers in CRC patients receiving neoadjuvant or adjuvant therapy, and their potential role for the prediction of outcomes and response to treatment. With this aim in mind, we identified several epigenetic markers in CRC patients who received surgery with adjuvant or neoadjuvant therapy. However, none of them currently has the robustness to be translated into the clinical setting. Thus, more efforts and further large-size prospective studies and/or trials should be encouraged to develop epigenetic biomarker panels for personalized prevention and medicine in CRC cancer.
Collapse
Affiliation(s)
- Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95123 Catania, Italy
| | - Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95123 Catania, Italy
| | - Giovanni Li Destri
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95123 Catania, Italy
| | - Guido Basile
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, via S. Sofia, 78, 95123 Catania, Italy
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95123 Catania, Italy.
| |
Collapse
|
42
|
Anvar Z, Acurzio B, Roma J, Cerrato F, Verde G. Origins of DNA methylation defects in Wilms tumors. Cancer Lett 2019; 457:119-128. [PMID: 31103718 DOI: 10.1016/j.canlet.2019.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022]
Abstract
Wilms tumor is an embryonic renal cancer that typically presents in early childhood and accounts for 7% of all paediatric cancers. Different genetic alterations have been described in this malignancy, however, only a few of them are associated with a majority of Wilms tumors. Alterations in DNA methylation, in contrast, are frequent molecular defects observed in most cases of Wilms tumors. How these epimutations are established in this tumor is not yet completely clear. The recent identification of the molecular actors required for the epigenetic reprogramming during embryogenesis suggests novel possible mechanisms responsible for the DNA methylation defects in Wilms tumor. Here, we provide an overview of the DNA methylation alterations observed in this malignancy and discuss the distinct molecular mechanisms by which these epimutations can arise.
Collapse
Affiliation(s)
- Zahra Anvar
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples, Italy
| | - Basilia Acurzio
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Josep Roma
- Vall d'Hebron Research Institute-Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Flavia Cerrato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Gaetano Verde
- Faculty of Medicine and Health Sciences, International University of Catalonia, Sant Cugat del Vallès, Barcelona, Spain.
| |
Collapse
|
43
|
Curia MC, Fantini F, Lattanzio R, Tavano F, Di Mola F, Piantelli M, Battista P, Di Sebastiano P, Cama A. High methylation levels of PCDH10 predict poor prognosis in patients with pancreatic ductal adenocarcinoma. BMC Cancer 2019; 19:452. [PMID: 31088413 PMCID: PMC6518703 DOI: 10.1186/s12885-019-5616-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 04/15/2019] [Indexed: 01/24/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies and is not a clinically homogeneous disease, but subsets of patients with distinct prognosis and response to therapy can be identified by genome-wide analyses. Mutations in major PDAC driver genes were associated with poor survival. By bioinformatics analysis, we identified protocadherins among the most frequently mutated genes in PDAC suggesting an important role of these genes in the biology of this tumor. Promoter methylation of protocadherins has been suggested as a prognostic marker in different tumors, but in PDAC this epigenetic modification has not been extensively studied. Thus, we evaluated whether promoter methylation of three frequently mutated protocadherins, PCDHAC2, PCDHGC5 and PCDH10 could be used as survival predictors in PDAC patients. Methods DNA extracted from 23 PDACs and adjacent non-neoplastic pancreatic tissues were bisulfite treated. Combined Bisulfite Restriction Analysis (COBRA) coupled to denaturing high-performance liquid chromatography (dHPLC) detection and bisulfite genomic sequencing (BGS) were used to determine the presence of methylated CpG dinucleotides in the promoter amplicons analyzed. Results In an exploratory analysis, two protocadherins showed the same pattern of CpG methylation in PDAC and adjacent non-neoplastic pancreatic tissues: lack of methylation for PCDHAC2, complete methylation for PCDHGC5. Conversely, the third protocadherin analyzed, PCDH10, showed a variable degree of CpG methylation in PDAC and absence of methylation in adjacent non-neoplastic pancreatic tissues. At Kaplan–Meier analysis, high levels of PCDH10 methylation defined according to the receiver operating characteristic (ROC) curve analysis were significantly associated with worse progression-free survival (PFS) rates (P = 0.008), but not with overall survival (OS). High levels of PCDH10 methylation were a prognostic factor influencing PFS (HR = 4.0: 95% CI, 1.3–12.3; P = 0.016), but not the OS. Conclusions In this study, we show for the first time that the methylation status of PCDH10 can predict prognosis in PDAC patients with a significant impact on the outcome in terms of progression-free survival. High levels of PCDH10 promoter methylation could be useful to identify patients at high risk of disease progression, contributing to a more accurate stratification of PDAC patients for personalized clinical management.
Collapse
Affiliation(s)
- Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences,'G. d'Annunzio' University, Via dei Vestini n.31, 66100, Chieti, Italy.
| | - Fabiana Fantini
- Department of Medical, Oral and Biotechnological Sciences,'G. d'Annunzio' University, Via dei Vestini n.31, 66100, Chieti, Italy
| | - Rossano Lattanzio
- Department of Medical, Oral and Biotechnological Sciences,'G. d'Annunzio' University, Via dei Vestini n.31, 66100, Chieti, Italy.,Center of Excellence on Aging and Translational Medicine (CeSi-Met), "G. d'Annunzio" University, Chieti, Italy
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Francesco Di Mola
- Division of Surgical Oncology "SS Annunziata" Hospital, Chieti, Italy
| | - Mauro Piantelli
- Department of Medical, Oral and Biotechnological Sciences,'G. d'Annunzio' University, Via dei Vestini n.31, 66100, Chieti, Italy
| | - Pasquale Battista
- Department of Medical, Oral and Biotechnological Sciences,'G. d'Annunzio' University, Via dei Vestini n.31, 66100, Chieti, Italy
| | | | - Alessandro Cama
- Department of Pharmacy,'G, d'Annunzio' University, Chieti, Italy
| |
Collapse
|
44
|
He Y, Wang Z, Liu C, Gong Z, Li Y, Lu T, Hu G. Protocadherin 17 is a tumor suppressor and is frequently methylated in nasopharyngeal carcinoma. Cancer Manag Res 2019; 11:1601-1613. [PMID: 30863170 PMCID: PMC6388982 DOI: 10.2147/cmar.s191102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Several PCDH genes were shown to be downregulated or silenced in carcinomas and act as candidate tumor suppressor genes. However, the functions of PCDH17 in nasopharyngeal carcinoma (NPC) remain unclear. Here, we investigated the PCDH17 promoter methylation status and its impact on the expression and functions of PCDH17 in NPC. Patients and methods To determine the mRNA levels and promoter methylation status of PCDH17 in NPC cell lines as well as 42 NPC patient specimens, we performed reverse transcription PCR, methylation-specific PCR, and bisulfite genome sequencing. The effects of ectopic PCDH17 expression in NPC cell lines were determined by colony formation, cell proliferation, wound healing, in vitro human umbilical vein endothelial cells tube formation, migration, invasion, cell cycle, and apoptosis assays and an in vivo subcutaneous tumor model. Results PCDH17 expression was almost absent or significantly reduced in 100% of the NPC cell lines (5/5). However, 5-aza-2′-deoxycytidine and trichostatin A treatment restored PCDH17 expression. Promoter methylation was involved in PCDH17 silencing. Ectopic expression of PCDH17 in silenced NPC cells reduced colony formation, cell migration, angiogenesis, VEGF secretion, and tumorigenicity. Conclusion PCDH17 plays a tumor suppressor role in NPC. PCDH17 methylation may be a tumor-specific event and can be used as an epigenetic biomarker for NPC.
Collapse
Affiliation(s)
- Ya He
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China, .,Department of Otolaryngology Head and Neck Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhihai Wang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
| | - Chuan Liu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
| | - Zhitao Gong
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
| | - Yanshi Li
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
| | - Tao Lu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
| | - Guohua Hu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
| |
Collapse
|
45
|
Xiang Q, He X, Mu J, Mu H, Zhou D, Tang J, Xiao Q, Jiang Y, Ren G, Xiang T, Peng W. The phosphoinositide hydrolase phospholipase C delta1 inhibits epithelial-mesenchymal transition and is silenced in colorectal cancer. J Cell Physiol 2019; 234:13906-13916. [PMID: 30618183 DOI: 10.1002/jcp.28073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022]
Abstract
In this study, we found that the phospholipase C delta1 (PLCD1) protein expression is reduced in colorectal tumor tissues compared with paired surgical margin tissues. PLCD1-promoted CpG methylation was detected in 29/64 (45%) primary colorectal tumors, but not in nontumor tissues. The PLCD1 RNA expression was also reduced in three out of six cell lines, due to PLCD1 methylation. The ectopic expression of PLCD1 resulted in inhibited proliferation and attenuated migration of colorectal tumor cells, yet promoted colorectal tumor cell apoptosis in vitro. We also observed that PLCD1 suppressed proliferation and promoted apoptosis in vivo. In addition, PLCD1 induced G1/S phase cell cycle arrest. Furthermore, we found that PLCD1 led to the downregulation of several factors downstream of β-catenin, including c-Myc and cyclin D1, which are generally known to be promoters of tumorigenesis. This downregulation was caused by an upregulation of E-cadherin in colorectal tumor cells. Our findings provide insights into the role of PLCD1 as a tumor suppressor gene in colorectal cancer (CRC), and demonstrate that it plays significant roles in proliferation, migration, invasion, cell cycle progression, and epithelial-mesenchymal transition. On the basis of these results, tumor-specific methylation of PLCD1 could be used as a novel biomarker for early detection and prognostic prediction in CRC.
Collapse
Affiliation(s)
- Qin Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqian He
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junhao Mu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haixi Mu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dishu Zhou
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Tang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Xiao
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Jiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
46
|
Han TS, Ban HS, Hur K, Cho HS. The Epigenetic Regulation of HCC Metastasis. Int J Mol Sci 2018; 19:ijms19123978. [PMID: 30544763 PMCID: PMC6321007 DOI: 10.3390/ijms19123978] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 12/22/2022] Open
Abstract
Epigenetic alterations, such as histone modification, DNA methylation, and miRNA-mediated processes, are critically associated with various mechanisms of proliferation and metastasis in several types of cancer. To overcome the side effects and limited effectiveness of drugs for cancer treatment, there is a continuous need for the identification of more effective drug targets and the execution of mechanism of action (MOA) studies. Recently, epigenetic modifiers have been recognized as important therapeutic targets for hepatocellular carcinoma (HCC) based on their reported abilities to suppress HCC metastasis and proliferation in both in vivo and in vitro studies. Therefore, here, we introduce epigenetic modifiers and alterations related to HCC metastasis and proliferation, and their molecular mechanisms in HCC metastasis. The existing data suggest that the study of epigenetic modifiers is important for the development of specific inhibitors and diagnostic targets for HCC treatment.
Collapse
Affiliation(s)
- Tae-Su Han
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Hyun Seung Ban
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Keun Hur
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Korea.
| | - Hyun-Soo Cho
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| |
Collapse
|
47
|
Zhang Y, Xu H, Mu J, Guo S, Ye L, Li D, Peng W, He X, Xiang T. Inactivation of ADAMTS18 by aberrant promoter hypermethylation contribute to lung cancer progression. J Cell Physiol 2018; 234:6965-6975. [PMID: 30417422 DOI: 10.1002/jcp.27439] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 08/28/2018] [Indexed: 12/19/2022]
Abstract
Lung cancer is the most frequently diagnosed cancer worldwide. Epigenetic regulation contributes to lung cancer pathogenesis. The ADAMTS18 tumor suppressor gene is inactivated in some cancers, but its involvement in lung cancer has not been shown. Immunohistochemistry, quantitative reverse-transcription polymerase chain reaction (qRT-PCR), and methylation-specific PCR were used to assay ADAMTS18 expression and promoter methylation in lung tumor tissues and adjacent tissues. Cell viability, transwell, and wound-healing assays, as well as flow cytometry were used to characterize the biological activity of ADAMTS18. The influence of ADAMTS18 on protein expression was assayed using western blots analysis, and its effect on chemosensitivity was assayed by the response to cisplatin. We found that ADAMTS18 was silenced in lung cancer cells by promoter methylation. Demethylation by the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine, with or without the histone deacetylase inhibitor trichostatin A, restored ADAMTS18 expression. Compared with normal lung tissue, ADAMTS18 in lung tumors was frequently methylated. Overexpression of ADAMTS18 in lung cancer cells inhibited cell proliferation, migration, and invasiveness and induced G0/G1 cell cycle arrest. Furthermore, ADAMTS18 suppressed epidermal growth factor receptor/protein kinase B (EGFR/AKT) signaling, which sensitized lung cancer cells to cisplatin. Thus, our results demonstrated that the tumor suppressor gene ADAMTS18 was downregulated in lung cancer by promoter CpG methylation, and it promoted sensitivity to cisplatin via EGFR/AKT signaling. Our study suggests that ADAMTS18 promoter methylation is a potential epigenetic biomarker for early detection of lung cancer and warrants investigation as a therapeutic target for early-stage lung cancer.
Collapse
Affiliation(s)
- Yan Zhang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongying Xu
- Department of Respiratory Medicine, The Sixth People's Hospital of Chongqing, Chongqing, China
| | - Junhao Mu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuliang Guo
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Ye
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dairong Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqian He
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
48
|
Sun R, Ye L, Zhang M, Qiu Z, Xiang T, Tang J, Wang X, Li L, Luo J, Zhang D, Ren G. Prognostic significance of interferon regulating factor 4 in esophageal squamous cell carcinoma. Biochem Biophys Res Commun 2018; 506:685-691. [PMID: 30376993 DOI: 10.1016/j.bbrc.2018.10.142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/23/2018] [Indexed: 12/09/2022]
Abstract
BACKGROUND Aberrant expression of interferon regulatory factor 4 (IRF4) has been reported in several hematologic malignancies. However, the prognostic significance of IRF4 expression in esophageal squamous cell carcinoma (ESCC) remains unknown. METHODS IRF4 protein expression in ESCC tumor specimens was determined immunohistochemically. The correlation of IRF4 expression with clinico-pathological features was assessed from a cohort of 100 patients with primary ESCC. Kaplan-Meier and Cox proportional regression analyses were used to evaluate the association between IRF4 expression and patient survival. RESULTS A Kaplan-Meier analysis indicated that patients with high IRF4 expression had a significantly longer overall survival rate than those with low IRF4 expression (p = 0.0006). Furthermore, multi-variate analyses revealed that IRF4 protein expression is an independent prognostic indicator for ESCC patients. CONCLUSION Our results suggest that increased IRF4 protein expression correlates with improved outcome in ESCC. IRF4 may therefore represent a promising prognostic biomarker and potential immuno-therapeutic target for patients with ESCC.
Collapse
Affiliation(s)
- Ran Sun
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Ye
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhu Qiu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Tang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangyu Wang
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Jie Luo
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Dongsheng Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
49
|
Wu S, Zhang Y, Zhang L, Ma JL, Zhou T, Li ZX, Liu WD, Li WQ, You WC, Pan KF. Methylation and Expression of Nonclustered Protocadherins Encoding Genes and Risk of Precancerous Gastric Lesions in a High-Risk Population. Cancer Prev Res (Phila) 2018; 11:717-726. [PMID: 30213786 DOI: 10.1158/1940-6207.capr-18-0119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/01/2018] [Accepted: 08/29/2018] [Indexed: 11/16/2022]
Abstract
Nonclustered protocadherins (PCDH) family is a group of cell-cell adhesion molecules. We have found differentially methylated genes in the nonclustered PCDHs family associated with Helicobacter pylori (H. pylori) infection in prior genome-wide methylation analysis. To further investigate the methylation and expression of nonclustered PCDHs encoding genes in H. pylori--related gastric carcinogenesis process, four candidate genes including PCDH7, PCDH10, PCDH17, and PCDH20 were selected, which were reported to be tumor suppressors for digestive cancers. A total of 747 participants with a spectrum of gastric lesions were enrolled from a high-risk population of gastric cancer. Promoter methylation levels of four genes were significantly higher in H. pylori-positive subjects than the negative group (all P < 0.001). Elevated methylation levels of PCDH10 and PCDH17 were observed with the increasing severity of gastric lesions (both P trend < 0.001). In the protein expression analysis, PCDH17 expression was inversely associated with gastric lesions; the OR [95% confidence interval (CI)] was 0.49 (0.26-0.95) for chronic atrophic gastritis (CAG), 0.31 (0.15-0.63) for intestinal metaplasia, and 0.38 (0.19-0.75) for indefinite dysplasia and dysplasia, compared with superficial gastritis. In addition, PCDH10 expression was significantly lower in CAG (OR, 0.40; 95% CI, 0.24-0.68). The inverse association between methylation and protein expression of PCDH10 and PCDH17 was further supported when we explored the methylation and mRNA expression in The Cancer Genome Atlas database (all P < 0.001). Our study found elevated promoter methylation and decreased expression of PCDH10 and PCDH17 in advanced gastric lesions, suggesting that elevated PCDH10 and PCDH17 methylation may be an early event in gastric carcinogenesis. Cancer Prev Res; 11(11); 717-26. ©2018 AACR.
Collapse
Affiliation(s)
- Si Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Yang Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Lian Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Jun-Ling Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Tong Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Zhe-Xuan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Wei-Dong Liu
- Linqu Public Health Bureau, Linqu, Shandong, People's Republic of China
| | - Wen-Qing Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Wei-Cheng You
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Beijing, People's Republic of China.
| | - Kai-Feng Pan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Beijing, People's Republic of China.
| |
Collapse
|
50
|
Yang S, Dai Z, Li W, Wang R, Huang D. Aberrant promoter methylation reduced the expression of protocadherin 17 in nasopharyngeal cancer. Biochem Cell Biol 2018; 97:364-368. [PMID: 30165032 DOI: 10.1139/bcb-2017-0343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This study aimed to explore the underlying mechanism of protocadherin 17 (PCDH17) downregulated in nasopharyngeal cancer (NPC). NPC tumor and adjacent tissue samples were collected from NPC patients who received therapy in the Chinese PLA General Hospital. Meanwhile, a normal epithelial cell lines NP96 and 6 NPC and cell lines C666-1, CEN1, CEN2, HNE1, HEN2, and HONE1 were prepared. Then, the expression level of PCDH17 and the methylation level of PCDH17 promoter in both tissues samples and cell lines were determined using the PCR method. Moreover, PCDH17 was overexpressed in CNE2 and HONE1 using Lipo2000. Following this, the proliferation and apoptosis of CNE2 and HONE1 were assessed using MTT and flow cytometry. The expression of PCDH17 was significantly downregulated in NPC tissues compared with the adjacent tissues as well as in the NPC cell lines compared with the normal NP96 cells. Overexpressed PCDH17 could significantly inhibit the proliferation of CNE2 and HONE1 cells but obviously promote the apoptosis of these two cell lines. Aberrant hypermethylation in the promoter might be the explanation of PCDH17 downregulated in PCDH17 and promoted the development of NPC.
Collapse
Affiliation(s)
- Shiming Yang
- Department of Otolaryngology - Head and Neck Surgery, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing, China, 100853.,Department of Otolaryngology - Head and Neck Surgery, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing, China, 100853
| | - Zhirao Dai
- Department of Otolaryngology - Head and Neck Surgery, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing, China, 100853.,Department of Otolaryngology - Head and Neck Surgery, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing, China, 100853
| | - Weimin Li
- Department of Otolaryngology - Head and Neck Surgery, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing, China, 100853.,Department of Otolaryngology - Head and Neck Surgery, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing, China, 100853
| | - Rongguan Wang
- Department of Otolaryngology - Head and Neck Surgery, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing, China, 100853.,Department of Otolaryngology - Head and Neck Surgery, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing, China, 100853
| | - Dongyan Huang
- Department of Otolaryngology - Head and Neck Surgery, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing, China, 100853.,Department of Otolaryngology - Head and Neck Surgery, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing, China, 100853
| |
Collapse
|