1
|
Qi Y, Zhao P. Influence of H19 polymorphisms on breast cancer: risk assessment and prognostic implications via LincRNA H19/miR-675 and downstream pathways. Front Oncol 2024; 14:1436874. [PMID: 39267845 PMCID: PMC11390531 DOI: 10.3389/fonc.2024.1436874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Breast cancer, as the most prevalent malignancy among women globally, continues to exhibit rising incidence rates, particularly in China. The disease predominantly affects women aged 40 to 60 and is influenced by both genetic and environmental factors. This study focuses on the role of H19 gene polymorphisms, investigating their impact on breast cancer susceptibility, clinical outcomes, and response to treatment. Methods We engaged 581 breast cancer patients and 558 healthy controls, using TaqMan assays and DNA sequencing to determine genotypes at specific loci (rs11042167, rs2071095, rs2251375). We employed in situ hybridization and immunohistochemistry to measure the expression levels of LincRNA H19, miR-675, MRP3, HOXA1, and MMP16 in formalin-fixed, paraffin-embedded samples. Statistical analyses included chi-squared tests, logistic regression, and Kaplan-Meier survival curves to evaluate associations between genetic variations, gene expression, and clinical outcomes. Results Genotypes AG at rs11042167, GT at rs2071095, and AC at rs2251375 were significantly associated with increased risk of breast cancer. Notably, the AA genotype at rs11042167 and TT genotype at rs2071095 were linked to favorable prognosis. High expression levels of LincRNA H19, miR-675, MRP3, HOXA1, and MMP16 in cancer tissues correlated with advanced disease stages and poorer survival rates. Spearman correlation analysis revealed significant positive correlations between the expression of LincRNA H19 and miR-675 and specific genotypes, highlighting their potential regulatory roles in tumor progression. Discussion The study underscores the critical roles of LincRNA H19 and miR-675 as prognostic biomarkers in breast cancer, with their overexpression associated with disease progression and adverse outcomes. The H19/LincRNA H19/miR-675/MRP3-HOXA1-MMP16 axis offers promising targets for new therapeutic strategies, reflecting the complex interplay between genetic markers and breast cancer pathology. Conclusion The findings confirm that certain H19 SNPs are associated with heightened breast cancer risk and that the expression profiles of related genetic markers can significantly influence prognosis and treatment response. These biomarkers hold potential as targets for personalized therapy and early detection strategies in breast cancer, underscoring the importance of genetic research in understanding and managing this disease.
Collapse
Affiliation(s)
- Ying Qi
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Pengfei Zhao
- Department of Pharmacology, School of Pharmaceutical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
2
|
Liao Z, Zhang Q, Yang L, Li H, Mo W, Song Z, Huang X, Wen S, Cheng X, He M. Increased hsa-miR-100-5p Expression Improves Hepatocellular Carcinoma Prognosis in the Asian Population with PLK1 Variant rs27770A>G. Cancers (Basel) 2023; 16:129. [PMID: 38201556 PMCID: PMC10778516 DOI: 10.3390/cancers16010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has the highest incidence and mortality in the Asian population, and race is an independent risk factor affecting survival time in liver cancer. Micro RNAs (miRNAs) are remarkably dysregulated in HCC and closely associated with HCC prognosis. Recent studies show that genetic variability between ethnic groups may result in differences in the specificity of HCC miRNA biomarkers. Here, we reveal a high expression level of hsa-miR-100-5p, an HCC prognosis-related miRNA, which improves HCC prognosis in the Asian Population with Polo-like kinase 1 (PLK1) variant rs27770A>G. In this study, we discovered that hsa-miR-100-5p was downregulated in various HCC cell lines. While mimics transient transfection and mouse liver cancer model confirmed the interaction between hsa-miR-100-5p and PLK1, a stratified analysis based on the Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) data suggest both low hsa-miR-100-5p expression level and high PLK1 expression level associated with poor HCC prognosis, especially in the Asian population. According to the 1000 Genomes Project database, the SNP rs27770 located in 3'UTR of PLK1 had a significantly higher G allele frequency in the East Asian population. Bioinformatics analysis suggested that rs27770 A>G affects PLK1 mRNA secondary structure and alters the hsa-miR-100-5p/PLK1 interaction by forming an additional seedless binding site. This racial variation caused PLK1 to be more vulnerable to hsa-miR-100-5p inhibition, resulting in hsa-miR-100-5p being more favorable for HCC prognosis in the Asian population.
Collapse
Affiliation(s)
- Zhouxiang Liao
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
| | - Qi Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (L.Y.); (X.H.)
| | - Lichao Yang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (L.Y.); (X.H.)
| | - Hui Li
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
| | - Wanling Mo
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
| | - Zhenyu Song
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
| | - Xuejing Huang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (L.Y.); (X.H.)
| | - Sha Wen
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (L.Y.); (X.H.)
| | - Xiaojing Cheng
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Min He
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (L.Y.); (X.H.)
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning 530021, China
| |
Collapse
|
3
|
Abstract
Accurate and sensitive detection of single nucleotide polymorphism (SNP) holds significant clinical implications, especially in the field of cancer diagnosis. Leveraging its high accuracy and programmability, the CRISPR system emerges as a promising platform for advancing the identification of SNPs. In this study, we compared two type V CRISPR/Cas systems (Cas12a and Cas14a) for the identification of cancer-related SNP. Their identification performances were evaluated by characterizing their mismatch tolerance to the BRAF gene. We found that the CRISPR/Cas14a system exhibited superior accuracy and robustness over the CRISPR/Cas12a system for SNP detection. Furthermore, blocker displacement amplification (BDA) was combined with the CRISPR/Cas14a system to eliminate the interference of the wild type (WT) and increase the detection accuracy. In this strategy, we were able to detect BRAF V600E as low as 103 copies with a sensitivity of 0.1% variant allele frequency. Moreover, the BDA-assisted CRISPR/Cas14a system has been applied to identify the BRAF mutation from human colorectal carcinoma cells, achieving a high sensitivity of 0.5% variant allele frequency, which is comparable to or even superior to those of most commercially available products. This work has broadened the scope of the CRISPR system and provided a promising method for precision medicine.
Collapse
Affiliation(s)
- Yawen He
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Shengjie Shao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
4
|
Liu H, Sun L, Liu X, Wang R, Luo Q. Associations between non-coding RNAs genetic polymorphisms with ovarian cancer risk: A systematic review and meta-analysis update with trial sequential analysis. Medicine (Baltimore) 2023; 102:e35257. [PMID: 37773807 PMCID: PMC10545158 DOI: 10.1097/md.0000000000035257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/25/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND This systemic review and meta-analysis seeks to systematically analyze and summarize the association between non-coding RNA polymorphisms and ovarian cancer risk. METHODS We searched PubMed, Web of Science and CNKI for available articles on non-coding RNA polymorphisms in patients with ovarian cancer from inception to March 1, 2023. The quality of each study included in the meta-analysis was rated according to the Newcastle-Ottawa Scale.Odds ratios (ORs) with their 95% confidence intervals (95% CI) were used to assess associations. Chi-square Q-test combined with inconsistency index (I2) was used to test for heterogeneity among studies. Lastly, trial sequential analysis (TSA) software was used to verify the reliability of meta-analysis results, and in-silico miRNA expression were also performed. The meta-analysis was registered with PROSPERO (No. CRD42023422091). RESULTS A total of 17 case-control studies with 18 SNPs were selected, including 2 studies with H19 rs2107425 and HOTAIR rs4759314, and 5 studies with miR-146a rs2910164 and miR-196a rs11614913. Significant associations were found between H19 rs2107425, miR-146a rs2910164, and miR-196a rs11614913 and ovarian cancer risk. Three genetic models of H19 rs2107425 (CT vs TT (heterozygote model): OR = 1.36, 95% CI = 1.22-1.52, P < .00001; CC + CT vs TT (dominant model): OR = 1.12, 95% CI = 1.02-1.24, P = .02; and CC vs CT + TT (recessive model): OR = 1.23, 95% CI = 1.16-1.31, P < .00001), 2 genetic models of miR-146a rs2910164 (allele model: OR = 1.75, 95% CI = 1.05-2.91, P = .03; and heterozygote model: OR = 0.33, 95% CI = 0.11-0.98, P = .05), 3 genetic models of miR-196a rs11614913 (allele model: OR = 0.70, 95% CI = 0.59-0.82, P < .0001; dominant model: OR = 1.62, 95% CI = 1.18-2.24, P = .0001; and recessive model: OR = 0.70, 95% CI = 0.57-0.87, P = .03) were statistically linked to ovarian cancer risk. Subgroup analysis for miR-146a rs2910164 was performed according to ethnicity. No association was found in any genetic model. The outcomes of TSA also validated the findings of this meta-analysis. CONCLUSION This study summarizes that H19 rs2107425, miR-146a rs2910164, and miR-196a rs11614913 polymorphisms are significantly linked with the risk of ovarian cancer, and moreover, large-scale and well-designed studies are needed to validate our result.
Collapse
Affiliation(s)
- Huaying Liu
- Department of Traditional Chinese Medicine, Wuhan No.1 Hospital, Wuhan, China
| | - Lili Sun
- Department of Gynaecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoping Liu
- Department of Geriatrics, The Central Hospital of Xianning, Xianning, China
| | - Ruichai Wang
- Department of Geriatrics, The Central Hospital of Xianning, Xianning, China
| | - Qinqin Luo
- Department of Traditional Chinese Medicine, Wuhan No.1 Hospital, Wuhan, China
| |
Collapse
|
5
|
Sun R, Lv J, Xue X, Yu S, Tan Z. Chemical Sensors using Single-Molecule Electrical Measurements. Chem Asian J 2023; 18:e202300181. [PMID: 37080926 DOI: 10.1002/asia.202300181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023]
Abstract
Driven by the digitization and informatization of contemporary society, electrical sensors are developing toward minimal structure, intelligent function, and high detection resolution. Single-molecule electrical measurement techniques have been proven to be capable of label-free molecular recognition and detection, which opens a new strategy for the design of efficient single-molecule detection sensors. In this review, we outline the main advances and potentials of single-molecule electronics for qualitative identification and recognition assays at the single-molecule level. Strategies for single-molecule electro-sensing and its main applications are reviewed, mainly in the detection of ions, small molecules, oligomers, genetic materials, and proteins. This review summarizes the remaining challenges in the current development of single-molecule electrical sensing and presents some potential perspectives for this field.
Collapse
Affiliation(s)
- Ruiqin Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jieyao Lv
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Xinyi Xue
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Shiyong Yu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Zhibing Tan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| |
Collapse
|
6
|
Ding S, Yu X, Zhao Y, Zhao C. Identification of single nucleotide polymorphisms by a peptide nucleic acid-based sandwich hybridization assay coupled with toehold-mediated strand displacement reactions. Anal Chim Acta 2023; 1242:340810. [PMID: 36657895 DOI: 10.1016/j.aca.2023.340810] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
In this work, we developed a simple and accurate peptide nucleic acid (PNA)-based sandwich hybridization assay for single nucleotide polymorphisms (SNPs) in the p53 gene. Our approach combines the enzyme-free toehold-mediated strand displacement reaction (SDR) with real-time enzyme-linked immunosorbent assay (ELISA) to detect SNPs with high sensitivity and specificity. A PNA-DNA heteroduplex with an external toehold is designed and fixed on well surface of a 96-well plate. The strand displacement from PNA-DNA heteroduplexes is initiated by the hybridization of target sequence with the toehold domain and ends with the fully displacing of the incumbent DNA. Finally, the as formed PNA-target DNA duplex with overhang at its 5'-end hybridizes with a biotin-labeled reporter PNA to form a sandwich structure on surface for signal amplification. The proposed PNA-based sandwich biosensor displays high sensitivity and greatly enhanced discriminability to target p53 gene segments against single-base mutant sequences compared to its all-DNA counterpart. Furthermore, the probe design is elegantly simple and the sensing procedure is easy to operate. We believe that this strategy may provide a simple and universal strategy for SNPs detection through easily altering the sequences of probes according to the sequences around target SNPs.
Collapse
Affiliation(s)
- Shuyu Ding
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Xiaomeng Yu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Yang Zhao
- College of Science and Technology, Ningbo University, Ningbo 315300, PR China
| | - Chao Zhao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
7
|
Bozgeyik E, Bozgeyik İ. Non-coding RNA variations in oral cancers: a comprehensive review. Gene 2022; 851:147012. [PMID: 36349577 DOI: 10.1016/j.gene.2022.147012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 11/04/2022]
|
8
|
Mora-Palazuelos C, Bermúdez M, Aguilar-Medina M, Ramos-Payan R, Ayala-Ham A, Romero-Quintana JG. Cytokine-polymorphisms associated with Preeclampsia: A review. Medicine (Baltimore) 2022; 101:e30870. [PMID: 36181055 PMCID: PMC9524891 DOI: 10.1097/md.0000000000030870] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Preeclampsia (PE) is a syndromic disorder that affects 2% to 8% of pregnancies and is diagnosed principally when hypertension appears in the second-d half of pregnancy. WHO estimates the incidence of PE to be seven times higher in developing countries than in developed countries. Severe preeclampsia/eclampsia is one of the most important causes of maternal mortality, associated with 50,000 to 100,000 annual deaths globally as well as serious fetal and neonatal morbidity and mortality, especially in developing countries. Even though evidence from family-based studies suggest PE has a heritable component, its etiology, and specific genetic contributions remain unclear. Many studies examining the genetic factors contributing to PE have been conducted, most of them are focused on single nucleotide polymorphisms (SNPs). Given that PE has a very important inflammatory component, is mandatory to examine cytokine-SNPs for elucidating all mechanisms involved in this pathology. In this review, we describe the most important cytokine-polymorphisms associated with the onset and development of PE. We aim to provide current and relevant evidence in this regard. METHODS We searched English databases such as PubMed and the National Center for Biotechnology Information. The publication time of the papers was set from the establishment of the databases to February 2022. All studies about Th1/Th2/Th17 cytokines polymorphisms were included in our study. RESULTS SNPs in IFN-γ, TNF-α, IL-4, IL-6, IL-10, IL-17A, and IL-22 are associated with the development, early-onset and severity of PE, being the Th1/Th2/Th17 responses affected by the presence of these SNPs. CONCLUSIONS The changes in Th1/Th2/Th17 response modify processes such as placentation, control of inflammation, and vascular function. Nonetheless, association studies have shown different results depending on sample size, diagnostic, and population.
Collapse
Affiliation(s)
| | - Mercedes Bermúdez
- Facultad de Odontología, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Maribel Aguilar-Medina
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, México
| | - Rosalío Ramos-Payan
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, México
| | - Alfredo Ayala-Ham
- Facultad de Biología, Universidad Autónoma de Sinaloa, Culiacán, México
| | - Jose Geovanni Romero-Quintana
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, México
- *Correspondence: Jose Geovanni Romero-Quintana, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Josefa Ortiz DE Domínguez S/N y Avenida DE las Américas, CP. 80010, Culiacán, Sinaloa, México (e-mail: )
| |
Collapse
|
9
|
Ke C, Feng X, Li J, Chen S, Hu X. Association between long non‑coding RNA HOTAIR polymorphism and lung cancer risk: A systematic review and meta‑analysis. Exp Ther Med 2022; 24:540. [PMID: 35837044 PMCID: PMC9257968 DOI: 10.3892/etm.2022.11477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
Single nucleotide polymorphism (SNP) of long noncoding RNA (lnc)RNA has been reported to be an important factor in cancer development. Recently, lncRNA homeobox transcript antisense intergenic RNA (HOTAIR) was indicated to induce tumorigenesis of several cancer types, but the association between the SNP of lncRNA HOTAIR and lung cancer susceptibility has remained undetermined. The present meta-analysis aimed to investigate the effect of HOTAIR polymorphism on susceptibility to lung cancer. The PubMed, Ovid Medline, Embase and Cochrane Library databases were thoroughly searched. Studies containing data on the incidence of lung cancer in patients with different HOTAIR SNPs were included. The Hardy-Weinberg equilibrium was analyzed to determine genotype distribution and allele frequencies. The odds ratio (OR) was pooled to evaluate the association of different SNPs with the susceptibility to lung cancer. A total of six studies comprising 1,715 patients with lung cancer and 2,745 healthy controls were finally included. A total of 4 SNPs (rs12826786, rs1899663, rs920778 and rs4759314) were reported. Analyses for all of these SNPs individually indicated that the lncRNA HOTAIR rs1899663 C>A polymorphism was a risk factor for lung cancer (dominant mode, AA+CA vs. CC: OR=0.816, 95% CI=0.707-0.942, P=0.005). The present study was the first meta-analysis investigating the association between lncRNA HOTAIR and lung cancer susceptibility. The results indicated that the lncRNA HOTAIR rs1899663 C>A polymorphism is a risk factor for lung cancer. LncRNA HOTAIR may be of value in lung cancer screening, particularly for populations with high-risk factors, as well as prognosis prediction. Future investigations are required to further clarify the intrinsic mechanism of the role of HOTAIR in the oncogenesis of lung cancer.
Collapse
Affiliation(s)
- Chunlin Ke
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Xuegang Feng
- Department of Cardio‑Thoracic Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350025, P.R. China
| | - Jie Li
- Department of Oncology, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350025, P.R. China
| | - Siyu Chen
- Department of Oncology, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350025, P.R. China
| | - Xinyu Hu
- Department of Oncology, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
10
|
The association between single polymorphic positions and the risk of acute lymphoblastic leukemia. Meta Gene 2022. [DOI: 10.1016/j.mgene.2021.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Hu X, Jia J, Yang Z, Chen S, Xue J, Duan S, Yang P, Peng S, Yang L, Yuan L, Bao G. PLCE1 Polymorphisms Are Associated With Gastric Cancer Risk: The Changes in Protein Spatial Structure May Play a Potential Role. Front Genet 2021; 12:714915. [PMID: 34531897 PMCID: PMC8438327 DOI: 10.3389/fgene.2021.714915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/04/2021] [Indexed: 12/29/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most significant health problems worldwide. Some studies have reported associations between Phospholipase C epsilon 1 (PLCE1) single-nucleotide polymorphisms (SNPs) and GC susceptibility, but its relationship with GC prognosis lacked exploration, and the specific mechanisms were not elaborated fully yet. This study aimed to further explore the possible mechanism of the association between PLCE1 polymorphisms and GC. Materials and Methods A case-control study, including 588 GC patients and 703 healthy controls among the Chinese Han population, was performed to investigate the association between SNPs of PLCE1 and GC risk by logistic regression in multiple genetic models. The prognostic value of PLCE1 in GC was evaluated by the Kaplan-Meier plotter. To explored the potential functions of PLCE1, various bioinformatics analyses were conducted. Furthermore, we also constructed the spatial structure of PLCE1 protein using the homology modeling method to analyze its mutations. Results Rs3765524 C > T, rs2274223 A > G and rs3781264 T > C in PLCE1 were associated with the increased risk of GC. The overall survival and progression-free survival of patients with high expression of PLCE1 were significantly lower than those with low expression [HR (95% CI) = 1.38 (1.1–1.63), P < 0.01; HR (95% CI) = 1.4 (1.07–1.84), P = 0.01]. Bioinformatic analysis revealed that PLCE1 was associated with protein phosphorylation and played a crucial role in the calcium signal pathway. Two important functional domains, catalytic binding pocket and calcium ion binding pocket, were found by homology modeling of PLCE1 protein; rs3765524 polymorphism could change the efficiency of the former, and rs2274223 polymorphism affected the activity of the latter, which may together play a potentially significant role in the tumorigenesis and prognosis of GC. Conclusion Patients with high expression of PLCE1 had a poor prognosis in GC, and SNPs in PLCE1 were associated with GC risk, which might be related to the changes in spatial structure of the protein, especially the variation of the efficiency of PLCE1 in the calcium signal pathway.
Collapse
Affiliation(s)
- Xi'e Hu
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | | | - Zhenyu Yang
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Songhao Chen
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jingyi Xue
- The Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Sensen Duan
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Ping Yang
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Shujia Peng
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Lin Yang
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Lijuan Yuan
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Guoqiang Bao
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| |
Collapse
|
12
|
Involvement of single nucleotide polymorphisms in acute lymphoblastic leukemia susceptibility. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
PLCE1 Polymorphisms and Risk of Esophageal and Gastric Cancer in a Northwestern Chinese Population. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9765191. [PMID: 30931333 PMCID: PMC6413391 DOI: 10.1155/2019/9765191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/07/2019] [Accepted: 01/22/2019] [Indexed: 01/28/2023]
Abstract
The reported risk susceptibility between phospholipase C epsilon 1 (PLCE1) polymorphisms and esophageal cancer (EC) and gastric cancer (GC) remained inconsistent and controversial, especially on variants other than rs2274223. The relationship between PLCE1 polymorphisms and gene expression is also unclear. Here we conducted a case-control study from northwest China, genotyped seven tag single nucleotide polymorphisms (SNPs) in PLCE1 with multiplexed SNP MassARRAY assay. Stratified analysis was carried out and PLCE1 expression was evaluated in specified groups with the method of qRT-PCR and immunohistochemistry. Results showed that the minor alleles of rs3765524, rs2274223, and rs10509670 were associated with increased risk of EC and GC. Linkage disequilibrium analysis revealed protective haplotypes of CCAAGTC and CCAA. By stratification, a more significant association was found in subgroups of male, age ≥ 54, tumor stages of I-II and tumor size ≤ 5 cm, EC and cardia cancer (CC) of stomach, and moderate to well differentiated squamous carcinoma. In addition, a significant association for rs3765524 with noncardia cancer (NCC) and adenocarcinoma which is predominant in China was also observed. Further expression analysis identified that PLCE1 was downregulated in NCC tissues comparing to their adjacent noncancerous tissues, and its protein expression was higher in genotype rs3765524 CT/TT than in rs3765524 CC. In summary, our study suggests that PLCE1 polymorphisms may affect its gene expression and are associated with not only EC and CC, but also, to some extent, NCC risk in this study population.
Collapse
|
14
|
Lee IJ, Goo NI, Kim DE. Label/quencher-free detection of single-nucleotide changes in DNA using isothermal amplification and G-quadruplexes. Analyst 2018; 141:6503-6506. [PMID: 27827492 DOI: 10.1039/c6an01600f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report an analytical method that exploits the interaction between G-quadruplexes and thioflavin T (ThT), for detecting mutant DNA species containing single-base changes. This system is a label/quencher-free fluorescence enhancement system based on rolling circle amplification (RCA)-responsive G-quadruplex formation, which enables a highly selective detection of T790M SNPs in the gene encoding the epidermal growth factor receptor, EGFR.
Collapse
Affiliation(s)
- Il Joon Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| | - Nam-In Goo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
15
|
Wang CC, Chen CA, Jong YJ, Kou HS. Specific Gene Capture Combined with Restriction-Fragment Release for Directly Fluorescent Genotyping of Single-Nucleotide Polymorphisms in Diagnosing Spinal Muscular Atrophy. Anal Chem 2018; 90:11599-11606. [PMID: 30203652 DOI: 10.1021/acs.analchem.8b02996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, a fast and simple fluorescent genotyping strategy, streptavidin magnetic beads combined with biotin-coupled PCR and restriction-fragment release, was developed for determination of nucleotide variants. This method was further applied for analyzing SMN1 gene in diagnosis of spinal muscular atrophy (SMA). After biotin-coupled PCR, the streptavidin magnetic beads would capture the biotin-labeled SMN genetic fragments, and then the restriction enzyme of HPY188I could only digest and release the fluorescent end of SMN1 genetic fragment into the supernatant. Therefore, the SMN1 gene could be easily fluorescently quantified, and SMN2 would not, for diagnosis of SMA. The copy number of the SMN1 gene could be regressed using the relative fluorescent unit versus the known copy number, and the coefficient of correlation is equal to 0.9617 ( r = 0.9617). In this research, a total of 16 blind DNA samples were analyzed, including 6 wild types, 5 carriers, and 5 SMA patients. Importantly, this fast, simple, and highly efficient method is universal for detection of all nucleotides variants by replacing the specific restriction enzyme. This technique has the potency to be served as a tool for fast and accurate diagnosis of genotypes in clinical medicine.
Collapse
Affiliation(s)
| | - Chung-An Chen
- Institute of Applied Mechanics , National Taiwan University , Taipei , Taiwan
| | | | | |
Collapse
|
16
|
Li XH, Zhang XL, Wu J, Lin N, Sun WM, Chen M, Ou QS, Lin ZY. Hyperbranched rolling circle amplification (HRCA)-based fluorescence biosensor for ultrasensitive and specific detection of single-nucleotide polymorphism genotyping associated with the therapy of chronic hepatitis B virus infection. Talanta 2018; 191:277-282. [PMID: 30262063 DOI: 10.1016/j.talanta.2018.08.064] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/14/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022]
Abstract
Detection of specific genes related to drug action can provide scientific guidance for personalized medicine. Taking the detection of a single-nucleotide polymorphism (SNP) genotyping related to the chronic hepatitis B virus (HBV) therapy as an example, a novel biosensor with high sensitivity and selectivity was developed based on the hyperbranched rolling circle amplification (HRCA) in this work. The single-base mutant DNA (mutDNA) sequence can perfectly hybridize with the specially designed discrimination padlock probe and initiate the HRCA reaction. Subsequently, a great abundant of double-strand DNA sequences were released and a strong fluorescence signal can be detected after adding SYBR Green I. In particular, the enhanced fluorescence intensity exhibits a linear relationship with the logarithm of mutDNA concentration ranging from 0.1 nM to 40 nM with a low detection limit of 0.05 nM. However, when there was even a single base mismatch in the target DNA, the HRCA was suppressed and fluorescence response process could not occur, resulting in a high selectivity of this biosensor. Moreover, this detection strategy also performs well in human serums, demonstrating its potential application in detecting SNPs in real biological samples.
Collapse
Affiliation(s)
- Xiang-Hui Li
- Medical Technology and Engineering College, Fujian Medical University, Fuzhou 350004, Fujian, People's Republic of China
| | - Xiao-Ling Zhang
- Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, Fujian, People's Republic of China
| | - Juan Wu
- Medical Technology and Engineering College, Fujian Medical University, Fuzhou 350004, Fujian, People's Republic of China
| | - Ni Lin
- Medical Technology and Engineering College, Fujian Medical University, Fuzhou 350004, Fujian, People's Republic of China
| | - Wei-Ming Sun
- Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, Fujian, People's Republic of China
| | - Min Chen
- Medical Technology and Engineering College, Fujian Medical University, Fuzhou 350004, Fujian, People's Republic of China.
| | - Qi-Shui Ou
- Medical Technology and Engineering College, Fujian Medical University, Fuzhou 350004, Fujian, People's Republic of China; Department of Laboratory Medicine, The 1st Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou 350004, Fujian, People's Republic of China.
| | - Zhen-Yu Lin
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| |
Collapse
|
17
|
Mutational Analysis of Oncogenic AKT1 Gene Associated with Breast Cancer Risk in the High Altitude Ecuadorian Mestizo Population. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7463832. [PMID: 30065942 PMCID: PMC6051326 DOI: 10.1155/2018/7463832] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/17/2018] [Accepted: 05/30/2018] [Indexed: 01/08/2023]
Abstract
Breast cancer is the leading cause of cancer-related death among women worldwide. AKT1 encodes the kinase B alpha protein. The rs121434592, rs12881616, rs11555432, rs11555431, rs2494732, and rs3803304 single nucleotide polymorphisms have been identified in the AKT1 kinase gene. Activated AKT1 phosphorylates downstream substrates regulating cell growth, metabolism, apoptosis, angiogenesis, and drug responses. It is essential to know how breast cancer risk is associated with histopathological and immunohistochemical characteristics and genotype polymorphisms in a high altitude Ecuadorian mestizo population. This is a retrospective case-control study. DNA was extracted from 185 healthy and 91 affected women who live 2,800 meters above sea level. Genotypes were determined by genomic sequencing. We found a possible association between the noncoding intronic variant rs3803304 and breast cancer risk development: GG (odds ratio [OR] = 5.2; 95% confidence interval [CI] = 1.3-20.9; P ≤ 0.05; Q > 0.05). Regarding pathologic characteristics, we found significant risk between estrogen receptor, progesterone receptor, and HER2 status and molecular subtypes (P ≤ 0.001; Q ≤ 0.05). On the other hand, we did not find risk between variants and histopathological characteristics. Despite the small sample size, we found that the intronic variant, AKT1 rs3803304, may act as a predictive biomarker in the risk of developing breast cancer in the high altitude Ecuadorian mestizo population.
Collapse
|
18
|
DMET™ (Drug Metabolism Enzymes and Transporters): a pharmacogenomic platform for precision medicine. Oncotarget 2018; 7:54028-54050. [PMID: 27304055 PMCID: PMC5288240 DOI: 10.18632/oncotarget.9927] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/29/2016] [Indexed: 02/07/2023] Open
Abstract
In the era of personalized medicine, high-throughput technologies have allowed the investigation of genetic variations underlying the inter-individual variability in drug pharmacokinetics/pharmacodynamics. Several studies have recently moved from a candidate gene-based pharmacogenetic approach to genome-wide pharmacogenomic analyses to identify biomarkers for selection of patient-tailored therapies. In this aim, the identification of genetic variants affecting the individual drug metabolism is relevant for the definition of more active and less toxic treatments. This review focuses on the potentiality, reliability and limitations of the DMET™ (Drug Metabolism Enzymes and Transporters) Plus as pharmacogenomic drug metabolism multi-gene panel platform for selecting biomarkers in the final aim to optimize drugs use and characterize the individual genetic background.
Collapse
|
19
|
Momtaz R, Ghanem NM, El-Makky NM, Ismail MA. Integrated analysis of SNP, CNV and gene expression data in genetic association studies. Clin Genet 2017; 93:557-566. [PMID: 28685831 DOI: 10.1111/cge.13092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/20/2017] [Accepted: 07/01/2017] [Indexed: 02/02/2023]
Abstract
Integrative approaches that combine multiple forms of data can more accurately capture pathway associations and so provide a comprehensive understanding of the molecular mechanisms that cause complex diseases. Association analyses based on single nucleotide polymorphism (SNP) genotypes, copy number variant (CNV) genotypes, and gene expression profiles are the 3 most common paradigms used for gene set/pathway enrichment analyses. Many work has been done to leverage information from 2 types of data from these 3 paradigms. However, to the best of our knowledge, there is no work done before to integrate the 3 paradigms all together. In this article, we present an integrated analysis that combine SNP, CNV, and gene expression data to generate a single gene list. We present different methods to compare this gene list with the other 3 possible lists that result from the combinations of the following pairs of data: SNP genotype with gene expression, CNV genotype with gene expression, and SNP genotype with CNV genotype. The comparison is done using 3 different cancer datasets and 2 different methods of comparison. Our results show that integrating SNP, CNV, and gene expression data give better association results than integrating any pair of 3 data.
Collapse
Affiliation(s)
- R Momtaz
- Computer and Systems Engineering Department, Alexandria University, Alexandria, Egypt
| | - N M Ghanem
- Computer and Systems Engineering Department, Alexandria University, Alexandria, Egypt
| | - N M El-Makky
- Computer and Systems Engineering Department, Alexandria University, Alexandria, Egypt
| | - M A Ismail
- Computer and Systems Engineering Department, Alexandria University, Alexandria, Egypt
| |
Collapse
|
20
|
He G, Li J, Qi C, Guo X. Single Nucleotide Polymorphism Genotyping in Single-Molecule Electronic Circuits. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700158. [PMID: 29201610 PMCID: PMC5700462 DOI: 10.1002/advs.201700158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/20/2017] [Indexed: 05/08/2023]
Abstract
Establishing low-cost, high-throughput, simple, and accurate single nucleotide polymorphism (SNP) genotyping techniques is beneficial for understanding the intrinsic relationship between individual genetic variations and their biological functions on a genomic scale. Here, a straightforward and reliable single-molecule approach is demonstrated for precise SNP authentication by directly measuring the fluctuations in electrical signals in an electronic circuit, which is fabricated from a high-gain field-effect silicon nanowire decorated with a single hairpin DNA, in the presence of different target DNAs. By simply comparing the proportion difference of a probe-target duplex structure throughout the process, this study implements allele-specific and accurate SNP detection. These results are supported by the statistical analyses of different dynamic parameters such as the mean lifetime and the unwinding probability of the duplex conformation. In comparison with conventional polymerase chain reaction and optical methods, this convenient and label-free method is complementary to existing optical methods and also shows several advantages, such as simple operation and no requirement for fluorescent labeling, thus promising a futuristic route toward the next-generation genotyping technique.
Collapse
Affiliation(s)
- Gen He
- Beijing National Laboratory for Molecular SciencesState Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
- Key Laboratory of RadiopharmaceuticalsMinistry of EducationCollege of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Jie Li
- Beijing National Laboratory for Molecular SciencesState Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
- Key Laboratory of RadiopharmaceuticalsMinistry of EducationCollege of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Chuanmin Qi
- Key Laboratory of RadiopharmaceuticalsMinistry of EducationCollege of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular SciencesState Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
- Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871P. R. China
| |
Collapse
|
21
|
Breast Cancer Risk Associated with Genotype Polymorphisms of the Aurora Kinase a Gene (AURKA): a Case-Control Study in a High Altitude Ecuadorian Mestizo Population. Pathol Oncol Res 2017. [PMID: 28647900 DOI: 10.1007/s12253-017-0267-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Breast cancer (BC) is the leading cause of cancer related death among women in 2014. The AURKA gene that encodes the protein called Aurora kinase A plays an important role in the progression of the cell cycle, by controlling and promoting the entry into the phase of mitosis. The single nucleotide polymorphism AURKA T91A (rs2273535) (Phe21Ile) has been identified as functional alternator of this kinase, the Ile allele is associated with the occurrence of chromosome segregation errors and tumor progression. Therefore, it is essential to know how BC risk is associated with histopathological characteristics, immunohistochemical characteristics, and genotype polymorphism in a high altitude Ecuadorian mestizo population. In this retrospective case-control study 200 individuals were analyzed. DNA was extracted from 100 healthy and 100 affected women. Genotypes were determined by genomic sequencing. We found significant association between the AURKA T91A (rs2273535) (Phe21Ile) genotype and an increased risk of BC development: Phe/Ile (odds ratio [OR] = 2.6; 95% confidence interval [CI] = 1.4-4.9; P = 0.004), Ile/Ile (OR = 3.8; 95% CI = 1.6-9.0; P = 0.002), and Phe/Ile + Ile/Ile (OR = 2.9; 95% CI = 1.6-5.2; P = 0.001). Additionally, the rs2273535 variant was associated with the tumor grade SBR III (OR = 9.6; 95% CI = 1.0-91.9; P = 0.048) and the Ki-67 ≥ 20 (OR = 16.5; 95% CI = 2.7-101.3; P = 0.002). In brief, this study provides the first evidence where the Ile allele of the AURKA gene could act as potentially predictive biomarker of BC in the high altitude Ecuadorian mestizo population that lives at 2800 m above sea level (masl).
Collapse
|
22
|
Gam R, Shah P, Crossland RE, Norden J, Dickinson AM, Dressel R. Genetic Association of Hematopoietic Stem Cell Transplantation Outcome beyond Histocompatibility Genes. Front Immunol 2017; 8:380. [PMID: 28421078 PMCID: PMC5377073 DOI: 10.3389/fimmu.2017.00380] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/16/2017] [Indexed: 12/18/2022] Open
Abstract
The outcome of hematopoietic stem cell transplantation (HSCT) is controlled by genetic factors among which the leukocyte antigen human leukocyte antigen (HLA) matching is most important. In addition, minor histocompatibility antigens and non-HLA gene polymorphisms in genes controlling immune responses are known to contribute to the risks associated with HSCT. Besides single-nucleotide polymorphisms (SNPs) in protein coding genes, SNPs in regulatory elements such as microRNAs (miRNAs) contribute to these genetic risks. However, genetic risks require for their realization the expression of the respective gene or miRNA. Thus, gene and miRNA expression studies may help to identify genes and SNPs that indeed affect the outcome of HSCT. In this review, we summarize gene expression profiling studies that were performed in recent years in both patients and animal models to identify genes regulated during HSCT. We discuss SNP–mRNA–miRNA regulatory networks and their contribution to the risks associated with HSCT in specific examples, including forkheadbox protein 3 and regulatory T cells, the role of the miR-155 and miR-146a regulatory network for graft-versus-host disease, and the function of MICA and its receptor NKG2D for the outcome of HSCT. These examples demonstrate how SNPs affect expression or function of proteins that modulate the alloimmune response and influence the outcome of HSCT. Specific miRNAs targeting these genes and directly affecting expression of mRNAs are identified. It might be valuable in the future to determine SNPs and to analyze miRNA and mRNA expression in parallel in cohorts of HSCT patients to further elucidate genetic risks of HSCT.
Collapse
Affiliation(s)
- Rihab Gam
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Pranali Shah
- Institute of Cellular and Molecular Immunology, University Medical Centre Göttingen, Göttingen, Germany
| | - Rachel E Crossland
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Jean Norden
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Anne M Dickinson
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Centre Göttingen, Göttingen, Germany
| |
Collapse
|
23
|
Hua W, Zhang A, Duan P, Zhu J, Zhao Y, He J, Zhang Z. MDM2 promoter del1518 polymorphism and cancer risk: evidence from 22,931 subjects. Onco Targets Ther 2017; 10:3773-3780. [PMID: 28794641 PMCID: PMC5538693 DOI: 10.2147/ott.s140424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Studies have shown that single-nucleotide polymorphisms in MDM2 gene may play important roles in the development of malignant tumor. The association of del1518 polymorphism (rs3730485) in the MDM2 promoter with cancer susceptibility has been extensively studied; however, the results are contradictory. To quantify the association between this polymorphism and overall cancer risk, we conducted a meta-analysis with 12,905 cases and 10,026 controls from 16 eligible studies retrieved from PubMed, Embase, and Chinese Biomedical (CBM) databases. We assessed the strength of the connection using odds ratios (ORs) and 95% confidence intervals (CIs). In summary, no significant associations were discovered between the del1518 polymorphism and overall cancer risk (Del/Del vs Ins/Ins: OR =1.01, 95% CI =0.90-1.14; Ins/Del vs Ins/Ins: OR =1.03, 95% CI =0.96-1.12; recessive model: OR =0.98, 95% CI =0.90-1.07; dominant model: OR =1.03, 95% CI =0.94-1.12; and Del vs Ins: OR =1.01, 95% CI =0.94-1.07). In the stratified analysis by source of control, quality score, cancer type, and ethnicity, no significant associations were found. Despite some limitations, the current meta-analysis provides solid statistical evidence of lacking association between the MDM2 del1518 polymorphism and cancer risk.
Collapse
Affiliation(s)
- Wenfeng Hua
- Department of Laboratory Medicine and Central Laboratories, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong
- Correspondence: Wenfeng Hua; Zhi Zhang, Department of Laboratory Medicine and Central Laboratories, Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, People’s Republic of China, Tel +86 20 8916 8239; +86 20 8916 8176, Email ;
| | - Anqi Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital & Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang
| | - Ping Duan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital & Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang
| | - Jinhong Zhu
- Molecular Epidemiology Laboratory and Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang
| | - Yuan Zhao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital & Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhi Zhang
- Department of Laboratory Medicine and Central Laboratories, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong
- Correspondence: Wenfeng Hua; Zhi Zhang, Department of Laboratory Medicine and Central Laboratories, Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, People’s Republic of China, Tel +86 20 8916 8239; +86 20 8916 8176, Email ;
| |
Collapse
|
24
|
Wang JY, Zhou YQ, Li XX, Jin X, Wang LL, Lei L, Zhou Y, Lu J, Zeng X, Dan HX, Liao G, Chen QM. Associations between three polymorphisms in the interleukin-4 receptor gene and risk of cancer: a meta-analysis. Asian Pac J Cancer Prev 2016; 13:6227-32. [PMID: 23464436 DOI: 10.7314/apjcp.2012.13.12.6227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Interleukin-4 receptor (IL-4R) gene single nucleotide polymorphisms (SNPs) are implicated in cancer development. However, results from the published reports have remained inconclusive. The objective of this study was to conduct a meta-analysis investigating the association between polymorphisms in IL-4R gene and cancer risk. Pubmed, EMBASE and China National Knowledge Infrastructure (CNKI) were searched for case- control studies published up to October 30, 2012 that investigated IL-4R polymorphisms and cancer risk. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the strength of any associations. Three IL-4R polymorphisms (Q576R, rs1801275; I75V, rs1805010; S503P, rs1805015) in 21 case-control studies were analyzed. Our meta-analysis indicated that these three polymorphisms are not associated with cancer risk when all studies were pooled together. In the subgroup analysis by tumor site, the results showed that Q576R G allele carriers were associated with a significantly decreased cervical cancer risk (recessive model: OR = 0.77, 95%CI = 0.60-0.98; homozygote comparison: OR = 0.76, 95%CI = 0.58-0.98). I75V G allele carriers were associated with a decreased risk of renal cancer (dominant model = 0.71, 95%CI = 0.57-0.89, heterozygote comparison: OR = 0.69, 95%CI = 0.55-0.87). When stratified by ethnicity, Q576R G allele carriers were associated with a decreased cancer risk in Caucasians (dominant model: OR = 0.90, 95%CI = 0.83-0.98; heterozygote comparison: OR = 0.89, 95%CI = 0.82-0.98). I75V G allele carriers were associated with a decreased cancer risk in Asians (heterozygote comparison: OR = 0.76, 95%CI = 0.62-0.94). S503P C allele carriers were also associated with a decreased cancer risk in Asians (CC VS TT: OR = 0.29, 95%CI = 0.08-0.99). Our results suggest that Q576R, I75V and S503P may be associated with a decreased cancer risk for certain types of cancers and in some specific ethnic groups. Future case-control studies with large sample size are needed to evaluate these associations in detail.
Collapse
Affiliation(s)
- Jia-Yi Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gavvala K, Barthes NPF, Bonhomme D, Dabert-Gay AS, Debayle D, Michel BY, Burger A, Mély Y. A turn-on dual emissive nucleobase sensitive to mismatches and duplex conformational changes. RSC Adv 2016. [DOI: 10.1039/c6ra19061h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Herein, we demonstrate the on–off dual emissive behaviour of a fluorescent nucleoside sensitive towards DNA hybridization and conformational changes as well as detection of single nucleotide polymorphisms.
Collapse
Affiliation(s)
- Krishna Gavvala
- Laboratoire de Biophotonique et Pharmacologie
- UMR 7213
- Faculté de Pharmacie
- Université de Strasbourg
- CNRS
| | - Nicolas P. F. Barthes
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- Parc Valrose
| | - Dominique Bonhomme
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- Parc Valrose
| | - Anne Sophie Dabert-Gay
- Institut de Pharmacologie Moléculaire et Cellulaire
- UMR 6097
- Université de Nice Sophia Antipolis
- 660 Route des Lucioles
- 06560 Valbonne
| | - Delphine Debayle
- Institut de Pharmacologie Moléculaire et Cellulaire
- UMR 6097
- Université de Nice Sophia Antipolis
- 660 Route des Lucioles
- 06560 Valbonne
| | - Benoît Y. Michel
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- Parc Valrose
| | - Alain Burger
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- Parc Valrose
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie
- UMR 7213
- Faculté de Pharmacie
- Université de Strasbourg
- CNRS
| |
Collapse
|
26
|
Cheng YH. A Novel Teaching-Learning-Based Optimization for Improved Mutagenic Primer Design in Mismatch PCR-RFLP SNP Genotyping. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2016; 13:86-98. [PMID: 26886734 DOI: 10.1109/tcbb.2015.2430354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Many single nucleotide polymorphisms (SNPs) for complex genetic diseases are genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in small-scale basic research studies. It is an essential work to design feasible PCR-RFLP primer pair and find out available restriction enzymes to recognize the target SNP for PCR experiments. However, many SNPs are incapable of performing PCR-RFLP makes SNP genotyping become unpractical. A genetic algorithm (GA) had been proposed for designing mutagenic primer and get available restriction enzymes, but it gives an unrefined solution in mutagenic primers. In order to improve the mutagenic primer design, we propose TLBOMPD (TLBO-based Mutagenic Primer Design) a novel computational intelligence-based method that uses the notion of "teaching and learning" to search for more feasible mutagenic primers and provide the latest available restriction enzymes. The original Wallace's formula for the calculation of melting temperature is maintained, and more accurate calculation formulas of GC-based melting temperature and thermodynamic melting temperature are introduced into the proposed method. Mutagenic matrix is also reserved to increase the efficiency of judging a hypothetical mutagenic primer if involve available restriction enzymes for recognizing the target SNP. Furthermore, the core of SNP-RFLPing version 2 is used to enhance the mining work for restriction enzymes based on the latest REBASE. Twenty-five SNPs with mismatch PCR-RFLP screened from 288 SNPs in human SLC6A4 gene are used to appraise the TLBOMPD. Also, the computational results are compared with those of the GAMPD. In the future, the usage of the mutagenic primers in the wet lab needs to been validated carefully to increase the reliability of the method. The TLBOMPD is implemented in JAVA and it is freely available at http://tlbompd.googlecode.com/.
Collapse
|
27
|
Ghaedi H, Bastami M, Zare-Abdollahi D, Alipoor B, Movafagh A, Mirfakhraie R, Omrani MD, Masotti A. Bioinformatics prioritization of SNPs perturbing microRNA regulation of hematological malignancy-implicated genes. Genomics 2015; 106:360-6. [PMID: 26520014 DOI: 10.1016/j.ygeno.2015.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/19/2015] [Accepted: 10/27/2015] [Indexed: 12/12/2022]
Abstract
The contribution of microRNAs (miRNAs) to cancer has been extensively investigated and it became obvious that a strict regulation of miRNA-mRNA regulatory network is crucial for safeguarding cell health. Apart from the direct impact of miRNA dysregulation in cancer pathogenesis, genetic variations in miRNAs are likely to disrupt miRNA-target interaction. Indeed, many evidences suggested that SNPs within miRNA regulome are associated with the development of different hematological malignancies. However, a full catalog of SNPs within miRNAs target sites of genes relevant to hematopoiesis and hematological malignancies is still lacking. Accordingly, we aimed to systematically identify and characterize such SNPs and provide a prioritized list of most potentially disrupting SNPs. Although in the present study we did not address the functional significance of these potential disturbing variants, we believe that our compiled results will be valuable for researchers interested in determining the role of target-SNPs in the development of hematological malignancies.
Collapse
Affiliation(s)
- Hamid Ghaedi
- Medical Genetics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Bastami
- Medical Genetics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Zare-Abdollahi
- Medical Genetics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Alipoor
- Clinical Biochemistry Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Movafagh
- Medical Genetics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mirfakhraie
- Medical Genetics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Medical Genetics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Andrea Masotti
- Bambino Gesù Children's Hospital-IRCCS, Gene Expression - Microarrays Laboratory, V.le San Paolo 15, 00146 Rome, Italy.
| |
Collapse
|
28
|
Lee J, Müller P, Gulukota K, Ji Y. A Bayesian feature allocation model for tumor heterogeneity. Ann Appl Stat 2015. [DOI: 10.1214/15-aoas817] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Zhu X, Li J, He H, Huang M, Zhang X, Wang S. Application of nanomaterials in the bioanalytical detection of disease-related genes. Biosens Bioelectron 2015; 74:113-33. [PMID: 26134290 DOI: 10.1016/j.bios.2015.04.069] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/09/2015] [Accepted: 04/21/2015] [Indexed: 12/15/2022]
Abstract
In the diagnosis of genetic diseases and disorders, nanomaterials-based gene detection systems have significant advantages over conventional diagnostic systems in terms of simplicity, sensitivity, specificity, and portability. In this review, we describe the application of nanomaterials for disease-related genes detection in different methods excluding PCR-related method, such as colorimetry, fluorescence-based methods, electrochemistry, microarray methods, surface-enhanced Raman spectroscopy (SERS), quartz crystal microbalance (QCM) methods, and dynamic light scattering (DLS). The most commonly used nanomaterials are gold, silver, carbon and semiconducting nanoparticles. Various nanomaterials-based gene detection methods are introduced, their respective advantages are discussed, and selected examples are provided to illustrate the properties of these nanomaterials and their emerging applications for the detection of specific nucleic acid sequences.
Collapse
Affiliation(s)
- Xiaoqian Zhu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China
| | - Jiao Li
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China
| | - Hanping He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China.
| | - Min Huang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China
| |
Collapse
|
30
|
López-Cortés A, Echeverría C, Oña-Cisneros F, Sánchez ME, Herrera C, Cabrera-Andrade A, Rosales F, Ortiz M, Paz-Y-Miño C. Breast cancer risk associated with gene expression and genotype polymorphisms of the folate-metabolizing MTHFR gene: a case-control study in a high altitude Ecuadorian mestizo population. Tumour Biol 2015; 36:6451-61. [PMID: 25801246 DOI: 10.1007/s13277-015-3335-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/12/2015] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) is the leading cause of cancer-related death among women in 2014. Methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR), and MTR reductase (MTRR) are enzymes that play an important role in folate metabolism. The single nucleotide polymorphisms, MTHFR C677T, A1298C, MTR A2756G, and MTRR A66G, alter plasmatic folate and homocysteine concentrations, causing problems during the repairment, synthesis, and methylation of the genetic material. Therefore, it is essential to know how BC risk is associated with histopathological and immunohistochemical characteristics, genotype polymorphisms, and gene expression in a high altitude Ecuadorian mestizo population. DNA was extracted from 195 healthy and 114 affected women. Genotypes were determined by restriction enzymes and genomic sequencing. mRNA was extracted from 26 glandular breast tissue samples, both from cancerous tissue and healthy tissue adjacent to the tumor. Relative gene expression was determined with the comparative Livak method (2(-ΔΔCT)). We found significant association between the rs1801133 (A222V) genotypes and an increased risk of BC development: C/T (odds ratio [OR] = 1.8; 95 % confidence interval [CI] = 1.1-3.2; P = 0.039), T/T (OR = 2.9; 95 % CI = 1.2-7.2; P = 0.025), and C/T + T/T (OR = 1.9; 95 % CI = 1.1-3.3; P = 0.019). Regarding relative gene expression, we found significant mRNA subexpression between the combined genotypes C/T + T/T (rs1801133) and triple negative breast cancer (TNBC) (P = 0.034). In brief, the MTHFR gene and its protein could act as potential predictive biomarkers of BC, especially TNBC among the high altitude Ecuadorian mestizo population.
Collapse
Affiliation(s)
- Andrés López-Cortés
- Biomedical Research Institute, Faculty of Health Sciences, Universidad de las Americas, Avenue Granados E12-41 and Colimes Street, Quito, 170122, Ecuador,
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
LI J, HE H, PENG X, HUANG M, ZHANG X, WANG S. Electrochemical Investigation of Interaction between a Bifunctional Probe and GG Mismatch Duplex. ANAL SCI 2015; 31:663-7. [DOI: 10.2116/analsci.31.663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jiao LI
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University
| | - Hanping HE
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University
| | - Xiaoqian PENG
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University
| | - Min HUANG
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University
| | - Xiuhua ZHANG
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University
| | - Shengfu WANG
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University
| |
Collapse
|
32
|
Park JH, Park KS, Lee K, Jang H, Park HG. Universal probe amplification: multiplex screening technologies for genetic variations. Biotechnol J 2014; 10:45-55. [PMID: 25350275 DOI: 10.1002/biot.201400219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/04/2014] [Accepted: 09/25/2014] [Indexed: 11/06/2022]
Abstract
In order to achieve multiplex screening of genetic variations, multiplex amplification of target genomic DNA is necessary. Universal amplification technology meets this requirement by simultaneously amplifying a number of different regions within the target genomic DNA using a single pair of universal primers and thus eliminating the limitations associated with the use of multiple pairs of primers. We comprehensively review universal probe amplification and its use with multiplex technologies for the identification of the most representative genetic variation, i. e. single nucleotide polymorphisms. The progress and key issues relating to universal probe amplification are discussed and the representative technologies are summarized with an emphasis on their application for the identification of susceptibility to human diseases.
Collapse
Affiliation(s)
- Jung Hun Park
- Department of Chemical and Biomolecular Engineering, KAIST, Yuseong-gu, Daejeon, Republic of Korea
| | | | | | | | | |
Collapse
|
33
|
Wang Y, Sun C, Li T, Xu H, Zhou Y, Dan H, Jiang L, Zeng X, Li L, Li J, Liao G, Chen Q. Integrative approach detected association between genetic variants of microRNA binding sites of TLRs pathway genes and OSCC susceptibility in Chinese Han population. PLoS One 2014; 9:e101695. [PMID: 24999832 PMCID: PMC4085003 DOI: 10.1371/journal.pone.0101695] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 06/10/2014] [Indexed: 02/05/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a leading malignancy worldwide; the overall 5-year survival rate is approximately 50%. A variety of proteins in Toll-like receptors (TLRs) pathway have been related with the risk of OSCC. However, the influence of genetic variations in TLRs pathway genes on OSCC susceptibility is unclear. Previous studies mainly focused on the coding region of genes, while the UTR region remains unstudied. In the current study, a bioinformatics approach was performed to select candidate single nucleotide polymorphisms (SNPs) on microRNA binding sites of TLRs pathway genes related with OSCC. After screening 90 OSCC related TLRs pathway genes, 16 SNPs were selected for genotyping. We found that rs5030486, the polymorphisms on 3′ UTR of TRAF6, was significantly associated with OSCC risk. AG genotype of TRAF6 was strongly associated with a decreased risk of OSCC (OR = 0.252; 95% CI = 0.106, 0.598; p = 0.001). In addition, AG genotype was also related with a reduced risk of OSCC progression both in univariable analysis (HR = 0.303, 95% CI = 0.092, 0.995) and multivariable analysis (HR = 0.272, 95% CI = 0.082, 0.903). Furthermore, after detecting the mRNA expression level of TRAF6 in 24 OSCC patients, we found that TRAF6 expression level was significantly different between patients carrying different genotypes at locus rs5030486 (p = 0.013), indicating that rs5030486 of TRAF6 might contribute to OSCC risk by altering TRAF6 expression level. In general, these data indicated that SNP rs5030486 could be a potential bio-marker for OSCC risk and our results might provide new insights into the association of polymorphisms within the non-coding area of genes with cancers.
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chongkui Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Taiwen Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hao Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail: (GL); (JL)
| | - Ga Liao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail: (GL); (JL)
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Abstract
Three and a half million single nucleotide polymorphisms are now publicly available through the International HapMap project, enabling genetic and pharmacogenetic studies involving whole genome or comprehensive candidate gene association approaches. The cost/genotype for these studies has been driven down to levels unimagined only a few years ago albeit under particular conditions. Here, eight commonly used commercially available genotyping assays (TaqMan, SNPstream, SNPlex, hME/iPLEX, MIP, GenChip, Goldengate, Infinium I and II) are briefly presented and their particular strengths and weaknesses as well as their suitability for particular types of studies and the related costs are also discussed.:
Collapse
Affiliation(s)
- Jiannis Ragoussis
- Genomics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK OX3 7BN.
| |
Collapse
|
35
|
Gao ZF, Ling Y, Lu L, Chen NY, Luo HQ, Li NB. Detection of single-nucleotide polymorphisms using an ON-OFF switching of regenerated biosensor based on a locked nucleic acid-integrated and toehold-mediated strand displacement reaction. Anal Chem 2014; 86:2543-8. [PMID: 24527790 DOI: 10.1021/ac500362z] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although various strategies have been reported for single-nucleotide polymorphisms (SNPs) detection, development of a time-saving, specific, and regenerated electrochemical sensing platform still remains a realistic goal. In this study, an ON-OFF switching of a regenerated biosensor based on a locked nucleic acid (LNA)-integrated and toehold-mediated strand displacement reaction technique is constructed for detection of SNPs. The LNA-integrated and methylene blue-labeled capture probe with an external toehold is designed to switch on the sensing system. The mutant-type DNA probe completes complementary with the capture probe to trigger the strand displacement reaction, which switches off the sensing system. However, when the single-base mismatched wild-type DNA probe is presented, the strand displacement reaction cannot be achieved; therefore, the sensing system still keeps the ON state. This DNA sensor is stable over five reuses. We further testify that the LNA-integrated sequence has better recognition ability for SNPs detection compared to the DNA-integrated sequence. Moreover, this DNA senor exhibits a remarkable discrimination capability of SNPs among abundant wild-type targets and 6000-fold (m/m) excess of genomic DNA. In addition, it is selective enough in complex and contaminant-ridden samples, such as human urine, soil, saliva, and beer. Overall, these results demonstrate that this reliable DNA sensor is easy to be fabricated, simple to operate, and stable enough to be readily regenerated.
Collapse
Affiliation(s)
- Zhong Feng Gao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , 2, Tiansheng Road, BeiBei District, Chongqing 400715, P.R. China
| | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Joanne Mason
- West Midlands Regional Genetics Laboratory, Birmingham Women’s NHS Foundation Trust, Edgbaston, Birmingham, B15 2TG, UK
| | - Michael Griffiths
- West Midlands Regional Genetics Laboratory, Birmingham Women’s NHS Foundation Trust, Edgbaston, Birmingham, B15 2TG, UK
| |
Collapse
|
37
|
Chuang LY, Cheng YH, Yang CH, Yang CH. Associate PCR-RFLP Assay Design With SNPs Based on Genetic Algorithm in Appropriate Parameters Estimation. IEEE Trans Nanobioscience 2013; 12:119-27. [PMID: 23722280 DOI: 10.1109/tnb.2013.2258469] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Li-Yeh Chuang
- Department of Chemical Engineering & Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 84008, Taiwan.
| | | | | | | |
Collapse
|
38
|
Knez K, Janssen KPF, Spasic D, Declerck P, Vanysacker L, Denis C, Tran DT, Lammertyn J. Spherical Nucleic Acid Enhanced FO-SPR DNA Melting for Detection of Mutations in Legionella pneumophila. Anal Chem 2013; 85:1734-42. [DOI: 10.1021/ac303008f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Karel Knez
- BIOSYST—MeBioS, KU Leuven—University of Leuven, Willem De Croylaan
42, P.O. Box 2428, B-3001 Leuven, Belgium
| | - Kris P. F. Janssen
- BIOSYST—MeBioS, KU Leuven—University of Leuven, Willem De Croylaan
42, P.O. Box 2428, B-3001 Leuven, Belgium
| | - Dragana Spasic
- BIOSYST—MeBioS, KU Leuven—University of Leuven, Willem De Croylaan
42, P.O. Box 2428, B-3001 Leuven, Belgium
| | - Priscilla Declerck
- Laboratorium for Aquatic Ecology
en Evolutionary Biology, KU Leuven—University of Leuven, Charles Deberiotstraat 32, P.O. Box 2439,
B-3000 Leuven, Belgium
| | - Louise Vanysacker
- Centre for Surface Chemistry
and Catalysis, KU Leuven—University of Leuven, Kasteelpark Arenberg 23, P.O. Box 2461, B-3001 Heverlee, Belgium
| | - Carla Denis
- Laboratorium for Aquatic Ecology
en Evolutionary Biology, KU Leuven—University of Leuven, Charles Deberiotstraat 32, P.O. Box 2439,
B-3000 Leuven, Belgium
| | - Dinh T. Tran
- Department of Food Processing,
Faculty of Food Science and Technology, Hanoi University of Agriculture, 10000 Hanoi, Vietnam
| | - Jeroen Lammertyn
- BIOSYST—MeBioS, KU Leuven—University of Leuven, Willem De Croylaan
42, P.O. Box 2428, B-3001 Leuven, Belgium
| |
Collapse
|
39
|
Kong HK, Yoon S, Park JH. The regulatory mechanism of the LY6K gene expression in human breast cancer cells. J Biol Chem 2012; 287:38889-900. [PMID: 22988241 DOI: 10.1074/jbc.m112.394270] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
LY6K is a cancer biomarker and a therapeutic target that induces invasion and metastasis. However, the molecular mechanisms that determine human LY6K transcription are completely unknown. To elucidate the mechanisms involved in human LY6K gene regulation and expression, multiple cis-elements were predicted using TRANSFAC software, and the LY6K regulatory region was identified using the luciferase assay in the human LY6K gene promoter. We performed ChIP, EMSA, and supershift assays to investigate the transcription factor activity on the LY6K promoter, and the effect of a SNP and CpG site methylation on AP-1 transcription factor binding affinity. AP-1 and the CREB transcription factor bound to LY6K promoter within -550/-1, which was essential for LY6K expression, but only the AP-1 heterodimer, JunD, and Fra-1, modulates LY6K gene transcriptional level. A decrease in LY6K was associated with the SNP242 C allele, a polymorphic G/C-SNP at the 242 nucleotide in the LY6K promoter region (rs2585175), or methylation of the CpG site, which was closely located with the AP-1 site by interfering with binding of the AP-1 transcription factor to the LY6K promoter. Our findings reveal an important role for AP-1 activation in promoting LY6K gene expression that regulates cell mobility of breast cancer cells, whereas the SNP242 C allele or methylation of the CpG site may reduce the risk of invasion or metastasis by interfering AP-1 activation.
Collapse
Affiliation(s)
- Hyun Kyung Kong
- Department of Biological Science, Sookmyung Women's University, Chungpa-dong, Yongsan-gu, Seoul 140-742, Korea
| | | | | |
Collapse
|
40
|
Yang CH, Cheng YH, Yang CH, Chuang LY. Mutagenic primer design for mismatch PCR-RFLP SNP genotyping using a genetic algorithm. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2012; 9:837-845. [PMID: 22331864 DOI: 10.1109/tcbb.2012.25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) is useful in small-scale basic research studies of complex genetic diseases that are associated with single nucleotide polymorphism (SNP). Designing a feasible primer pair is an important work before performing PCR-RFLP for SNP genotyping. However, in many cases, restriction enzymes to discriminate the target SNP resulting in the primer design is not applicable. A mutagenic primer is introduced to solve this problem. GA-based Mismatch PCR-RFLP Primers Design (GAMPD) provides a method that uses a genetic algorithm to search for optimal mutagenic primers and available restriction enzymes from REBASE. In order to improve the efficiency of the proposed method, a mutagenic matrix is employed to judge whether a hypothetical mutagenic primer can discriminate the target SNP by digestion with available restriction enzymes. The available restriction enzymes for the target SNP are mined by the updated core of SNP-RFLPing. GAMPD has been used to simulate the SNPs in the human SLC6A4 gene under different parameter settings and compared with SNP Cutter for mismatch PCR-RFLP primer design. The in silico simulation of the proposed GAMPD program showed that it designs mismatch PCR-RFLP primers. The GAMPD program is implemented in JAVA and is freely available at http://bio.kuas.edu.tw/gampd/.
Collapse
Affiliation(s)
- Cheng-Hong Yang
- Department of Network Systems, Toko University, Chiayi, Taiwan.
| | | | | | | |
Collapse
|
41
|
Jiao A, Zheng J, Hu Y, Zhu G, Li J, Li H, Yang R, Tan W. Hybridization-triggered isothermal signal amplification coupled with MutS for label-free and sensitive fluorescent assay of SNPs. Chem Commun (Camb) 2012; 48:5659-61. [DOI: 10.1039/c2cc30882g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
42
|
Zhao ZY, San M, Duprey JLH, Arrand JR, Vyle JS, Tucker JH. Detection of single nucleotide polymorphisms within a sequence of a gene associated with prostate cancer using a fluorophore-tagged DNA probe. Bioorg Med Chem Lett 2012; 22:129-32. [DOI: 10.1016/j.bmcl.2011.11.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/13/2011] [Accepted: 11/14/2011] [Indexed: 12/25/2022]
|
43
|
Abstract
Abstract
Context.—Soft tissue pathology encompasses a remarkably diverse assortment of benign and malignant soft tissue tumors. Rendering a definitive diagnosis is complicated not only by the large volume of existing histologic subtypes (>100) but also frequently by the presence of overlapping clinical, histologic, immunohistochemical, and/or radiographic features. During the past 3 decades, mesenchymal tumor–specific, cytogenetic and molecular genetic abnormalities have demonstrated an increasingly important, ancillary role in mesenchymal tumor diagnostics.
Objectives.—To review molecular diagnostic tools available to the pathologist to further classify specific soft tissue tumor types and recurrent aberrations frequently examined. Advantages and limitations of individual approaches will also be highlighted.
Data Sources.—Previously published review articles, peer-reviewed research publications, and the extensive cytogenetic and molecular diagnostic experience of the authors to include case files of The University of Nebraska Medical Center.
Conclusions.—Cytogenetic and molecular genetic assays are used routinely for diagnostic purposes in soft tissue pathology and represent a powerful adjunct to complement conventional microscopy and clinicoradiographic evaluation in the formulation of an accurate diagnosis. Care should be taken, however, to recognize the limitations of these approaches. Ideally, more than one technical approach should be available to a diagnostic laboratory to compensate for the shortcomings of each approach in the assessment of individual specimens.
Collapse
|
44
|
Abstract
Identification and annotation of mutated genes or proteins involved in oncogenesis and tumor progression are crucial for both cancer biology and clinical applications. We have developed a human Cancer Proteome Variation Database (CanProVar) by integrating information on protein sequence variations from various public resources, with a focus on cancer-related variations (crVAR). We have also built a user-friendly interface for querying the database. The current version of CanProVar comprises 8,570 crVARs in 2,921 proteins derived from existing genome variation databases and recently published large-scale cancer genome resequencing studies. It also includes 41,541 non-cancer specific variations (ncsVARs) in 30,322 proteins derived from the dbSNP database. CanProVar provides quick access to known crVARs in protein sequences along with related cancer samples, relevant publications, data sources, and functional information such as Gene Ontology (GO) annotations for the proteins, protein domains in which the variation occurs, and protein interaction partners with crVARs. CanProVar also helps reveal functional characteristics of crVARs and proteins bearing these variations. Our analysis showed that crVARs were enriched in certain protein domains. We also showed that proteins bearing crVARs were more likely to interact with each other in the protein interaction network. CanProVar can be accessed from http://bioinfo.vanderbilt.edu/canprovar.
Collapse
Affiliation(s)
- Jing Li
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
45
|
Li J, Deng T, Chu X, Yang R, Jiang J, Shen G, Yu R. Rolling circle amplification combined with gold nanoparticle aggregates for highly sensitive identification of single-nucleotide polymorphisms. Anal Chem 2010; 82:2811-6. [PMID: 20192245 DOI: 10.1021/ac100336n] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A highly sensitive and specific colorimetry-based rolling circle amplification (RCA) assay method for single-nucleotide polymorphism genotyping has been developed. A circular template is generated by ligation upon the recognition of a point mutation on DNA targets. An RCA amplification is then initiated using the circular template in the presence of Phi29 polymerase. The RCA product can be digested by a restricting endonuclease, and the cleaved DNA fragments can mediate the aggregation of gold nanoparticle-tagged DNA probes. This causes a colorimetric change of the solution as the indicator of the mutation occurrence, which can be detected using UV-vis spectroscopy or viewed by naked eyes. On the basis of the high amplification efficiency of Phi29 polymerase, a mutated target of approximately 70 fM can be detected in this assay. In addition, the protection of the circle template using phosphorothioated nucleotides allows the digestion reaction to be performed simultaneously in RCA. Moreover, DNA ligase offers high fidelity in distinguishing the mismatched bases at the ligation site, resulting in positive detection of mutant targets even when the ratio of the wild-type to the mutant is 10,000:1. The developed RCA-based colorimetric detection scheme was demonstrated for SNP typing of beta-thalassemia gene at position -28 in genomic DNA.
Collapse
Affiliation(s)
- Jishan Li
- State Key Laboratory of Chem/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Sípová H, Springer T, Homola J. Streptavidin-enhanced assay for sensitive and specific detection of single nucleotide polymorphism in TP53. Anal Bioanal Chem 2010; 399:2343-50. [PMID: 20532484 DOI: 10.1007/s00216-010-3863-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/26/2010] [Accepted: 05/19/2010] [Indexed: 01/05/2023]
Abstract
This paper reports an approach to detection of single nucleotide polymorphism based on special amplification assay and surface plasmon resonance biosensor technology. In this assay, a part of the target DNA is recognized by a probe (probe A) coupled with streptavidin-oligonucleotide (SON) complexes ex situ, and when the mixture is injected in the sensor, another part of the target DNA is recognized by a DNA probe (probe B) immobilized on the sensor surface. To achieve high sensitivity and specificity, the assay is optimized in terms of composition of SON complexes, probe design, and assay temperature. It is demonstrated that this approach provides high specificity (no response to targets containing single-mismatched bases) and sensitivity (improves sensor response to perfectly matched oligonucleotides by one order of magnitude compared to the direct detection method). The assay is applied to detection of a short synthetic analogue of TP53 containing a "hot spot"-single nucleotide mismatch frequently mutated in germ line cancer-at levels down to 40 pM.
Collapse
Affiliation(s)
- Hana Sípová
- Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská, Prague, Czech Republic
| | | | | |
Collapse
|
47
|
Arif IA, Bakir MA, Khan HA, Al Farhan AH, Al Homaidan AA, Bahkali AH, Sadoon MA, Shobrak M. A brief review of molecular techniques to assess plant diversity. Int J Mol Sci 2010; 11:2079-96. [PMID: 20559503 PMCID: PMC2885095 DOI: 10.3390/ijms11052079] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/24/2010] [Accepted: 04/28/2010] [Indexed: 02/05/2023] Open
Abstract
Massive loss of valuable plant species in the past centuries and its adverse impact on environmental and socioeconomic values has triggered the conservation of plant resources. Appropriate identification and characterization of plant materials is essential for the successful conservation of plant resources and to ensure their sustainable use. Molecular tools developed in the past few years provide easy, less laborious means for assigning known and unknown plant taxa. These techniques answer many new evolutionary and taxonomic questions, which were not previously possible with only phenotypic methods. Molecular techniques such as DNA barcoding, random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), microsatellites and single nucleotide polymorphisms (SNP) have recently been used for plant diversity studies. Each technique has its own advantages and limitations. These techniques differ in their resolving power to detect genetic differences, type of data they generate and their applicability to particular taxonomic levels. This review presents a basic description of different molecular techniques that can be utilized for DNA fingerprinting and molecular diversity analysis of plant species.
Collapse
Affiliation(s)
| | | | - Haseeb A. Khan
- Author to whom correspondence should be addressed; E-Mail:
; Tel.: +966-1-4674-712
| | | | | | | | | | | |
Collapse
|
48
|
Konsoula Z. Toxicogenomics. Clin Toxicol (Phila) 2010. [DOI: 10.3109/9781420092264-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Morita Y, Ikegami K, Goto-Inoue N, Hayasaka T, Zaima N, Tanaka H, Uehara T, Setoguchi T, Sakaguchi T, Igarashi H, Sugimura H, Setou M, Konno H. Imaging mass spectrometry of gastric carcinoma in formalin-fixed paraffin-embedded tissue microarray. Cancer Sci 2010; 101:267-73. [PMID: 19961487 PMCID: PMC11158157 DOI: 10.1111/j.1349-7006.2009.01384.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The popularity of imaging mass spectrometry (IMS) of tissue samples, which enables the direct scanning of tissue sections within a short time-period, has been considerably increasing in cancer proteomics. Most pathological specimens stored in medical institutes are formalin-fixed; thus, they had been regarded to be unsuitable for proteomic analyses, including IMS, until recently. Here, we report an easy-to-use screening method that enables the analysis of multiple samples in one experiment without extractions and purifications of proteins. We scanned, with an IMS technique, a tissue microarray (TMA) of formalin-fixed paraffin-embedded (FFPE) specimens. We detected a large amount of signals from trypsin-treated FFPE-TMA samples of gastric carcinoma tissues of different histological types. Of the signals detected, 54 were classified as signals specific to cancer with statistically significant differences between adenocarcinomas and normal tissues. We detected a total of 14 of the 54 signals as histological type-specific with the support of statistical analyses. Tandem MS revealed that a signal specific to poorly differentiated cancer tissue corresponded to histone H4. Finally, we verified the IMS-based finding by immunohistochemical analysis of more than 300 specimens spotted on TMAs; the immunoreactivity of histone H4 was remarkably strong in poorly differentiated cancer tissues. Thus, the application of IMS to FFPE-TMA can enable high-throughput analysis in cancer proteomics to aid in the understanding of molecular mechanisms underlying carcinogenesis, invasiveness, metastasis, and prognosis. Further, results obtained from the IMS of FFPE-TMA can be readily confirmed by commonly used immunohistochemical analyses.
Collapse
Affiliation(s)
- Yoshifumi Morita
- Second Department of Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang Z, Wang X, Wang Y, Yang X. Distinction of single base mismatches in duplex DNA using methylene blue as optical indicator. Analyst 2010; 135:2960-4. [DOI: 10.1039/c0an00359j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|