1
|
Dong J, Arsang-Jang S, Zhang T, Chen Z, Bolon YT, Spellman S, Urrutia R, Auer P, Saber W. Prognostic impact of donor mitochondrial genomic variants in myelodysplastic neoplasms after stem-cell transplantation. J Hematol Oncol 2024; 17:104. [PMID: 39497145 PMCID: PMC11533675 DOI: 10.1186/s13045-024-01622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
Mitochondrial DNA (mtDNA) variants in patients with myelodysplastic neoplasms (MDS) are shown to be prognostic of outcomes after allogeneic hematopoietic cell transplantation (allo-HCT). However, the prognostic impact of donor mtDNA variants is unknown. Here, we performed whole-genome sequencing on 494 donors who were matched to MDS patients enrolled in the Center for International Blood and Marrow Transplant Research (CIBMTR). We evaluated the impact of donor mtDNA variants on recipients' transplantation outcomes, including overall survival, relapse, relapse-free survival, and transplant-related mortality. The optimism-adjusted bootstrap method was employed to evaluate the prognostic performance of models that include donor mtDNA variants alone and combined with MDS- and HCT-related clinical factors. In the entire donor cohort, we identified 1,825 mtDNA variants, including 67 potential pathogenic variants. Genetic variants on MT-CYB and MT-ND5 genes were identified as independent predictors of posttransplant outcomes. Integration of donor mtDNA variants into the models based on the International Prognostic Scoring System-Revised (IPSS-R) could capture more prognostic information for MDS patients. Sensitivity analysis in 397 unrelated donors obtained similar results. More importantly, we found that incorporating donor mtDNA variants with donor age and the degree of HLA-matching could help to identify "suboptimal" younger HLA-well-matched unrelated donors and "optimal" older HLA-partially/mismatched unrelated donors. Our study shows that mtDNA variants in donors, including those from unrelated donors, hold prognostic value for MDS patients undergoing allo-HCT and augment the prognostic stratification of current scoring systems. These findings present an opportunity to refine donor selection strategies and improve posttransplant outcomes for MDS patients.
Collapse
Affiliation(s)
- Jing Dong
- Division of Hematology Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, HRC 5860, Milwaukee, WI, 53226, USA.
- Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA.
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Shahram Arsang-Jang
- Division of Hematology Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, HRC 5860, Milwaukee, WI, 53226, USA
| | - Tao Zhang
- CIBMTR ® (Center for International Blood and Marrow Transplant Research), NMDP, Minneapolis, MN, USA
| | - Zhongyuan Chen
- Division of Biostatistics, Institute for Health & Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yung-Tsi Bolon
- CIBMTR ® (Center for International Blood and Marrow Transplant Research), NMDP, Minneapolis, MN, USA
| | - Stephen Spellman
- CIBMTR ® (Center for International Blood and Marrow Transplant Research), NMDP, Minneapolis, MN, USA
| | - Raul Urrutia
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Paul Auer
- Division of Biostatistics, Institute for Health & Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Cancer Center Biostatistics Shared Resource, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Wael Saber
- Division of Hematology Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, HRC 5860, Milwaukee, WI, 53226, USA
- Department of Medicine, CIBMTR® (Center for International Blood and Marrow Transplant Research), Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
2
|
Surya A, Bolton BM, Rothe R, Mejia-Trujillo R, Zhao Q, Leonita A, Liu Y, Rangan R, Gorusu Y, Nguyen P, Cenik C, Cenik ES. Cytosolic Ribosomal Protein Haploinsufficiency affects Mitochondrial Morphology and Respiration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589775. [PMID: 38659761 PMCID: PMC11042305 DOI: 10.1101/2024.04.16.589775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The interplay between ribosomal protein composition and mitochondrial function is essential for sustaining energy homeostasis. Precise stoichiometric production of ribosomal proteins is crucial to maximize protein synthesis efficiency while reducing the energy costs to the cell. However, the impact of this balance on mitochondrial ATP generation, morphology and function remains unclear. Particularly, the loss of a single copy ribosomal protein gene is observed in Mendelian disorders like Diamond Blackfan Anemia and is common in somatic tumors, yet the implications of this imbalance on mitochondrial function and energy dynamics are still unclear. In this study, we investigated the impact of haploinsufficiency for four ribosomal protein genes implicated in ribosomopathy disorders (rps-10, rpl-5, rpl-33, rps-23) in Caenorhabditis elegans and corresponding reductions in human lymphoblast cells. Our findings uncover significant, albeit variably penetrant, mitochondrial morphological differences across these mutants, alongside an upregulation of glutathione transferases, and SKN-1 dependent increase in oxidative stress resistance, indicative of increased ROS production. Specifically, loss of a single copy of rps-10 in C. elegans led to decreased mitochondrial activity, characterized by lower energy levels and reduced oxygen consumption. A similar reduction in mitochondrial activity and energy levels was observed in human leukemia cells with a 50% reduction in RPS10 transcript levels. Importantly, we also observed alterations in the translation efficiency of nuclear and mitochondrial electron transport chain components in response to reductions in ribosomal protein genes' expression in both C. elegans and human cells. This suggests a conserved mechanism whereby the synthesis of components vital for mitochondrial function are adjusted in the face of compromised ribosomal machinery. Finally, mitochondrial membrane and cytosolic ribosomal components exhibited significant covariation at the RNA and translation efficiency level in lymphoblastoid cells across a diverse group of individuals, emphasizing the interplay between the protein synthesis machinery and mitochondrial energy production. By uncovering the impact of ribosomal protein haploinsufficiency on the translation efficiency of electron transport chain components, mitochondrial physiology, and the adaptive stress responses, we provide evidence for an evolutionarily conserved strategy to safeguard cellular functionality under genetic stress.
Collapse
Affiliation(s)
- Agustian Surya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Blythe Marie Bolton
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Reed Rothe
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Raquel Mejia-Trujillo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Qiuxia Zhao
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Amanda Leonita
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Yue Liu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Rekha Rangan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Yasash Gorusu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Pamela Nguyen
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Elif Sarinay Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
3
|
Liu L, Li Y, Chen G, Chen Q. Crosstalk between mitochondrial biogenesis and mitophagy to maintain mitochondrial homeostasis. J Biomed Sci 2023; 30:86. [PMID: 37821940 PMCID: PMC10568841 DOI: 10.1186/s12929-023-00975-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
Mitochondrial mass and quality are tightly regulated by two essential and opposing mechanisms, mitochondrial biogenesis (mitobiogenesis) and mitophagy, in response to cellular energy needs and other cellular and environmental cues. Great strides have been made to uncover key regulators of these complex processes. Emerging evidence has shown that there exists a tight coordination between mitophagy and mitobiogenesis, and their defects may cause many human diseases. In this review, we will first summarize the recent advances made in the discovery of molecular regulations of mitobiogenesis and mitophagy and then focus on the mechanism and signaling pathways involved in the simultaneous regulation of mitobiogenesis and mitophagy in the response of tissue or cultured cells to energy needs, stress, or pathophysiological conditions. Further studies of the crosstalk of these two opposing processes at the molecular level will provide a better understanding of how the cell maintains optimal cellular fitness and function under physiological and pathophysiological conditions, which holds promise for fighting aging and aging-related diseases.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Yanjun Li
- Center of Cell Response, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Guo Chen
- Center of Cell Response, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Quan Chen
- Center of Cell Response, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
4
|
Prasad Panda S, Kesharwani A. Micronutrients/miRs/ATP networking in mitochondria: Clinical intervention with ferroptosis, cuproptosis, and calcium burden. Mitochondrion 2023; 71:1-16. [PMID: 37172668 DOI: 10.1016/j.mito.2023.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
The mitochondrial electron transport chain (mtETC) requires mainly coenzyme Q10 (CoQ10), copper (Cu2+), calcium (Ca2+), and iron (Fe2+) ions for efficient ATP production. According to cross-sectional research, up to 50% of patients with micronutrient imbalances have been linked to oxidative stress, mitochondrial dysfunction, reduced ATP production, and the prognosis of various diseases. The condition of ferroptosis, which is caused by the downregulation of CoQ10 and the activation of non-coding micro RNAs (miRs), is strongly linked to free radical accumulation, cancer, and neurodegenerative diseases. The entry of micronutrients into the mitochondrial matrix depends upon the higher threshold level of mitochondrial membrane potential (ΔΨm), and high cytosolic micronutrients. The elevated micronutrient in the mitochondrial matrix causes the utilization of all ATP, leading to a drop in ATP levels. Mitochondrial calcium uniporter (MCU) and Na+/Ca2+ exchanger (NCX) play a major role in Ca2+ influx in the mitochondrial matrix. The mitochondrial Ca2+ overload is regulated by specific miRs such as miR1, miR7, miR25, miR145, miR138, and miR214, thereby reducing apoptosis and improving ATP production. Cuproptosis is primarily brought on by increased Cu+ build-up and mitochondrial proteotoxic stress, mediated by ferredoxin-1 (FDX1) and long non-coding RNAs. Cu importers (SLC31A1) and exporters (ATP7B) influence intracellular Cu2+ levels to control cuproptosis. According to literature reviews, very few randomized micronutrient interventions have been carried out, despite the identification of a high prevalence of micronutrient deficiencies. In this review, we concentrated on essential micronutrients and specific miRs associated with ATP production that balance oxidative stress in mitochondria.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
5
|
Mitochondria: Emerging Consequential in Sickle Cell Disease. J Clin Med 2023; 12:jcm12030765. [PMID: 36769414 PMCID: PMC9917941 DOI: 10.3390/jcm12030765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Advanced mitochondrial multi-omics indicate a multi-facet involvement of mitochondria in the physiology of the cell, changing the perception of mitochondria from being just the energy-generating organelles to organelles that highly influence cell structure, function, signaling, and cell fate. This sets mitochondrial dysfunction in the centerstage of numerous acquired and genetic diseases. Sickle cell disease is also being increasingly associated with mitochondrial anomalies and the pathophysiology of sickle cell disease finds mitochondria at crucial intersections in the pathological cascade. Altered mitophagy, increased ROS, and mitochondrial DNA all contribute to the condition and its severity. Such mitochondrial aberrations lead to consequent mitochondrial retention in red blood cells in sickle cell diseases, increased oxidation in the cellular environment, inflammation, worsened vaso-occlusive crisis, etc. There are increasing studies indicating mitochondrial significance in sickle cell disease, consequently providing an opportunity to target it for improving the outcomes of treatment. Identification of the impaired mitochondrial attributes in sickle cell disease and their modulation by therapeutic interventions can impart a better management of the disease. This review aims to describe the mitochondria in the perspective of sicke cell disease so as to provide the reader an overview of the emerging mitochondrial stance in sickle cell disease.
Collapse
|
6
|
Dussouchaud A, Jacob J, Secq C, Verbavatz JM, Moras M, Larghero J, Fader CM, Ostuni MA, Lefevre SD. Transmission Electron Microscopy to Follow Ultrastructural Modifications of Erythroblasts Upon ex vivo Human Erythropoiesis. Front Physiol 2022; 12:791691. [PMID: 35222062 PMCID: PMC8864112 DOI: 10.3389/fphys.2021.791691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/23/2021] [Indexed: 01/02/2023] Open
Abstract
Throughout mammal erythroid differentiation, erythroblasts undergo enucleation and organelle clearance becoming mature red blood cell. Organelles are cleared by autophagic pathways non-specifically targeting organelles and cytosolic content or by specific mitophagy targeting mitochondria. Mitochondrial functions are essential to coordinate metabolism reprogramming, cell death, and differentiation balance, and also synthesis of heme, the prosthetic group needed in hemoglobin assembly. In mammals, mitochondria subcellular localization and mitochondria interaction with other structures as endoplasmic reticulum and nucleus might be of importance for the removal of the nucleus, that is, the enucleation. Here, we aim to characterize by electron microscopy the changes in ultrastructure of cells over successive stages of human erythroblast differentiation. We focus on mitochondria to gain insights into intracellular localization, ultrastructure, and contact with other organelles. We found that mitochondria are progressively cleared with a significant switch between PolyE and OrthoE stages, acquiring a rounded shape and losing contact sites with both ER (MAM) and nucleus (NAM). We studied intracellular vesicle trafficking and found that endosomes and MVBs, known to be involved in iron traffic and heme synthesis, are increased during BasoE to PolyE transition; autophagic structures such as autophagosomes increase from ProE to OrthoE stages. Finally, consistent with metabolic switch, glycogen accumulation was observed in OrthoE stage.
Collapse
Affiliation(s)
- Alice Dussouchaud
- Université de Paris and Université des Antilles, INSERM, BIGR, Paris, France
| | - Julieta Jacob
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Charles Secq
- Université de Paris and Université des Antilles, INSERM, BIGR, Paris, France
| | | | - Martina Moras
- Université de Paris and Université des Antilles, INSERM, BIGR, Paris, France
| | - Jérôme Larghero
- CNRS, UMR 7592, Institut Jacques Monod, Université de Paris, Paris, France
| | - Claudio M. Fader
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Mariano A. Ostuni
- Université de Paris and Université des Antilles, INSERM, BIGR, Paris, France
| | - Sophie D. Lefevre
- Université de Paris and Université des Antilles, INSERM, BIGR, Paris, France
- *Correspondence: Sophie D. Lefevre,
| |
Collapse
|
7
|
Simmons WR, Wain L, Toker J, Jagadeesh J, Garrett LJ, Pek RH, Hamza I, Bodine DM. Normal Iron Homeostasis Requires the Transporter SLC48A1 for Efficient Heme-Iron Recycling in Mammals. Front Genome Ed 2021; 2:8. [PMID: 34713217 PMCID: PMC8525403 DOI: 10.3389/fgeed.2020.00008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/29/2020] [Indexed: 11/30/2022] Open
Abstract
In mammals over 65% of the total body iron is located within erythrocytes in the heme moieties of hemoglobin. Iron homeostasis requires iron absorbed from the diet by the gut as well as recycling of iron after the destruction of senescent erythrocytes. Senescent erythrocytes are engulfed by reticuloendothelial system macrophages where hemoglobin is broken down in the lysosomes, releasing heme for iron recovery in the cytoplasm. We recently showed that the SLC48A1 protein is responsible for transporting heme from the lysosome to the cytoplasm. CRISPR generated SLC48A1-deficient mice accumulate heme in their reticuloendothelial system macrophages as hemozoin crystals. Here we describe additional features of SLC48A1-deficient mice. We show that visible hemozoin first appears in the reticuloendothelial system macrophages of SLC48A1-deficient mice at 8 days of age, indicating the onset of erythrocyte recycling. Evaluation of normal and SLC48A1-deficient mice on iron-controlled diets show that SLC48A1-mediated iron recycling is equivalent to at least 10 parts per million of dietary iron. We propose that mutations in human SLC48A1 could contribute to idiopathic iron disorders.
Collapse
Affiliation(s)
- William R Simmons
- Hematopoiesis Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute (NHGRI), Bethesda, MD, United States
| | - Lily Wain
- Hematopoiesis Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute (NHGRI), Bethesda, MD, United States
| | - Joseph Toker
- Hematopoiesis Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute (NHGRI), Bethesda, MD, United States
| | - Jaya Jagadeesh
- Hematopoiesis Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute (NHGRI), Bethesda, MD, United States
| | - Lisa J Garrett
- National Human Genome Research Institute (NHGRI) Embryonic Stem Cell and Transgenic Mouse Core Facility, Bethesda, MD, United States
| | - Rini H Pek
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, United States
| | - Iqbal Hamza
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, United States
| | - David M Bodine
- Hematopoiesis Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute (NHGRI), Bethesda, MD, United States
| |
Collapse
|
8
|
Ruiz LM, Libedinsky A, Elorza AA. Role of Copper on Mitochondrial Function and Metabolism. Front Mol Biosci 2021; 8:711227. [PMID: 34504870 PMCID: PMC8421569 DOI: 10.3389/fmolb.2021.711227] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Copper is essential for life processes like energy metabolism, reactive oxygen species detoxification, iron uptake, and signaling in eukaryotic organisms. Mitochondria gather copper for the assembly of cuproenzymes such as the respiratory complex IV, cytochrome c oxidase, and the antioxidant enzyme superoxide dismutase 1. In this regard, copper plays a role in mitochondrial function and signaling involving bioenergetics, dynamics, and mitophagy, which affect cell fate by means of metabolic reprogramming. In mammals, copper homeostasis is tightly regulated by the liver. However, cellular copper levels are tissue specific. Copper imbalances, either overload or deficiency, have been associated with many diseases, including anemia, neutropenia, and thrombocytopenia, as well as tumor development and cancer aggressivity. Consistently, new pharmacological developments have been addressed to reduce or exacerbate copper levels as potential cancer therapies. This review goes over the copper source, distribution, cellular uptake, and its role in mitochondrial function, metabolic reprograming, and cancer biology, linking copper metabolism with the field of regenerative medicine and cancer.
Collapse
Affiliation(s)
- Lina M Ruiz
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Allan Libedinsky
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Alvaro A Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
9
|
Decreased PGC1β expression results in disrupted human erythroid differentiation, impaired hemoglobinization and cell cycle exit. Sci Rep 2021; 11:17129. [PMID: 34429458 PMCID: PMC8385110 DOI: 10.1038/s41598-021-96585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/10/2021] [Indexed: 11/08/2022] Open
Abstract
Production of red blood cells relies on proper mitochondrial function, both for their increased energy demands during differentiation and for proper heme and iron homeostasis. Mutations in genes regulating mitochondrial function have been reported in patients with anemia, yet their pathophysiological role often remains unclear. PGC1β is a critical coactivator of mitochondrial biogenesis, with increased expression during terminal erythroid differentiation. The role of PGC1β has however mainly been studied in skeletal muscle, adipose and hepatic tissues, and its function in erythropoiesis remains largely unknown. Here we show that perturbed PGC1β expression in human hematopoietic stem/progenitor cells from both bone marrow and cord blood results in impaired formation of early erythroid progenitors and delayed terminal erythroid differentiation in vitro, with accumulations of polychromatic erythroblasts, similar to MDS-related refractory anemia. Reduced levels of PGC1β resulted in deregulated expression of iron, heme and globin related genes in polychromatic erythroblasts, and reduced hemoglobin content in the more mature bone marrow derived reticulocytes. Furthermore, PGC1β knock-down resulted in disturbed cell cycle exit with accumulation of erythroblasts in S-phase and enhanced expression of G1-S regulating genes, with smaller reticulocytes as a result. Taken together, we demonstrate that PGC1β is directly involved in production of hemoglobin and regulation of G1-S transition and is ultimately required for proper terminal erythroid differentiation.
Collapse
|
10
|
Panici B, Nakajima H, Carlston CM, Ozadam H, Cenik C, Cenik ES. Loss of coordinated expression between ribosomal and mitochondrial genes revealed by comprehensive characterization of a large family with a rare Mendelian disorder. Genomics 2021; 113:1895-1905. [PMID: 33862179 PMCID: PMC8266734 DOI: 10.1016/j.ygeno.2021.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022]
Abstract
Non-canonical intronic variants are a poorly characterized yet highly prevalent class of alterations associated with Mendelian disorders. Here, we report the first RNA expression and splicing analysis from a family whose members carry a non-canonical splice variant in an intron of RPL11 (c.396 +3A>G). This mutation is causative for Diamond Blackfan Anemia (DBA) in this family despite incomplete penetrance and variable expressivity. Our analyses revealed a complex pattern of disruptions with many novel junctions of RPL11. These include an RPL11 transcript that is translated with a late stop codon in the 3' untranslated region (3'UTR) of the main isoform. We observed that RPL11 transcript abundance is comparable among carriers regardless of symptom severity. Interestingly, both the small and large ribosomal subunit transcripts were significantly overexpressed in individuals with a history of anemia in addition to congenital abnormalities. Finally, we discovered that coordinated expression between mitochondrial components and RPL11 was lost in all carriers, which may lead to variable expressivity. Overall, this study highlights the importance of RNA splicing and expression analyses in families for molecular characterization of Mendelian diseases.
Collapse
Affiliation(s)
- Brendan Panici
- Department of Molecular Biosciences, University of Texas at Austin, Austin, USA.
| | - Hosei Nakajima
- Department of Molecular Biosciences, University of Texas at Austin, Austin, USA
| | | | - Hakan Ozadam
- Department of Molecular Biosciences, University of Texas at Austin, Austin, USA.
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, USA.
| | - Elif Sarinay Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, USA.
| |
Collapse
|
11
|
Gonzalez-Ibanez AM, Ruiz LM, Jensen E, Echeverria CA, Romero V, Stiles L, Shirihai OS, Elorza AA. Erythroid Differentiation and Heme Biosynthesis Are Dependent on a Shift in the Balance of Mitochondrial Fusion and Fission Dynamics. Front Cell Dev Biol 2020; 8:592035. [PMID: 33330472 PMCID: PMC7719720 DOI: 10.3389/fcell.2020.592035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Erythropoiesis is the most robust cellular differentiation and proliferation system, with a production of ∼2 × 1011 cells per day. In this fine-tuned process, the hematopoietic stem cells (HSCs) generate erythroid progenitors, which proliferate and mature into erythrocytes. During erythropoiesis, mitochondria are reprogrammed to drive the differentiation process before finally being eliminated by mitophagy. In erythropoiesis, mitochondrial dynamics (MtDy) are expected to be a key regulatory point that has not been described previously. We described that a specific MtDy pattern occurs in human erythropoiesis from EPO-induced human CD34+ cells, characterized predominantly by mitochondrial fusion at early stages followed by fission at late stages. The fusion protein MFN1 and the fission protein FIS1 are shown to play a key role in the progression of erythropoiesis. Fragmentation of the mitochondrial web by the overexpression of FIS1 (gain of fission) resulted in both the inhibition of hemoglobin biosynthesis and the arrest of erythroid differentiation, keeping cells in immature differentiation stages. These cells showed specific mitochondrial features as compared with control cells, such as an increase in round and large mitochondrial morphology, low mitochondrial membrane potential, a drop in the expression of the respiratory complexes II and IV and increased ROS. Interestingly, treatment with the mitochondrial permeability transition pore (mPTP) inhibitor, cyclosporin A, rescued mitochondrial morphology, hemoglobin biosynthesis and erythropoiesis. Studies presented in this work reveal MtDy as a hot spot in the control of erythroid differentiation, which might signal downstream for metabolic reprogramming through regulation of the mPTP.
Collapse
Affiliation(s)
- Alvaro M Gonzalez-Ibanez
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Lina M Ruiz
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Erik Jensen
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | | | - Valentina Romero
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Linsey Stiles
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alvaro A Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
12
|
Jun SM, Park M, Lee JY, Jung S, Lee JE, Shim SH, Song H, Lee DR. Single cell-derived clonally expanded mesenchymal progenitor cells from somatic cell nuclear transfer-derived pluripotent stem cells ameliorate the endometrial function in the uterus of a murine model with Asherman's syndrome. Cell Prolif 2019; 52:e12597. [PMID: 30896075 PMCID: PMC6536448 DOI: 10.1111/cpr.12597] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/20/2019] [Accepted: 02/12/2019] [Indexed: 12/24/2022] Open
Abstract
Objectives Because primary mesenchymal progenitor cells (adult‐MPCs) have various functions that depend on the tissue origin and donor, de novo MPCs from human pluripotent stem cells (hPSCs) would be required in regenerative medicine. However, the characteristics and function of MPCs derived from reprogrammed hPSCs have not been well studied. Thus, we show that functional MPCs can be successfully established from a single cell‐derived clonal expansion following MPC derivation from somatic cell nuclear transfer‐derived (SCNT)‐hPSCs, and these cells can serve as therapeutic contributors in an animal model of Asherman's syndrome (AS). Materials and methods We developed single cell‐derived clonal expansion following MPC derivation from SCNT‐hPSCs to offer a pure population and a higher biological activity. Additionally, we investigated the therapeutic effects of SCNT‐hPSC‐MPCs in model mice of Asherman's syndrome (AS), which is characterized by synechiae or fibrosis with endometrial injury. Results Their humoral effects in proliferating host cells encouraged angiogenesis and decreased pro‐inflammatory factors via a host‐dependent mechanism, resulting in reduction in AS. We also addressed that cellular activities such as the cell proliferation and population doubling of SCNT‐hPSC‐MPCs resemble those of human embryonic stem cell‐derived MPCs (hESC‐MPCs) and are much higher than those of adult‐MPCs. Conclusions Somatic cell nuclear transfer‐derived‐hPSCs‐MPCs could be an advanced therapeutic strategy for specific diseases in the field of regenerative medicine.
Collapse
Affiliation(s)
- Sung-Min Jun
- CHA Advanced Research Institute, Seongnam, Korea
| | - Mira Park
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Ji Yoon Lee
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | | | | | - Sung Han Shim
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Haengseok Song
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Dong Ryul Lee
- CHA Advanced Research Institute, Seongnam, Korea.,Department of Biomedical Science, CHA University, Seongnam, Korea
| |
Collapse
|
13
|
Congenital sideroblastic anemia: Advances in gene mutations and pathophysiology. Gene 2018; 668:182-189. [DOI: 10.1016/j.gene.2018.05.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/18/2018] [Indexed: 01/19/2023]
|
14
|
Uncoupling of CD71 shedding with mitochondrial clearance in reticulocytes in a subset of myelodysplastic syndromes. Leukemia 2018; 33:217-229. [PMID: 30050123 DOI: 10.1038/s41375-018-0204-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/11/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022]
Abstract
Reticulocytes shed CD71 from the cell membrane and eliminate mitochondria during terminal maturation, but it is unknown whether these two events are coordinated. We demonstrate that timely removal of CD71 is coupled with mitochondrial clearance, which can be disrupted by null mutation of immediate early response gene X-1 (IEX-1), leading to generation of aberrant CD71-positive and mitochondria-negative (CD71+Mito-) reticulocytes. CD71+Mito- reticulocytes were also present in a subset of patients with myelodysplastic syndromes (MDS) in direct proportion to reduced mitochondrial membrane potential (∆ψm). Mitochondrial abnormality caused by either IEX-1 deficiency or agents that dissipate ∆ψm could trigger premature clearance of mitochondria in reticulocytes. Premature clearance of mitochondria or addition of anti-oxidants lowered intracellular reactive oxygen species (ROS) that in turn hindered CD71 shedding and reticulocyte maturation. In contrast, introduction of ROS accelerated CD71 shedding via release of exosomes that contained a high proportion of Fe3+ over Fe2+, suggesting dual functions of CD71 shedding both in removal of toxic Fe3+ from reticulocytes and in limiting importation of Fe3+ into the cells. These observations emphasize the coordination of mitochondrial and CD71 clearance in erythroid terminal maturation and offer new insights into a role for mitochondrial degeneration in the pathogenesis of some MDS-associated anemia.
Collapse
|
15
|
Jia Z, Wang M, Wang X, Wang L, Qiu L, Song L. Transcriptome sequencing reveals the involvement of reactive oxygen species in the hematopoiesis from Chinese mitten crab Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 82:94-103. [PMID: 29307815 DOI: 10.1016/j.dci.2017.12.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 06/07/2023]
Abstract
Reactive oxygen species (ROS) produced in vivo during various electron transfer reactions are generally kept at a certain level since they are harmful to cells. However, it can sensitize hematopoietic progenitors to differentiation, and plays a signaling role in the regulation of hematopoietic cell fate. In the present study, the transcriptomes of crab HPT and hemocytes were sequenced using the Ion Torrent Proton sequencing platform. A total of 51,229,690 single end reads were obtained from six single-end libraries, which were assembled into 31346 unireads as reference. After mapping and transcript assembling, 362 differently expressed genes were identified and 301 of them were deemed to be more abundant in HPT. GO annotation revealed that they were mostly implicated in DNA, RNA and protein synthesis, cell division, mitochondria activities and energy metabolism. The expression level of mitochondrial complexes I (mitochondrial NADH-ubiquinone oxidoreductase) which was the main natural producers of mitochondrial ROS was found to be 8.6-fold (p < 0.01) higher in HPT than that in hemocytes. In hemocytes, the proteinase genes associated with proPO activation from the 61 up-regulated genes in hemocytes were the main up-regulated genes which might be the potential markers for mature hemocytes. ROS level in HPT cells was relatively higher which was confirmed with the high expression level of mitochondria related genes identified by transcriptome sequencing. After the ROS level was depressed by N-acetyl-l-cysteine (NAC), the production of hemocytes from HPT was inhibited, and the recovery of the total hemocytes counts was delayed. These results collectively indicated that the genes in redox system were more active in HPT, and ROS could function as an important modulator in the hematopoiesis of crab and promote the production of hemocytes from HPT.
Collapse
Affiliation(s)
- Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiudan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Linsheng Song
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Bakshi NA, Al-Anzi T, Mohamed SY, Rahbeeni Z, AlSayed M, Al-Owain M, Sulaiman RA. Spectrum of bone marrow pathology and hematological abnormalities in methylmalonic acidemia. Am J Med Genet A 2018; 176:687-691. [DOI: 10.1002/ajmg.a.38599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/06/2017] [Accepted: 12/12/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Nasir A. Bakshi
- Section of Hematopathology; Department of Pathology and Laboratory Medicine; King Faisal Specialist Hospital and Research Center; Riyadh Saudi Arabia
| | - Talal Al-Anzi
- Department of Medical Genetics; King Faisal Specialist Hospital and Research Center; Riyadh Saudi Arabia
| | - Said Y. Mohamed
- Department of Hematology and Bone Marrow Transplantation; King Faisal Specialist Hospital and Research Center; Riyadh Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Medical Genetics; King Faisal Specialist Hospital and Research Center; Riyadh Saudi Arabia
- College of Medicine; Alfaisal University; Riyadh Saudi Arabia
| | - Moeen AlSayed
- Department of Medical Genetics; King Faisal Specialist Hospital and Research Center; Riyadh Saudi Arabia
- College of Medicine; Alfaisal University; Riyadh Saudi Arabia
| | - Mohammed Al-Owain
- Department of Medical Genetics; King Faisal Specialist Hospital and Research Center; Riyadh Saudi Arabia
- College of Medicine; Alfaisal University; Riyadh Saudi Arabia
| | - Raashda A. Sulaiman
- Department of Medical Genetics; King Faisal Specialist Hospital and Research Center; Riyadh Saudi Arabia
- College of Medicine; Alfaisal University; Riyadh Saudi Arabia
| |
Collapse
|
17
|
Hikmat O, Tzoulis C, Klingenberg C, Rasmussen M, Tallaksen CME, Brodtkorb E, Fiskerstrand T, McFarland R, Rahman S, Bindoff LA. The presence of anaemia negatively influences survival in patients with POLG disease. J Inherit Metab Dis 2017; 40:861-866. [PMID: 28865037 DOI: 10.1007/s10545-017-0084-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Mitochondria play an important role in iron metabolism and haematopoietic cell homeostasis. Recent studies in mice showed that a mutation in the catalytic subunit of polymerase gamma (POLG) was associated with haematopoietic dysfunction including anaemia. The aim of this study was to analyse the frequency of anaemia in a large cohort of patients with POLG related disease. METHODS We conducted a multi-national, retrospective study of 61 patients with confirmed, pathogenic biallelic POLG mutations from six centres, four in Norway and two in the United Kingdom. Clinical, laboratory and genetic data were collected using a structured questionnaire. Anaemia was defined as an abnormally low haemoglobin value adjusted for age and sex. Univariate survival analysis was performed using log-rank test to compare differences in survival time between categories. RESULTS Anaemia occurred in 67% (41/61) of patients and in 23% (14/61) it was already present at clinical presentation. The frequency of anaemia in patients with early onset disease including Alpers syndrome and myocerebrohepatopathy spectrum (MCHS) was high (72%) and 35% (8/23) of these had anaemia at presentation. Survival analysis showed that the presence of anaemia was associated with a significantly worse survival (P = 0.004). CONCLUSION Our study reveals that anaemia can be a feature of POLG-related disease. Further, we show that its presence is associated with significantly worse prognosis either because anaemia itself is impacting survival or because it reflects the presence of more serious disease. In either case, our data suggests anaemia is a marker for negative prognosis.
Collapse
Affiliation(s)
- Omar Hikmat
- Department of Pediatrics, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - Charalampos Tzoulis
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
| | - Claus Klingenberg
- Department of Paediatric and Adolescent Medicine, University Hospital of North Norway, Tromsø, Norway
- Paediatric Research Group, Department of Clinical Medicine, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Magnhild Rasmussen
- Women and Children's Division, Department of Clinical Neurosciences for Children, Oslo University Hospital, Oslo, Norway
- Unit for Congenital and Hereditary Neuromuscular Disorders, Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Chantal M E Tallaksen
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Eylert Brodtkorb
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olav's University Hospital, Trondheim, Norway
| | - Torunn Fiskerstrand
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science (K2), University of Bergen, Bergen, Norway
| | - Robert McFarland
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School Framlington Place, Newcastle University, Newcastle upon Tyne, UK
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
- Metabolic Unit, Great Ormond Street Hospital NHS Foundation trust, London, UK
| | - Laurence A Bindoff
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway.
- Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway.
| |
Collapse
|
18
|
Abstract
INTRODUCTION This study aimed to assess the kind of haematological abnormalities that are present in patients with mitochondrial disorders (MIDs) and the frequency of their occurrence. METHODS The blood cell counts of a cohort of patients with syndromic and non-syndromic MIDs were retrospectively reviewed. MIDs were classified as 'definite', 'probable' or 'possible' according to clinical presentation, instrumental findings, immunohistological findings on muscle biopsy, biochemical abnormalities of the respiratory chain and/or the results of genetic studies. Patients who had medical conditions other than MID that account for the haematological abnormalities were excluded. RESULTS A total of 46 patients ('definite' = 5; 'probable' = 9; 'possible' = 32) had haematological abnormalities attributable to MIDs. The most frequent haematological abnormality in patients with MIDs was anaemia. 27 patients had anaemia as their sole haematological problem. Anaemia was associated with thrombopenia (n = 4), thrombocytosis (n = 2), leucopenia (n = 2), and eosinophilia (n = 1). Anaemia was hypochromic and normocytic in 27 patients, hypochromic and microcytic in six patients, hyperchromic and macrocytic in two patients, and normochromic and microcytic in one patient. Among the 46 patients with a mitochondrial haematological abnormality, 78.3% had anaemia, 13.0% had thrombopenia, 8.7% had leucopenia and 8.7% had eosinophilia, alone or in combination with other haematological abnormalities. CONCLUSION MID should be considered if a patient's abnormal blood cell counts (particularly those associated with anaemia, thrombopenia, leucopenia or eosinophilia) cannot be explained by established causes. Abnormal blood cell counts may be the sole manifestation of MID or a collateral feature of a multisystem problem.
Collapse
Affiliation(s)
| | - Marlies Frank
- First Medical Department, Krankenanstalt Rudolfstiftung, Austria
| |
Collapse
|
19
|
Sensitivity of hematopoietic stem cells to mitochondrial dysfunction by SdhD gene deletion. Cell Death Dis 2016; 7:e2516. [PMID: 27929539 PMCID: PMC5261010 DOI: 10.1038/cddis.2016.411] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/25/2016] [Accepted: 11/07/2016] [Indexed: 02/07/2023]
Abstract
It is established that hematopoietic stem cells (HSC) in the hypoxic bone marrow have adapted their metabolism to oxygen-limiting conditions. This adaptation includes suppression of mitochondrial activity, induction of anerobic glycolysis, and activation of hypoxia-inducible transcription factor 1α (Hif1α)-dependent gene expression. During progression of hematopoiesis, a metabolic switch towards mitochondrial oxidative phosphorylation is observed, making this organelle essential for determining cell fate choice in bone marrow. However, given that HSC metabolism is essentially oxygen-independent, it is still unclear whether functional mitochondria are absolutely required for their survival. To assess the actual dependency of these undifferentiated cells on mitochondrial function, we have performed an analysis of the hematopoiesis in a mouse mutant, named SDHD-ESR, with inducible deletion of the mitochondrial protein-encoding SdhD gene. This gene encodes one of the subunits of the mitochondrial complex II (MCII). In this study, we demonstrate that, in contrast to what has been previously established, survival of HSC, and also myeloid and B-lymphoid progenitors, depends on proper mitochondrial activity. In addition, gene expression analysis of these hematopoietic lineages in SDHD-ESR mutants calls into question the proposed activation of Hif1α in response to MCII dysfunction.
Collapse
|
20
|
Wen XR, Tang M, Qi DS, Huang XJ, Liu HZ, Zhang F, Wu J, Wang YW, Zhang XB, Guo JQ, Wang SL, Liu Y, Wang YL, Song YJ. Butylphthalide Suppresses Neuronal Cells Apoptosis and Inhibits JNK-Caspase3 Signaling Pathway After Brain Ischemia /Reperfusion in Rats. Cell Mol Neurobiol 2016; 36:1087-95. [PMID: 27015680 DOI: 10.1007/s10571-015-0302-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/06/2015] [Indexed: 12/14/2022]
Abstract
Although Butylphthalide (BP) has protective effects that reduce ischemia-induced brain damage and neuronal cell death, little is known about the precise mechanisms occurring during cerebral ischemia/reperfusion (I/R). Therefore, the aim of this study was to investigate the neuroprotective mechanisms of BP against ischemic brain injury induced by cerebral I/R through inhibition of the c-Jun N-terminal kinase (JNK)-Caspase3 signaling pathway. BP in distilled non-genetically modified Soybean oil was administered intragastrically three times a day at a dosage of 15 mg/(kg day) beginning at 20 min after I/R in Sprague-Dawley rats. Immunohistochemical staining and Western blotting were performed to examine the expression of related proteins, and TUNEL-staining was used to detect the percentage of neuronal apoptosis in the hippocampal CA1 region. The results showed that BP could significantly protect neurons against cerebral I/R-induced damage. Furthermore, the expression of p-JNK, p-Bcl2, p-c-Jun, FasL, and cleaved-caspase3 was also decreased in the rats treated with BP. In summary, our results imply that BP could remarkably improve the survival of CA1 pyramidal neurons in I/R-induced brain injury and inhibit the JNK-Caspase3 signaling pathway.
Collapse
Affiliation(s)
- Xiang-Ru Wen
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, People's Republic of China
- School of Basic Education Sciences, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Man Tang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, People's Republic of China
- Department of Anatomy, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Da-Shi Qi
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, People's Republic of China
- Department of Genetics, Research Center for Neurobiology, Xuzhou Medical College, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Xiao-Jing Huang
- School of Public Health, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Hong-Zhi Liu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Fang Zhang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Jian Wu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Yi-Wen Wang
- School of Public Health, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Xun-Bao Zhang
- School of Public Health, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Ji-Qiang Guo
- Department of Nuclear Medicine, The General Hospital of Xuzhou Coal Mining Group, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Shu-Ling Wang
- Department of Respiratory Medicine, The Affiliated Municipal Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, 221002, People's Republic of China
| | - Yong Liu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Yu-Lan Wang
- Department of Anatomy, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Yuan-Jian Song
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, People's Republic of China.
- Department of Genetics, Research Center for Neurobiology, Xuzhou Medical College, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China.
| |
Collapse
|
21
|
Ponsuksili S, Reyer H, Trakooljul N, Murani E, Wimmers K. Single- and Bayesian Multi-Marker Genome-Wide Association for Haematological Parameters in Pigs. PLoS One 2016; 11:e0159212. [PMID: 27434032 PMCID: PMC4951017 DOI: 10.1371/journal.pone.0159212] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/28/2016] [Indexed: 12/15/2022] Open
Abstract
Haematological traits are important traits that show associations with immune and metabolic status, as well as diseases in humans and animals. Mapping genome regions that affect the blood cell traits can contribute to the identification of genomic features useable as biomarkers for immune, disease and metabolic status. A genome-wide association study (GWAS) was conducted using PorcineSNP60 BeadChips. Single-marker and Bayesian multi-marker approaches were integrated to identify genomic regions and corresponding genes overlapping for both methods. GWAS was performed for haematological traits of 591 German Landrace pig. Heritability estimates for haematological traits were medium to high. In total 252 single SNPs associated with 12 haematological traits were identified (NegLog10 of p-value > 5). The Bayesian multi-marker approach revealed 102 QTL regions across the genome, indicated by 1-Mb windows with contribution to additive genetic variance above 0.5%. The integration of both methods resulted in 24 overlapping QTL regions. This study identified overlapping QTL regions from single- and multi-marker approaches for haematological traits. Identifying candidate genes that affect blood cell traits provides the first step towards the understanding of the molecular basis of haematological phenotypes.
Collapse
Affiliation(s)
- Siriluck Ponsuksili
- Research Unit ‘Functional Genome Analyses’, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Henry Reyer
- Research Unit ‘Genomics’, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Nares Trakooljul
- Research Unit ‘Genomics’, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Eduard Murani
- Research Unit ‘Genomics’, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Research Unit ‘Genomics’, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
- * E-mail:
| |
Collapse
|
22
|
Ruiz LM, Jensen EL, Rossel Y, Puas GI, Gonzalez-Ibanez AM, Bustos RI, Ferrick DA, Elorza AA. Non-cytotoxic copper overload boosts mitochondrial energy metabolism to modulate cell proliferation and differentiation in the human erythroleukemic cell line K562. Mitochondrion 2016; 29:18-30. [PMID: 27094959 DOI: 10.1016/j.mito.2016.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/15/2016] [Accepted: 04/14/2016] [Indexed: 12/25/2022]
Abstract
Copper is integral to the mitochondrial respiratory complex IV and contributes to proliferation and differentiation, metabolic reprogramming and mitochondrial function. The K562 cell line was exposed to a non-cytotoxic copper overload to evaluate mitochondrial dynamics, function and cell fate. This induced higher rates of mitochondrial turnover given by an increase in mitochondrial fusion and fission events and in the autophagic flux. The appearance of smaller and condensed mitochondria was also observed. Bioenergetics activity included more respiratory complexes, higher oxygen consumption rate, superoxide production and ATP synthesis, with no decrease in membrane potential. Increased cell proliferation and inhibited differentiation also occurred. Non-cytotoxic copper levels can modify mitochondrial metabolism and cell fate, which could be used in cancer biology and regenerative medicine.
Collapse
Affiliation(s)
- Lina M Ruiz
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, 8370146, Santiago, Chile; Centro de Investigación Biomédica, Universidad Autónoma de Chile, 7500912 Santiago, Chile
| | - Erik L Jensen
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, 8370146, Santiago, Chile
| | - Yancing Rossel
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, 8370146, Santiago, Chile
| | - German I Puas
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, 8370146, Santiago, Chile; Millennium Institute of Immunology and Immunotherapy, 8331150 Santiago, Chile
| | - Alvaro M Gonzalez-Ibanez
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, 8370146, Santiago, Chile; Millennium Institute of Immunology and Immunotherapy, 8331150 Santiago, Chile
| | - Rodrigo I Bustos
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, 8370146, Santiago, Chile
| | | | - Alvaro A Elorza
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, 8370146, Santiago, Chile; Millennium Institute of Immunology and Immunotherapy, 8331150 Santiago, Chile.
| |
Collapse
|
23
|
Quercetin Affects Erythropoiesis and Heart Mitochondrial Function in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:836301. [PMID: 26106459 PMCID: PMC4464588 DOI: 10.1155/2015/836301] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 12/11/2022]
Abstract
Quercetin, a dietary flavonoid used as a food supplement, showed powerful antioxidant effects in different cellular models. However, recent in vitro and in vivo studies in mammals have suggested a prooxidant effect of quercetin and described an interaction with mitochondria causing an increase in O2∙− production, a decrease in ATP levels, and impairment of respiratory chain in liver tissue. Therefore, because of its dual actions, we studied the effect of quercetin in vivo to analyze heart mitochondrial function and erythropoiesis. Mice were injected with 50 mg/kg of quercetin for 15 days. Treatment with quercetin decreased body weight, serum insulin, and ceruloplasmin levels as compared with untreated mice. Along with an impaired antioxidant capacity in plasma, quercetin-treated mice showed a significant delay on erythropoiesis progression. Heart mitochondrial function was also impaired displaying more protein oxidation and less activity for IV, respectively, than no-treated mice. In addition, a significant reduction in the protein expression levels of Mitofusin 2 and Voltage-Dependent Anion Carrier was observed. All these results suggest that quercetin affects erythropoiesis and mitochondrial function and then its potential use as a dietary supplement should be reexamined.
Collapse
|
24
|
Gonçalves AC, Cortesão E, Oliveiros B, Alves V, Espadana AI, Rito L, Magalhães E, Lobão MJ, Pereira A, Nascimento Costa JM, Mota-Vieira L, Sarmento-Ribeiro AB. Oxidative stress and mitochondrial dysfunction play a role in myelodysplastic syndrome development, diagnosis, and prognosis: A pilot study. Free Radic Res 2015; 49:1081-94. [PMID: 25968944 DOI: 10.3109/10715762.2015.1035268] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The imbalance between reactive oxygen species (ROS) production and their elimination by antioxidants leads to oxidative stress. Depending on their concentration, ROS can trigger apoptosis or stimulate cell proliferation. We hypothesized that oxidative stress and mitochondrial dysfunction may participate not only in apoptosis detected in some myelodysplastic syndrome (MDS) patients, but also in increasing proliferation in other patients. We investigated the involvement of oxidative stress and mitochondrial dysfunction in MDS pathogenesis, as well as assessed their diagnostic and prognostic values. Intracellular peroxides, superoxide, superoxide/peroxides ratio, reduced glutathione (GSH), and mitochondrial membrane potential (Δψ(mit)) levels were analyzed in bone marrow cells from 27 MDS patients and 12 controls, by flow cytometry. We observed that all bone marrow cell types from MDS patients had increased intracellular peroxide levels and decreased GSH content, compared with control cells. Moreover, oxidative stress levels were MDS subtype- and risk group-dependent. Low-risk patients had the highest ROS levels, which can be related with their high apoptosis; and intermediate-2-risk patients had high Δψ(mit) that may be associated with their proliferative potential. GSH levels were negatively correlated with transfusion dependency, and peroxide levels were positively correlated with serum ferritin level. GSH content proved to be an accurate parameter to discriminate patients from controls. Finally, patients with high ROS or low GSH levels, as well as high superoxide/peroxides ratio had lower overall survival. Our results suggest that oxidative stress and mitochondrial dysfunction are involved in MDS development, and that oxidative stress parameters may constitute novel diagnosis and/or prognosis biomarkers for MDS.
Collapse
Affiliation(s)
- A C Gonçalves
- Laboratory of Oncobiology and Hematology, FMUC - Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kokaze A, Ishikawa M, Matsunaga N, Karita K, Yoshida M, Ohtsu T, Ochiai H, Shirasawa T, Nanri H, Saga N, Ohtsu I, Hoshino H, Takashima Y. Longevity-associated mitochondrial DNA 5178 C/A polymorphism modulates the effects of coffee consumption on erythrocytic parameters in Japanese men: an exploratory cross-sectional analysis. J Physiol Anthropol 2014; 33:37. [PMID: 25527868 PMCID: PMC4347656 DOI: 10.1186/1880-6805-33-37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 11/27/2014] [Indexed: 02/08/2023] Open
Abstract
Background Mitochondrial DNA 5178 cytosine/adenine (Mt5178 C/A) polymorphism reportedly modulates the effects of coffee consumption on the risk of hypertension, dyslipidemia and abnormal glucose tolerance. The objective of this analysis was to investigate whether Mt5178 C/A polymorphism modifies the effects of coffee consumption on erythrocytic parameters in male Japanese health check-up examinees. Methods A total of 436 men (mean age ± standard deviation, 54.1 ± 7.8 years) were selected from among individuals visiting the hospital for regular medical check-ups. After Mt5178 C/A genotyping, an exploratory cross-sectional analysis assessing the joint effects of Mt5178 C/A polymorphism and coffee consumption on red blood cell counts, hematocrit and hemoglobin was conducted. Results For Mt5178C genotypic men, after adjustment for age, body mass index, alcohol consumption, habitual smoking and green tea consumption, coffee consumption significantly decreased red blood cell counts (P for trend = 0.022) and hemoglobin (P for trend = 0.035). The risk of anemia, defined as hemoglobin of <14 g/dL, after the aforementioned adjustment, appeared to depend on coffee consumption (P for trend = 0.078), and the adjusted odds ratio for anemia was significantly higher in men who consumed ≥4 cups of coffee per day than in those who consumed <1 cup per day (odds ratio = 3.771, 95% confidence interval: 1.088 to 13.06, P = 0.036). For Mt5178A genotypic men, coffee consumption possibly reduced the risk of anemia (P for trend = 0.049). However, after the aforementioned adjustment, the statistical significance disappeared (P for trend = 0.137). Conclusions This exploratory cross-sectional analysis suggests that Mt5178 C/A polymorphism modulates the effects of coffee consumption on erythrocytic parameters and the risk of anemia in male Japanese health check-up examinees.
Collapse
Affiliation(s)
- Akatsuki Kokaze
- Department of Public Health, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Qi D, Ouyang C, Wang Y, Zhang S, Ma X, Song Y, Yu H, Tang J, Fu W, Sheng L, Yang L, Wang M, Zhang W, Miao L, Li T, Huang X, Dong H. HO-1 attenuates hippocampal neurons injury via the activation of BDNF–TrkB–PI3K/Akt signaling pathway in stroke. Brain Res 2014; 1577:69-76. [DOI: 10.1016/j.brainres.2014.06.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 01/07/2023]
|
27
|
Steele SL, Prykhozhij SV, Berman JN. Zebrafish as a model system for mitochondrial biology and diseases. Transl Res 2014; 163:79-98. [PMID: 24055494 DOI: 10.1016/j.trsl.2013.08.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/21/2013] [Accepted: 08/25/2013] [Indexed: 12/19/2022]
Abstract
Animal models for studying human disease are essential to the continuing evolution of medicine. Rodent models are attractive for the obvious similarities in development and genetic makeup compared with humans, but have cost and technical limitations. The zebrafish (Danio rerio) represents an ideal alternative vertebrate model of human disease because of its high conservation of genetic information and physiological processes, inexpensive maintenance, and optical clarity facilitating direct observation. This review highlights recent advances in understanding genetic disease states associated with the dynamic organelle, the mitochondrion, using the zebrafish. Mitochondrial diseases that have been replicated in the zebrafish include those affecting the nervous and cardiovascular systems, as well as red blood cell function. Gene silencing techniques, including morpholino knockdown and transcription activator-like (TAL)-effector endonucleases, have been exploited to demonstrate how loss of function can induce human disease-like states in zebrafish. Moreover, modeling mitochondrial diseases has been facilitated greatly by the creation of transgenic fish with fluorescently labeled mitochondria for in vivo visualization of these structures. In addition, behavioral assays have been developed to examine changes in motor activity and sensory responses, particularly in larval stages. Zebrafish are poised to advance our understanding of the pathogenesis of human mitochondrial diseases beyond the current state of knowledge and provide a key tool in the development of novel therapeutic approaches to treat these conditions.
Collapse
Affiliation(s)
- Shelby L Steele
- Department of Pediatrics, Dalhousie University, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Sergey V Prykhozhij
- Department of Pediatrics, Dalhousie University, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Jason N Berman
- Department of Pediatrics, Dalhousie University, IWK Health Centre, Halifax, Nova Scotia, Canada.
| |
Collapse
|
28
|
McCranor BJ, Kim MJ, Cruz NM, Xue QL, Berger AE, Walston JD, Civin CI, Roy CN. Interleukin-6 directly impairs the erythroid development of human TF-1 erythroleukemic cells. Blood Cells Mol Dis 2014; 52:126-33. [PMID: 24119518 PMCID: PMC3947197 DOI: 10.1016/j.bcmd.2013.09.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 12/21/2022]
Abstract
Anemia of inflammation or chronic disease is a highly prevalent form of anemia. The inflammatory cytokine interleukin-6 (IL-6) negatively correlates with hemoglobin concentration in many disease states. The IL-6-hepcidin antimicrobial peptide axis promotes iron-restricted anemia; however the full role of IL-6 in anemia of inflammation is not well-defined. We previously reported that chronic inflammation had a negative impact on maturation of erythroid progenitors in a mouse model. We hypothesized that IL-6 may be responsible for impaired erythropoiesis, independent of iron restriction. To test the hypothesis we utilized the human erythroleukemia TF-1 cell line to model erythroid maturation and exposed them to varying doses of IL-6 over six days. At 10 ng/ml, IL-6 significantly repressed erythropoietin-dependent TF-1 erythroid maturation. While IL-6 did not decrease the expression of genes associated with hemoglobin synthesis, we observed impaired hemoglobin synthesis as demonstrated by decreased benzidine staining. We also observed that IL-6 down regulated expression of the gene SLC4a1 which is expressed late in erythropoiesis. Those findings suggested that IL-6-dependent inhibition of hemoglobin synthesis might occur. We investigated the impact of IL-6 on mitochondria. IL-6 decreased the mitochondrial membrane potential at all treatment doses, and significantly decreased mitochondrial mass at the highest dose. Our studies indicate that IL-6 may impair mitochondrial function in maturing erythroid cells resulting in impaired hemoglobin production and erythroid maturation. Our findings may indicate a novel pathway of action for IL-6 in the anemia of inflammation, and draw attention to the potential for new therapeutic targets that affect late erythroid development.
Collapse
Affiliation(s)
- Bryan J McCranor
- Division of Geriatric Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Min Jung Kim
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nicole M Cruz
- Division of Geriatric Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Qian-Li Xue
- Division of Geriatric Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Alan E Berger
- Lowe Family Genomics Core, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Jeremy D Walston
- Division of Geriatric Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Curt I Civin
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Cindy N Roy
- Division of Geriatric Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| |
Collapse
|
29
|
Estrada JA, Contreras I, Pliego-Rivero FB, Otero GA. Molecular mechanisms of cognitive impairment in iron deficiency: alterations in brain-derived neurotrophic factor and insulin-like growth factor expression and function in the central nervous system. Nutr Neurosci 2013; 17:193-206. [PMID: 24074845 DOI: 10.1179/1476830513y.0000000084] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The present review examines the relationship between iron deficiency and central nervous system (CNS) development and cognitive impairment, focusing on the cellular and molecular mechanisms related to the expression and function of growth factors, particularly the insulin-like growth factors I and II (IGF-I/II) and brain-derived neurotrophic factor (BDNF), in the CNS. METHODS Nutritional deficiencies are important determinants in human cognitive impairment. Among these, iron deficiency has the highest prevalence worldwide. Although this ailment is known to induce psychomotor deficits during development, the precise molecular and cellular mechanisms underlying these alterations have not been properly elucidated. This review summarizes the available information on the effect of iron deficiency on the expression and function of growth factors in the CNS, with an emphasis on IGF-I/II and BDNF. RESULTS AND DISCUSSION Recent studies have shown that specific growth factors, such as IGF-I/II and BDNF, have an essential role in cognition, particularly in processes involving learning and memory, by the activation of intracellular-signaling pathways involved in cell proliferation, differentiation, and survival. It is known that nutritional deficiencies promote reductions in systemic and CNS concentrations of growth factors, and that altered expression of these molecules and their receptors in the CNS leads to psychomotor and developmental deficits. Iron deficiency may induce these deficits by decreasing the expression and function of IGF-I/II and BDNF in specific areas of the brain.
Collapse
|
30
|
Silkjaer T, Nyvold CG, Juhl-Christensen C, Hokland P, Nørgaard JM. Mitochondrial cytochrome c oxidase subunit II variations predict adverse prognosis in cytogenetically normal acute myeloid leukaemia. Eur J Haematol 2013; 91:295-303. [PMID: 23826975 DOI: 10.1111/ejh.12166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2013] [Indexed: 12/31/2022]
Abstract
Alterations in the two catalytic genes cytochrome c oxidase subunits I and II (COI and COII) have recently been suggested to have an adverse impact on prognosis in patients with acute myeloid leukaemia (AML). In order to explore this in further detail, we sequenced these two mitochondrial genes in diagnostic bone marrow or blood samples in 235 patients with AML. In 37 (16%) patients, a non-synonymous variation in either COI or COII could be demonstrated. No patients harboured both COI and COII non-synonymous variations. Twenty-four (10%) patients had non-synonymous variations in COI, whereas 13 (6%) patients had non-synonymous variations in COII. The COI and COII are essential subunits of cytochrome c oxidase that is the terminal enzyme in the oxidative phosphorylation complexes. In terms of disease course, we observed that in patients with a normal cytogenetic analysis at disease presentation (CN-AML) treated with curative intent, the presence of a non-synonymous variation in the COII was an adverse prognostic marker for both overall survival and disease-free survival (DFS) in both univariate (DFS; hazard ratio (HR) 4.4, P = 0.006) and multivariate analyses (DFS; HR 7.2, P = 0.001). This is the first demonstration of a mitochondrial aberration playing an adverse prognostic role in adult AML, and we argue that its role as a potentially novel adverse prognostic marker in the subset of CN-AML should be explored further.
Collapse
Affiliation(s)
- Trine Silkjaer
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | | |
Collapse
|
31
|
Bustos RI, Jensen EL, Ruiz LM, Rivera S, Ruiz S, Simon F, Riedel C, Ferrick D, Elorza AA. Copper deficiency alters cell bioenergetics and induces mitochondrial fusion through up-regulation of MFN2 and OPA1 in erythropoietic cells. Biochem Biophys Res Commun 2013; 437:426-32. [DOI: 10.1016/j.bbrc.2013.06.095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 06/25/2013] [Indexed: 12/23/2022]
|
32
|
Bayeva M, Khechaduri A, Wu R, Burke MA, Wasserstrom JA, Singh N, Liesa M, Shirihai OS, Langer NB, Paw BH, Ardehali H. ATP-binding cassette B10 regulates early steps of heme synthesis. Circ Res 2013; 113:279-87. [PMID: 23720443 DOI: 10.1161/circresaha.113.301552] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Heme plays a critical role in gas exchange, mitochondrial energy production, and antioxidant defense in cardiovascular system. The mitochondrial transporter ATP-binding cassette (ABC) B10 has been suggested to export heme out of the mitochondria and is required for normal hemoglobinization of erythropoietic cells and protection against ischemia-reperfusion injury in the heart; however, its primary function has not been established. OBJECTIVE The aim of this study was to identify the function of ABCB10 in heme synthesis in cardiac cells. METHODS AND RESULTS Knockdown of ABCB10 in cardiac myoblasts significantly reduced heme levels and the activities of heme-containing proteins, whereas supplementation with δ-aminolevulinic acid reversed these defects. Overexpression of mitochondrial δ-aminolevulinic acid synthase 2, the rate-limiting enzyme upstream of δ-aminolevulinic acid export, failed to restore heme levels in cells with ABCB10 downregulation. ABCB10 and heme levels were increased by hypoxia, and reversal of ABCB10 upregulation caused oxidative stress and cell death. Furthermore, ABCB10 knockdown in neonatal rat cardiomyocytes resulted in a significant delay of calcium removal from the cytoplasm, suggesting a relaxation defect. Finally, ABCB10 expression and heme levels were altered in failing human hearts and mice with ischemic cardiomyopathy. CONCLUSIONS ABCB10 plays a critical role in heme synthesis pathway by facilitating δ-aminolevulinic acid production or export from the mitochondria. In contrast to previous reports, we show that ABCB10 is not a heme exporter and instead is required for the early mitochondrial steps of heme biosynthesis.
Collapse
Affiliation(s)
- Marina Bayeva
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine, Chicago, IL
| | - Arineh Khechaduri
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine, Chicago, IL
| | - Rongxue Wu
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine, Chicago, IL
| | - Michael A Burke
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine, Chicago, IL
| | - J Andrew Wasserstrom
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine, Chicago, IL
| | - Neha Singh
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine, Chicago, IL
| | - Marc Liesa
- Department of Medicine, Obesity and Nutrition Section, Mitochondria ARC, Evans Biomedical Research Center, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA
| | - Orian S Shirihai
- Department of Medicine, Obesity and Nutrition Section, Mitochondria ARC, Evans Biomedical Research Center, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA
| | - Nathaniel B Langer
- Hematology Division, Brigham & Women's Hospital; Hematology-Oncology Division, Children's Hospital Boston; Harvard Medical School, Boston, MA
| | - Barry H Paw
- Hematology Division, Brigham & Women's Hospital; Hematology-Oncology Division, Children's Hospital Boston; Harvard Medical School, Boston, MA
| | - Hossein Ardehali
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine, Chicago, IL
| |
Collapse
|
33
|
Silkjaer T, Nørgaard JM, Aggerholm A, Ebbesen LH, Kjeldsen E, Hokland P, Nyvold CG. Characterization and prognostic significance of mitochondrial DNA variations in acute myeloid leukemia. Eur J Haematol 2013; 90:385-96. [DOI: 10.1111/ejh.12090] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Trine Silkjaer
- Department of Haematology; Aarhus University Hospital; Aarhus; Denmark
| | | | - Anni Aggerholm
- Department of Haematology; Aarhus University Hospital; Aarhus; Denmark
| | | | - Eigil Kjeldsen
- Department of Haematology; Aarhus University Hospital; Aarhus; Denmark
| | - Peter Hokland
- Department of Haematology; Aarhus University Hospital; Aarhus; Denmark
| | | |
Collapse
|
34
|
Carbon monoxide: Mechanisms of action and potential clinical implications. Pharmacol Ther 2013; 137:133-52. [DOI: 10.1016/j.pharmthera.2012.09.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 09/10/2012] [Indexed: 01/27/2023]
|
35
|
Romero-Moya D, Bueno C, Montes R, Navarro-Montero O, Iborra FJ, López LC, Martin M, Menendez P. Cord blood-derived CD34+ hematopoietic cells with low mitochondrial mass are enriched in hematopoietic repopulating stem cell function. Haematologica 2013; 98:1022-9. [PMID: 23349299 DOI: 10.3324/haematol.2012.079244] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The homeostasis of the hematopoietic stem/progenitor cell pool relies on a fine-tuned balance between self-renewal, differentiation and proliferation. Recent studies have proposed that mitochondria regulate these processes. Although recent work has contributed to understanding the role of mitochondria during stem cell differentiation, it remains unclear whether the mitochondrial content/function affects human hematopoietic stem versus progenitor function. We found that mitochondrial mass correlates strongly with mitochondrial membrane potential in CD34(+) hematopoietic stem/progenitor cells. We, therefore, sorted cord blood CD34(+) cells on the basis of their mitochondrial mass and analyzed the in vitro homeostasis and clonogenic potential as well as the in vivo repopulating potential of CD34(+) cells with high (CD34(+) Mito(High)) versus low (CD34(+) Mito(Low)) mitochondrial mass. The CD34(+) Mito(Low) fraction contained 6-fold more CD34(+)CD38(-) primitive cells and was enriched in hematopoietic stem cell function, as demonstrated by its significantly greater hematopoietic reconstitution potential in immuno-deficient mice. In contrast, the CD34(+) Mito(High) fraction was more enriched in hematopoietic progenitor function with higher in vitro clonogenic capacity. In vitro differentiation of CD34(+) Mito(Low) cells was significantly delayed as compared to that of CD34(+) Mito(High) cells. The eventual complete differentiation of CD34(+) Mito(Low) cells, which coincided with a robust expansion of the CD34(-) differentiated progeny, was accompanied by mitochondrial adaptation, as shown by significant increases in ATP production and expression of the mitochondrial genes ND1 and COX2. In conclusion, cord blood CD34(+) cells with low levels of mitochondrial mass are enriched in hematopoietic repopulating stem cell function whereas high levels of mitochondrial mass identify hematopoietic progenitors. A mitochondrial response underlies hematopoietic stem/progenitor cell differentiation and proliferation of lineage-committed CD34(-) cells.
Collapse
Affiliation(s)
- Damia Romero-Moya
- GENyO-Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Government, Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
36
|
The potential role of cell penetrating peptides in the intracellular delivery of proteins for therapy of erythroid related disorders. Pharmaceuticals (Basel) 2013; 6:32-53. [PMID: 24275786 PMCID: PMC3816679 DOI: 10.3390/ph6010032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/20/2012] [Accepted: 12/27/2012] [Indexed: 01/08/2023] Open
Abstract
The erythroid related disorders (ERDs) represent a large group of hematological diseases, which in most cases are attributed either to the deficiency or malfunction of biosynthetic enzymes or oxygen transport proteins. Current treatments for these disorders include histo-compatible erythrocyte transfusions or allogeneic hematopoietic stem cell (HSC) transplantation. Gene therapy delivered via suitable viral vectors or genetically modified HSCs have been under way. Protein Transduction Domain (PTD) technology has allowed the production and intracellular delivery of recombinant therapeutic proteins, bearing Cell Penetrating Peptides (CPPs), into a variety of mammalian cells. Remarkable progress in the field of protein transduction leads to the development of novel protein therapeutics (CPP-mediated PTs) for the treatment of monogenetic and/or metabolic disorders. The “concept” developed in this paper is the intracellular protein delivery made possible via the PTD technology as a novel therapeutic intervention for treatment of ERDs. This can be achieved via four stages including: (i) the production of genetically engineered human CPP-mediated PT of interest, since the corresponding native protein either is missing or is mutated in the erythroid progenitor cell (ErPCs) or mature erythrocytes of patients; (ii) isolation of target cells from the peripheral blood of the selected patients; (iii) ex vivo transduction of cells with the CPP-mediated PT of interest; and (iv) re-administration of the successfully transduced cells back into the same patients.
Collapse
|
37
|
Accumulating Mitochondrial DNA Mutations Drive Premature Hematopoietic Aging Phenotypes Distinct from Physiological Stem Cell Aging. Cell Stem Cell 2011; 8:499-510. [DOI: 10.1016/j.stem.2011.03.009] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 02/12/2011] [Accepted: 03/11/2011] [Indexed: 12/25/2022]
|
38
|
Mortensen M, Soilleux EJ, Djordjevic G, Tripp R, Lutteropp M, Sadighi-Akha E, Stranks AJ, Glanville J, Knight S, Jacobsen SEW, Kranc KR, Simon AK. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. ACTA ACUST UNITED AC 2011; 208:455-67. [PMID: 21339326 PMCID: PMC3058574 DOI: 10.1084/jem.20101145] [Citation(s) in RCA: 480] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Adult mouse LSK cells unable to undergo autophagy contain fewer HSCs, accumulate mitochondria, and fail to reconstitute lethally irradiated mice. The role of autophagy, a lysosomal degradation pathway which prevents cellular damage, in the maintenance of adult mouse hematopoietic stem cells (HSCs) remains unknown. Although normal HSCs sustain life-long hematopoiesis, malignant transformation of HSCs leads to leukemia. Therefore, mechanisms protecting HSCs from cellular damage are essential to prevent hematopoietic malignancies. In this study, we crippled autophagy in HSCs by conditionally deleting the essential autophagy gene Atg7 in the hematopoietic system. This resulted in the loss of normal HSC functions, a severe myeloproliferation, and death of the mice within weeks. The hematopoietic stem and progenitor cell compartment displayed an accumulation of mitochondria and reactive oxygen species, as well as increased proliferation and DNA damage. HSCs within the Lin−Sca-1+c-Kit+ (LSK) compartment were significantly reduced. Although the overall LSK compartment was expanded, Atg7-deficient LSK cells failed to reconstitute the hematopoietic system of lethally irradiated mice. Consistent with loss of HSC functions, the production of both lymphoid and myeloid progenitors was impaired in the absence of Atg7. Collectively, these data show that Atg7 is an essential regulator of adult HSC maintenance.
Collapse
Affiliation(s)
- Monika Mortensen
- Nuffield Department of Clinical Medicine, Weatherall Institute of Molecular Medicine, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Novershtern N, Subramanian A, Lawton LN, Mak RH, Haining WN, McConkey ME, Habib N, Yosef N, Chang CY, Shay T, Frampton GM, Drake ACB, Leskov I, Nilsson B, Preffer F, Dombkowski D, Evans JW, Liefeld T, Smutko JS, Chen J, Friedman N, Young RA, Golub TR, Regev A, Ebert BL. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 2011; 144:296-309. [PMID: 21241896 PMCID: PMC3049864 DOI: 10.1016/j.cell.2011.01.004] [Citation(s) in RCA: 710] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 10/18/2010] [Accepted: 01/04/2011] [Indexed: 01/19/2023]
Abstract
Though many individual transcription factors are known to regulate hematopoietic differentiation, major aspects of the global architecture of hematopoiesis remain unknown. Here, we profiled gene expression in 38 distinct purified populations of human hematopoietic cells and used probabilistic models of gene expression and analysis of cis-elements in gene promoters to decipher the general organization of their regulatory circuitry. We identified modules of highly coexpressed genes, some of which are restricted to a single lineage but most of which are expressed at variable levels across multiple lineages. We found densely interconnected cis-regulatory circuits and a large number of transcription factors that are differentially expressed across hematopoietic states. These findings suggest a more complex regulatory system for hematopoiesis than previously assumed.
Collapse
Affiliation(s)
- Noa Novershtern
- Broad Institute, 7 Cambridge Center, Cambridge MA, 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge MA, 02140
- School of Computer Science, Hebrew University, Jerusalem, Israel
| | | | - Lee N. Lawton
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
| | - Raymond H. Mak
- Broad Institute, 7 Cambridge Center, Cambridge MA, 02142
| | | | | | - Naomi Habib
- School of Computer Science, Hebrew University, Jerusalem, Israel
| | - Nir Yosef
- Broad Institute, 7 Cambridge Center, Cambridge MA, 02142
| | - Cindy Y. Chang
- Broad Institute, 7 Cambridge Center, Cambridge MA, 02142
- Brigham and Women's Hospital, Boston, MA 02115
| | - Tal Shay
- Broad Institute, 7 Cambridge Center, Cambridge MA, 02142
| | - Garrett M. Frampton
- Department of Biology, Massachusetts Institute of Technology, Cambridge MA, 02140
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
| | - Adam C. B. Drake
- Department of Biology, Massachusetts Institute of Technology, Cambridge MA, 02140
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ilya Leskov
- Department of Biology, Massachusetts Institute of Technology, Cambridge MA, 02140
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Bjorn Nilsson
- Broad Institute, 7 Cambridge Center, Cambridge MA, 02142
- Brigham and Women's Hospital, Boston, MA 02115
| | - Fred Preffer
- Massachusetts General Hospital, Boston, MA 02114
| | | | | | - Ted Liefeld
- Broad Institute, 7 Cambridge Center, Cambridge MA, 02142
| | | | - Jianzhu Chen
- Department of Biology, Massachusetts Institute of Technology, Cambridge MA, 02140
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Nir Friedman
- School of Computer Science, Hebrew University, Jerusalem, Israel
| | - Richard A. Young
- Department of Biology, Massachusetts Institute of Technology, Cambridge MA, 02140
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
| | - Todd R. Golub
- Broad Institute, 7 Cambridge Center, Cambridge MA, 02142
- Dana-Farber Cancer Institute, Boston, MA 02115
- Howard Hughes Medical Institute
| | - Aviv Regev
- Broad Institute, 7 Cambridge Center, Cambridge MA, 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge MA, 02140
- Howard Hughes Medical Institute
| | - Benjamin L. Ebert
- Broad Institute, 7 Cambridge Center, Cambridge MA, 02142
- Dana-Farber Cancer Institute, Boston, MA 02115
- Brigham and Women's Hospital, Boston, MA 02115
| |
Collapse
|
40
|
Inoue SI, Noda S, Kashima K, Nakada K, Hayashi JI, Miyoshi H. Mitochondrial respiration defects modulate differentiation but not proliferation of hematopoietic stem and progenitor cells. FEBS Lett 2010; 584:3402-9. [DOI: 10.1016/j.febslet.2010.06.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 06/23/2010] [Accepted: 06/24/2010] [Indexed: 01/11/2023]
|
41
|
Iron Loading and Overloading due to Ineffective Erythropoiesis. Adv Hematol 2010; 2010:358283. [PMID: 20467559 PMCID: PMC2868182 DOI: 10.1155/2010/358283] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 02/18/2010] [Indexed: 12/21/2022] Open
Abstract
Erythropoiesis describes the hematopoietic process of cell proliferation and differentiation that results in the production of mature circulating erythrocytes. Adult humans produce 200 billion erythrocytes daily, and approximately 1 billion iron molecules are incorporated into the hemoglobin contained within each erythrocyte. Thus, iron usage for the hemoglobin production is a primary regulator of plasma iron supply and demand. In many anemias, additional sources of iron from diet and tissue stores are needed to meet the erythroid demand. Among a subset of anemias that arise from ineffective erythropoiesis, iron absorption and accumulation in the tissues increases to levels that are in excess of erythropoiesis demand even in the absence of transfusion. The mechanisms responsible for iron overloading due to ineffective erythropoiesis are not fully understood. Based upon data that is currently available, it is proposed in this review that loading and overloading of iron can be regulated by distinct or combined mechanisms associated with erythropoiesis. The concept of erythroid regulation of iron is broadened to include both physiological and pathological hepcidin suppression in cases of ineffective erythropoiesis.
Collapse
|
42
|
Tahir SK, Wass J, Joseph MK, Devanarayan V, Hessler P, Zhang H, Elmore SW, Kroeger PE, Tse C, Rosenberg SH, Anderson MG. Identification of expression signatures predictive of sensitivity to the Bcl-2 family member inhibitor ABT-263 in small cell lung carcinoma and leukemia/lymphoma cell lines. Mol Cancer Ther 2010; 9:545-57. [PMID: 20179162 DOI: 10.1158/1535-7163.mct-09-0651] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ABT-263 inhibits the antiapoptotic proteins Bcl-2, Bcl-x(L), and Bcl-w and has single-agent efficacy in numerous small cell lung carcinoma (SCLC) and leukemia/lymphoma cell lines in vitro and in vivo. It is currently in clinical trials for treating patients with SCLC and various leukemia/lymphomas. Identification of predictive markers for response will benefit the clinical development of ABT-263. We identified the expression of Bcl-2 family genes that correlated best with sensitivity to ABT-263 in a panel of 36 SCLC and 31 leukemia/lymphoma cell lines. In cells sensitive to ABT-263, expression of Bcl-2 and Noxa is elevated, whereas expression of Mcl-1 is higher in resistant cells. We also examined global expression differences to identify gene signature sets that correlated with sensitivity to ABT-263 to generate optimal signature sets predictive of sensitivity to ABT-263. Independent cell lines were used to verify the predictive power of the gene sets and to refine the optimal gene signatures. When comparing normal lung tissue and SCLC primary tumors, the expression pattern of these genes in the tumor tissue is most similar to sensitive SCLC lines, whereas normal tissue is most similar to resistant SCLC lines. Most of the genes identified using global expression patterns are related to the apoptotic pathway; however, all but Bcl-rambo are distinct from the Bcl-2 family. This study leverages global expression data to identify key gene expression patterns for sensitivity to ABT-263 in SCLC and leukemia/lymphoma and may provide guidance in the selection of patients in future clinical trials.
Collapse
Affiliation(s)
- Stephen K Tahir
- Global Pharmaceutical Product Research Division, Abbott Laboratories, Abbott Park, Illinois 60064-6099, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Huang JH, Joseph AM, Ljubicic V, Iqbal S, Hood DA. Effect of age on the processing and import of matrix-destined mitochondrial proteins in skeletal muscle. J Gerontol A Biol Sci Med Sci 2010; 65:138-46. [PMID: 20045872 DOI: 10.1093/gerona/glp201] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Deregulation of muscle mitochondrial biogenesis may explain the altered mitochondrial properties associated with aging. Maintenance of the mitochondrial network requires the continuous incorporation of nascent proteins into their subcompartments via the protein import pathway. We examined whether this pathway was impaired in muscle of aged animals, focusing on the subsarcolemmal and intermyofibrillar mitochondrial populations. Our results indicate that the import of proteins into the mitochondrial matrix was unaltered with age. Interestingly, import assays supplemented with the cytosolic fraction illustrated an attenuation of protein import, and this effect was similar between age groups. We observed a 2.5-fold increase in protein degradation in the presence of the cytosolic fraction obtained from aged animals. Thus, the reduction of mitochondrial content and/or function observed with aging may not rely on altered activity of the import pathway but rather on the availability of preproteins that are susceptible to elevated rates of degradation by cytosolic factors.
Collapse
Affiliation(s)
- Julianna H Huang
- School of Kinesiology & Health Science, York University, 4700 Keele Street, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
44
|
Gordon CJ, Gottipolu RR, Kenyon EM, Thomas R, Schladweiler MC, Mack CM, Shannahan JH, Wallenborn JG, Nyska A, MacPhail RC, Richards JE, Devito M, Kodavanti UP. Aging and susceptibility to toluene in rats: a pharmacokinetic, biomarker, and physiological approach. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:301-318. [PMID: 20077299 DOI: 10.1080/15287390903421144] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Aging adults are a growing segment of the U.S. population and are likely to exhibit increased susceptibility to many environmental toxicants. However, there is little information on the susceptibility of the aged to toxicants. The toxicity of toluene has been well characterized in young adult rodents but there is little information in the aged. Three approaches were used: (1) pharmacokinetic (PK), (2) cardiac biomarkers, and (3) whole-animal physiology to assess whether aging increases susceptibility to toluene in the Brown Norway (BN) rat. Three life stages, young adult, middle aged, and aged (4, 12, and 24 mo, respectively), were administered toluene orally at doses of 0, 0.3, 0.65, or 1 g/kg and subjected to the following: terminated at 45 min or 4 h post dosing, and blood and brain toluene concentration were measured; terminated at 4 h post dosing, and biomarkers of cardiac function were measured; or monitor heart rate (HR), core temperature (Tc), and motor activity (MA) by radiotelemetry before and after dosing. Brain toluene concentration was significantly elevated in aged rats at 4 h after dosing with either 0.3 or 1 g/kg. Blood toluene concentrations were unaffected by age. There were various interactions between aging and toluene-induced effects on cardiac biomarkers. Most notably, toluene exposure led to reductions in mRNA markers for oxidative stress in aged but not younger animals. Toluene also produced a reduction in cardiac endothelin-1 in aged rats. Higher doses of toluene led to tachycardia, hypothermia, and a transient elevation in MA. Aged rats were less sensitive to the tachycardic effects of toluene but showed a prolonged hypothermic response. Elevated brain levels of toluene in aged rats may be attributed to their suppressed cardiovascular and respiratory responses. The expression of several cardiac biochemical markers of toluene exposure in the aged may also reflect differential susceptibility to this toxicant.
Collapse
Affiliation(s)
- Christopher J Gordon
- National Health and Environmental Effects Research Laboratory, ORD, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Radpour R, Fan AX, Kohler C, Holzgreve W, Zhong XY. Current understanding of mitochondrial DNA in breast cancer. Breast J 2009; 15:505-9. [PMID: 19624415 DOI: 10.1111/j.1524-4741.2009.00767.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The recent surge in mitochondrial research has been driven by the identification of mitochondria-associated diseases and the role of mitochondria in apoptosis and aging. Mitochondrial DNA (mtDNA) has been proposed to be involved in carcinogenesis because of its high susceptibility to mutations and limited repair mechanisms in comparison to nuclear DNA. As mtDNA lacks introns, it has been suggested that most mutations will occur in coding sequences. The subsequent accumulation of mutations may lead to tumor formation. By virtue of their clonal nature, high copy number and high frequent mutations may provide a powerful molecular biomarker for the detection of cancer. It has been suggested that the extent of mtDNA mutations might be useful in the prognosis of cancer outcome and/or the response to certain therapies. In this review article, we aim to provide a brief summary of our current understanding of mitochondrial genetics and biology, review the mtDNA alterations reported in breast cancer, and offer some perspectives as to the emergence of mtDNA mutations, including their functional consequences in cancer development, diagnostic criteria, and therapeutic implications.
Collapse
Affiliation(s)
- Ramin Radpour
- Laboratory for Prenatal Medicine and Gynecology Oncology, Women's Hospital/Department of Biomedicine, University of Basel, Basel CH 4031, Switzerland
| | | | | | | | | |
Collapse
|
46
|
Houwerzijl EJ, Pol HWD, Blom NR, van der Want JJL, de Wolf JTM, Vellenga E. Erythroid precursors from patients with low-risk myelodysplasia demonstrate ultrastructural features of enhanced autophagy of mitochondria. Leukemia 2009; 23:886-91. [PMID: 19148135 DOI: 10.1038/leu.2008.389] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 11/06/2008] [Accepted: 11/25/2008] [Indexed: 01/10/2023]
Abstract
Recent studies in erythroid cells have shown that autophagy is an important process for the physiological clearance of mitochondria during terminal differentiation. However, autophagy also plays an important role in removing damaged and dysfunctional mitochondria. Defective mitochondria and impaired erythroid maturation are important characteristics of low-risk myelodysplasia. In this study we therefore questioned whether the autophagic clearance of mitochondria might be altered in erythroblasts from patients with refractory anemia (RA, n=3) and RA with ringed sideroblasts (RARS, n=6). Ultrastructurally, abnormal and iron-laden mitochondria were abundant, especially in RARS patients. A large proportion (52+/-16%) of immature and mature myelodysplastic syndrome (MDS) erythroblasts contained cytoplasmic vacuoles, partly double membraned and positive for lysosomal marker LAMP-2 and mitochondrial markers, findings compatible with autophagic removal of dysfunctional mitochondria. In healthy controls only mature erythroblasts comprised these vacuoles (12+/-3%). These findings were confirmed morphometrically showing an increased vacuolar surface in MDS erythroblasts compared to controls (P<0.0001). In summary, these data indicate that MDS erythroblasts show features of enhanced autophagy at an earlier stage of erythroid differentiation than in normal controls. The enhanced autophagy might be a cell protective mechanism to remove defective iron-laden mitochondria.
Collapse
Affiliation(s)
- E J Houwerzijl
- Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
47
|
Huang JH, Hood DA. Age-associated mitochondrial dysfunction in skeletal muscle: Contributing factors and suggestions for long-term interventions. IUBMB Life 2009; 61:201-14. [DOI: 10.1002/iub.164] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Iolascon A, De Falco L, Beaumont C. Molecular basis of inherited microcytic anemia due to defects in iron acquisition or heme synthesis. Haematologica 2009; 94:395-408. [PMID: 19181781 DOI: 10.3324/haematol.13619] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microcytic anemia is the most commonly encountered anemia in general medical practice. Nutritional iron deficiency and beta thalassemia trait are the primary causes in pediatrics, whereas bleeding disorders and anemia of chronic disease are common in adulthood. Microcytic hypochromic anemia can result from a defect in globin genes, in heme synthesis, in iron availability or in iron acquisition by the erythroid precursors. These microcytic anemia can be sideroblastic or not, a trait which reflects the implications of different gene abnormalities. Iron is a trace element that may act as a redox component and therefore is integral to vital biological processes that require the transfer of electrons as in oxygen transport, oxidative phosphorylation, DNA biosynthesis and xenobiotic metabolism. However, it can also be pro-oxidant and to avoid its toxicity, iron metabolism is strictly controlled and failure of these control systems could induce iron overload or iron deficient anemia. During the past few years, several new discoveries mostly arising from human patients or mouse models have highlighted the implication of iron metabolism components in hereditary microcytic anemia, from intestinal absorption to its final inclusion into heme. In this paper we will review the new information available on the iron acquisition pathway by developing erythrocytes and its regulation, and we will consider only inherited microcytosis due to heme synthesis or to iron metabolism defects. This information could be useful in the diagnosis and classification of these microcytic anemias.
Collapse
Affiliation(s)
- Achille Iolascon
- Department of Biochemistry and Medical Biotechnologies, University Federico II, Naples, Italy.
| | | | | |
Collapse
|
49
|
Fan AXC, Radpour R, Haghighi MM, Kohler C, Xia P, Hahn S, Holzgreve W, Zhong XY. Mitochondrial DNA content in paired normal and cancerous breast tissue samples from patients with breast cancer. J Cancer Res Clin Oncol 2009; 135:983-9. [PMID: 19125299 DOI: 10.1007/s00432-008-0533-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 12/08/2008] [Indexed: 11/26/2022]
Abstract
INTRODUCTION We develop a multiplex quantitative real-time PCR for synchronized analysis of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) to investigate relative mtDNA abundance in paired normal and cancerous breast tissues. MATERIALS AND METHODS The amounts of nDNA and mtDNA in 102 tissue samples were quantified for both glyceraldehype-3-phosphodehydrogenase (GAPDH) gene and mtDNA encoded ATPase (MTATP) 8 gene. The average threshold cycle (Ct) number values of the nDNA and mtDNA were used to calculate relative mtDNA content in breast tissues. RESULTS The median delta Ct (DeltaCt) and the median mtDNA content for normal and cancerous breast tissues were 6.73 and 2.54, as well as 106.50 and 5.80 (P = 0.000, respectively). The mtDNA content was decreased in 82% of cancerous breast tissues compared with the normal ones. The changes were associated with hormone receptor status. CONCLUSION Our finding suggests that decreased mtDNA content in breast cancer may have diagnostic and prognostic value for the disease.
Collapse
Affiliation(s)
- Alex Xiu-Cheng Fan
- Laboratory for Prenatal Medicine and Gynecologic Oncology, Department of Biomedicine, Women's Hospital, University of Basel, Hebelstrasse 20, Room Nr. 416, 4031 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Seo AY, Xu J, Servais S, Hofer T, Marzetti E, Wohlgemuth SE, Knutson MD, Chung HY, Leeuwenburgh C. Mitochondrial iron accumulation with age and functional consequences. Aging Cell 2008; 7:706-16. [PMID: 18843794 DOI: 10.1111/j.1474-9726.2008.00418.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
During the aging process, an accumulation of non-heme iron disrupts cellular homeostasis and contributes to the mitochondrial dysfunction typical of various neuromuscular degenerative diseases. Few studies have investigated the effects of iron accumulation on mitochondrial integrity and function in skeletal muscle and liver tissue. Thus, we isolated liver mitochondria (LM), as well as quadriceps-derived subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), from male Fischer 344 x Brown Norway rats at 8, 18, 29 and 37 months of age. Non-heme iron content in SSM, IFM and LM was significantly higher with age, reaching a maximum at 37 months of age. The mitochondrial permeability transition pore (mPTP) was more susceptible to the opening in aged mitochondria containing high levels of iron (i.e. SSM and LM) compared to IFM. Furthermore, mitochondrial RNA oxidation increased significantly with age in SSM and LM, but not in IFM. Levels of mitochondrial RNA oxidation in SSM and LM correlated positively with levels of mitochondrial iron, whereas a significant negative correlation was observed between the maximum Ca(2+) amounts needed to induce mPTP opening and iron contents in SSM, IFM and LM. Overall, our data suggest that age-dependent accumulation of mitochondrial iron may increase mitochondrial dysfunction and oxidative damage,thereby enhancing the susceptibility to apoptosis.
Collapse
Affiliation(s)
- Arnold Y Seo
- Department of Aging and Geriatrics, Division of Biology of Aging, Genomics and Biomarkers Core of the Institute on Aging, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|