1
|
Liao S, Deng J, Deng M, Chen C, Han F, Ye K, Wu C, Pan L, Lai M, Tang Z, Zhang H. AFDN Deficiency Promotes Liver Tropism of Metastatic Colorectal Cancer. Cancer Res 2024; 84:3158-3172. [PMID: 39047222 DOI: 10.1158/0008-5472.can-23-3140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/09/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Liver metastasis is a major cause of morbidity and mortality in patients with colorectal cancer. A better understanding of the biological mechanisms underlying liver tropism and metastasis in colorectal cancer could help to identify improved prevention and treatment strategies. In this study, we performed genome-wide CRISPR loss-of-function screening in a mouse colorectal cancer model and identified deficiency of AFDN, a protein involved in establishing and maintaining cell-cell contacts, as a driver of liver metastasis. Elevated AFDN expression was correlated with prolonged survival in patients with colorectal cancer. AFDN-deficient colorectal cancer cells preferentially metastasized to the liver but not in the lungs. AFDN loss in colorectal cancer cells at the primary site promoted cancer cell migration and invasion by disrupting tight intercellular junctions. Additionally, CXCR4 expression was increased in AFDN-deficient colorectal cancer cells via the JAK-STAT signaling pathway, which reduced the motility of AFDN-deficient colorectal cancer cells and facilitated their colonization of the liver. Collectively, these data shed light on the mechanism by which AFDN deficiency promotes liver tropism in metastatic colorectal cancer. Significance: A CRISPR screen reveals AFDN loss as a mediator of liver tropism in colorectal cancer metastasis by decreasing tight junctions in the primary tumor and increasing interactions between cancer cells and hepatocytes.
Collapse
Affiliation(s)
- Shaoxia Liao
- Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, China
| | - Jingwen Deng
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengli Deng
- Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Chaoyi Chen
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Fengyan Han
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Kehong Ye
- Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Chenxia Wu
- Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Lvyuan Pan
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Maode Lai
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, China
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhe Tang
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Honghe Zhang
- Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, China
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Liu J, Wu Y, Meng S, Xu P, Li S, Li Y, Hu X, Ouyang L, Wang G. Selective autophagy in cancer: mechanisms, therapeutic implications, and future perspectives. Mol Cancer 2024; 23:22. [PMID: 38262996 PMCID: PMC10807193 DOI: 10.1186/s12943-024-01934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024] Open
Abstract
Eukaryotic cells engage in autophagy, an internal process of self-degradation through lysosomes. Autophagy can be classified as selective or non-selective depending on the way it chooses to degrade substrates. During the process of selective autophagy, damaged and/or redundant organelles like mitochondria, peroxisomes, ribosomes, endoplasmic reticulum (ER), lysosomes, nuclei, proteasomes, and lipid droplets are selectively recycled. Specific cargo is delivered to autophagosomes by specific receptors, isolated and engulfed. Selective autophagy dysfunction is closely linked with cancers, neurodegenerative diseases, metabolic disorders, heart failure, etc. Through reviewing latest research, this review summarized molecular markers and important signaling pathways for selective autophagy, and its significant role in cancers. Moreover, we conducted a comprehensive analysis of small-molecule compounds targeting selective autophagy for their potential application in anti-tumor therapy, elucidating the underlying mechanisms involved. This review aims to supply important scientific references and development directions for the biological mechanisms and drug discovery of anti-tumor targeting selective autophagy in the future.
Collapse
Affiliation(s)
- Jiaxi Liu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Sha Meng
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Ping Xu
- Emergency Department, Zigong Fourth People's Hospital, Zigong, 643000, China
| | - Shutong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiuying Hu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Liang Ouyang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Bosso M, Haddad D, Al Madhoun A, Al-Mulla F. Targeting the Metabolic Paradigms in Cancer and Diabetes. Biomedicines 2024; 12:211. [PMID: 38255314 PMCID: PMC10813379 DOI: 10.3390/biomedicines12010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Dysregulated metabolic dynamics are evident in both cancer and diabetes, with metabolic alterations representing a facet of the myriad changes observed in these conditions. This review delves into the commonalities in metabolism between cancer and type 2 diabetes (T2D), focusing specifically on the contrasting roles of oxidative phosphorylation (OXPHOS) and glycolysis as primary energy-generating pathways within cells. Building on earlier research, we explore how a shift towards one pathway over the other serves as a foundational aspect in the development of cancer and T2D. Unlike previous reviews, we posit that this shift may occur in seemingly opposing yet complementary directions, akin to the Yin and Yang concept. These metabolic fluctuations reveal an intricate network of underlying defective signaling pathways, orchestrating the pathogenesis and progression of each disease. The Warburg phenomenon, characterized by the prevalence of aerobic glycolysis over minimal to no OXPHOS, emerges as the predominant metabolic phenotype in cancer. Conversely, in T2D, the prevailing metabolic paradigm has traditionally been perceived in terms of discrete irregularities rather than an OXPHOS-to-glycolysis shift. Throughout T2D pathogenesis, OXPHOS remains consistently heightened due to chronic hyperglycemia or hyperinsulinemia. In advanced insulin resistance and T2D, the metabolic landscape becomes more complex, featuring differential tissue-specific alterations that affect OXPHOS. Recent findings suggest that addressing the metabolic imbalance in both cancer and diabetes could offer an effective treatment strategy. Numerous pharmaceutical and nutritional modalities exhibiting therapeutic effects in both conditions ultimately modulate the OXPHOS-glycolysis axis. Noteworthy nutritional adjuncts, such as alpha-lipoic acid, flavonoids, and glutamine, demonstrate the ability to reprogram metabolism, exerting anti-tumor and anti-diabetic effects. Similarly, pharmacological agents like metformin exhibit therapeutic efficacy in both T2D and cancer. This review discusses the molecular mechanisms underlying these metabolic shifts and explores promising therapeutic strategies aimed at reversing the metabolic imbalance in both disease scenarios.
Collapse
Affiliation(s)
- Mira Bosso
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| |
Collapse
|
4
|
Picca A, Faitg J, Auwerx J, Ferrucci L, D'Amico D. Mitophagy in human health, ageing and disease. Nat Metab 2023; 5:2047-2061. [PMID: 38036770 DOI: 10.1038/s42255-023-00930-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023]
Abstract
Maintaining optimal mitochondrial function is a feature of health. Mitophagy removes and recycles damaged mitochondria and regulates the biogenesis of new, fully functional ones preserving healthy mitochondrial functions and activities. Preclinical and clinical studies have shown that impaired mitophagy negatively affects cellular health and contributes to age-related chronic diseases. Strategies to boost mitophagy have been successfully tested in model organisms, and, recently, some have been translated into clinics. In this Review, we describe the basic mechanisms of mitophagy and how mitophagy can be assessed in human blood, the immune system and tissues, including muscle, brain and liver. We outline mitophagy's role in specific diseases and describe mitophagy-activating approaches successfully tested in humans, including exercise and nutritional and pharmacological interventions. We describe how mitophagy is connected to other features of ageing through general mechanisms such as inflammation and oxidative stress and forecast how strengthening research on mitophagy and mitophagy interventions may strongly support human health.
Collapse
Affiliation(s)
- Anna Picca
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
- Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome, Italy
| | - Julie Faitg
- Amazentis, EPFL Innovation Park, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Luigi Ferrucci
- Division of Intramural Research, National Institute on Aging, Baltimore, MD, USA.
| | | |
Collapse
|
5
|
Liu Y, Han X, Li L, Zhang Y, Huang X, Li G, Xu C, Yin M, Zhou P, Shi F, Liu X, Zhang Y, Wang G. Role of Nectin‑4 protein in cancer (Review). Int J Oncol 2021; 59:93. [PMID: 34664682 DOI: 10.3892/ijo.2021.5273] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/30/2021] [Indexed: 11/06/2022] Open
Abstract
The Nectin cell adhesion molecule (Nectin) family members are Ca2+‑independent immunoglobulin‑like cellular adhesion molecules (including Nectins 1‑4), involved in cell adhesion via homophilic/heterophilic interplay. In addition, the Nectin family plays a significant role in enhancing cellular viability and movement ability. In contrast to enrichment of Nectins 1‑3 in normal tissues, Nectin‑4 is particularly overexpressed in a number of tumor types, including breast, lung, urothelial, colorectal, pancreatic and ovarian cancer. Moreover, the upregulation of Nectin‑4 is an independent biomarker for overall survival in numerous cancer types. A large number of studies have revealed that high expression of Nectin‑4 is closely related to tumor occurrence and development in various cancer types, but the manner in which Nectin‑4 protein contributes to the onset and development of these malignancies is yet unknown. The present review summarizes the molecular mechanisms and functions of Nectin‑4 protein in the biological processes and current advances with regard to its expression and regulation in various cancer types.
Collapse
Affiliation(s)
- Yongheng Liu
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Xiuxin Han
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Lili Li
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Yanting Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Xiaoyu Huang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Guanghao Li
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Chuncai Xu
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Mengfan Yin
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Peng Zhou
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Fanqi Shi
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Yan Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Guowen Wang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| |
Collapse
|
6
|
Perwez A, Wahabi K, Rizvi MA. Parkin: A targetable linchpin in human malignancies. Biochim Biophys Acta Rev Cancer 2021; 1876:188533. [PMID: 33785381 DOI: 10.1016/j.bbcan.2021.188533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/21/2021] [Accepted: 03/21/2021] [Indexed: 12/16/2022]
Abstract
Parkin, an E3 ubiquitin ligase has been found to be deregulated in a variety of human cancers. Our current understanding is endowed with strong evidences that Parkin plays crucial role in the pathogenesis of cancer by controlling/interfering with major hallmarks of cancer delineated till today. Consistent with the idea of mitophagy, the existing studies imitates the tumor suppressive potential of Parkin, resolved by its capacity to regulate cell proliferation, cell migration, angiogenesis, apoptosis and overall cellular survival. Dysfunction of Parkin has resulted in the loss of ubiquitination of cell cycle components followed by their accumulation leading to genomic instability, perturbed cell cycle and eventually tumor progression. In this review, we provide an overview of current knowledge about the critical role of Parkin in cancer development and progression and have focussed on its therapeutic implications highlighting the diagnostic and prognostic value of Parkin as a biomarker. We earnestly hope that an in-depth knowledge of Parkin will provide a linchpin to target in various cancers that will open a new door of clinical applications and therapeutics.
Collapse
Affiliation(s)
- Ahmad Perwez
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Khushnuma Wahabi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Moshahid A Rizvi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
7
|
Huxham J, Tabariès S, Siegel PM. Afadin (AF6) in cancer progression: A multidomain scaffold protein with complex and contradictory roles. Bioessays 2020; 43:e2000221. [PMID: 33165933 DOI: 10.1002/bies.202000221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 11/09/2022]
Abstract
Adherens (AJ) and tight junctions (TJ) maintain cell-cell adhesions and cellular polarity in normal tissues. Afadin, a multi-domain scaffold protein, is commonly found in both adherens and tight junctions, where it plays both structural and signal-modulating roles. Afadin is a complex modulator of cellular processes implicated in cancer progression, including signal transduction, migration, invasion, and apoptosis. In keeping with the complexities associated with the roles of adherens and tight junctions in cancer, afadin exhibits both tumor suppressive and pro-metastatic functions. In this review, we will explore the dichotomous roles that afadin plays during cancer progression.
Collapse
Affiliation(s)
- Jennifer Huxham
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Sébastien Tabariès
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada.,Department of Biochemistry, McGill University, Montréal, Québec, Canada.,Department of Anatomy & Cell Biology, McGill University, Montréal, Québec, Canada.,Department of Oncology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
8
|
Zhou X, Li Y, Wang W, Wang S, Hou J, Zhang A, Lv B, Gao C, Yan Z, Pang D, Lu K, Ahmad NH, Wang L, Zhu J, Zhang L, Zhuang T, Li X. Regulation of Hippo/YAP signaling and Esophageal Squamous Carcinoma progression by an E3 ubiquitin ligase PARK2. Am J Cancer Res 2020; 10:9443-9457. [PMID: 32863938 PMCID: PMC7449928 DOI: 10.7150/thno.46078] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
Objective: Esophageal squamous cell carcinoma (ESCC) is one of the most commonly diagnosed cancer types in China. Recent genomic sequencing analysis indicated the over-activation of Hippo/YAP signaling might play important roles for the carcinogenic process and progression for ESCC patients. However, little is known about the molecular mechanisms that controls Hippo signaling activity in ESCC. Our previous studies indicated that PLCE1-an important risk factor for ESCC-linked to ESCC progression through snail signaling, during this period, we found PARK2 was an important downstream target of PLCE1-snail axis. PARK2 was decreased in ESCC human samples, and correlated with good prognosis in ESCC patients. Further research showed that PARK2 could inhibit YAP, which functions as key downstream effectors of the Hippo pathway. Here, we aim to reveal the molecular mechanisms of PARK2 modulated Hippo pathway in ESCC. Methods: To evaluate the function of PARK2 in ESCC, we used a tissue microarray (TMA) of 223 human ESCC patients and immunohistochemistry to analyze the correlation between PARK2 expression and clinicopathologic variables. Depletion of endogenous PARK2 and YAP from ESCC cells using CRISPR/Cas9 technologies. Flow cytometry and EdU cell proliferation assay were used to detect proliferation of ESCC cells. Nude mice subcutaneous injection and Ki-67 staining were used to evaluate tumor growth in vivo. Migration and invasion assays were performed. In addition, lung metastasis models in mice were used to validate the function of PARK2 in vivo. Identification of PARK2 involved in hippo pathway was achieved by expression microarray screening, double immunofluorescence staining and co-immunoprecipitation assays. The RNA-seq analysis results were validated through quantitative real-time PCR (qRT-PCR) analysis. The protein half-life of YAP was analyzed by Cycloheximide assay, and the TEAD activity was detected by Luciferase reporter assays. Results: Clinical sample of ESCC revealed that low PARK2 expression correlated with late tumor stage (P < 0.001), poor differentiation (P < 0.04), lymph node (P < 0.001) and distant metastasis (P = 0.0087). Multivariate Cox proportional regression analysis further revealed that PARK2 expression (P = 0.032) is an independent prognostic factor for the overall survival of ESCC patients. Besides, the immunohistochemistry results showed that PARK2 negatively correlated with YAP protein level (P < 0.001). PARK2 depletion promotes ESCC progression both through Hippo/YAP axis, while PARK2 overexpression suppresses ESCC tumor progression by Hippo signaling. Co-IP and ubiquitination assays revealed that PARK2 could interact with YAP in the cytosol and promotes YAP K48-linked ubiquitination at K90 sites. Conclusion: Clinical sample analysis and mechanistic study have validated PARK2 as a tumor suppressor for ESCC. Multivariate Cox proportional regression analysis further revealed that PARK2 is an independent prognostic factor for the overall survival of ESCC patients. Cellular and molecular mechanisms in this study showed that PARK2 associated with YAP protein in the cytosol, promoted YAP ubiquitination and proteasome-dependent degradation in ESCC cells. Therefore, as a novel modulator for Hippo signaling, modulation of PARK2 activity or gene expression level could be an appealing strategy to treat esophageal.
Collapse
|
9
|
Wang P, Dai X, Jiang W, Li Y, Wei W. RBR E3 ubiquitin ligases in tumorigenesis. Semin Cancer Biol 2020; 67:131-144. [PMID: 32442483 DOI: 10.1016/j.semcancer.2020.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
RING-in-between-RING (RBR) E3 ligases are one class of E3 ligases that is characterized by the unique RING-HECT hybrid mechanism to function with E2s to transfer ubiquitin to target proteins for degradation. Emerging evidence has demonstrated that RBR E3 ligases play essential roles in neurodegenerative diseases, infection, inflammation and cancer. Accumulated evidence has revealed that RBR E3 ligases exert their biological functions in various types of cancers by modulating the degradation of tumor promoters or suppressors. Hence, we summarize the differential functions of RBR E3 ligases in a variety of human cancers. In general, ARIH1, RNF14, RNF31, RNF144B, RNF216, and RBCK1 exhibit primarily oncogenic roles, whereas ARIH2, PARC and PARK2 mainly have tumor suppressive functions. Moreover, the underlying mechanisms by which different RBR E3 ligases are involved in tumorigenesis and progression are also described. We discuss the further investigation is required to comprehensively understand the critical role of RBR E3 ligases in carcinogenesis. We hope our review can stimulate the researchers to deeper explore the mechanism of RBR E3 ligases-mediated carcinogenesis and to develop useful inhibitors of these oncogenic E3 ligases for cancer therapy.
Collapse
Affiliation(s)
- Peter Wang
- School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA, USA
| | - Wenxiao Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yuyun Li
- School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA, USA.
| |
Collapse
|
10
|
Tiwari RR, Wahabi K, Perwez A, Bhat ZI, Hasan SS, Saluja SS, Rizvi MA. Implication of alterations in Parkin gene among North Indian patients with colorectal cancer. TURKISH JOURNAL OF GASTROENTEROLOGY 2020; 31:211-220. [PMID: 32343233 DOI: 10.5152/tjg.2020.18823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND/AIMS Alterations in Parkin (PRKN) have been described in many cancers; however, the molecular mechanism that contributes to loss of Parkin expression in colorectal cancer (CRC) remains unclear. The aim of this study was to investigate the involvement of PRKN mutation and loss of heterozygosity (LOH) in loss of Parkin expression. To understand the role of PRKN in cancer progression, we also evaluated the association of Parkin expression with clinicopathological parameters in North Indian population. MATERIALS AND METHODS We studied 219 CRC samples and their adjacent normal tissues (control) obtained from North Indian patients with CRC. The expression of Parkin was analyzed by immunohistochemistry (IHC). PRKN mutations were analyzed by single-stranded conformational polymorphism (SSCP) and sequencing. For loss of heterozygosity (LOH), we employed two intragenic, D6S305 and D6S1599, and one telomeric marker, D6S1008. RESULTS In our study, we found four novel somatic mutations, namely, C166G, K413N, R420P (exon 4), and V425E (exon 11). Both mutation in Parkin (p = 0.0014) and LOH (p = 0.0140) were significantly associated with loss of Parkin expression. Additionally, Parkin mutations were not associated with the clinicopathological parameters of the patients. Furthermore, both, LOH in Parkin and Parkin expression were significantly correlated with different clinicopathological variables (p<0.05). CONCLUSION Our results indicate that Parkin expression is not regulated by a single mechanism, but both mutation and LOH contribute to loss of Parkin expression. We also provide evidence of involvement of Parkin in metastasis and cancer progression. We, therefore, suggest Parkin as a potential prognostic marker and warrant further analysis in this direction.
Collapse
Affiliation(s)
- Raj Ranjan Tiwari
- Department of Biosciences, Genome Biology Laboratory, Jamia Millia Islamia, New Delhi, India;School of Sciences, Indira Gandhi National Open University (IGNOU), New Delhi, India
| | - Khushnuma Wahabi
- Department of Biosciences, Genome Biology Laboratory, Jamia Millia Islamia, New Delhi, India
| | - Ahmad Perwez
- Department of Biosciences, Genome Biology Laboratory, Jamia Millia Islamia, New Delhi, India
| | - Zafar Iqbal Bhat
- Department of Biosciences, Genome Biology Laboratory, Jamia Millia Islamia, New Delhi, India
| | - Syed Shamimul Hasan
- School of Sciences, Indira Gandhi National Open University (IGNOU), New Delhi, India
| | - Sundeep Singh Saluja
- Department of Gastrointestinal Surgery, Govind Ballabh Pant Hospital, New Delhi, India
| | - Moshahid Alam Rizvi
- Department of Biosciences, Genome Biology Laboratory, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
11
|
Breen L, Gaule PB, Canonici A, Walsh N, Collins DM, Cremona M, Hennessy BT, Duffy MJ, Crown J, Donovan NO, Eustace AJ. Targeting c-Met in triple negative breast cancer: preclinical studies using the c-Met inhibitor, Cpd A. Invest New Drugs 2020; 38:1365-1372. [PMID: 32318883 DOI: 10.1007/s10637-020-00937-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/07/2020] [Indexed: 11/26/2022]
Abstract
Introduction Triple negative breast cancer (TNBC) represents a heterogeneous subtype of breast cancer that carries a poorer prognosis. There remains a need to identify novel drivers of TNBC, which may represent targets to treat the disease. c-Met overexpression is linked with decreased survival and is associated with the basal subtype of breast cancer. Cpd A, a kinase inhibitor selective/specific for Met kinase has demonstrated preclinical anti-cancer efficacy in TNBC. We aimed to assess the anti-cancer efficacy of Cpd A when combined with Src kinase, ErbB-family or hepatocyte growth factor (HGF) inhibitors in TNBC cell lines. Methods We determined the anti-proliferative effects of Cpd A, rilotumumab, neratinib and saracatinib tested alone and in combination in a panel of TNBC cells by acid phosphatase assays. We performed reverse phase protein array analysis of c-Met and IGF1Rβ expression and phosphorylation of c-Met (Y1234/1235) in TNBC cells and correlated their expression/phosphorylation with Cpd A sensitivity. We examined the impact of Cpd A, neratinib and saracatinib tested alone and in combination on invasive potential and colony formation.Results TNBC cells are not inherently sensitive to Cpd A, and neither c-Met expression nor phosphorylation are biomarkers of sensitivity to Cpd A. Cpd A enhanced the anti-proliferative effects of neratinib in vitro; however, this effect was limited to cell lines with innate sensitivity to Cpd A. Cpd A had limited anti-invasive effects but it reduced colony formation in the TNBC cell line panel.Conclusions Despite Cpd A having a potential role in reducing cancer cell metastasis, identification of strong predictive biomarkers of c-Met sensitivity would be essential to the development of a c-Met targeted treatment for an appropriately selected cohort of TNBC patients.
Collapse
Affiliation(s)
- Laura Breen
- Molecular Therapeutics for Cancer in Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Patricia B Gaule
- Molecular Therapeutics for Cancer in Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Alexandra Canonici
- Molecular Therapeutics for Cancer in Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Naomi Walsh
- Molecular Therapeutics for Cancer in Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Denis M Collins
- Molecular Therapeutics for Cancer in Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Mattia Cremona
- Medical Oncology Group, Department of Molecular Medicine, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Bryan T Hennessy
- Medical Oncology Group, Department of Molecular Medicine, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Michael J Duffy
- UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin, Ireland
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - John Crown
- Molecular Therapeutics for Cancer in Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| | - Norma O' Donovan
- Molecular Therapeutics for Cancer in Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Alex J Eustace
- Molecular Therapeutics for Cancer in Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland.
| |
Collapse
|
12
|
Montagna C, Cirotti C, Rizza S, Filomeni G. When S-Nitrosylation Gets to Mitochondria: From Signaling to Age-Related Diseases. Antioxid Redox Signal 2020; 32:884-905. [PMID: 31931592 DOI: 10.1089/ars.2019.7872] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Significance: Cysteines have an essential role in redox signaling, transforming an oxidant signal into a biological response. Among reversible cysteine post-translational modifications, S-nitrosylation acts as a redox-switch in several pathophysiological states, such as ischemia/reperfusion, synaptic transmission, cancer, and muscular dysfunctions. Recent Advances: Growing pieces of in vitro and in vivo evidence argue for S-nitrosylation being deeply involved in development and aging, and playing a role in the onset of different pathological states. New findings suggest it being an enzymatically regulated cellular process, with deep impact on mitochondrial structure and function, and in cellular metabolism. In light of this, the recent discovery of the denitrosylase S-nitrosoCoA (coenzyme A) reductase takes on even greater importance and opens new perspectives on S-nitrosylation as a general mechanism of cellular homeostasis. Critical Issues: Based on these recent findings, we aim at summarizing and elaborating on the established and emerging crucial roles of S-nitrosylation in mitochondrial metabolism and mitophagy, and provide an overview of the pathophysiological effects induced by its deregulation. Future Directions: The identification of new S-nitrosylation targets, and the comprehension of the mechanisms through which S-nitrosylation modulates specific classes of proteins, that is, those impinging on diverse mitochondrial functions, may help to better understand the pathophysiology of aging, and propose lines of intervention to slow down or extend the onset of aging-related diseases.
Collapse
Affiliation(s)
- Costanza Montagna
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Claudia Cirotti
- Laboratory of Signal Transduction, Fondazione Santa Lucia, Rome, Italy
| | - Salvatore Rizza
- Redox Signaling and Oxidative Stress Group, Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Giuseppe Filomeni
- Redox Signaling and Oxidative Stress Group, Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Biology, Tor Vergata University of Rome, Rome, Italy
| |
Collapse
|
13
|
Wang Y, Su GF, Huang ZX, Wang ZG, Zhou PJ, Fan JL, Wang YF. Cepharanthine hydrochloride induces mitophagy targeting GPR30 in hepatocellular carcinoma (HCC). Expert Opin Ther Targets 2020; 24:389-402. [PMID: 32106726 DOI: 10.1080/14728222.2020.1737013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Objectives: Cepharanthine exhibits a wide range of therapeutic effects against numerous cancers by virtue of its pleiotropic mechanisms. However, cepharanthine monotherapy has insufficient drug efficacy for cancers in animal models and clinical trials. The mechanism of its limited efficacy is unknown.Methods: We investigated the possible mechanism for the limited drug efficacy of cepharanthine in cancer therapy using both hepatocellular carcinoma (HCC) primary cells and cell lines, in vitro and in mouse xenograft models.Results: We found that cepharanthine hydrochloride (CH), a semi-synthetic derivative of cepharanthine, induced mitophagy independent of mTOR signaling, and played an AMPK-dependent protective role in the cell fate of HCC in vitro and in vivo. Mechanistically, we demonstrated that CH may bind to GPR30 receptor to activate the subsequent signal cascade involving mitochondrial fission, thus facilitating mitophagy. Therefore, we proposed a new therapeutic regimen for HCC involving CH combined with an autophagy inhibitor. This regimen exhibited remarkable anti-cancer effects in HCC xenograft mouse model.Conclusion: These results identify CH as a new mitophagy inducer targeting GPR30 receptor. The combination therapy of CH and an autophagy inhibitor may become a novel strategy for enhancing the anti-tumor potential of cepharanthine in HCC.
Collapse
Affiliation(s)
- Yao Wang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, P. R. China.,Guangzhou Jinan Biomedicine Research and Development Center Co.ltd, Guangzhou, Guangdong, P. R. China
| | - Gui-Feng Su
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, P. R. China
| | - Ze-Xiu Huang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, P. R. China
| | - Zhen-Guang Wang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Peng-Jun Zhou
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, P. R. China.,The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jiang-Lin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo-City, Japan
| | - Yi-Fei Wang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, P. R. China.,Guangzhou Jinan Biomedicine Research and Development Center Co.ltd, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
14
|
Wahabi K, Perwez A, Kamarudheen S, Bhat ZI, Mehta A, Rizvi MMA. Parkin gene mutations are not common, but its epigenetic inactivation is a frequent event and predicts poor survival in advanced breast cancer patients. BMC Cancer 2019; 19:820. [PMID: 31429726 PMCID: PMC6700819 DOI: 10.1186/s12885-019-6013-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
Background Progression of breast cancer involves both genetic and epigenetic factors. Parkin gene has been identified as a tumor suppressor gene in the pathogenesis of various cancers. Nevertheless, the putative role of Parkin in breast cancer remains largely unknown. Therefore, we evaluated the regulation of Parkin through both genetic and epigenetic mechanisms in breast carcinoma. Method A total of 156 breast carcinoma and their normal adjacent tissue samples were included for mutational analysis through SSCP, and sequencing. MS-PCR was employed for methylation study whereas Parkin protein expression was evaluated using immunohistochemistry and western blotting. For the survival analysis, Kaplan–Meier curve and Cox’s proportional hazard model were used. Results In expression analysis, Parkin protein expression was found to be absent in 68% cases of breast cancer. We found that aberrant promoter methylation of Parkin gene is a frequent incident in breast cancer tumors and cell lines. Our MS-PCR result showed that Parkin promoter methylation has a significant role (p = 0.0001) in reducing the expression of Parkin protein. Consistently, expression of Parkin was rectified by treatment with 5-aza-2-deoxycytidine. We also found significant associations of both Parkin negative expression and Parkin promoter methylation with the clinical variables. Furthermore, we found a very low frequency (5.7%) of Parkin mutation with no clinical significance. In survival analysis, patients having Parkin methylation and Parkin loss had a worse outcome compared to those harboring none of these events. Conclusion Overall, these results suggested that promoter methylation-mediated loss of Parkin expression could be used as a prognostic marker for the survival of breast cancer. Electronic supplementary material The online version of this article (10.1186/s12885-019-6013-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Khushnuma Wahabi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Ahmad Perwez
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shabeena Kamarudheen
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Zafar Iqbal Bhat
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Anurag Mehta
- Department of Laboratory & Transfusion Services and Director Research, Rajiv Gandhi Cancer Institute, Rohini, Delhi, 110085, India
| | - M Moshahid A Rizvi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
15
|
Gambale A, Russo R, Andolfo I, Quaglietta L, De Rosa G, Contestabile V, De Martino L, Genesio R, Pignataro P, Giglio S, Capasso M, Parasole R, Pasini B, Iolascon A. Germline mutations and new copy number variants among 40 pediatric cancer patients suspected for genetic predisposition. Clin Genet 2019; 96:359-365. [DOI: 10.1111/cge.13600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Antonella Gambale
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II Naples Italy
- CEINGE Biotecnologie Avanzate Naples Italy
| | - Roberta Russo
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II Naples Italy
- CEINGE Biotecnologie Avanzate Naples Italy
| | - Immacolata Andolfo
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II Naples Italy
- CEINGE Biotecnologie Avanzate Naples Italy
| | - Lucia Quaglietta
- Azienda Ospedaliera di Rilievo Nazionale Santobono PausiliponS.C. Pediatria Oncologia, Dip. di Oncoematologia Pediatrica Napoli Italy
| | - Gianluca De Rosa
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II Naples Italy
- CEINGE Biotecnologie Avanzate Naples Italy
| | - Valentina Contestabile
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II Naples Italy
- CEINGE Biotecnologie Avanzate Naples Italy
| | - Lucia De Martino
- Azienda Ospedaliera di Rilievo Nazionale Santobono PausiliponS.C. Pediatria Oncologia, Dip. di Oncoematologia Pediatrica Napoli Italy
| | - Rita Genesio
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II Naples Italy
| | - Piero Pignataro
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II Naples Italy
| | - Sabrina Giglio
- Biomedical Experimental and Clinical Sciences "Mario Serio"University of Florence Florence Italy
- SOD Genetica MedicaAzienda Ospedaliero‐Universitaria Meyer Florence Italy
| | - Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II Naples Italy
- CEINGE Biotecnologie Avanzate Naples Italy
- IRCCS SDN Naples Italy
| | - Rosanna Parasole
- Azienda Ospedaliera di Rilievo Nazionale Santobono PausiliponS.C. Pediatria Oncologia, Dip. di Oncoematologia Pediatrica Napoli Italy
| | - Barbara Pasini
- Dipartimento di Scienze MedicheUniversità degli Studi di Torino Torino Italy
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II Naples Italy
- CEINGE Biotecnologie Avanzate Naples Italy
| |
Collapse
|
16
|
Ferro F, Servais S, Besson P, Roger S, Dumas JF, Brisson L. Autophagy and mitophagy in cancer metabolic remodelling. Semin Cell Dev Biol 2019; 98:129-138. [PMID: 31154012 DOI: 10.1016/j.semcdb.2019.05.029] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023]
Abstract
Metabolic reprogramming in tumours is now recognized as a hallmark of cancer, participating both in tumour growth and cancer progression. Cancer cells develop global metabolic adaptations allowing them to survive in the low oxygen and nutrient tumour microenvironment. Among these metabolic adaptations, cancer cells use glycolysis but also mitochondrial oxidations to produce ATP and building blocks needed for their high proliferation rate. Another particular adaptation of cancer cell metabolism is the use of autophagy and specific forms of autophagy like mitophagy to recycle intracellular components in condition of metabolic stress or during anticancer treatments. The plasticity of cancer cell metabolism is a major limitation of anticancer treatments and could participate to therapy resistances. The aim of this review is to report recent advances in the understanding of the relationship between tumour metabolism and autophagy/mitophagy in order to propose new therapeutic strategies.
Collapse
Affiliation(s)
- Fabio Ferro
- Université de Tours, Inserm, UMR1069 Nutrition, Croissance et Cancer, Tours, France
| | - Stéphane Servais
- Université de Tours, Inserm, UMR1069 Nutrition, Croissance et Cancer, Tours, France
| | - Pierre Besson
- Université de Tours, Inserm, UMR1069 Nutrition, Croissance et Cancer, Tours, France
| | - Sébastien Roger
- Université de Tours, EA4245 Transplantation, Immunologie et Inflammation, Tours, France
| | - Jean-François Dumas
- Université de Tours, Inserm, UMR1069 Nutrition, Croissance et Cancer, Tours, France
| | - Lucie Brisson
- Université de Tours, Inserm, UMR1069 Nutrition, Croissance et Cancer, Tours, France.
| |
Collapse
|
17
|
Tabariès S, McNulty A, Ouellet V, Annis MG, Dessureault M, Vinette M, Hachem Y, Lavoie B, Omeroglu A, Simon HG, Walsh LA, Kimbung S, Hedenfalk I, Siegel PM. Afadin cooperates with Claudin-2 to promote breast cancer metastasis. Genes Dev 2019; 33:180-193. [PMID: 30692208 PMCID: PMC6362814 DOI: 10.1101/gad.319194.118] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/19/2018] [Indexed: 01/04/2023]
Abstract
Tabariès et al. show that signaling downstream from a Claudin-2/Afadin complex enables the efficient formation of breast cancer metastases. Claudin-2 promotes breast cancer liver metastasis by enabling seeding and early cancer cell survival. We now demonstrate that the PDZ-binding motif of Claudin-2 is necessary for anchorage-independent growth of cancer cells and is required for liver metastasis. Several PDZ domain-containing proteins were identified that interact with the PDZ-binding motif of Claudin-2 in liver metastatic breast cancer cells, including Afadin, Arhgap21, Pdlim2, Pdlim7, Rims2, Scrib, and ZO-1. We specifically examined the role of Afadin as a potential Claudin-2-interacting partner that promotes breast cancer liver metastasis. Afadin associates with Claudin-2, an interaction that requires the PDZ-binding motif of Claudin-2. Loss of Afadin also impairs the ability of breast cancer cells to form colonies in soft agar and metastasize to the lungs or liver. Immunohistochemical analysis of Claudin-2 and/or Afadin expression in 206 metastatic breast cancer tumors revealed that high levels of both Claudin-2 and Afadin in primary tumors were associated with poor disease-specific survival, relapse-free survival, lung-specific relapse, and liver-specific relapse. Our findings indicate that signaling downstream from a Claudin-2/Afadin complex enables the efficient formation of breast cancer metastases. Moreover, combining Claudin-2 and Afadin as prognostic markers better predicts the potential of breast cancer to metastasize to soft tissues.
Collapse
Affiliation(s)
- Sébastien Tabariès
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Alexander McNulty
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Véronique Ouellet
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec H2X 0A9, Canada
| | - Matthew G Annis
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Mireille Dessureault
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Maude Vinette
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Yasmina Hachem
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Brennan Lavoie
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Atilla Omeroglu
- Department of Pathology, McGill University Health Centre, Montréal, Québec H4A 3J1, Canada
| | - Hans-Georg Simon
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60614, USA.,Stanley Manne Children's Research Institute, Chicago, Illinois 60614, USA
| | - Logan A Walsh
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Human Genetics, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Siker Kimbung
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund SE 221 00, Sweden
| | - Ingrid Hedenfalk
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund SE 221 00, Sweden
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada
| |
Collapse
|
18
|
Marques MS, Melo J, Cavadas B, Mendes N, Pereira L, Carneiro F, Figueiredo C, Leite M. Afadin Downregulation by Helicobacter pylori Induces Epithelial to Mesenchymal Transition in Gastric Cells. Front Microbiol 2018; 9:2712. [PMID: 30473688 PMCID: PMC6237830 DOI: 10.3389/fmicb.2018.02712] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022] Open
Abstract
Afadin is a cytoplasmic protein of the adherens junctions, which regulates the formation and stabilization of both the adherens and the tight junctions. Aberrant expression of Afadin has been shown in cancer and its loss has been associated with epithelial-to-mesenchymal transition (EMT). EMT is characterized by the change from an epithelial to a mesenchymal phenotype, with modifications on the expression of adhesion molecules and acquisition of a migratory and invasive cell behavior. While it is known that Helicobacter pylori disrupts the tight and the adherens junctions and induces EMT, the effect of the bacteria on Afadin is still unknown. The aim of this study was to disclose the effect of H. pylori on Afadin and its impact in the induction of an EMT phenotype in gastric cells. Using two different cell lines, we observed that H. pylori infection decreased Afadin protein levels, independently of CagA, T4SS, and VacA virulence factors. H. pylori infection of cell lines recapitulated several EMT features, displacing and downregulating multiple proteins from cell–cell junctions, and increasing the expression of ZEB1, Vimentin, Slug, N-cadherin, and Snail. Silencing of Afadin by RNAi promoted delocalization of junctional proteins from the cell–cell contacts, increased paracellular permeability, and decreased transepithelial electrical resistance, all compatible with impaired junctional integrity. Afadin silencing also led to increased expression of the EMT marker Snail, and to the formation of actin stress fibers, together with increased cell motility and invasion. Finally, and in line with our in vitro data, the gastric mucosa of individuals infected with H. pylori showed decrease/loss of Afadin membrane staining at cell–cell contacts significantly more frequently than uninfected individuals. In conclusion, Afadin is downregulated by H. pylori infection in vitro and in vivo, and its downregulation leads to the emergence of EMT and to the acquisition of an aggressive phenotype in gastric cells, which can contribute to gastric carcinogenesis.
Collapse
Affiliation(s)
- Miguel Sardinha Marques
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Joana Melo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Bruno Cavadas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Nuno Mendes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Luísa Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Fátima Carneiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Pathology, Centro Hospitalar São João, Porto, Portugal
| | - Ceu Figueiredo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Marina Leite
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
19
|
Ma Z, Li P, Hu X, Song H. Polarity protein Canoe mediates overproliferation via modulation of JNK, Ras-MAPK and Hippo signalling. Cell Prolif 2018; 52:e12529. [PMID: 30328653 PMCID: PMC6430484 DOI: 10.1111/cpr.12529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/20/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023] Open
Abstract
Objectives Over the past decade an intriguing connection between cell polarity and tumorigenesis has emerged. Multiple core components of the junction complexes that help to form and maintain cell polarity display both pro‐ and anti‐tumorigenic functions in a context‐dependent manner, with the underlying mechanisms poorly understood. Materials and Methods With transgenic fly lines that overexpress or knock down specific signalling components, we perform genetic analysis to investigate the precise role of the polarity protein Canoe (Cno) in tumorigenesis and the downstream pathways. Results We show that overexpression of cno simultaneously activates JNK and Ras‐MEK‐ERK signalling, resulting in mixed phenotypes of both overproliferation and cell death in the Drosophila wing disc. Moderate alleviation of JNK activation eliminates the effect of Cno on cell death, leading to organ overgrowth and cell migration that mimic the formation and invasion of tumours. In addition, we find that the Hippo pathway acts downstream of JNK and Ras signalling to mediate the effect of Cno on cell proliferation. Conclusions Our work reveals an oncogenic role of Cno and creates a new type of Drosophila tumour model for cancer research.
Collapse
Affiliation(s)
- Zhiwei Ma
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ping Li
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xingjie Hu
- School of Public Health, Guangzhou Medical University, Guangdong, China
| | - Haiyun Song
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Mutation hotspots at CTCF binding sites coupled to chromosomal instability in gastrointestinal cancers. Nat Commun 2018; 9:1520. [PMID: 29670109 PMCID: PMC5906695 DOI: 10.1038/s41467-018-03828-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/15/2018] [Indexed: 01/06/2023] Open
Abstract
Tissue-specific driver mutations in non-coding genomic regions remain undefined for most cancer types. Here, we unbiasedly analyze 212 gastric cancer (GC) whole genomes to identify recurrently mutated non-coding regions in GC. Applying comprehensive statistical approaches to accurately model background mutational processes, we observe significant enrichment of non-coding indels (insertions/deletions) in three gastric lineage-specific genes. We further identify 34 mutation hotspots, of which 11 overlap CTCF binding sites (CBSs). These CBS hotspots remain significant even after controlling for a genome-wide elevated mutation rate at CBSs. In 3 out of 4 tested CBS hotspots, mutations are nominally associated with expression change of neighboring genes. CBS hotspot mutations are enriched in tumors showing chromosomal instability, co-occur with neighboring chromosomal aberrations, and are common in gastric (25%) and colorectal (19%) tumors but rare in other cancer types. Mutational disruption of specific CBSs may thus represent a tissue-specific mechanism of tumorigenesis conserved across gastrointestinal cancers. The impact of non-coding somatic mutations in gastric cancer is unknown. Here, using whole genome sequencing data from 212 gastric tumors, the authors identify recurring mutations at specific CTCF binding sites that are common across gastrointestinal cancers and associated with chromosomal instability.
Collapse
|
21
|
Um JH, Yun J. Emerging role of mitophagy in human diseases and physiology. BMB Rep 2018; 50:299-307. [PMID: 28366191 PMCID: PMC5498140 DOI: 10.5483/bmbrep.2017.50.6.056] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Indexed: 12/25/2022] Open
Abstract
Mitophagy is a process of selective removal of damaged or unnecessary mitochondria using autophagic machinery. Mitophagy plays an essential role in maintaining mitochondrial quality control and homeostasis. Mitochondrial dysfunctions and defective mitophagy in neurodegenerative diseases, cancer, and metabolic diseases indicate a close link between human disease and mitophagy. Furthermore, recent studies showing the involvement of mitophagy in differentiation and development, suggest that mitophagy may play a more active role in controlling cellular functions. A better understanding of mitophagy will provide insights about human disease and offer novel chance for treatment. This review mainly focuses on the recent implications for mitophagy in human diseases and normal physiology.
Collapse
Affiliation(s)
- Jee-Hyun Um
- Department of Biochemistry, and Peripheral Neuropathy Research Center, College of Medicine, Dong-A University, Busan 49201, Korea
| | - Jeanho Yun
- Department of Biochemistry, and Peripheral Neuropathy Research Center, College of Medicine, Dong-A University, Busan 49201, Korea
| |
Collapse
|
22
|
Higuchi-Sanabria R, Frankino PA, Paul JW, Tronnes SU, Dillin A. A Futile Battle? Protein Quality Control and the Stress of Aging. Dev Cell 2018; 44:139-163. [PMID: 29401418 PMCID: PMC5896312 DOI: 10.1016/j.devcel.2017.12.020] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/30/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022]
Abstract
There exists a phenomenon in aging research whereby early life stress can have positive impacts on longevity. The mechanisms underlying these observations suggest a robust, long-lasting induction of cellular defense mechanisms. These include the various unfolded protein responses of the endoplasmic reticulum (ER), cytosol, and mitochondria. Indeed, ectopic induction of these pathways, in the absence of stress, is sufficient to increase lifespan in organisms as diverse as yeast, worms, and flies. Here, we provide an overview of the protein quality control mechanisms that operate in the cytosol, mitochondria, and ER and discuss how they affect cellular health and viability during stress and aging.
Collapse
Affiliation(s)
- Ryo Higuchi-Sanabria
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Phillip Andrew Frankino
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joseph West Paul
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sarah Uhlein Tronnes
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
23
|
Chang JY, Yi HS, Kim HW, Shong M. Dysregulation of mitophagy in carcinogenesis and tumor progression. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:633-640. [DOI: 10.1016/j.bbabio.2016.12.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/09/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022]
|
24
|
Naseem A, Bhat ZI, Kalaiarasan P, Kumar B, Gandhi G, Rizvi MMA. Genetic and epigenetic alterations affecting PARK-2 expression in cervical neoplasm among North Indian patients. Tumour Biol 2017. [DOI: 10.1177/1010428317703635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Afreen Naseem
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Zafar Iqbal Bhat
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | | - Bhupender Kumar
- Department of Biochemistry, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Gauri Gandhi
- Department of Obstetrics & Gynecology, Lok Nayak Jayaprakash Hospital (LNJP), Maulana Azad Medical College (MAMC), New Delhi, India
| | - M. Moshahid Alam Rizvi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
25
|
Kulikov AV, Luchkina EA, Gogvadze V, Zhivotovsky B. Mitophagy: Link to cancer development and therapy. Biochem Biophys Res Commun 2017; 482:432-439. [DOI: 10.1016/j.bbrc.2016.10.088] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/23/2016] [Indexed: 01/09/2023]
|
26
|
Feng W, Chakraborty A. Fragility Extraordinaire: Unsolved Mysteries of Chromosome Fragile Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:489-526. [PMID: 29357071 DOI: 10.1007/978-981-10-6955-0_21] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chromosome fragile sites are a fascinating cytogenetic phenomenon now widely implicated in a slew of human diseases ranging from neurological disorders to cancer. Yet, the paths leading to these revelations were far from direct, and the number of fragile sites that have been molecularly cloned with known disease-associated genes remains modest. Moreover, as more fragile sites were being discovered, research interests in some of the earliest discovered fragile sites ebbed away, leaving a number of unsolved mysteries in chromosome biology. In this review we attempt to recount some of the early discoveries of fragile sites and highlight those phenomena that have eluded intense scrutiny but remain extremely relevant in our understanding of the mechanisms of chromosome fragility. We then survey the literature for disease association for a comprehensive list of fragile sites. We also review recent studies addressing the underlying cause of chromosome fragility while highlighting some ongoing debates. We report an observed enrichment for R-loop forming sequences in fragile site-associated genes than genomic average. Finally, we will leave the reader with some lingering questions to provoke discussion and inspire further scientific inquiries.
Collapse
Affiliation(s)
- Wenyi Feng
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Arijita Chakraborty
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
27
|
Hazan I, Hofmann TG, Aqeilan RI. Tumor Suppressor Genes within Common Fragile Sites Are Active Players in the DNA Damage Response. PLoS Genet 2016; 12:e1006436. [PMID: 27977694 PMCID: PMC5157955 DOI: 10.1371/journal.pgen.1006436] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The role of common fragile sites (CFSs) in cancer remains controversial. Two main views dominate the discussion: one suggests that CFS loci are hotspots of genomic instability leading to inactivation of genes encoded within them, while the other view proposes that CFSs are functional units and that loss of the encoded genes confers selective pressure, leading to cancer development. The latter view is supported by emerging evidence showing that expression of a given CFS is associated with genome integrity and that inactivation of CFS-resident tumor suppressor genes leads to dysregulation of the DNA damage response (DDR) and increased genomic instability. These two viewpoints of CFS function are not mutually exclusive but rather coexist; when breaks at CFSs are not repaired accurately, this can lead to deletions by which cells acquire growth advantage because of loss of tumor suppressor activities. Here, we review recent advances linking some CFS gene products with the DDR, genomic instability, and carcinogenesis and discuss how their inactivation might represent a selective advantage for cancer cells.
Collapse
Affiliation(s)
- Idit Hazan
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Thomas G. Hofmann
- Cellular Senescence Group, Department of Epigenetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rami I. Aqeilan
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
28
|
Involvement of Tight Junction Plaque Proteins in Cancer. CURRENT PATHOBIOLOGY REPORTS 2016. [DOI: 10.1007/s40139-016-0108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Levin L, Srour S, Gartner J, Kapitansky O, Qutob N, Dror S, Golan T, Dayan R, Brener R, Ziv T, Khaled M, Schueler-Furman O, Samuels Y, Levy C. Parkin Somatic Mutations Link Melanoma and Parkinson's Disease. J Genet Genomics 2016; 43:369-79. [DOI: 10.1016/j.jgg.2016.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/31/2022]
|
30
|
Siiskonen SJ, Zhang M, Li WQ, Liang L, Kraft P, Nijsten T, Han J, Qureshi AA. A Genome-Wide Association Study of Cutaneous Squamous Cell Carcinoma among European Descendants. Cancer Epidemiol Biomarkers Prev 2016; 25:714-20. [PMID: 26908436 DOI: 10.1158/1055-9965.epi-15-1070] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/03/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND No GWAS on the risk of cutaneous squamous cell carcinoma (SCC) has been published. We conducted a multistage genome-wide association study (GWAS) to identify novel genetic loci for SCC. METHODS The study included 745 SCC cases and 12,805 controls of European descent in the discovery stage and 531 SCC cases and 551 controls of European ancestry in the replication stage. We selected 64 independent loci that showed the most significant associations with SCC in the discovery stage (linkage disequilibrium r(2) < 0.4) for replication. RESULTS Rs8063761 in the DEF8 gene on chromosome 16 showed the strongest association with SCC (P = 1.7 × 10(-9) in the combined set; P = 1.0 × 10(-6) in the discovery set and P = 4.1 × 10(-4) in the replication set). The variant allele of rs8063761 (T allele) was associated with a decreased expression of DEF8 (P = 1.2 × 10(-6)). Besides, we validated four other SNPs associated with SCC in the replication set, including rs9689649 in PARK2 gene (P = 2.7 × 10(-6) in combined set; P = 3.2 × 10(-5) in the discovery; and P = 0.02 in the replication), rs754626 in the SRC gene (P = 1.1 × 10(-6) in combined set; P = 1.4 × 10(-5) in the discovery and P = 0.02 in the replication), rs9643297 in ST3GAL1 gene (P = 8.2 × 10(-6) in combined set; P = 3.3 × 10(-5) in the discovery; and P = 0.04 in the replication), and rs17247181 in ERBB2IP gene (P = 4.2 × 10(-6) in combined set; P = 3.1 × 10(-5) in the discovery; and P = 0.048 in the replication). CONCLUSION Several genetic variants were associated with risk of SCC in a multistage GWAS of subjects of European ancestry. IMPACT Further studies are warranted to validate our finding and elucidate the genetic function of these variants. Cancer Epidemiol Biomarkers Prev; 25(4); 714-20. ©2016 AACR.
Collapse
Affiliation(s)
- Satu J Siiskonen
- Department of Dermatology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mingfeng Zhang
- Department of Dermatology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Wen-Qing Li
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, Rhode Island. Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island
| | - Liming Liang
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts. Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - Peter Kraft
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts. Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - Tamar Nijsten
- Department of Dermatology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jiali Han
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts. Department of Epidemiology, Richard M. Fairbanks School of Public Health, Simon Cancer Center, Indiana University, Indianapolis, Indiana. Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana
| | - Abrar A Qureshi
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, Rhode Island. Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island. Department of Dermatology, Rhode Island Hospital, Providence, Rhode Island. Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
31
|
Ma J, Sheng Z, Lv Y, Liu W, Yao Q, Pan T, Xu Z, Zhang C, Xu G. Expression and clinical significance of Nectin-4 in hepatocellular carcinoma. Onco Targets Ther 2016; 9:183-90. [PMID: 26793002 PMCID: PMC4708195 DOI: 10.2147/ott.s96999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Nectin-4 is a member of the Nectin family of four Ca(+)-independent immunoglobulin-like cell adhesion molecules and implicated in cell adhesion, movement, proliferation, differentiation, polarization, and survival. The aberrant expression of Nectin-4 has been found in a variety of tumors; however, its expression in hepatocellular carcinoma (HCC) is still poorly understood. This study was to investigate the expression of Nectin-4 and its clinical significance in the patients with HCC. METHODS The expression of Nectin-4 was assessed at mRNA and protein levels by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting assays in 20 HCC specimens and adjacent non-tumor live tissues. Furthermore, the clinical significance of Nectin-4 in 87 cases of HCC was confirmed by immunohistochemistry. RESULTS The mRNA and protein levels of Nectin-4 were higher in HCC tumor tissues than in the matched non-tumor tissues. Nectin-4 was located in the cytoplasm of tumor cells and over-expressed in 67.82% (59/87) HCC tissues by immunohistochemical staining. Positive Nectin-4 expression was significantly correlated with tumor size (P=0.029), status of metastasis (P=0.023), vascular invasion (P=0.018) and tumor-node-metastasis stage (P=0.003). In addition, Kaplan-Meier survival analysis indicated that positive Nectin-4 expression was associated with worse recurrence-free survival (RFS) and overall survival (OS) (P=0.006 and P=0.005, respectively). In multivariate analysis, Nectin-4 was an independent prognostic factor for RFS and OS in the patients with HCC. CONCLUSION Nectin-4 is upregulated in HCC and may be a novel prognostic biomarker for the patients after surgical resection.
Collapse
Affiliation(s)
- Jie Ma
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China; Department of Hepatic Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - ZhiYong Sheng
- Medical Center, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Yang Lv
- Department of Plastic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - WenBin Liu
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China; Department of Hepatic Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - QiYang Yao
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - TingTing Pan
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - ZhiJun Xu
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - ChuanHai Zhang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China; Department of Hepatic Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - GeLiang Xu
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China; Department of Hepatic Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
32
|
Tsurumi H, Kurihara H, Miura K, Tanego A, Ohta Y, Igarashi T, Oka A, Horita S, Hattori M, Harita Y. Afadin is localized at cell-cell contact sites in mesangial cells and regulates migratory polarity. J Transl Med 2016; 96:49-59. [PMID: 26568295 PMCID: PMC5399166 DOI: 10.1038/labinvest.2015.133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 08/14/2015] [Accepted: 10/17/2015] [Indexed: 01/01/2023] Open
Abstract
In kidney glomeruli, mesangial cells provide structural support to counteract for expansile forces caused by pressure gradients and to regulate the blood flow. Glomerular injury results in proliferation and aberrant migration of mesangial cells, which is the pathological characteristic of mesangial proliferative glomerulonephritis. To date, molecular changes that occur in mesangial cells during glomerular injury and their association with the pathogenesis of glomerulonephritis remain largely unclear. During the search for proteins regulating the morphology of mesangial cells, we found that afadin, a multi-domain F-actin-binding protein, and β-catenin are expressed in cell-cell contact sites of cultured mesangial cells and mesangial cells in vivo. Afadin forms a protein complex with β-catenin in glomeruli and in cultured mesangial cells. Protein expression of afadin at mesangial intercellular junctions was dramatically decreased in mesangial proliferative nephritis in rats and in patients with glomerulonephritis. RNA interference-mediated depletion of afadin in cultured mesangial cells did not affect proliferation rate but resulted in delayed directional cell migration. Furthermore, reorientation of the Golgi complex at the leading edges of migrating cells in wound-healing assay was disturbed in afadin-depleted cells, suggesting the role of aberrant migratory polarity in the pathogenesis of proliferative glomerulonephritis. These data shed light on glomerulonephritis-associated changes in cell-cell adhesion between mesangial cells, which might be related to migratory polarity.
Collapse
Affiliation(s)
- Haruko Tsurumi
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidetake Kurihara
- Department of Anatomy, Juntendo University School of Medicine, Tokyo, Japan
| | - Kenichiro Miura
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsushi Tanego
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasutaka Ohta
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Kanagawa, Japan
| | | | - Akira Oka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shigeru Horita
- Department of Pediatric Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Motoshi Hattori
- Department of Pediatric Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yutaka Harita
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan. E-mail:
| |
Collapse
|
33
|
Wu TC, Feng LS, Li J, Li DX. Expression of AF-6 mRNA in hepatocellular carcinoma: Effect on invasion. Shijie Huaren Xiaohua Zazhi 2015; 23:5045-5049. [DOI: 10.11569/wcjd.v23.i31.5045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of polarity protein AF-6 mRNA in hepatocellular carcinoma (HCC), tumor-adjacent hepatic tissue and cell lines with different invasive abilities, and analyze the clinical significance of AF-6 mRNA expression in different tissues and cell lines.
METHODS: Real-time quantitative PCR was used to detect the expression of AF-6 mRNA in 30 pairs of tumor tissue and adjacent tissues and four cell lines.
RESULTS: The expression of AF-6 mRNA was low in 93.3% (28/30) of HCC specimens. AF-6 mRNA expression was significantly higher in the normal liver cell line L02 than in hepatoma cell lines (P < 0.05). The expression of AF-6 mRNA was significantly lower in MHCC97-H and HCCLM3 cell lines with high invasion and metastasis ability than in HepG2 cell line low invasion and metastasis ability (P < 0.05).
CONCLUSION: The low expression of AF-6 mRNA in HCC may associate with high invasiveness. AF-6 mRNA may become a potential target for the treatment of invasive HCC in the future.
Collapse
|
34
|
Das D, Satapathy SR, Siddharth S, Nayak A, Kundu CN. NECTIN-4 increased the 5-FU resistance in colon cancer cells by inducing the PI3K-AKT cascade. Cancer Chemother Pharmacol 2015; 76:471-9. [PMID: 26122960 DOI: 10.1007/s00280-015-2794-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/28/2015] [Indexed: 11/29/2022]
Abstract
PURPOSE 5-Fluorouracil is the most commonly used drug for the treatment of colon cancer, yet clinical resistance to this drug is frequently observed in patients making this drug ineffective. Thus, identification of gene responsible for 5-FU resistance is of utmost importance. METHODS Cellular cytotoxicity and expressions of different protein markers in colon cancer cells were measured by MTT assay and Western blotting, respectively. Cell cycle regulation, migration and colony formation ability were measured by FACS, wound-healing assay and clonogenic assay, respectively. RESULTS Increased NECTIN-4 expression was observed in 5-FU-resistant (5-FU-R) and 5-FU-exposed HCT-116 cells. A significant increase in the cell proliferation, migration, colony formation, and resistant to 5-FU were noted in 5-FU-R cells, but reverse was observed after silencing of NECTIN-4. Apoptosis caused by 5-FU in 5-FU-R cells after NECTIN-4 knockdown indicates that NECTIN-4 is responsible for 5-FU resistance. Cell survival proteins were upregulated in 5-FU-R and NECTIN-4-over-expressed cells and downregulated in NECTIN-4 knockdown or LY294002-pretreated 5-FU-R cells. Drug combination of BCNU + Resveratrol decreased the cell survival and NECTIN-4 expressions in 5-FU-R cells and NECTIN-4-over-expressed cells. CONCLUSIONS Our data suggest that NECTIN-4 is responsible for 5-FU resistance and BCNU + Resveratrol combination can be used to increase the 5-FU sensitivity.
Collapse
Affiliation(s)
- Dipon Das
- KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, 751024, Orissa, India
| | | | | | | | | |
Collapse
|
35
|
Tille JC, Ho L, Shah J, Seyde O, McKee TA, Citi S. The Expression of the Zonula Adhaerens Protein PLEKHA7 Is Strongly Decreased in High Grade Ductal and Lobular Breast Carcinomas. PLoS One 2015; 10:e0135442. [PMID: 26270346 PMCID: PMC4535953 DOI: 10.1371/journal.pone.0135442] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/22/2015] [Indexed: 01/11/2023] Open
Abstract
PLEKHA7 is a junctional protein, which participates in a complex that stabilizes E-cadherin at the zonula adhaerens. Since E-cadherin is involved in epithelial morphogenesis, signaling, and tumor progression, we explored PLEKHA7 expression in cancer. PLEKHA7 expression was assessed in invasive ductal and lobular carcinomas of the breast by immunohistochemistry, immunofluorescence and quantitative RT-PCR. PLEKHA7 was detected at epithelial junctions of normal mammary ducts and lobules, and of tubular and micropapillary structures within G1 and G2 ductal carcinomas. At these junctions, the localization of PLEKHA7 was along the circumferential belt (zonula adhaerens), and only partially overlapping with that of E-cadherin, p120ctn and ZO-1, as shown previously in rodent tissues. PLEKHA7 immunolabeling was strongly decreased in G3 ductal carcinomas and undetectable in lobular carcinomas. PLEKHA7 mRNA was detected in both ductal and lobular carcinomas, with no observed correlation between mRNA levels and tumor type or grade. In summary, PLEKHA7 is a junctional marker of epithelial cells within tubular structures both in normal breast tissue and ductal carcinomas, and since PLEKHA7 protein but not mRNA expression is strongly decreased or lost in high grade ductal carcinomas and in lobular carcinomas, loss of PLEKHA7 is a newly characterized feature of these carcinomas.
Collapse
Affiliation(s)
| | - Liza Ho
- Division of Clinical Pathology, Geneva University Hospitals, Geneva, Switzerland
| | - Jimit Shah
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
- Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Olivia Seyde
- Division of Clinical Pathology, Geneva University Hospitals, Geneva, Switzerland
| | - Thomas A. McKee
- Division of Clinical Pathology, Geneva University Hospitals, Geneva, Switzerland
| | - Sandra Citi
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
- Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
36
|
Xu Y, Chang R, Peng Z, Wang Y, Ji W, Guo J, Song L, Dai C, Wei W, Wu Y, Wan X, Shao C, Zhan L. Loss of polarity protein AF6 promotes pancreatic cancer metastasis by inducing Snail expression. Nat Commun 2015; 6:7184. [PMID: 26013125 DOI: 10.1038/ncomms8184] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/15/2015] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer (PC) is a particularly lethal form of cancer with high potential for metastasis to distant organs. Disruption of cell polarity is a hallmark of advanced epithelial tumours. Here we show that the polarity protein AF6 (afadin and MLLT4) is expressed at low levels in PC. We demonstrate that depletion of AF6 markedly promotes proliferation and metastasis of PC cells through upregulation of the expression of Snail protein, and this requires the nuclear localization of AF6. Furthermore, AF6 deficiency in PC cells leads to increased formation of a Dishevelled 2 (Dvl2)-FOXE1 complex on the promoter region of Snail gene, and activation of Snail expression. Altogether, our data established AF6 as a potential inhibitor of metastasis in PC cells. Targeting the Dvl2-FOXE1-Snail signalling axis may thus represent a promising therapeutic strategy.
Collapse
Affiliation(s)
- Yi Xu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 294 Taiyuan Road, Shanghaim 200031, China
| | - Renxu Chang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 294 Taiyuan Road, Shanghaim 200031, China
| | - Zhiyong Peng
- 1] Department of Pancreatic Surgery, Changhai Hospital, the Second Military Medical University, Shanghai 200433, China [2] Navy Medical Research Institute, the Second Military Medical University, Shanghai 200433, China
| | - Yanmei Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 294 Taiyuan Road, Shanghaim 200031, China
| | - Weiwei Ji
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 294 Taiyuan Road, Shanghaim 200031, China
| | - Jingyu Guo
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 294 Taiyuan Road, Shanghaim 200031, China
| | - Lele Song
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 294 Taiyuan Road, Shanghaim 200031, China
| | - Cheng Dai
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 294 Taiyuan Road, Shanghaim 200031, China
| | - Wei Wei
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 294 Taiyuan Road, Shanghaim 200031, China
| | - Yanjun Wu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 294 Taiyuan Road, Shanghaim 200031, China
| | - Xinjian Wan
- Department of Gastroenterology, Shanghai 2nd People's Hospital, Tongji University, School of Medicine, Shanghai 200011, China
| | - Chenghao Shao
- Department of Pancreatic Surgery, Changhai Hospital, the Second Military Medical University, Shanghai 200433, China
| | - Lixing Zhan
- 1] Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 294 Taiyuan Road, Shanghaim 200031, China [2] Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China
| |
Collapse
|
37
|
Yamamoto T, Mori T, Sawada M, Matsushima H, Ito F, Akiyama M, Kitawaki J. Loss of AF-6/afadin induces cell invasion, suppresses the formation of glandular structures and might be a predictive marker of resistance to chemotherapy in endometrial cancer. BMC Cancer 2015; 15:275. [PMID: 25879875 PMCID: PMC4399104 DOI: 10.1186/s12885-015-1286-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 03/30/2015] [Indexed: 02/04/2023] Open
Abstract
Background AF-6/afadin plays an important role in the formation of adherence junctions. In breast and colon cancer, loss of AF-6/afadin induces cell migration and cell invasion. We aimed to elucidate the role of AF-6/afadin in human endometrial cancer. Methods Morphology and AF-6/afadin expression in endometrial cancer cell lines was investigated by 3-dimensional culture. We used Matrigel invasion assay to demonstrate AF-6/afadin knockdown induced invasive capability. Cell proliferation assay was performed to estimate chemoresistance to doxorubicin, paclitaxel and cisplatin induced by AF-6/afadin knockdown. The associations between AF-6/afadin expression and clinicopathological status were determined by immunohistochemical analysis in endometrial cancer tissues. Informed consent was obtained from all patients before the study. Results The majority of cell clumps in 3-dimensional cultures of Ishikawa cells that strongly expressed AF-6/afadin showed round gland-like structures. In contrast, the cell clumps in 3-dimensional cultures of HEC1A and AN3CA cells—both weakly expressing AF-6/afadin—showed irregular gland-like structures and disorganized colonies with no gland-like structures, respectively. AF-6/afadin knockdown resulted in reduced number of gland-like structures in 3-dimensional cultures and enhancement of cell invasion and phosphorylation of ERK1/2 and Src in the highly AF-6/afadin-expressing endometrial cancer cell line. Inhibitors of MAPK/ERK kinase (MEK) (U0126) and Src (SU6656) suppressed the AF-6/afadin knockdown-induced invasive capability. AF-6/afadin knockdown induced chemoresistance to doxorubicin, paclitaxel and cisplatin in Ishikawa cells, not in HEC1A. Immunohistochemical analysis showed that AF-6/afadin expression was significantly associated with myometrial invasion and high histological grade. Conclusions AF-6/afadin regulates cell morphology and invasiveness. Invasive capability is partly regulated through the ERK and Src pathway. The inhibitors to these pathways might be molecular-targeted drugs which suppress myometrial invasion in endometrial cancer. AF-6/afadin could be a useful selection marker for fertility-sparing therapy for patients with atypical hyperplasia or grade 1 endometrioid adenocarcinoma with no myometrial invasion. AF-6/afadin knockdown induced chemoresistance especially to cisplatin. Therefore, loss of AF-6/afadin might be a predictive marker of chemoresistance to cisplatin.
Collapse
Affiliation(s)
- Takuro Yamamoto
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Taisuke Mori
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Morio Sawada
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Hiroshi Matsushima
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Fumitake Ito
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Makoto Akiyama
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Jo Kitawaki
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
38
|
D’Amico AG, Maugeri G, Magro G, Salvatorelli L, Drago F, D’Agata V. Expression pattern of parkin isoforms in lung adenocarcinomas. Tumour Biol 2015; 36:5133-41. [DOI: 10.1007/s13277-015-3166-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/26/2015] [Indexed: 10/24/2022] Open
|
39
|
Abstract
WWOX is a gene that spans an extremely large chromosomal region. It is derived from within chromosomal band 16q23.2 which is a region with frequent deletions and other alterations in a variety of different cancers. This chromosomal band also contains the FRA16D common fragile site (CFS). CFSs are chromosomal regions found in all individuals which are highly unstable. WWOX has also been demonstrated to function as a tumor suppressor that is involved in the development of many cancers. Two other highly unstable CFSs, FRA3B (3p14.2) and FRA6E (6q26), also span extremely large genes, FHIT and PARK2, respectively, and these two genes are also found to be important tumor suppressors. There are a number of interesting similarities between these three large CFS genes. In spite of the fact that they are derived from some of the most unstable chromosomal regions in the genome, they are found to be highly evolutionarily conserved and the chromosomal region spanning the mouse homologs of both WWOX and FHIT are also CFSs in mice. Many of the other CFSs also span extremely large genes and many of these are very attractive tumor suppressor candidates. WWOX is therefore a member of a very interesting family of very large CFS genes.
Collapse
Affiliation(s)
- Ge Gao
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - David I Smith
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
40
|
Gao G, Smith DI. Very large common fragile site genes and their potential role in cancer development. Cell Mol Life Sci 2014; 71:4601-15. [PMID: 25300511 PMCID: PMC11113612 DOI: 10.1007/s00018-014-1753-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
Abstract
Common fragile sites (CFSs) are large chromosomal regions that are hot-spots for alterations especially within cancer cells. The three most frequently expressed CFS regions (FRA3B, FRA16D and FRA6E) contain genes that span extremely large genomic regions (FHIT, WWOX and PARK2, respectively), and these genes were found to function as important tumor suppressors. Many other CFS regions contain extremely large genes that are also targets of alterations in multiple cancers, but none have yet been demonstrated to function as tumor suppressors. The loss of expression of just FHIT or WWOX has been found to be associated with a worse overall clinical outcome. Studies in different cancers have revealed that some cancers have decreased expression of multiple large CFS genes. This loss of expression could have a profound phenotypic effect on these cells. In this review, we will summarize the known large common fragile site genes and discuss their potential relationship to cancer development.
Collapse
Affiliation(s)
- Ge Gao
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905 USA
| | - David I. Smith
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
41
|
Kamieniak MM, Rico D, Milne RL, Muñoz-Repeto I, Ibáñez K, Grillo MA, Domingo S, Borrego S, Cazorla A, García-Bueno JM, Hernando S, García-Donas J, Hernández-Agudo E, Y Cajal TR, Robles-Díaz L, Márquez-Rodas I, Cusidó M, Sáez R, Lacambra-Calvet C, Osorio A, Urioste M, Cigudosa JC, Paz-Ares L, Palacios J, Benítez J, García MJ. Deletion at 6q24.2-26 predicts longer survival of high-grade serous epithelial ovarian cancer patients. Mol Oncol 2014; 9:422-36. [PMID: 25454820 PMCID: PMC5528660 DOI: 10.1016/j.molonc.2014.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/12/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022] Open
Abstract
Standard treatments for advanced high-grade serous ovarian carcinomas (HGSOCs) show significant side-effects and provide only short-term survival benefits due to disease recurrence. Thus, identification of novel prognostic and predictive biomarkers is urgently needed. We have used 42 paraffin-embedded HGSOCs, to evaluate the utility of DNA copy number alterations, as potential predictors of clinical outcome. Copy number-based unsupervised clustering stratified HGSOCs into two clusters of different immunohistopathological features and survival outcome (HR = 0.15, 95%CI = 0.03-0.81; Padj = 0.03). We found that loss at 6q24.2-26 was significantly associated with the cluster of longer survival independently from other confounding factors (HR = 0.06, 95%CI = 0.01-0.43, Padj = 0.005). The prognostic value of this deletion was validated in two independent series, one consisting of 36 HGSOCs analyzed by fluorescent in situ hybridization (P = 0.04) and another comprised of 411 HGSOCs from the Cancer Genome Atlas study (TCGA) (HR = 0.67, 95%CI = 0.48-0.93, Padj = 0.019). In addition, we confirmed the association of low expression of the genes from the region with longer survival in 799 HGSOCs (HR = 0.74, 95%CI = 0.61-0.90, log-rank P = 0.002) and 675 high-FIGO stage HGSOCs (HR = 0.76, 95%CI = 0.61-0.96, log-rank P = 0.02) available from the online tool KM-plotter. Finally, by integrating copy number, RNAseq and survival data of 296 HGSOCs from TCGA we propose a few candidate genes that can potentially explain the association. Altogether our findings indicate that the 6q24.2-26 deletion is an independent marker of favorable outcome in HGSOCs with potential clinical value as it can be analyzed by FISH on tumor sections and guide the selection of patients towards more conservative therapeutic strategies in order to reduce side-effects and improve quality of life.
Collapse
Affiliation(s)
- Marta M Kamieniak
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Daniel Rico
- Structural Computational Biology Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3 28029, Madrid, Spain
| | - Roger L Milne
- Cancer Epidemiology Centre, Cancer Council Victoria, 615 St Kilda Road, Melbourne 3004, Australia; Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Level 3, 207 Bouverie Street Carlton, Melbourne 3010, Victoria, Australia
| | - Ivan Muñoz-Repeto
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Kristina Ibáñez
- Structural Computational Biology Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3 28029, Madrid, Spain
| | - Miguel A Grillo
- Molecular Cytogenetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Samuel Domingo
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Salud Borrego
- Departments of Genetics, Reproduction, and Fetal Medicine, IBIS, University Hospital Virgen del Rocio/CSIC/University of Seville, Avda. Manuel Siurot, s/n., 41013 Sevilla, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Spain
| | - Alicia Cazorla
- Pathology Department, Fundación Jiménez Díaz, Avda. Reyes Católicos, 2, 28040 Madrid, Spain
| | - José M García-Bueno
- Oncology Department, Hospital General de Albacete, Calle Hermanos Falco, 37, 02006 Albacete, Spain
| | - Susana Hernando
- Oncology Department, Fundación Hospital Alcorcón, Calle Valdelaguna, 1, 28922 Alcorcón, Spain
| | - Jesús García-Donas
- Medical Oncology Service, Oncologic Center Clara Campal, Calle Oña, 10, 28050 Madrid, Spain
| | - Elena Hernández-Agudo
- Breast Cancer Clinical Research Unit, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Teresa Ramón Y Cajal
- Medical Oncology Service, Hospital Sant Pau, Carrer de Sant Quintí, 89, 08026 Barcelona, Spain
| | - Luis Robles-Díaz
- Familial Cancer Unit and Medical Oncology Department, Hospital 12 de Octubre, Avda de Córdoba, s/n, 28041 Madrid, Spain
| | - Ivan Márquez-Rodas
- Medical Oncology Service, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Calle Doctor Esquerdo, 46, 28007 Madrid, Spain
| | - Maite Cusidó
- Obstetrics and Gynecology Department, Institut Universitari Dexeus, Carrer de Sabino Arana, 5, 08028 Barcelona, Spain
| | - Raquel Sáez
- Laboratory of Genetics, Hospital Donostia, Calle Doctor Begiristain, 117, 20080 San Sebastián, Spain
| | - Carmen Lacambra-Calvet
- Department of Internal Medicine, Hospital Severo Ochoa, Avd. de Orellana, s/n., 28911 Madrid, Spain
| | - Ana Osorio
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029, Madrid, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Spain
| | - Miguel Urioste
- Familial Cancer Clinical Unit, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029 Madrid, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Spain
| | - Juan C Cigudosa
- Molecular Cytogenetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029 Madrid, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Spain
| | - Luis Paz-Ares
- Medical Oncology Department, University Hospital Virgen del Rocio, Avda. Manuel Siurot s/n., 41013 Sevilla, Spain
| | - José Palacios
- Pathology Department, Hospital Universitario Ramón y Cajal, Ctra. de Colmenar Viejo, km. 9,100, 28034 Madrid, Spain
| | - Javier Benítez
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029, Madrid, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Spain
| | - María J García
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029, Madrid, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Spain.
| |
Collapse
|
42
|
Kobayashi R, Kurita S, Miyata M, Maruo T, Mandai K, Rikitake Y, Takai Y. s-Afadin binds more preferentially to the cell adhesion molecules nectins than l-afadin. Genes Cells 2014; 19:853-63. [DOI: 10.1111/gtc.12185] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 08/25/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Reiko Kobayashi
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
| | - Souichi Kurita
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
| | - Muneaki Miyata
- Division of Signal Transduction; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
| | - Tomohiko Maruo
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
| | - Kenji Mandai
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
| | - Yoshiyuki Rikitake
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
- Division of Signal Transduction; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
| |
Collapse
|
43
|
Redmann M, Dodson M, Boyer-Guittaut M, Darley-Usmar V, Zhang J. Mitophagy mechanisms and role in human diseases. Int J Biochem Cell Biol 2014; 53:127-33. [PMID: 24842106 PMCID: PMC4111979 DOI: 10.1016/j.biocel.2014.05.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/10/2014] [Accepted: 05/11/2014] [Indexed: 11/21/2022]
Abstract
Mitophagy is a process of mitochondrial turnover through lysosomal mediated autophagy activities. This review will highlight recent studies that have identified mediators of mitophagy in response to starvation, loss of mitochondrial membrane potential or perturbation of mitochondrial integrity. Furthermore, we will review evidence of mitophagy dysfunction in various human diseases and discuss the potential for therapeutic interventions that target mitophagy processes.
Collapse
Affiliation(s)
- Matthew Redmann
- Center for Free Radical Biology, University of Alabama at Birmingham, USA; Department of Pathology, University of Alabama at Birmingham, USA
| | - Matthew Dodson
- Center for Free Radical Biology, University of Alabama at Birmingham, USA; Department of Pathology, University of Alabama at Birmingham, USA
| | - Michaël Boyer-Guittaut
- Université de Franche-Comté, Laboratoire de Biochimie, EA3922, SFR IBCT FED4234, Sciences et Techniques, 16 route de Gray, 25030 Besançon Cedex, France
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham, USA; Department of Pathology, University of Alabama at Birmingham, USA
| | - Jianhua Zhang
- Center for Free Radical Biology, University of Alabama at Birmingham, USA; Department of Pathology, University of Alabama at Birmingham, USA; Department of Veterans Affairs, Birmingham VA Medical Center, AL 35294, USA.
| |
Collapse
|
44
|
Sun TT, Wang Y, Cheng H, Xiao HZ, Xiang JJ, Zhang JT, Yu SBS, Martin TA, Ye L, Tsang LL, Jiang WG, Xiaohua J, Chan HC. Disrupted interaction between CFTR and AF-6/afadin aggravates malignant phenotypes of colon cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:618-28. [PMID: 24373847 DOI: 10.1016/j.bbamcr.2013.12.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 11/26/2013] [Accepted: 12/16/2013] [Indexed: 12/16/2022]
Abstract
How mutations or dysfunction of CFTR may increase the risk of malignancies in various tissues remains an open question. Here we report the interaction between CFTR and an adherens junction molecule, AF-6/afadin, and its involvement in the development of colon cancer. We have found that CFTR and AF-6/afadin are co-localized at the cell-cell contacts and physically interact with each other in colon cancer cell lines. Knockdown of CFTR results in reduced epithelial tightness and enhanced malignancies, with increased degradation and reduced stability of AF-6/afadin protein. The enhanced invasive phenotype of CFTR-knockdown cells can be completely reversed by either AF-6/afadin over-expression or ERK inhibitor, indicating the involvement of AF-6/MAPK pathway. More interestingly, the expression levels of CFTR and AF-6/afadin are significantly downregulated in human colon cancer tissues and lower expression of CFTR and/or AF-6/afadin is correlated with poor prognosis of colon cancer patients. The present study has revealed a previously unrecognized interaction between CFTR and AF-6/afadin that is involved in the pathogenesis of colon cancer and indicated the potential of the two as novel markers of metastasis and prognostic predictors for human colon cancer.
Collapse
|
45
|
Abstract
PARK2 (PARKIN) is an E3 ubiquitin ligase involved in multiple signaling pathways and cellular processes. Activity of PARK2 is tightly regulated through inter- and intra-molecular interactions. Dysfunction of PARK2 is associated with the progression of parkinsonism. Notably, frequent PARK2 inactivation has been identified in various human cancers. Park2-deficient mice are more susceptible to tumorigenesis, indicating its crucial role as a tumor suppressor. However, biological studies also show that PARK2 possesses both pro-survival and growth suppressive functions. Here, we summarize the genetic lesions of PARK2 in human cancers and discuss the current knowledge of PARK2 in cancer progression. We further highlight future efforts for the study of PARK2 in cancer.
Collapse
|
46
|
Abstract
Breast cancer is the most frequent and the most deadly cancer in women in Western countries. Different classifications of disease (anatomoclinical, pathological, prognostic, genetic) are used for guiding the management of patients. Unfortunately, they fail to reflect the whole clinical heterogeneity of the disease. Consequently, molecularly distinct diseases are grouped in similar clinical classes, likely explaining the different clinical outcome between patients in a given class, and the fact that selection of the most appropriate diagnostic or therapeutic strategy for each patient is not done accurately. Today, treatment is efficient in only 70.0–75.0% of cases overall. Our repertoire of efficient drugs is limited but is being expanded with the discovery of new molecular targets for new drugs, based on the identification of candidate oncogenes and tumor suppressor genes (TSG) functionally relevant in disease. Development of new drugs makes therapeutical decisions even more demanding of reliable classifiers and prognostic/predictive tests. Breast cancer is a complex, heterogeneous disease at the molecular level. The combinatorial molecular origin and the heterogeneity of malignant cells, and the variability of the host background, create distinct subgroups of tumors endowed with different phenotypic features such as response to therapy and clinical outcome. Cellular and molecular analyses can identify new classes biologically and clinically relevant, as well as provide new clinically relevant markers and targets. The various stages of mammary tumorigenesis are not clearly defined and the genetic and epigenetic events critical to the development and aggressiveness of breast cancer are not precisely known. Because the phenotype of tumors is dependent on many genes, a large-scale and integrated molecular characterization of the genetic and epigenetic alterations and gene expression deregulation should allow the identification of new molecular classes clinically relevant, as well as among the altered genes and/or pathways, the identification of more accurate molecular diagnostic, prognostic/predictive factors, and for some of them, after functional validation, the identification of new therapeutic targets.
Collapse
|
47
|
Martinez E, Trevino V. Modelling gene expression profiles related to prostate tumor progression using binary states. Theor Biol Med Model 2013; 10:37. [PMID: 23721350 PMCID: PMC3691825 DOI: 10.1186/1742-4682-10-37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 05/21/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Cancer is a complex disease commonly characterized by the disrupted activity of several cancer-related genes such as oncogenes and tumor-suppressor genes. Previous studies suggest that the process of tumor progression to malignancy is dynamic and can be traced by changes in gene expression. Despite the enormous efforts made for differential expression detection and biomarker discovery, few methods have been designed to model the gene expression level to tumor stage during malignancy progression. Such models could help us understand the dynamics and simplify or reveal the complexity of tumor progression. METHODS We have modeled an on-off state of gene activation per sample then per stage to select gene expression profiles associated to tumor progression. The selection is guided by statistical significance of profiles based on random permutated datasets. RESULTS We show that our method identifies expected profiles corresponding to oncogenes and tumor suppressor genes in a prostate tumor progression dataset. Comparisons with other methods support our findings and indicate that a considerable proportion of significant profiles is not found by other statistical tests commonly used to detect differential expression between tumor stages nor found by other tailored methods. Ontology and pathway analysis concurred with these findings. CONCLUSIONS Results suggest that our methodology may be a valuable tool to study tumor malignancy progression, which might reveal novel cancer therapies.
Collapse
Affiliation(s)
- Emmanuel Martinez
- Tecnológico de Monterrey, Campus Monterrey, Cátedra de Bioinformática, Monterrey, Nuevo León 64849, México
| | - Victor Trevino
- Tecnológico de Monterrey, Campus Monterrey, Cátedra de Bioinformática, Monterrey, Nuevo León 64849, México
| |
Collapse
|
48
|
Viotti J, Duplan E, Caillava C, Condat J, Goiran T, Giordano C, Marie Y, Idbaih A, Delattre JY, Honnorat J, Checler F, Alves da Costa C. Glioma tumor grade correlates with parkin depletion in mutant p53-linked tumors and results from loss of function of p53 transcriptional activity. Oncogene 2013; 33:1764-75. [DOI: 10.1038/onc.2013.124] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 02/13/2013] [Accepted: 02/18/2013] [Indexed: 12/31/2022]
|
49
|
Pavlova NN, Pallasch C, Elia AEH, Braun CJ, Westbrook TF, Hemann M, Elledge SJ. A role for PVRL4-driven cell-cell interactions in tumorigenesis. eLife 2013; 2:e00358. [PMID: 23682311 PMCID: PMC3641523 DOI: 10.7554/elife.00358] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/18/2013] [Indexed: 11/13/2022] Open
Abstract
During all stages of tumor progression, cancer cells are subjected to inappropriate extracellular matrix environments and must undergo adaptive changes in order to evade growth constraints associated with the loss of matrix attachment. A gain of function screen for genes that enable proliferation independently of matrix anchorage identified a cell adhesion molecule PVRL4 (poliovirus-receptor-like 4), also known as Nectin-4. PVRL4 promotes anchorage-independence by driving cell-to-cell attachment and matrix-independent integrin β4/SHP-2/c-Src activation. Solid tumors frequently have copy number gains of the PVRL4 locus and some have focal amplifications. We demonstrate that the transformation of breast cancer cells is dependent on PVRL4. Furthermore, growth of orthotopically implanted tumors in vivo is inhibited by blocking PVRL4-driven cell-to-cell attachment with monoclonal antibodies, demonstrating a novel strategy for targeted therapy of cancer. DOI:http://dx.doi.org/10.7554/eLife.00358.001.
Collapse
Affiliation(s)
- Natalya N Pavlova
- Department of Genetics, Harvard Medical School, Boston, United States
- Division of Genetics, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, United States
| | - Christian Pallasch
- Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Boston, United States
| | - Andrew EH Elia
- Department of Genetics, Harvard Medical School, Boston, United States
- Division of Genetics, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, United States
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, United States
| | - Christian J Braun
- Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Boston, United States
| | - Thomas F Westbrook
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Human Genetics, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Boston, United States
| | - Michael Hemann
- Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Boston, United States
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School, Boston, United States
- Division of Genetics, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, United States
| |
Collapse
|
50
|
Sun X, Liu M, Hao J, Li D, Luo Y, Wang X, Yang Y, Li F, Shui W, Chen Q, Zhou J. Parkin deficiency contributes to pancreatic tumorigenesis by inducing spindle multipolarity and misorientation. Cell Cycle 2013; 12:1133-41. [PMID: 23470638 DOI: 10.4161/cc.24215] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Parkin, an E3 ubiquitin ligase well known for its role in the pathogenesis of juvenile Parkinson disease, has been considered as a candidate tumor suppressor in certain types of cancer. It remains unknown whether parkin is involved in the development of pancreatic cancer, the fourth leading cause of cancer-related deaths worldwide. Herein, we demonstrate the downregulation and copy number loss of the parkin gene in human pancreatic cancer specimens. The expression of parkin negatively correlates with clinicopathological parameters indicating the malignancy of pancreatic cancer. In addition, knockdown of parkin expression promotes the proliferation and tumorigenic properties of pancreatic cancer cells both in vitro and in mice. We further find that parkin deficiency increases the proportion of cells with spindle multipolarity and multinucleation. Parkin-depleted cells also show a significant increase in spindle misorientation. These findings indicate crucial involvement of parkin deficiency in the pathogenesis of pancreatic cancer.
Collapse
Affiliation(s)
- Xiaodong Sun
- Key Laboratory of Protein Science and Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|