1
|
López I, Valdivia IL, Vojtesek B, Fåhraeus R, Coates P. Re-appraising the evidence for the source, regulation and function of p53-family isoforms. Nucleic Acids Res 2024; 52:12112-12129. [PMID: 39404067 PMCID: PMC11551734 DOI: 10.1093/nar/gkae855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 11/12/2024] Open
Abstract
The p53 family of proteins evolved from a common ancestor into three separate genes encoding proteins that act as transcription factors with distinct cellular roles. Isoforms of each member that lack specific regions or domains are suggested to result from alternative transcription start sites, alternative splicing or alternative translation initiation, and have the potential to exponentially increase the functional repertoire of each gene. However, evidence supporting the presence of individual protein variants at functional levels is often limited and is inferred by mRNA detection using highly sensitive amplification techniques. We provide a critical appraisal of the current evidence for the origins, expression, functions and regulation of p53-family isoforms. We conclude that despite the wealth of publications, several putative isoforms remain poorly established. Future research with improved technical approaches and the generation of isoform-specific protein detection reagents is required to establish the physiological relevance of p53-family isoforms in health and disease. In addition, our analyses suggest that p53-family variants evolved partly through convergent rather than divergent evolution from the ancestral gene.
Collapse
Affiliation(s)
- Ignacio López
- Biochemistry, Faculty of Science, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | - Irene Larghero Valdivia
- Biochemistry, Faculty of Science, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
| | - Robin Fåhraeus
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris Cité, 27 rue Juliette Dodu, Hôpital St. Louis, Paris F-75010, France
- Department of Medical Biosciences, Building 6M, Umeå University, Umeå 90185, Sweden
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
| |
Collapse
|
2
|
Benitez DA, Cumplido-Laso G, Olivera-Gómez M, Del Valle-Del Pino N, Díaz-Pizarro A, Mulero-Navarro S, Román-García A, Carvajal-Gonzalez JM. p53 Genetics and Biology in Lung Carcinomas: Insights, Implications and Clinical Applications. Biomedicines 2024; 12:1453. [PMID: 39062026 PMCID: PMC11274425 DOI: 10.3390/biomedicines12071453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The TP53 gene is renowned as a tumor suppressor, playing a pivotal role in overseeing the cell cycle, apoptosis, and maintaining genomic stability. Dysregulation of p53 often contributes to the initiation and progression of various cancers, including lung cancer (LC) subtypes. The review explores the intricate relationship between p53 and its role in the development and progression of LC. p53, a crucial tumor suppressor protein, exists in various isoforms, and understanding their distinct functions in LC is essential for advancing our knowledge of this deadly disease. This review aims to provide a comprehensive literature overview of p53, its relevance to LC, and potential clinical applications.
Collapse
Affiliation(s)
- Dixan A. Benitez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.C.-L.); (M.O.-G.); (N.D.V.-D.P.); (A.D.-P.); (S.M.-N.); (A.R.-G.)
| | | | | | | | | | | | | | - Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.C.-L.); (M.O.-G.); (N.D.V.-D.P.); (A.D.-P.); (S.M.-N.); (A.R.-G.)
| |
Collapse
|
3
|
Ray Das S, Delahunt B, Lasham A, Li K, Wright D, Print C, Slatter T, Braithwaite A, Mehta S. Combining TP53 mutation and isoform has the potential to improve clinical practice. Pathology 2024; 56:473-483. [PMID: 38594116 DOI: 10.1016/j.pathol.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/21/2024] [Accepted: 02/06/2024] [Indexed: 04/11/2024]
Abstract
The clinical importance of assessing and combining data on TP53 mutations and isoforms is discussed in this article. It gives a succinct overview of the structural makeup and key biological roles of the isoforms. It then provides a comprehensive summary of the roles that p53 isoforms play in cancer development, therapy response and resistance. The review provides a summary of studies demonstrating the role of p53 isoforms as potential prognostic indicators. It further provides evidence on how the presence of TP53 mutations may affect one or more of these activities and the association of p53 isoforms with clinicopathological data in various tumour types. The review gives insight into the present diagnostic hurdles for identifying TP53 isoforms and makes recommendations to improve their evaluation. In conclusion, this review offers suggestions for enhancing the identification and integration of TP53 isoforms in conjunction with mutation data within the clinical context.
Collapse
Affiliation(s)
- Sankalita Ray Das
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Brett Delahunt
- Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - Annette Lasham
- Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Biodiscovery, University of Auckland, Auckland, New Zealand; Te Aka Mātauranga Matepukupuku (Centre for Cancer Research), University of Auckland, Auckland, New Zealand
| | - Kunyu Li
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Deborah Wright
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Cristin Print
- Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Biodiscovery, University of Auckland, Auckland, New Zealand; Te Aka Mātauranga Matepukupuku (Centre for Cancer Research), University of Auckland, Auckland, New Zealand
| | - Tania Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Antony Braithwaite
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Sunali Mehta
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Biodiscovery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
4
|
Steffens Reinhardt L, Groen K, Xavier A, Avery-Kiejda KA. p53 Dysregulation in Breast Cancer: Insights on Mutations in the TP53 Network and p53 Isoform Expression. Int J Mol Sci 2023; 24:10078. [PMID: 37373225 DOI: 10.3390/ijms241210078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
In breast cancer, p53 expression levels are better predictors of outcome and chemotherapy response than TP53 mutation. Several molecular mechanisms that modulate p53 levels and functions, including p53 isoform expression, have been described, and may contribute to deregulated p53 activities and worse cancer outcomes. In this study, TP53 and regulators of the p53 pathway were sequenced by targeted next-generation sequencing in a cohort of 137 invasive ductal carcinomas and associations between the identified sequence variants, and p53 and p53 isoform expression were explored. The results demonstrate significant variability in levels of p53 isoform expression and TP53 variant types among tumours. We have shown that TP53 truncating and missense mutations modulate p53 levels. Further, intronic mutations, particularly polymorphisms in intron 4, which can affect the translation from the internal TP53 promoter, were associated with increased Δ133p53 levels. Differential expression of p53 and p53 isoforms was associated with the enrichment of sequence variants in p53 interactors BRCA1, PALB2, and CHEK2. Taken together, these results underpin the complexity of p53 and p53 isoform regulation. Furthermore, given the growing evidence associating dysregulated levels of p53 isoforms with cancer progression, certain TP53 sequence variants that show strong links to p53 isoform expression may advance the field of prognostic biomarker study in breast cancer.
Collapse
Affiliation(s)
- Luiza Steffens Reinhardt
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Cancer Detection & Therapy Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Kira Groen
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Alexandre Xavier
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Kelly A Avery-Kiejda
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Cancer Detection & Therapy Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
5
|
Liu Y, Cui J, Hoffman AR, Hu JF. Eukaryotic translation initiation factor eIF4G2 opens novel paths for protein synthesis in development, apoptosis and cell differentiation. Cell Prolif 2023; 56:e13367. [PMID: 36547008 PMCID: PMC9977666 DOI: 10.1111/cpr.13367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 12/24/2022] Open
Abstract
Protein translation is a critical regulatory event involved in nearly all physiological and pathological processes. Eukaryotic translation initiation factors are dedicated to translation initiation, the most highly regulated stage of protein synthesis. Eukaryotic translation initiation factor 4G2 (eIF4G2, also called p97, NAT1 and DAP5), an eIF4G family member that lacks the binding sites for 5' cap binding protein eIF4E, is widely considered to be a key factor for internal ribosome entry sites (IRESs)-mediated cap-independent translation. However, recent findings demonstrate that eIF4G2 also supports many other translation initiation pathways. In this review, we summarize the role of eIF4G2 in a variety of cap-independent and -dependent translation initiation events. Additionally, we also update recent findings regarding the role of eIF4G2 in apoptosis, cell survival, cell differentiation and embryonic development. These studies reveal an emerging new picture of how eIF4G2 utilizes diverse translational mechanisms to regulate gene expression.
Collapse
Affiliation(s)
- Yudi Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital, Jilin University, Changchun, Jilin, P.R. China
| | - Jiuwei Cui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital, Jilin University, Changchun, Jilin, P.R. China
| | - Andrew R Hoffman
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital, Jilin University, Changchun, Jilin, P.R. China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
6
|
Steffens Reinhardt L, Groen K, Newton C, Avery-Kiejda KA. The role of truncated p53 isoforms in the DNA damage response. Biochim Biophys Acta Rev Cancer 2023; 1878:188882. [PMID: 36977456 DOI: 10.1016/j.bbcan.2023.188882] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/28/2023]
Abstract
The tumour suppressor p53 is activated following genotoxic stress and regulates the expression of target genes involved in the DNA damage response (DDR). The discovery that p53 isoforms alter the transcription of p53 target genes or p53 protein interactions unveiled an alternative DDR. This review will focus on the role p53 isoforms play in response to DNA damage. The expression of the C-terminally truncated p53 isoforms may be modulated via DNA damage-induced alternative splicing, whereas alternative translation plays an important role in modulating the expression of N-terminally truncated isoforms. The DDR induced by p53 isoforms may enhance the canonical p53 DDR or block cell death mechanisms in a DNA damage- and cell-specific manner, which could contribute to chemoresistance in a cancer context. Thus, a better understanding of the involvement of p53 isoforms in the cell fate decisions could uncover potential therapeutic targets in cancer and other diseases.
Collapse
Affiliation(s)
- Luiza Steffens Reinhardt
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Kira Groen
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Cheryl Newton
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Kelly A Avery-Kiejda
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia.
| |
Collapse
|
7
|
Fusée L, Salomao N, Ponnuswamy A, Wang L, López I, Chen S, Gu X, Polyzoidis S, Vadivel Gnanasundram S, Fahraeus R. The p53 endoplasmic reticulum stress-response pathway evolved in humans but not in mice via PERK-regulated p53 mRNA structures. Cell Death Differ 2023; 30:1072-1081. [PMID: 36813920 PMCID: PMC10070458 DOI: 10.1038/s41418-023-01127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Cellular stress conditions activate p53-dependent pathways to counteract the inflicted damage. To achieve the required functional diversity, p53 is subjected to numerous post-translational modifications and the expression of isoforms. Little is yet known how p53 has evolved to respond to different stress pathways. The p53 isoform p53/47 (p47 or ΔNp53) is linked to aging and neural degeneration and is expressed in human cells via an alternative cap-independent translation initiation from the 2nd in-frame AUG at codon 40 (+118) during endoplasmic reticulum (ER) stress. Despite an AUG codon in the same location, the mouse p53 mRNA does not express the corresponding isoform in either human or mouse-derived cells. High-throughput in-cell RNA structure probing shows that p47 expression is attributed to PERK kinase-dependent structural alterations in the human p53 mRNA, independently of eIF2α. These structural changes do not take place in murine p53 mRNA. Surprisingly, PERK response elements required for the p47 expression are located downstream of the 2nd AUG. The data show that the human p53 mRNA has evolved to respond to PERK-mediated regulation of mRNA structures in order to control p47 expression. The findings highlight how p53 mRNA co-evolved with the function of the encoded protein to specify p53-activities under different cellular conditions.
Collapse
Affiliation(s)
- Leila Fusée
- Inserm U1131, 27 Rue Juliette Dodu, 75010, Paris, France
| | - Norman Salomao
- Inserm U1131, 27 Rue Juliette Dodu, 75010, Paris, France
| | | | - Lixiao Wang
- Department of Medical Biosciences, Umea University, 90185, Umea, Sweden
| | - Ignacio López
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Sa Chen
- Department of Medical Biosciences, Umea University, 90185, Umea, Sweden
| | - Xiaolian Gu
- Department of Medical Biosciences, Umea University, 90185, Umea, Sweden
| | - Stavros Polyzoidis
- Department of Neurosurgery, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Robin Fahraeus
- Inserm U1131, 27 Rue Juliette Dodu, 75010, Paris, France. .,Department of Medical Biosciences, Umea University, 90185, Umea, Sweden. .,RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653, Brno, Czech Republic.
| |
Collapse
|
8
|
López-Iniesta MJ, Parkar SN, Ramalho AC, Lacerda R, Costa IF, Zhao J, Romão L, Candeias MM. Conserved Double Translation Initiation Site for Δ160p53 Protein Hints at Isoform's Key Role in Mammalian Physiology. Int J Mol Sci 2022; 23:ijms232415844. [PMID: 36555484 PMCID: PMC9779343 DOI: 10.3390/ijms232415844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
p53 is the most commonly mutated gene in human cancers. Two fundamental reasons for this are its long protein isoforms protect from cancer, while its shorter C-terminal isoforms can support cancer and metastasis. Previously, we have shown that the Δ160p53 protein isoform enhances survival and the invasive character of cancer cells. Here, we identified a translation initiation site nine codons downstream of codon 160-the known initiation codon for the translation of Δ160p53-that is recognized by the translation machinery. When translation failed to initiate from AUG160 due to mutation, it initiated from AUG169 instead, producing similar levels of a similar protein, Δ169p53, which promoted cell survival as efficiently as Δ160p53 following DNA damage. Interestingly, almost all mammalian species with an orthologue to human AUG160 also possess one for AUG169, while none of the non-mammalian species lacking AUG160 have AUG169, even if that region of the p53 gene is well conserved. In view of our findings, we do not believe that Δ169p53 acts as a different p53 protein isoform; instead, we propose that the double translation initiation site strengthens the translation of these products with a critical role in cell homeostasis. Future studies will help verify if this is a more general mechanism for the expression of essential proteins in mammals.
Collapse
Affiliation(s)
- Maria José López-Iniesta
- MaRCU—Molecular and RNA Cancer Unit, Kyoto 606-8501, Japan
- Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Shrutee N. Parkar
- MaRCU—Molecular and RNA Cancer Unit, Kyoto 606-8501, Japan
- Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Ana Catarina Ramalho
- MaRCU—Molecular and RNA Cancer Unit, Kyoto 606-8501, Japan
- Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI–Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Laboratory of Cancer cell Biology, Graduate School of Biostudies, Kyoto University, 606-8501 Kyoto, Japan
| | - Rafaela Lacerda
- MaRCU—Molecular and RNA Cancer Unit, Kyoto 606-8501, Japan
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI–Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Inês F. Costa
- MaRCU—Molecular and RNA Cancer Unit, Kyoto 606-8501, Japan
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI–Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Jingyuan Zhao
- MaRCU—Molecular and RNA Cancer Unit, Kyoto 606-8501, Japan
- Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Luísa Romão
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI–Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Marco M. Candeias
- MaRCU—Molecular and RNA Cancer Unit, Kyoto 606-8501, Japan
- Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI–Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Correspondence: ; Tel.: +81-(0)75-753-9297
| |
Collapse
|
9
|
Whisenant CC, Shaw RM. Internal translation of Gja1 (Connexin43) to produce GJA1-20k: Implications for arrhythmia and ischemic-preconditioning. Front Physiol 2022; 13:1058954. [PMID: 36569758 PMCID: PMC9768480 DOI: 10.3389/fphys.2022.1058954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Internal translation is a form of post-translation modification as it produces different proteins from one mRNA molecule by beginning translation at a methionine coding triplet downstream of the first methionine. Internal translation can eliminate domains of proteins that otherwise restrict movement or activity, thereby creating profound functional diversity. Connexin43 (Cx43), encoded by the gene Gja1, is the main gap junction protein necessary for propagating action potentials between adjacent cardiomyocytes. Gja1 can be internally translated to produce a peptide 20 kD in length named GJA1-20k. This review focuses on the role of GJA1-20k in maintaining cardiac electrical rhythm as well as in ischemic preconditioning (IPC). Connexin43 is the only ion channel we are aware that has been reported to be subject to internal translation. We expect many other ion channels also undergo internal translation. The exploration of post-translational modification of ion channels, and in particular of internal translation, has the potential to greatly increase our understanding of both canonical and non-canonical ion channel biology.
Collapse
|
10
|
Priami C, Montariello D, De Michele G, Ruscitto F, Polazzi A, Ronzoni S, Bertalot G, Binelli G, Gambino V, Luzi L, Mapelli M, Giorgio M, Migliaccio E, Pelicci PG. Aberrant activation of p53/p66Shc-mInsc axis increases asymmetric divisions and attenuates proliferation of aged mammary stem cells. Cell Death Differ 2022; 29:2429-2444. [PMID: 35739253 PMCID: PMC9751089 DOI: 10.1038/s41418-022-01029-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 01/31/2023] Open
Abstract
Aging is accompanied by the progressive decline in tissue regenerative capacity and functions of resident stem cells (SCs). Underlying mechanisms, however, remain unclear. Here we show that, during chronological aging, self-renewing mitoses of mammary SCs (MaSCs) are preferentially asymmetric and that their progeny divides less frequently, leading to decreased number of MaSCs and reduced regenerative potential. Underlying mechanisms are investigated in the p66Shc-/- mouse, which exhibits several features of delayed aging, including reduced involution of the mammary gland (MG). p66Shc is a mitochondrial redox sensor that activates a specific p53 transcriptional program, in which the aging-associated p44 isoform of p53 plays a pivotal role. We report here that aged p66Shc-/- MaSCs show increased symmetric divisions, increased proliferation and increased regenerative potential, to an extent reminiscent of young wild-type (WT) MaSCs. Mechanistically, we demonstrate that p66Shc, together with p53: (i) accumulates in the aged MG, (ii) sustains expression of the cell polarity determinant mInscuteable and, concomitantly, (iii) down-regulates critical cell cycle genes (e.g.,: Cdk1 and Cyclin A). Accordingly, overexpression of p53/p44 increases asymmetric divisions and decreases proliferation of young WT MaSCs in a p66Shc-dependent manner and overexpression of mInsc restores WT-like levels of asymmetric divisions in aged p66Shc-/- MaSCs. Notably, deletion of p66Shc has negligible effects in young MaSCs and MG development. These results demonstrate that MG aging is due to aberrant activation of p66Shc, which induces p53/p44 signaling, leading to failure of symmetric divisions, decreased proliferation and reduced regenerative potential of MaSCs.
Collapse
Affiliation(s)
- Chiara Priami
- European Institute of Oncology (IEO) IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Daniela Montariello
- European Institute of Oncology (IEO) IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Giulia De Michele
- European Institute of Oncology (IEO) IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Federica Ruscitto
- European Institute of Oncology (IEO) IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Andrea Polazzi
- European Institute of Oncology (IEO) IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Simona Ronzoni
- European Institute of Oncology (IEO) IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Giovanni Bertalot
- European Institute of Oncology (IEO) IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- U.O.M. Anatomia ed Istologia Patologica, Ospedale Santa Chiara, Largo Medaglie d'Oro 9, 38122, Trento, Italy
| | - Giorgio Binelli
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Valentina Gambino
- European Institute of Oncology (IEO) IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20142, Milan, Italy
| | - Lucilla Luzi
- European Institute of Oncology (IEO) IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Marina Mapelli
- European Institute of Oncology (IEO) IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Marco Giorgio
- European Institute of Oncology (IEO) IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- Department of Biomedical Sciences, University of Padua, Via Bassi 58/B, 35131, Padova, Italy
| | - Enrica Migliaccio
- European Institute of Oncology (IEO) IRCCS, Via Ripamonti 435, 20141, Milan, Italy.
| | - Pier Giuseppe Pelicci
- European Institute of Oncology (IEO) IRCCS, Via Ripamonti 435, 20141, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20142, Milan, Italy.
| |
Collapse
|
11
|
Kok V, Tang JY, Eng G, Tan SY, Chin J, Quek C, Lai WX, Lim TK, Lin Q, Chua J, Cheong J. SFPQ promotes RAS-mutant cancer cell growth by modulating 5'-UTR mediated translational control of CK1α. NAR Cancer 2022; 4:zcac027. [PMID: 36177382 PMCID: PMC9513841 DOI: 10.1093/narcan/zcac027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/12/2022] Open
Abstract
Oncogenic mutations in the RAS family of small GTPases are commonly found in human cancers and they promote tumorigenesis by altering gene expression networks. We previously demonstrated that Casein Kinase 1α (CK1α), a member of the CK1 family of serine/threonine kinases, is post-transcriptionally upregulated by oncogenic RAS signaling. Here, we report that the CK1α mRNA contains an exceptionally long 5'-untranslated region (UTR) harbouring several translational control elements, implicating its involvement in translational regulation. We demonstrate that the CK1α 5'-UTR functions as an IRES element in HCT-116 colon cancer cells to promote cap-independent translation. Using tobramycin-affinity RNA-pulldown assays coupled with identification via mass spectrometry, we identified several CK1α 5'-UTR-binding proteins, including SFPQ. We show that RNA interference targeting SFPQ reduced CK1α protein abundance and partially blocked RAS-mutant colon cancer cell growth. Importantly, transcript and protein levels of SFPQ and other CK1α 5'-UTR-associated RNA-binding proteins (RBPs) are found to be elevated in early stages of RAS-mutant cancers, including colorectal and lung adenocarcinoma. Taken together, our study uncovers a previously unappreciated role of RBPs in promoting RAS-mutant cancer cell growth and their potential to serve as promising biomarkers as well as tractable therapeutic targets in cancers driven by oncogenic RAS.
Collapse
Affiliation(s)
- Venetia Jing Tong Kok
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, Singapore
| | - Jia Ying Tang
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, Singapore
| | - Gracie Wee Ling Eng
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, Singapore
| | - Shin Yi Tan
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, Singapore
| | - Joseph Tin Foong Chin
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, Singapore
| | - Chun Hian Quek
- School of Applied Science, Temasek Polytechnic, Singapore
| | - Wei Xuan Lai
- Department of Physiology, YLLSoM, National University of Singapore, Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - John Jia En Chua
- Department of Physiology, YLLSoM, National University of Singapore, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, YLLSoM, National University of Singapore, Singapore
| | - Jit Kong Cheong
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, Singapore
- NUS Centre for Cancer Research, National University of Singapore, Singapore
- Department of Biochemistry, YLLSoM, National University of Singapore, Singapore
| |
Collapse
|
12
|
Hamledari H, Asghari P, Jayousi F, Aguirre A, Maaref Y, Barszczewski T, Ser T, Moore E, Wasserman W, Klein Geltink R, Teves S, Tibbits GF. Using human induced pluripotent stem cell-derived cardiomyocytes to understand the mechanisms driving cardiomyocyte maturation. Front Cardiovasc Med 2022; 9:967659. [PMID: 36061558 PMCID: PMC9429949 DOI: 10.3389/fcvm.2022.967659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases are the leading cause of mortality and reduced quality of life globally. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) provide a personalized platform to study inherited heart diseases, drug-induced cardiac toxicity, and cardiac regenerative therapy. However, the immaturity of CMs obtained by current strategies is a major hurdle in utilizing hiPSC-CMs at their fullest potential. Here, the major findings and limitations of current maturation methodologies to enhance the utility of hiPSC-CMs in the battle against a major source of morbidity and mortality are reviewed. The most recent knowledge of the potential signaling pathways involved in the transition of fetal to adult CMs are assimilated. In particular, we take a deeper look on role of nutrient sensing signaling pathways and the potential role of cap-independent translation mediated by the modulation of mTOR pathway in the regulation of cardiac gap junctions and other yet to be identified aspects of CM maturation. Moreover, a relatively unexplored perspective on how our knowledge on the effects of preterm birth on cardiovascular development can be actually utilized to enhance the current understanding of CM maturation is examined. Furthermore, the interaction between the evolving neonatal human heart and brown adipose tissue as the major source of neonatal thermogenesis and its endocrine function on CM development is another discussed topic which is worthy of future investigation. Finally, the current knowledge regarding transcriptional mediators of CM maturation is still limited. The recent studies have produced the groundwork to better understand CM maturation in terms of providing some of the key factors involved in maturation and development of metrics for assessment of maturation which proves essential for future studies on in vitro PSC-CMs maturation.
Collapse
Affiliation(s)
- Homa Hamledari
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Parisa Asghari
- Department of Cellular and Physiological Sciences, University of British Colombia, Vancouver, BC, Canada
| | - Farah Jayousi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Alejandro Aguirre
- Department of Medical Genetics, University of British Colombia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Yasaman Maaref
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Tiffany Barszczewski
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Terri Ser
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Colombia, Vancouver, BC, Canada
| | - Edwin Moore
- Department of Cellular and Physiological Sciences, University of British Colombia, Vancouver, BC, Canada
| | - Wyeth Wasserman
- Department of Medical Genetics, University of British Colombia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Ramon Klein Geltink
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Colombia, Vancouver, BC, Canada
| | - Sheila Teves
- Department of Biochemistry and Molecular Biology, University of British Colombia, Vancouver, BC, Canada
| | - Glen F. Tibbits
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Cytoplasmic p53β Isoforms Are Associated with Worse Disease-Free Survival in Breast Cancer. Int J Mol Sci 2022; 23:ijms23126670. [PMID: 35743117 PMCID: PMC9223648 DOI: 10.3390/ijms23126670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/02/2022] Open
Abstract
TP53 mutations are associated with tumour progression, resistance to therapy and poor prognosis. However, in breast cancer, TP53′s overall mutation frequency is lower than expected (~25%), suggesting that other mechanisms may be responsible for the disruption of this critical tumour suppressor. p53 isoforms are known to enhance or disrupt p53 pathway activity in cell- and context-specific manners. Our previous study revealed that p53 isoform mRNA expression correlates with clinicopathological features and survival in breast cancer and may account for the dysregulation of the p53 pathway in the absence of TP53 mutations. Hence, in this study, the protein expression of p53 isoforms, transactivation domain p53 (TAp53), p53β, Δ40p53, Δ133p53 and Δ160p53 was analysed using immunohistochemistry in a cohort of invasive ductal carcinomas (n = 108). p53 isoforms presented distinct cellular localisation, with some isoforms being expressed in tumour cells and others in infiltrating immune cells. Moreover, high levels of p53β, most likely to be N-terminally truncated β variants, were significantly associated with worse disease-free survival, especially in tumours with wild-type TP53. To the best of our knowledge, this is the first study that analysed the endogenous protein levels of p53 isoforms in a breast cancer cohort. Our findings suggest that p53β may be a useful prognostic marker.
Collapse
|
14
|
Tamaddondoust RN, Wang Y, Jafarnejad SM, Graber TE, Alain T. The highs and lows of ionizing radiation and its effects on protein synthesis. Cell Signal 2021; 89:110169. [PMID: 34662715 DOI: 10.1016/j.cellsig.2021.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/19/2021] [Accepted: 10/06/2021] [Indexed: 11/03/2022]
Abstract
Ionizing radiation (IR) is a constant feature of our environment and one that can dramatically affect organismal health and development. Although the impacts of high-doses of IR on mammalian cells and systems have been broadly explored, there are still challenges in accurately quantifying biological responses to IR, especially in the low-dose range to which most individuals are exposed in their lifetime. The resulting uncertainty has led to the entrenchment of conservative radioprotection policies around the world. Thus, uncovering long-sought molecular mechanisms and tissue responses that are targeted by IR could lead to more informed policymaking and propose new therapeutic avenues for a variety of pathologies. One often overlooked target of IR is mRNA translation, a highly regulated cellular process that consumes more than 40% of the cell's energy. In response to environmental stimuli, regulation of mRNA translation allows for precise and rapid changes to the cellular proteome, and unsurprisingly high-dose of IR was shown to trigger a severe reprogramming of global protein synthesis allowing the cell to conserve energy by preventing the synthesis of unneeded proteins. Nonetheless, under these conditions, certain mRNAs encoding specific proteins are translationally favoured to produce the factors essential to repair the cell or send it down the path of no return through programmed cell death. Understanding the mechanisms controlling protein synthesis in response to varying doses of IR could provide novel insights into how this stress-mediated cellular adaptation is regulated and potentially uncover novel targets for radiosensitization or radioprotection. Here, we review the current literature on the effects of IR at both high- and low-dose on the mRNA translation machinery.
Collapse
Affiliation(s)
- Rosette Niloufar Tamaddondoust
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada.
| | - Yi Wang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Tyson E Graber
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Tommy Alain
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
15
|
Vadivel Gnanasundram S, Bonczek O, Wang L, Chen S, Fahraeus R. p53 mRNA Metabolism Links with the DNA Damage Response. Genes (Basel) 2021; 12:1446. [PMID: 34573428 PMCID: PMC8465283 DOI: 10.3390/genes12091446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Human cells are subjected to continuous challenges by different genotoxic stress attacks. DNA damage leads to erroneous mutations, which can alter the function of oncogenes or tumor suppressors, resulting in cancer development. To circumvent this, cells activate the DNA damage response (DDR), which mainly involves cell cycle regulation and DNA repair processes. The tumor suppressor p53 plays a pivotal role in the DDR by halting the cell cycle and facilitating the DNA repair processes. Various pathways and factors participating in the detection and repair of DNA have been described, including scores of RNA-binding proteins (RBPs) and RNAs. It has become increasingly clear that p53's role is multitasking, and p53 mRNA regulation plays a prominent part in the DDR. This review is aimed at covering the p53 RNA metabolism linked to the DDR and highlights the recent findings.
Collapse
Affiliation(s)
| | - Ondrej Bonczek
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
- RECAMO, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656-53 Brno, Czech Republic
| | - Lixiao Wang
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
| | - Sa Chen
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
| | - Robin Fahraeus
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
- RECAMO, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656-53 Brno, Czech Republic
- Inserm UMRS1131, Institut de Genetique Moleculaire, Universite Paris 7, Hopital St Louis, F-75010 Paris, France
- International Centre for Cancer Vaccine Science, University of Gdansk, 80-822 Gdansk, Poland
| |
Collapse
|
16
|
Δ40p53 isoform up-regulates netrin-1/UNC5B expression and potentiates netrin-1 pro-oncogenic activity. Proc Natl Acad Sci U S A 2021; 118:2103319118. [PMID: 34470826 DOI: 10.1073/pnas.2103319118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Netrin-1, a secreted protein recently characterized as a relevant cancer therapeutic target, is the antiapoptotic ligand of the dependence receptors deleted in colorectal carcinoma and members of the UNC5H family. Netrin-1 is overexpressed in several aggressive cancers where it promotes cancer progression by inhibiting cell death induced by its receptors. Interference of its binding to its receptors has been shown, through the development of a monoclonal neutralizing antinetrin-1 antibody (currently in phase II of clinical trial), to actively induce apoptosis and tumor growth inhibition. The transcription factor p53 was shown to positively regulate netrin-1 gene expression. We show here that netrin-1 could be a target gene of the N-terminal p53 isoform Δ40p53, independent of full-length p53 activity. Using stable cell lines, harboring wild-type or null-p53, in which Δ40p53 expression could be finely tuned, we prove that Δ40p53 binds to and activates the netrin-1 promoter. In addition, we show that forcing immortalized human skeletal myoblasts to produce the Δ40p53 isoform, instead of full-length p53, leads to the up-regulation of netrin-1 and its receptor UNC5B and promotes cell survival. Indeed, we demonstrate that netrin-1 interference, in the presence of Δ40p53, triggers apoptosis in cancer and primary cells, leading to tumor growth inhibition in preclinical in vivo models. Finally, we show a positive correlation between netrin-1 and Δ40p53 gene expression in human melanoma and colorectal cancer biopsies. Hence, we propose that inhibition of netrin-1 binding to its receptors should be a promising therapeutic strategy in human tumors expressing high levels of Δ40p53.
Collapse
|
17
|
p53/p73 Protein Network in Colorectal Cancer and Other Human Malignancies. Cancers (Basel) 2021; 13:cancers13122885. [PMID: 34207603 PMCID: PMC8227208 DOI: 10.3390/cancers13122885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The p53 family of proteins comprises p53, p63, and p73, which share high structural and functional similarity. The two distinct promoters of each locus, the alternative splicing, and the alternative translation initiation sites enable the generation of numerous isoforms with different protein-interacting domains and distinct activities. The co-expressed p53/p73 isoforms have significant but distinct roles in carcinogenesis. Their activity is frequently impaired in human tumors including colorectal carcinoma due to dysregulated expression and a dominant-negative effect accomplished by some isoforms and p53 mutants. The interactions between isoforms are particularly important to understand the onset of tumor formation, progression, and therapeutic response. The understanding of the p53/p73 network can contribute to the development of new targeted therapies. Abstract The p53 tumor suppressor protein is crucial for cell growth control and the maintenance of genomic stability. Later discovered, p63 and p73 share structural and functional similarity with p53. To understand the p53 pathways more profoundly, all family members should be considered. Each family member possesses two promoters and alternative translation initiation sites, and they undergo alternative splicing, generating multiple isoforms. The resulting isoforms have important roles in carcinogenesis, while their expression is dysregulated in several human tumors including colorectal carcinoma, which makes them potential targets in cancer treatment. Their activities arise, at least in part, from the ability to form tetramers that bind to specific DNA sequences and activate the transcription of target genes. In this review, we summarize the current understanding of the biological activities and regulation of the p53/p73 isoforms, highlighting their role in colorectal tumorigenesis. The analysis of the expression patterns of the p53/p73 isoforms in human cancers provides an important step in the improvement of cancer therapy. Furthermore, the interactions among the p53 family members which could modulate normal functions of the canonical p53 in tumor tissue are described. Lastly, we emphasize the importance of clinical studies to assess the significance of combining the deregulation of different members of the p53 family to define the outcome of the disease.
Collapse
|
18
|
Yang TH, Wang CY, Tsai HC, Liu CT. Human IRES Atlas: an integrative platform for studying IRES-driven translational regulation in humans. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6263636. [PMID: 33942874 PMCID: PMC8094437 DOI: 10.1093/database/baab025] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 11/13/2022]
Abstract
It is now known that cap-independent translation initiation facilitated by internal ribosome entry sites (IRESs) is vital in selective cellular protein synthesis under stress and different physiological conditions. However, three problems make it hard to understand transcriptome-wide cellular IRES-mediated translation initiation mechanisms: (i) complex interplay between IRESs and other translation initiation–related information, (ii) reliability issue of in silico cellular IRES investigation and (iii) labor-intensive in vivo IRES identification. In this research, we constructed the Human IRES Atlas database for a comprehensive understanding of cellular IRESs in humans. First, currently available and suitable IRES prediction tools (IRESfinder, PatSearch and IRESpy) were used to obtain transcriptome-wide human IRESs. Then, we collected eight genres of translation initiation–related features to help study the potential molecular mechanisms of each of the putative IRESs. Three functional tests (conservation, structural RNA–protein scores and conditional translation efficiency) were devised to evaluate the functionality of the identified putative IRESs. Moreover, an easy-to-use interface and an IRES–translation initiation interaction map for each gene transcript were implemented to help understand the interactions between IRESs and translation initiation–related features. Researchers can easily search/browse an IRES of interest using the web interface and deduce testable mechanism hypotheses of human IRES-driven translation initiation based on the integrated results. In summary, Human IRES Atlas integrates putative IRES elements and translation initiation–related experiments for better usage of these data and deduction of mechanism hypotheses. Database URL: http://cobishss0.im.nuk.edu.tw/Human_IRES_Atlas/
Collapse
Affiliation(s)
- Tzu-Hsien Yang
- Department of Information Management, National University of Kaohsiung, 700, Kaohsiung University Rd., Nanzih District, Kaohsiung, Taiwan 811, Republic of China
| | - Chung-Yu Wang
- Department of Information Management, National University of Kaohsiung, 700, Kaohsiung University Rd., Nanzih District, Kaohsiung, Taiwan 811, Republic of China
| | - Hsiu-Chun Tsai
- Department of Information Management, National University of Kaohsiung, 700, Kaohsiung University Rd., Nanzih District, Kaohsiung, Taiwan 811, Republic of China
| | - Cheng-Tse Liu
- Department of Information Management, National University of Kaohsiung, 700, Kaohsiung University Rd., Nanzih District, Kaohsiung, Taiwan 811, Republic of China
| |
Collapse
|
19
|
van den Akker GGH, Zacchini F, Housmans BAC, van der Vloet L, Caron MMJ, Montanaro L, Welting TJM. Current Practice in Bicistronic IRES Reporter Use: A Systematic Review. Int J Mol Sci 2021; 22:5193. [PMID: 34068921 PMCID: PMC8156625 DOI: 10.3390/ijms22105193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022] Open
Abstract
Bicistronic reporter assays have been instrumental for transgene expression, understanding of internal ribosomal entry site (IRES) translation, and identification of novel cap-independent translational elements (CITE). We observed a large methodological variability in the use of bicistronic reporter assays and data presentation or normalization procedures. Therefore, we systematically searched the literature for bicistronic IRES reporter studies and analyzed methodological details, data visualization, and normalization procedures. Two hundred fifty-seven publications were identified using our search strategy (published 1994-2020). Experimental studies on eukaryotic adherent cell systems and the cell-free translation assay were included for further analysis. We evaluated the following methodological details for 176 full text articles: the bicistronic reporter design, the cell line or type, transfection methods, and time point of analyses post-transfection. For the cell-free translation assay, we focused on methods of in vitro transcription, type of translation lysate, and incubation times and assay temperature. Data can be presented in multiple ways: raw data from individual cistrons, a ratio of the two, or fold changes thereof. In addition, many different control experiments have been suggested when studying IRES-mediated translation. In addition, many different normalization and control experiments have been suggested when studying IRES-mediated translation. Therefore, we also categorized and summarized their use. Our unbiased analyses provide a representative overview of bicistronic IRES reporter use. We identified parameters that were reported inconsistently or incompletely, which could hamper data reproduction and interpretation. On the basis of our analyses, we encourage adhering to a number of practices that should improve transparency of bicistronic reporter data presentation and improve methodological descriptions to facilitate data replication.
Collapse
Affiliation(s)
- Guus Gijsbertus Hubert van den Akker
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Federico Zacchini
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna University, I-40138 Bologna, Italy; (F.Z.); (L.M.)
- Centro di Ricerca Biomedica Applicata—CRBA, Bologna University, Policlinico di Sant’Orsola, I-40138 Bologna, Italy
| | - Bas Adrianus Catharina Housmans
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Laura van der Vloet
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Marjolein Maria Johanna Caron
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Lorenzo Montanaro
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna University, I-40138 Bologna, Italy; (F.Z.); (L.M.)
- Centro di Ricerca Biomedica Applicata—CRBA, Bologna University, Policlinico di Sant’Orsola, I-40138 Bologna, Italy
- Programma Dipartimentale in Medicina di Laboratorio, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, I-40138 Bologna, Italy
| | - Tim Johannes Maria Welting
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| |
Collapse
|
20
|
Salomao N, Karakostis K, Hupp T, Vollrath F, Vojtesek B, Fahraeus R. What do we need to know and understand about p53 to improve its clinical value? J Pathol 2021; 254:443-453. [DOI: 10.1002/path.5677] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Norman Salomao
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis Paris France
| | - Konstantinos Karakostis
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis Paris France
| | - Ted Hupp
- University of Gdansk, International Centre for Cancer Vaccine Science Gdansk Poland
- University of Edinburgh, Institute of Genetics and Molecular Medicine Edinburgh UK
| | - Friz Vollrath
- Department of Zoology, Zoology Research and Administration Building University of Oxford Oxford UK
| | | | - Robin Fahraeus
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis Paris France
- University of Gdansk, International Centre for Cancer Vaccine Science Gdansk Poland
- RECAMO, Masaryk Memorial Cancer Institute Brno Czech Republic
- Department of Medical Biosciences Building 6M, Umeå University Umeå Sweden
| |
Collapse
|
21
|
The Leloir Cycle in Glioblastoma: Galactose Scavenging and Metabolic Remodeling. Cancers (Basel) 2021; 13:cancers13081815. [PMID: 33920278 PMCID: PMC8069026 DOI: 10.3390/cancers13081815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/22/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) can use metabolic fuels other than glucose (Glc). The ability of GBM to use galactose (Gal) as a fuel via the Leloir pathway is investigated. METHODS Gene transcript data were accessed to determine the association between expression of genes of the Leloir pathway and patient outcomes. Growth studies were performed on five primary patient-derived GBM cultures using Glc-free media supplemented with Gal. The role of Glut3/Glut14 in sugar import was investigated using antibody inhibition of hexose transport. A specific inhibitor of GALK1 (Cpd36) was used to inhibit Gal catabolism. Gal metabolism was examined using proton, carbon and phosphorous NMR spectroscopy, with 13C-labeled Glc and Gal as tracers. RESULTS Data analysis from published databases revealed that elevated levels of mRNA transcripts of SLC2A3 (Glut3), SLC2A14 (Glut14) and key Leloir pathway enzymes correlate with poor patient outcomes. GBM cultures proliferated when grown solely on Gal in Glc-free media and switching Glc-grown GBM cells into Gal-enriched/Glc-free media produced elevated levels of Glut3 and/or Glut14 enzymes. The 13C NMR-based metabolic flux analysis demonstrated a fully functional Leloir pathway and elevated pentose phosphate pathway activity for efficient Gal metabolism in GBM cells. CONCLUSION Expression of Glut3 and/or Glut14 together with the enzymes of the Leloir pathway allows GBM to transport and metabolize Gal at physiological glucose concentrations, providing GBM cells with an alternate energy source. The presence of this pathway in GBM and its selective targeting may provide new treatment strategies.
Collapse
|
22
|
Good Cop, Bad Cop: Defining the Roles of Δ40p53 in Cancer and Aging. Cancers (Basel) 2020; 12:cancers12061659. [PMID: 32585821 PMCID: PMC7352174 DOI: 10.3390/cancers12061659] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 01/10/2023] Open
Abstract
The tumour suppressor p53 is essential for maintaining DNA integrity, and plays a major role in cellular senescence and aging. Understanding the mechanisms that contribute to p53 dysfunction can uncover novel possibilities for improving cancer therapies and diagnosis, as well as cognitive decline associated with aging. In recent years, the complexity of p53 signalling has become increasingly apparent owing to the discovery of the p53 isoforms. These isoforms play important roles in regulating cell growth and turnover in response to different stressors, depending on the cellular context. In this review, we focus on Δ40p53, an N-terminally truncated p53 isoform. Δ40p53 can alter p53 target gene expression in both a positive and negative manner, modulating the biological outcome of p53 activation; it also functions independently of p53. Therefore, proper control of the Δ40p53: p53 ratio is essential for normal cell growth, aging, and responses to cancer therapy. Defining the contexts and the mechanisms by which Δ40p53 behaves as a "good cop or bad cop" is critical if we are to target this isoform therapeutically.
Collapse
|
23
|
Swiatkowska A, Dutkiewicz M, Machtel P, Janecki DM, Kabacinska M, Żydowicz-Machtel P, Ciesiołka J. Regulation of the p53 expression profile by hnRNP K under stress conditions. RNA Biol 2020; 17:1402-1415. [PMID: 32449427 DOI: 10.1080/15476286.2020.1771944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The p53 protein is one of the transcription factors responsible for cell cycle regulation and prevention of cancer development. Its expression is regulated at the transcriptional, translational and post-translational levels. Recent years of research have shown that the 5' terminus of p53 mRNA plays an important role in this regulation. This region seems to be a docking platform for proteins involved in p53 expression, particularly under stress conditions. Here, we applied RNA-centric affinity chromatography to search for proteins that bind to the 5' terminus of p53 mRNA and thus may be able to regulate the p53 expression profile. We found heterogeneous nuclear ribonucleoprotein K, hnRNP K, to be one of the top candidates. Binding of hnRNP K to the 5'-terminal region of p53 mRNA was confirmed in vitro. We demonstrated that changes in the hnRNP K level in the cell strongly affected the p53 expression profile under various stress conditions. Downregulation or overexpression of hnRNP K caused a decrease or an increase in the p53 mRNA amount, respectively, pointing to the transcriptional mode of expression regulation. However, when hnRNP K was overexpressed under endoplasmic reticulum stress and the p53 amount has elevated no changes in the p53 mRNA level were detected suggesting translational regulation of p53 expression. Our findings have shown that hnRNP K is not only a mutual partner of p53 in the transcriptional activation of target genes under stress conditions but it also acts as a regulator of p53 expression at the transcriptional and potentially translational levels.
Collapse
Affiliation(s)
- Agata Swiatkowska
- Polish Academy of Sciences, Institute of Bioorganic Chemistry , Poznan, Poland
| | - Mariola Dutkiewicz
- Polish Academy of Sciences, Institute of Bioorganic Chemistry , Poznan, Poland
| | - Piotr Machtel
- Polish Academy of Sciences, Institute of Bioorganic Chemistry , Poznan, Poland
| | - Damian M Janecki
- Polish Academy of Sciences, Institute of Bioorganic Chemistry , Poznan, Poland
| | - Martyna Kabacinska
- Polish Academy of Sciences, Institute of Bioorganic Chemistry , Poznan, Poland
| | | | - Jerzy Ciesiołka
- Polish Academy of Sciences, Institute of Bioorganic Chemistry , Poznan, Poland
| |
Collapse
|
24
|
Fusée LTS, Marín M, Fåhraeus R, López I. Alternative Mechanisms of p53 Action During the Unfolded Protein Response. Cancers (Basel) 2020; 12:cancers12020401. [PMID: 32050651 PMCID: PMC7072472 DOI: 10.3390/cancers12020401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/17/2022] Open
Abstract
The tumor suppressor protein p53 orchestrates cellular responses to a vast number of stresses, with DNA damage and oncogenic activation being some of the best described. The capacity of p53 to control cellular events such as cell cycle progression, DNA repair, and apoptosis, to mention some, has been mostly linked to its role as a transcription factor. However, how p53 integrates different signaling cascades to promote a particular pathway remains an open question. One way to broaden its capacity to respond to different stimuli is by the expression of isoforms that can modulate the activities of the full-length protein. One of these isoforms is p47 (p53/47, Δ40p53, p53ΔN40), an alternative translation initiation variant whose expression is specifically induced by the PERK kinase during the Unfolded Protein Response (UPR) following Endoplasmic Reticulum stress. Despite the increasing knowledge on the p53 pathway, its activity when the translation machinery is globally suppressed during the UPR remains poorly understood. Here, we focus on the expression of p47 and we propose that the alternative initiation of p53 mRNA translation offers a unique condition-dependent mechanism to differentiate p53 activity to control cell homeostasis during the UPR. We also discuss how the manipulation of these processes may influence cancer cell physiology in light of therapeutic approaches.
Collapse
Affiliation(s)
| | - Mónica Marín
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Robin Fåhraeus
- INSERM U1162, 27 rue Juliette Dodu, 75010 Paris, France
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
- Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden
- ICCVS, University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Ignacio López
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
- Correspondence: ; Tel.: +598-25252095
| |
Collapse
|
25
|
Suzuki S, Tsutsumi S, Chen Y, Ozeki C, Okabe A, Kawase T, Aburatani H, Ohki R. Identification and characterization of the binding sequences and target genes of p53 lacking the 1st transactivation domain. Cancer Sci 2020; 111:451-466. [PMID: 31834974 PMCID: PMC7004532 DOI: 10.1111/cas.14279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
The tumor suppressor gene p53 encodes a transcriptional activator that has two transactivation domains (TAD) located in its amino terminus. These two TAD can transactivate genes independently, and at least one TAD is required for p53 transactivation function. The 1st TAD (a.a. 1‐40) is essential for the induction of numerous classical p53 target genes, while the second TAD (a.a. 41‐61) suffices for tumor suppression, although its precise molecular function remains unclear. In this study, we comprehensively identified the sites to which p53 lacking the 1st TAD (Δ1stTAD‐p53) binds, as well as its potential target genes. We found that the binding sequences for Δ1stTAD‐p53 are divergent and include not only the canonical p53 consensus binding sequences but also sequences similar to those recognized by a number of other known transcription factors. We identified and analyzed the functions of three Δ1stTAD‐p53 target genes, PTP4A1, PLK2 and RPS27L. All three genes were induced by both full‐length p53 and Δ1stTAD‐p53, and were dependent on the transactivation activity of the 2nd TAD. We also found that two of these, PTP4A1 and PLK2, are endoplasmic reticulum (ER) stress‐inducible genes. We found that upon ER stress, PTP4A1 suppresses apoptosis while PLK2 induces apoptosis. These results reveal a novel Δ1stTAD‐p53 downstream pathway that is dependent on the transcription activation activity of the 2nd TAD.
Collapse
Affiliation(s)
- Shiori Suzuki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tokyo, Japan.,Department of Electrical Engineering and Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shuichi Tsutsumi
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yu Chen
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Chikako Ozeki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Atsushi Okabe
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tatsuya Kawase
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
26
|
Fujita K. p53 Isoforms in Cellular Senescence- and Ageing-Associated Biological and Physiological Functions. Int J Mol Sci 2019; 20:ijms20236023. [PMID: 31795382 PMCID: PMC6928910 DOI: 10.3390/ijms20236023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence, a term originally used to define the characteristics of normal human fibroblasts that reached their replicative limit, is an important factor for ageing, age-related diseases including cancer, and cell reprogramming. These outcomes are mediated by senescence-associated changes in gene expressions, which sometimes lead to the secretion of pro-inflammatory factors, or senescence-associated secretory phenotype (SASP) that contribute to paradoxical pro-tumorigenic effects. p53 functions as a transcription factor in cell-autonomous responses such as cell-cycle control, DNA repair, apoptosis, and cellular senescence, and also non-cell-autonomous responses to DNA damage by mediating the SASP function of immune system activation. The human TP53 gene encodes twelve protein isoforms, which provides an explanation for the pleiotropic p53 function on cellular senescence. Recent reports suggest that some short isoforms of p53 may modulate gene expressions in a full-length p53-dependent and -independent manner, in other words, some p53 isoforms cooperate with full-length p53, whereas others operate independently. This review summarizes our current knowledge about the biological activities and functions of p53 isoforms, especially Δ40p53, Δ133p53α, and p53β, on cellular senescence, ageing, age-related disorder, reprogramming, and cancer. Numerous cellular and animal model studies indicate that an unbalance in p53 isoform expression in specific cell types causes age-related disorders such as cancer, premature ageing, and degenerative diseases.
Collapse
Affiliation(s)
- Kaori Fujita
- Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
27
|
Haronikova L, Olivares-Illana V, Wang L, Karakostis K, Chen S, Fåhraeus R. The p53 mRNA: an integral part of the cellular stress response. Nucleic Acids Res 2019; 47:3257-3271. [PMID: 30828720 PMCID: PMC6468297 DOI: 10.1093/nar/gkz124] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/12/2019] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
A large number of signalling pathways converge on p53 to induce different cellular stress responses that aim to promote cell cycle arrest and repair or, if the damage is too severe, to induce irreversible senescence or apoptosis. The differentiation of p53 activity towards specific cellular outcomes is tightly regulated via a hierarchical order of post-translational modifications and regulated protein-protein interactions. The mechanisms governing these processes provide a model for how cells optimize the genetic information for maximal diversity. The p53 mRNA also plays a role in this process and this review aims to illustrate how protein and RNA interactions throughout the p53 mRNA in response to different signalling pathways control RNA stability, translation efficiency or alternative initiation of translation. We also describe how a p53 mRNA platform shows riboswitch-like features and controls the rate of p53 synthesis, protein stability and modifications of the nascent p53 protein. A single cancer-derived synonymous mutation disrupts the folding of this platform and prevents p53 activation following DNA damage. The role of the p53 mRNA as a target for signalling pathways illustrates how mRNA sequences have co-evolved with the function of the encoded protein and sheds new light on the information hidden within mRNAs.
Collapse
Affiliation(s)
- Lucia Haronikova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Vanesa Olivares-Illana
- Laboratorio de Interacciones Biomoleculares y cáncer. Instituto de Física Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona universitaria, 78290 SLP, México
| | - Lixiao Wang
- Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden
| | | | - Sa Chen
- Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden
| | - Robin Fåhraeus
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic.,Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden.,Inserm U1162, 27 rue Juliette Dodu, 75010 Paris, France.,ICCVS, University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
28
|
Lacerda R, Menezes J, Candeias MM. Alternative Mechanisms of mRNA Translation Initiation in Cellular Stress Response and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1157:117-132. [PMID: 31342440 DOI: 10.1007/978-3-030-19966-1_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Throughout evolution, eukaryotic cells have devised different mechanisms to cope with stressful environments. When eukaryotic cells are exposed to stress stimuli, they activate adaptive pathways that allow them to restore cellular homeostasis. Most types of stress stimuli have been reported to induce a decrease in overall protein synthesis accompanied by induction of alternative mechanisms of mRNA translation initiation. Here, we present well-studied and recent examples of such stress responses and the alternative translation initiation mechanisms they induce, and discuss the consequences of such regulation for cell homeostasis and oncogenic transformation.
Collapse
Affiliation(s)
- Rafaela Lacerda
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisboa, Portugal.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisboa, Portugal
| | - Juliane Menezes
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisboa, Portugal.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisboa, Portugal
| | - Marco M Candeias
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisboa, Portugal. .,MaRCU - Molecular and RNA Cancer Unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
29
|
Chen Z, Boor PJ, Finnerty CC, Herndon DN, Albrecht T. Calpain-mediated cleavage of p53 in human cytomegalovirus-infected lung fibroblasts. FASEB Bioadv 2019; 1:151-166. [PMID: 32123827 PMCID: PMC6996331 DOI: 10.1096/fba.1028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
Endogenous fragments of p53 protein were identified in human cytomegalovirus (HCMV)-infected human lung fibroblasts, particularly a 44-kDa N-terminal fragment [hereafter referred to as p53(ΔCp44)], generated via calpain cleavage. The fragment abundance increased in a biphasic manner, peaking at 6-9 hours and 48 hours post infection. Treatment of LU cells with calpain inhibitors eliminated most detectable p53 fragments. In cell-free experiments, exogenous m-calpain cleavage generated p53(ΔCp44). Attempts to preserve p53 proteins by treating cells with the calpain inhibitor E64d for 6 hours before harvesting increased the sensitivity of p53 to calpain cleavage. p53 in mock-infected cell lysates was much more sensitive to cleavage and degradation by exogenous calpain than that in HCMV-infected cells. The proteasome inhibitor MG132 stabilized p53(ΔCp44), particularly in mock-infected cells. p53(ΔCp44) appeared to be tightly associated with a chromatin-rich fraction. The abundance of p53β was unchanged over a 96-h time course and very similar in mock- and HCMV-infected cells, making it unlikely that p53(ΔCp44) was p53β. The biological activities of this and other fragments lacking C-terminal sequences are unknown, but deserve further investigation, given the association of p53(ΔCp44) with the chromatin-rich (or buffer C insoluble) fraction in HCMV-infected cells.
Collapse
Affiliation(s)
- Zhenping Chen
- Department of Microbiology and ImmunologyUniversity of Texas Medical BranchGalvestonTexas
- Department of PathologyUniversity of Texas Medical BranchGalvestonTexas
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTexas
| | - Paul J. Boor
- Department of PathologyUniversity of Texas Medical BranchGalvestonTexas
- Shriners Hospitals for Children—GalvestonGalvestonTexas
| | - Celeste C. Finnerty
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTexas
- Shriners Hospitals for Children—GalvestonGalvestonTexas
| | - David N. Herndon
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTexas
- Shriners Hospitals for Children—GalvestonGalvestonTexas
| | - Thomas Albrecht
- Department of Microbiology and ImmunologyUniversity of Texas Medical BranchGalvestonTexas
- Infectious Disease and Toxicology Optical Imaging CoreUniversity of Texas Medical BranchGalvestonTexas
| |
Collapse
|
30
|
Zhao Y, Ding L, Wang D, Ye Z, He Y, Ma L, Zhu R, Pan Y, Wu Q, Pang K, Hou X, Weroha SJ, Han C, Coleman R, Coleman I, Karnes RJ, Zhang J, Nelson PS, Wang L, Huang H. EZH2 cooperates with gain-of-function p53 mutants to promote cancer growth and metastasis. EMBO J 2019; 38:e99599. [PMID: 30723117 PMCID: PMC6396169 DOI: 10.15252/embj.201899599] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022] Open
Abstract
In light of the increasing number of identified cancer-driven gain-of-function (GOF) mutants of p53, it is important to define a common mechanism to systematically target several mutants, rather than developing strategies tailored to inhibit each mutant individually. Here, using RNA immunoprecipitation-sequencing (RIP-seq), we identified the Polycomb-group histone methyltransferase EZH2 as a p53 mRNA-binding protein. EZH2 bound to an internal ribosome entry site (IRES) in the 5'UTR of p53 mRNA and enhanced p53 protein translation in a methyltransferase-independent manner. EZH2 augmented p53 GOF mutant-mediated cancer growth and metastasis by increasing protein levels of mutant p53. EZH2 overexpression was associated with worsened outcome selectively in patients with p53-mutated cancer. Depletion of EZH2 by antisense oligonucleotides inhibited p53 GOF mutant-mediated cancer growth. Our findings reveal a non-methyltransferase function of EZH2 that controls protein translation of p53 GOF mutants, inhibition of which causes synthetic lethality in cancer cells expressing p53 GOF mutants.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Liya Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Dejie Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zhenqing Ye
- Division of Medical Informatics and Statistics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Yundong He
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Linlin Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Runzhi Zhu
- Center for Cell Therapy, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Qiang Wu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kun Pang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Urology, Xuzhou Central Hospital and Medical College affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaonan Hou
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Saravut J Weroha
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Conghui Han
- Department of Urology, Xuzhou Central Hospital and Medical College affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Roger Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ilsa Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - R Jeffery Karnes
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Liguo Wang
- Division of Medical Informatics and Statistics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
31
|
Szpotkowska J, Swiatkowska A, Ciesiołka J. Length and secondary structure of the 5' non-coding regions of mouse p53 mRNA transcripts - mouse as a model organism for p53 gene expression studies. RNA Biol 2018; 16:25-41. [PMID: 30518296 DOI: 10.1080/15476286.2018.1556084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Transcription initiation sites of Trp53 gene in mice were determined using the 5'RACE method. Based on sequence alignment of the 5'-terminal regions of p53 mRNA in mammals, the site for the most abundant transcript turned out to be essentially identical with that determined for human TP53 gene and slightly differed for the longest transcripts, in mice and humans. Secondary structures of the 5' -terminal regions of the shorter, most abundant and the longest mouse transcripts were determined in vitro and the shorter transcript was also mapped in transfected mouse cells. For the first time, secondary structure models of the 5' terminus of two mouse p53 mRNAs were proposed. Comparing these models with the conservativeness of the nucleotide sequence of the 5'-terminal region of mRNA in mouse and other mammals, the possible function of the selected structural domains of this region was discussed. To elucidate the translation mechanisms, the two studied mRNAs were translated in the presence of an increasing concentration of the cap analog. For the longest transcript, the data suggested that IRES element(s) was/were involved in translation initiation. Additionally, changes in p53 synthesis under genotoxic and endoplasmic reticulum stress conditions in mouse cells were analyzed.
Collapse
Affiliation(s)
- Joanna Szpotkowska
- a Polish Academy of Sciences , Institute of Bioorganic Chemistry , Poznan , Poland
| | - Agata Swiatkowska
- a Polish Academy of Sciences , Institute of Bioorganic Chemistry , Poznan , Poland
| | - Jerzy Ciesiołka
- a Polish Academy of Sciences , Institute of Bioorganic Chemistry , Poznan , Poland
| |
Collapse
|
32
|
Li S, Zhao X, Chang S, Li Y, Guo M, Guan Y. ERp57‑small interfering RNA silencing can enhance the sensitivity of drug‑resistant human ovarian cancer cells to paclitaxel. Int J Oncol 2018; 54:249-260. [PMID: 30431082 DOI: 10.3892/ijo.2018.4628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 10/08/2018] [Indexed: 11/05/2022] Open
Abstract
ERp57 has been identified to be associated with the chemoresistance of human ovarian cancer. However, its biological roles in the chemoresistance phenotype remain unclear. In the present study, the association of ERp57 with paclitaxel‑resistant cellular behavior was investigated and the sensitivity enhancement of chemoresistant human ovarian cancer cells to paclitaxel was examined using ERp57‑small interfering (si)RNA silencing. Cell viability, cell proliferation, cell apoptosis and cell migration were detected using an MTT assay, clonogenic assay, flow cytometry analysis and transwell assay. Furthermore, mRNA expression levels of ERp57 and protein expression levels of ERp57, STAT3, phosphorylated STAT3, PCNA, nucelolin, TUBB3, P-gp, vimentin, Bcl-2, Bax, Bcl-xl, p53, MMP1, MMP2 and MMP9 of paclitaxel-sensitive human SKOV3 ovarian cancer cells were compared with paclitaxel-resistant counterpart SKOV3/tax using the real-time PCR and western blot analysis. ERp57 was highly expressed in the paclitaxel‑resistant SKOV3/tax cells, and experimental results concluded that the paclitaxel‑resistance phenotype was due primarily to the activation of the STAT3 signaling pathway. ERp57 overexpression by lentiviral particle infection decreased the sensitivity of SKOV3 cells to paclitaxel. Furthermore, ERp57‑siRNA silencing restored paclitaxel sensitivity of SKOV3/tax cells. Notably, the IC50 value of ERp57‑siRNA silenced SKOV3/tax cells was reduced to the original level and colony survival was significantly decreased in comparison with that of SKOV3/tax cells. Additionally, co‑treatment of ERp57‑siRNA silencing and paclitaxel could inhibit the STAT3 signaling pathway and downregulate the expression levels of downstream proteins. Notably, ERp57‑siRNA and 100 nM paclitaxel co‑treatment downregulated Bcl‑2, Bcl‑xl, MMP2, MMP9, TUBB3 and P‑gp expression levels and upregulated the expression of Bax protein. Furthermore, co‑treatment promoted change of the isoform of p53 to p53/p47. Bioinformatics analyses supported the experimental observations that ERp57 was associated with drug resistance in ovarian cancer. The present study implies that ERp57 is a potential therapeutic target for the treatment of paclitaxel‑resistant human ovarian cancer.
Collapse
Affiliation(s)
- Shuo Li
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xiaoyun Zhao
- Department of Microbiology and Cell Biology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Shijie Chang
- Department of Biomedical Engineering, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yanqiu Li
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Min Guo
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yifu Guan
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
33
|
p53 Isoforms and Their Implications in Cancer. Cancers (Basel) 2018; 10:cancers10090288. [PMID: 30149602 PMCID: PMC6162399 DOI: 10.3390/cancers10090288] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/18/2018] [Accepted: 08/18/2018] [Indexed: 01/10/2023] Open
Abstract
In this review we focus on the major isoforms of the tumor-suppressor protein p53, dysfunction of which often leads to cancer. Mutations of the TP53 gene, particularly in the DNA binding domain, have been regarded as the main cause for p53 inactivation. However, recent reports demonstrating abundance of p53 isoforms, especially the N-terminally truncated ones, in the cancerous tissues suggest their involvement in carcinogenesis. These isoforms are ∆40p53, ∆133p53, and ∆160p53 (the names indicate their respective N-terminal truncation). Due to the lack of structural and functional characterizations the modes of action of the p53 isoforms are still unclear. Owing to the deletions in the functional domains, these isoforms can either be defective in DNA binding or more susceptive to altered ‘responsive elements’ than p53. Furthermore, they may exert a ‘dominant negative effect’ or induce more aggressive cancer by the ‘gain of function’. One possible mechanism of p53 inactivation can be through tetramerization with the ∆133p53 and ∆160p53 isoforms—both lacking part of the DNA binding domain. A recent report and unpublished data from our laboratory also suggest that these isoforms may inactivate p53 by fast aggregation—possibly due to ectopic overexpression. We further discuss the evolutionary significance of the p53 isoforms.
Collapse
|
34
|
Zydowicz-Machtel P, Swiatkowska A, Popenda Ł, Gorska A, Ciesiołka J. Variants of the 5'-terminal region of p53 mRNA influence the ribosomal scanning and translation efficiency. Sci Rep 2018; 8:1533. [PMID: 29367734 PMCID: PMC5784139 DOI: 10.1038/s41598-018-20010-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 01/11/2018] [Indexed: 12/25/2022] Open
Abstract
The p53 protein is one of the major cell cycle regulators. The protein is expressed as at least twelve protein isoforms resulting from the use of alternative promoters, alternative splicing or downstream initiation codons. Importantly, there is growing evidence that translation initiation of p53 mRNA may be regulated by the structure and length of the naturally occurring variants of the 5′-terminal region of p53 mRNA transcripts. Here, several mRNA constructs were synthesized with variable length of the p53 5′-terminal regions and encoding luciferase reporter protein, and their translation was monitored continuously in situ in a rabbit reticulocyte lysate system. Moreover, four additional mRNA constructs were prepared. In two constructs, the structural context of AUG1 initiation codon was altered while in the other two constructs, characteristic hairpin motifs present in the p53 5′-terminal region were changed. Translation of the last two constructs was also performed in the presence of the cap analogue to test the function of the 5′-terminal region in cap-independent translation initiation. Superposition of several structural factors connected with the length of the 5′-terminal region, stable elements of the secondary structure, structural environment of the initiation codon and IRES elements greatly influenced the ribosomal scanning and translation efficiency.
Collapse
Affiliation(s)
- Paulina Zydowicz-Machtel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Agata Swiatkowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Łukasz Popenda
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Umultowska 85, 61-614, Poznan, Poland
| | - Agnieszka Gorska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Jerzy Ciesiołka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.
| |
Collapse
|
35
|
Katoch A, George B, Iyyappan A, Khan D, Das S. Interplay between PTB and miR-1285 at the p53 3'UTR modulates the levels of p53 and its isoform Δ40p53α. Nucleic Acids Res 2017; 45:10206-10217. [PMID: 28973454 PMCID: PMC5622325 DOI: 10.1093/nar/gkx630] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/26/2017] [Indexed: 01/21/2023] Open
Abstract
p53 and its translational isoform Δ40p53 are involved in many important cellular functions like cell cycle, cell proliferation, differentiation and metabolism. Expression of both the isoforms can be regulated at different steps. In this study, we explored the role of 3′UTR in regulating the expression of these two translational isoforms. We report that the trans acting factor, Polypyrimidine Tract Binding protein (PTB), also interacts specifically with 3′UTR of p53 mRNA and positively regulates expression of p53 isoforms. Our results suggest that there is interplay between miRNAs and PTB at the 3′UTR under normal and stress conditions like DNA damage. Interestingly, PTB showed some overlapping binding regions in the p53 3′UTR with miR-1285. In fact, knockdown of miR-1285 as well as expression of p53 3′UTR with mutated miR-1285 binding sites resulted in enhanced association of PTB with the 3′UTR, which provides mechanistic insights of this interplay. Taken together, the results provide a plausible molecular basis of how the interplay between miRNAs and the PTB protein at the 3′UTR can play pivotal role in fine tuning the expression of the two p53 isoforms.
Collapse
Affiliation(s)
- Aanchal Katoch
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Biju George
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Amrutha Iyyappan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Debjit Khan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
36
|
Marques-Ramos A, Candeias MM, Menezes J, Lacerda R, Willcocks M, Teixeira A, Locker N, Romão L. Cap-independent translation ensures mTOR expression and function upon protein synthesis inhibition. RNA (NEW YORK, N.Y.) 2017; 23:1712-1728. [PMID: 28821580 PMCID: PMC5648038 DOI: 10.1261/rna.063040.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) is a conserved serine/threonine kinase that integrates cellular signals from the nutrient and energy status to act, namely, on the protein synthesis machinery. While major advances have emerged regarding the regulators and effects of the mTOR signaling pathway, little is known about the regulation of mTOR gene expression. Here, we show that the human mTOR transcript can be translated in a cap-independent manner, and that its 5' untranslated region (UTR) is a highly folded RNA scaffold capable of binding directly to the 40S ribosomal subunit. We further demonstrate that mTOR is able to bypass the cap requirement for translation both in normal and hypoxic conditions. Moreover, our data reveal that the cap-independent translation of mTOR is necessary for its ability to induce cell-cycle progression into S phase. These results suggest a novel regulatory mechanism for mTOR gene expression that integrates the global protein synthesis changes induced by translational inhibitory conditions.
Collapse
Affiliation(s)
- Ana Marques-Ramos
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Marco M Candeias
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Juliane Menezes
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Rafaela Lacerda
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Margaret Willcocks
- Microbial and Cellular Sciences Department, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7TE, United Kingdom
| | - Alexandre Teixeira
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
| | - Nicolas Locker
- Microbial and Cellular Sciences Department, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7TE, United Kingdom
| | - Luísa Romão
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
37
|
Gritsenko AA, Weingarten-Gabbay S, Elias-Kirma S, Nir R, de Ridder D, Segal E. Sequence features of viral and human Internal Ribosome Entry Sites predictive of their activity. PLoS Comput Biol 2017; 13:e1005734. [PMID: 28922394 PMCID: PMC5630158 DOI: 10.1371/journal.pcbi.1005734] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/06/2017] [Accepted: 08/22/2017] [Indexed: 01/25/2023] Open
Abstract
Translation of mRNAs through Internal Ribosome Entry Sites (IRESs) has emerged as a prominent mechanism of cellular and viral initiation. It supports cap-independent translation of select cellular genes under normal conditions, and in conditions when cap-dependent translation is inhibited. IRES structure and sequence are believed to be involved in this process. However due to the small number of IRESs known, there have been no systematic investigations of the determinants of IRES activity. With the recent discovery of thousands of novel IRESs in human and viruses, the next challenge is to decipher the sequence determinants of IRES activity. We present the first in-depth computational analysis of a large body of IRESs, exploring RNA sequence features predictive of IRES activity. We identified predictive k-mer features resembling IRES trans-acting factor (ITAF) binding motifs across human and viral IRESs, and found that their effect on expression depends on their sequence, number and position. Our results also suggest that the architecture of retroviral IRESs differs from that of other viruses, presumably due to their exposure to the nuclear environment. Finally, we measured IRES activity of synthetically designed sequences to confirm our prediction of increasing activity as a function of the number of short IRES elements.
Collapse
Affiliation(s)
- Alexey A. Gritsenko
- The Delft Bioinformatics Laboratory, Department of Intelligent Systems, Delft University of Technology, Delft, The Netherlands
- Platform Green Synthetic Biology, Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
| | - Shira Weingarten-Gabbay
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shani Elias-Kirma
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ronit Nir
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dick de Ridder
- The Delft Bioinformatics Laboratory, Department of Intelligent Systems, Delft University of Technology, Delft, The Netherlands
- Platform Green Synthetic Biology, Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
38
|
p53-mediated suppression of BiP triggers BIK-induced apoptosis during prolonged endoplasmic reticulum stress. Cell Death Differ 2017. [PMID: 28622297 PMCID: PMC5596431 DOI: 10.1038/cdd.2017.96] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Physiological and pathological conditions that affect the folding capacity of the endoplasmic reticulum (ER) provoke ER stress and trigger the unfolded protein response (UPR). The UPR aims to either restore the balance between newly synthesized and misfolded proteins or if the damage is severe, to trigger cell death. However, the molecular events underlying the switch between repair and cell death are not well understood. The ER-resident chaperone BiP governs the UPR by sensing misfolded proteins and thereby releasing and activating the three mediators of the UPR: PERK, IRE1 and ATF6. PERK promotes G2 cell cycle arrest and cellular repair by inducing the alternative translated p53 isoform p53ΔN40 (p53/47), which activates 14-3-3σ via suppression of p21CDKN1A. Here we show that prolonged ER stress promotes apoptosis via a p53-dependent inhibition of BiP expression. This leads to the release of the pro-apoptotic BH3-only BIK from BiP and activation of apoptosis. Suppression of bip mRNA translation is mediated via the specific binding of p53 to the first 346-nt of the bip mRNA and via a p53 trans-suppression domain located within the first seven N-terminal amino acids of p53ΔN40. This work shows how p53 targets BiP to promote apoptosis during severe ER stress and further illustrates how regulation of mRNA translation has a key role in p53-mediated regulation of gene expression during the UPR.
Collapse
|
39
|
Lacerda R, Menezes J, Romão L. More than just scanning: the importance of cap-independent mRNA translation initiation for cellular stress response and cancer. Cell Mol Life Sci 2017; 74:1659-1680. [PMID: 27913822 PMCID: PMC11107732 DOI: 10.1007/s00018-016-2428-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022]
Abstract
The scanning model for eukaryotic mRNA translation initiation states that the small ribosomal subunit, along with initiation factors, binds at the cap structure at the 5' end of the mRNA and scans the 5' untranslated region (5'UTR) until an initiation codon is found. However, under conditions that impair canonical cap-dependent translation, the synthesis of some proteins is kept by alternative mechanisms that are required for cell survival and stress recovery. Alternative modes of translation initiation include cap- and/or scanning-independent mechanisms of ribosomal recruitment. In most cap-independent translation initiation events there is a direct recruitment of the 40S ribosome into a position upstream, or directly at, the initiation codon via a specific internal ribosome entry site (IRES) element in the 5'UTR. Yet, in some cellular mRNAs, a different translation initiation mechanism that is neither cap- nor IRES-dependent seems to occur through a special RNA structure called cap-independent translational enhancer (CITE). Recent evidence uncovered a distinct mechanism through which mRNAs containing N 6-methyladenosine (m6A) residues in their 5'UTR directly bind eukaryotic initiation factor 3 (eIF3) and the 40S ribosomal subunit in order to initiate translation in the absence of the cap-binding proteins. This review focuses on the important role of cap-independent translation mechanisms in human cells and how these alternative mechanisms can either act individually or cooperate with other cis-acting RNA regulons to orchestrate specific translational responses triggered upon several cellular stress states, and diseases such as cancer. Elucidation of these non-canonical mechanisms reveals the complexity of translational control and points out their potential as prospective novel therapeutic targets.
Collapse
Affiliation(s)
- Rafaela Lacerda
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Juliane Menezes
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Luísa Romão
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal.
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
40
|
Ji B, Harris BRE, Liu Y, Deng Y, Gradilone SA, Cleary MP, Liu J, Yang DQ. Targeting IRES-Mediated p53 Synthesis for Cancer Diagnosis and Therapeutics. Int J Mol Sci 2017; 18:93. [PMID: 28054974 PMCID: PMC5297727 DOI: 10.3390/ijms18010093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 12/28/2022] Open
Abstract
While translational regulation of p53 by the internal ribosome entry site (IRES) at its 5'-untranslated region following DNA damage has been widely accepted, the detailed mechanism underlying the translational control of p53 by its IRES sequence is still poorly understood. In this review, we will focus on the latest progress in identifying novel regulatory proteins of the p53 IRES and in uncovering the functional connection between defective IRES-mediated p53 translation and tumorigenesis. We will also discuss how these findings may lead to a better understanding of the process of oncogenesis and open up new avenues for cancer diagnosis and therapeutics.
Collapse
Affiliation(s)
- Bai Ji
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital of Jilin University, Changchun 130021, China.
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA.
| | - Benjamin R E Harris
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA.
| | - Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital of Jilin University, Changchun 130021, China.
| | - Yibin Deng
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA.
- The Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Sergio A Gradilone
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA.
- The Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Margot P Cleary
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA.
- The Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jianhua Liu
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital of Jilin University, Changchun 130021, China.
| | - Da-Qing Yang
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA.
- The Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
41
|
Ota A, Nakao H, Sawada Y, Karnan S, Wahiduzzaman M, Inoue T, Kobayashi Y, Yamamoto T, Ishii N, Ohashi T, Nakade Y, Sato K, Itoh K, Konishi H, Hosokawa Y, Yoneda M. Δ40p53α suppresses tumor cell proliferation and induces cellular senescence in hepatocellular carcinoma cells. J Cell Sci 2016; 130:614-625. [PMID: 27980070 PMCID: PMC5312733 DOI: 10.1242/jcs.190736] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 11/29/2016] [Indexed: 12/15/2022] Open
Abstract
Splice variants of certain genes impact on genetic biodiversity in mammals. The tumor suppressor TP53 gene (encoding p53) plays an important role in the regulation of tumorigenesis in hepatocellular carcinoma (HCC). Δ40p53α is a naturally occurring p53 isoform that lacks the N-terminal transactivation domain, yet little is known about the role of Δ40p53α in the development of HCC. Here, we first report on the role of Δ40p53α in HCC cell lines. In the TP53+/Δ40 cell clones, clonogenic activity and cell survival dramatically decreased, whereas the percentage of senescence-associated β-galactosidase (SA-β-gal)-positive cells and p21 (also known as WAF1, CIP1 and CDKN1A) expression significantly increased. These observations were clearly attenuated in the TP53+/Δ40 cell clones after Δ40p53α knockdown. In addition, exogenous Δ40p53 expression significantly suppressed cell growth in HCC cells with wild-type TP53, and in those that were mutant or null for TP53. Notably, Δ40p53α-induced tumor suppressor activity was markedly attenuated in cells expressing the hot-spot mutant Δ40p53α-R175H, which lacks the transcription factor activity of p53. Moreover, Δ40p53α expression was associated with increased full-length p53 protein expression. These findings enhance the understanding of the molecular pathogenesis of HCC and show that Δ40p53α acts as an important tumor suppressor in HCC cells. Summary: Δ40p53 exerts tumor suppressor activity that is associated with upregulation of p53-target gene expression and induces senescence in hepatocellular carcinoma cell lines.
Collapse
Affiliation(s)
- Akinobu Ota
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Haruhisa Nakao
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Yumi Sawada
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Md Wahiduzzaman
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Tadahisa Inoue
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Yuji Kobayashi
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Takaya Yamamoto
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Norimitsu Ishii
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Tomohiko Ohashi
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Yukiomi Nakade
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Ken Sato
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Kiyoaki Itoh
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Masashi Yoneda
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| |
Collapse
|
42
|
López I, Tournillon AS, Nylander K, Fåhraeus R. p53-mediated control of gene expression via mRNA translation during Endoplasmic Reticulum stress. Cell Cycle 2016; 14:3373-8. [PMID: 26397130 PMCID: PMC4825612 DOI: 10.1080/15384101.2015.1090066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
p53 is activated by different stress and damage pathways and regulates cell biological responses including cell cycle arrest, repair pathways, apoptosis and senescence. Following DNA damage, the levels of p53 increase and via binding to target gene promoters, p53 induces expression of multiple genes including p21CDKN1A and mdm2. The effects of p53 on gene expression during the DNA damage response are well mimicked by overexpressing p53 under normal conditions. However, stress to the Endoplasmic Reticulum (ER) and the consequent Unfolded Protein Response (UPR) leads to the induction of the p53/47 isoform that lacks the first 40 aa of p53 and to an active suppression of p21CDKN1A transcription and mRNA translation. We now show that during ER stress p53 also suppresses MDM2 protein levels via a similar mechanism. These observations not only raise questions about the physiological role of MDM2 during ER stress but it also reveals a new facet of p53 as a repressor toward 2 of its major target genes during the UPR. As suppression of p21CDKN1A and MDM2 protein synthesis is mediated via their coding sequences, it raises the possibility that p53 controls mRNA translation via a common mechanism that might play an important role in how p53 regulates gene expression during the UPR, as compared to the transcription-dependent gene regulation taking place during the DNA damage response.
Collapse
Affiliation(s)
- Ignacio López
- a Équipe Labellisée Ligue Contre le Cancer; Université Paris 7; INSERM UMR 1162 "Génomique fonctionnelle des tumeurs solides" ; Paris , France
| | - Anne-Sophie Tournillon
- a Équipe Labellisée Ligue Contre le Cancer; Université Paris 7; INSERM UMR 1162 "Génomique fonctionnelle des tumeurs solides" ; Paris , France
| | - Karin Nylander
- b Department of Medical Biosciences ; Umeå University ; Umeå , Sweden
| | - Robin Fåhraeus
- a Équipe Labellisée Ligue Contre le Cancer; Université Paris 7; INSERM UMR 1162 "Génomique fonctionnelle des tumeurs solides" ; Paris , France ,b Department of Medical Biosciences ; Umeå University ; Umeå , Sweden.,c RECAMO; Masaryk Memorial Cancer Institute ; Brno , Czech Republic
| |
Collapse
|
43
|
Abstract
It is poorly understood how a single protein, p53, can be responsive to so many stress signals and orchestrates very diverse cell responses to maintain/restore cell/tissue functions. The uncovering that TP53 gene physiologically expresses, in a tissue-dependent manner, several p53 splice variants (isoforms) provides an explanation to its pleiotropic biological activities. Here, we summarize a decade of research on p53 isoforms. The clinical studies and the diverse cellular and animal models of p53 isoforms (zebrafish, Drosophila, and mouse) lead us to realize that a p53-mediated cell response is, in fact, the sum of the intrinsic activities of the coexpressed p53 isoforms and that unbalancing expression of different p53 isoforms leads to cancer, premature aging, (neuro)degenerative diseases, inflammation, embryo malformations, or defects in tissue regeneration. Cracking the p53 isoforms' code is, thus, a necessary step to improve cancer treatment. It also opens new exciting perspectives in tissue regeneration.
Collapse
Affiliation(s)
- Sebastien M Joruiz
- Dundee Cancer Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, United Kingdom
| | - Jean-Christophe Bourdon
- Dundee Cancer Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, United Kingdom
| |
Collapse
|
44
|
Weingarten-Gabbay S, Segal E. Toward a systematic understanding of translational regulatory elements in human and viruses. RNA Biol 2016; 13:927-933. [PMID: 27442807 DOI: 10.1080/15476286.2016.1212802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Translational regulation is a critical step in the production of proteins from genomic material in both human and viruses. However, unlike other steps of the central dogma, such as transcriptional regulation, little is known about the cis-regulatory elements involved. In a recent study we devised a high-throughput bicistronic reporter assay for the discovery and the characterization of thousands of novel Internal Ribosome Entry Sites (IRESs) in human and hundreds of viral genomes. Our results provide insights into the landscape of IRES elements in human and viral transcripts and the cis-regulatory sequences underlying their activity. Here, we discuss these results as well as emerging insights from other studies, providing new views about translational regulation in human and viruses. In addition, we highlight recent high-throughput technologies in the field and discuss how combining insights from high- and low-throughput approaches can illuminate yet uncovered mechanisms of translational regulation.
Collapse
Affiliation(s)
- Shira Weingarten-Gabbay
- a Department of Computer Science and Applied Mathematics , Weizmann Institute of Science , Rehovot , Israel.,b Department of Molecular Cell Biology , Weizmann Institute of Science , Rehovot , Israel
| | - Eran Segal
- a Department of Computer Science and Applied Mathematics , Weizmann Institute of Science , Rehovot , Israel.,b Department of Molecular Cell Biology , Weizmann Institute of Science , Rehovot , Israel
| |
Collapse
|
45
|
Walters B, Thompson SR. Cap-Independent Translational Control of Carcinogenesis. Front Oncol 2016; 6:128. [PMID: 27252909 PMCID: PMC4879784 DOI: 10.3389/fonc.2016.00128] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/10/2016] [Indexed: 01/04/2023] Open
Abstract
Translational regulation has been shown to play an important role in cancer and tumor progression. Despite this fact, the role of translational control in cancer is an understudied and under appreciated field, most likely due to the technological hurdles and paucity of methods available to establish that changes in protein levels are due to translational regulation. Tumors are subjected to many adverse stress conditions such as hypoxia or starvation. Under stress conditions, translation is globally downregulated through several different pathways in order to conserve energy and nutrients. Many of the proteins that are synthesized during stress in order to cope with the stress use a non-canonical or cap-independent mechanism of initiation. Tumor cells have utilized these alternative mechanisms of translation initiation to promote survival during tumor progression. This review will specifically discuss the role of cap-independent translation initiation, which relies on an internal ribosome entry site (IRES) to recruit the ribosomal subunits internally to the messenger RNA. We will provide an overview of the role of IRES-mediated translation in cancer by discussing the types of genes that use IRESs and the conditions under which these mechanisms of initiation are used. We will specifically focus on three well-studied examples: Apaf-1, p53, and c-Jun, where IRES-mediated translation has been demonstrated to play an important role in tumorigenesis or tumor progression.
Collapse
Affiliation(s)
- Beth Walters
- Department of Microbiology, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Sunnie R Thompson
- Department of Microbiology, University of Alabama at Birmingham , Birmingham, AL , USA
| |
Collapse
|
46
|
Weingarten-Gabbay S, Elias-Kirma S, Nir R, Gritsenko AA, Stern-Ginossar N, Yakhini Z, Weinberger A, Segal E. Comparative genetics. Systematic discovery of cap-independent translation sequences in human and viral genomes. Science 2016; 351:351/6270/aad4939. [PMID: 26816383 DOI: 10.1126/science.aad4939] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 11/11/2015] [Indexed: 12/12/2022]
Abstract
To investigate gene specificity at the level of translation in both the human genome and viruses, we devised a high-throughput bicistronic assay to quantify cap-independent translation. We uncovered thousands of novel cap-independent translation sequences, and we provide insights on the landscape of translational regulation in both humans and viruses. We find extensive translational elements in the 3' untranslated region of human transcripts and the polyprotein region of uncapped RNA viruses. Through the characterization of regulatory elements underlying cap-independent translation activity, we identify potential mechanisms of secondary structure, short sequence motif, and base pairing with the 18S ribosomal RNA (rRNA). Furthermore, we systematically map the 18S rRNA regions for which reverse complementarity enhances translation. Thus, we make available insights into the mechanisms of translational control in humans and viruses.
Collapse
Affiliation(s)
- Shira Weingarten-Gabbay
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel. Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shani Elias-Kirma
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel. Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ronit Nir
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel. Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alexey A Gritsenko
- The Delft Bioinformatics Laboratory, Department of Intelligent Systems, Delft University of Technology, Delft, Netherlands. Platform Green Synthetic Biology, Delft, Netherlands. Kluyver Centre for Genomics of Industrial Fermentation, Delft, Netherlands
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zohar Yakhini
- Department of Computer Science, Technion, Haifa, Israel. Agilent Laboratories, Tel-Aviv, Israel
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel. Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel. Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
47
|
Amino-terminal p53 mutations lead to expression of apoptosis proficient p47 and prognosticate better survival, but predispose to tumorigenesis. Proc Natl Acad Sci U S A 2015; 112:E6349-58. [PMID: 26578795 DOI: 10.1073/pnas.1510043112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Whereas most mutations in p53 occur in the DNA-binding domain and lead to its functional inactivation, their relevance in the amino-terminal transactivation domain is unclear. We show here that amino-terminal p53 (ATp53) mutations often result in the abrogation of full-length p53 expression, but concomitantly lead to the expression of the amino-terminally truncated p47 isoform. Using genetically modified cancer cells that only express p47, we demonstrate it to be up-regulated in response to various stimuli, and to contribute to cell death, through its ability to selectively activate a group of apoptotic target genes. Target gene selectivity is influenced by K382 acetylation, which depends on the amino terminus, and is required for recruitment of selective cofactors. Consistently, cancers capable of expressing p47 had a better overall survival. Nonetheless, retention of the apoptotic function appears insufficient for tumor suppression, because these mutations are also found in the germ line and lead to Li-Fraumeni syndrome. These data from ATp53 mutations collectively demonstrate that p53's apoptosis proficiency is dispensable for tumor suppression, but could prognosticate better survival.
Collapse
|
48
|
Swiatkowska A, Zydowicz P, Gorska A, Suchacka J, Dutkiewicz M, Ciesiołka J. The Role of Structural Elements of the 5'-Terminal Region of p53 mRNA in Translation under Stress Conditions Assayed by the Antisense Oligonucleotide Approach. PLoS One 2015; 10:e0141676. [PMID: 26513723 PMCID: PMC4626026 DOI: 10.1371/journal.pone.0141676] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/12/2015] [Indexed: 02/05/2023] Open
Abstract
The p53 protein is one of the major factors responsible for cell cycle regulation and stress response. In the 5'-terminal region of p53 mRNA, an IRES element has been found which takes part in the translational regulation of p53 expression. Two characteristic hairpin motifs are present in this mRNA region: G56-C169, with the first AUG codon, and U180-A218, which interacts with the Hdm2 protein (human homolog of mouse double minute 2 protein). 2'-OMe modified antisense oligomers hybridizing to the 5'-terminal region of p53 mRNA were applied to assess the role of these structural elements in translation initiation under conditions of cellular stress. Structural changes in the RNA target occurring upon oligomers' binding were monitored by the Pb2+-induced cleavage method. The impact of antisense oligomers on the synthesis of two proteins, the full-length p53 and its isoform Δ40p53, was analysed in HT-29, MCF-7 and HepG2 cells, under normal conditions and under stress, as well as in vitro conditions. The results revealed that the hairpin U180-A218 and adjacent single-stranded region A219-A228 were predominantly responsible for high efficacy of IRES-mediated translation in the presence of stress factors. These motifs play a role of cis-acting elements which are able to modulate IRES activity, likely via interactions with protein factors.
Collapse
Affiliation(s)
- Agata Swiatkowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Paulina Zydowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Agnieszka Gorska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Julia Suchacka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Mariola Dutkiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Jerzy Ciesiołka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
- * E-mail:
| |
Collapse
|
49
|
Deregulation of Internal Ribosome Entry Site-Mediated p53 Translation in Cancer Cells with Defective p53 Response to DNA Damage. Mol Cell Biol 2015; 35:4006-17. [PMID: 26391949 DOI: 10.1128/mcb.00365-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/11/2015] [Indexed: 11/20/2022] Open
Abstract
Synthesis of the p53 tumor suppressor and its subsequent activation following DNA damage are critical for its protection against tumorigenesis. We previously discovered an internal ribosome entry site (IRES) at the 5' untranslated region of the p53 mRNA. However, the connection between IRES-mediated p53 translation and p53's tumor suppressive function is unknown. In this study, we identified two p53 IRES trans-acting factors, translational control protein 80 (TCP80), and RNA helicase A (RHA), which positively regulate p53 IRES activity. Overexpression of TCP80 and RHA also leads to increased expression and synthesis of p53. Furthermore, we discovered two breast cancer cell lines that retain wild-type p53 but exhibit defective p53 induction and synthesis following DNA damage. The levels of TCP80 and RHA are extremely low in both cell lines, and expression of both proteins is required to significantly increase the p53 IRES activity in these cells. Moreover, we found cancer cells transfected with a shRNA against TCP80 not only exhibit decreased expression of TCP80 and RHA but also display defective p53 induction and diminished ability to induce senescence following DNA damage. Therefore, our findings reveal a novel mechanism of p53 inactivation that links deregulation of IRES-mediated p53 translation with tumorigenesis.
Collapse
|
50
|
Translational Control Protein 80 Stimulates IRES-Mediated Translation of p53 mRNA in Response to DNA Damage. BIOMED RESEARCH INTERNATIONAL 2015; 2015:708158. [PMID: 26273641 PMCID: PMC4529924 DOI: 10.1155/2015/708158] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/08/2015] [Accepted: 03/09/2015] [Indexed: 01/20/2023]
Abstract
Synthesis of the p53 tumor suppressor increases following DNA damage. This increase and subsequent activation of p53 are essential for the protection of normal cells against tumorigenesis. We previously discovered an internal ribosome entry site (IRES) that is located at the 5′-untranslated region (UTR) of p53 mRNA and found that the IRES activity increases following DNA damage. However, the mechanism underlying IRES-mediated p53 translation in response to DNA damage is still poorly understood. In this study, we discovered that translational control protein 80 (TCP80) has increased binding to the p53 mRNA in vivo following DNA damage. Overexpression of TCP80 also leads to increased p53 IRES activity in response to DNA damage. TCP80 has increased association with RNA helicase A (RHA) following DNA damage and overexpression of TCP80, along with RHA, leads to enhanced expression of p53. Moreover, we found that MCF-7 breast cancer cells with decreased expression of TCP80 and RHA exhibit defective p53 induction following DNA damage and diminished expression of its downstream target PUMA, a proapoptotic protein. Taken together, our discovery of the function of TCP80 and RHA in regulating p53 IRES and p53 induction following DNA damage provides a better understanding of the mechanisms that regulate IRES-mediated p53 translation in response to genotoxic stress.
Collapse
|