1
|
Dan X, Li K, Xu J, Yan P. The Potential of Neuregulin 4 as a Novel Biomarker and Therapeutic Agent for Vascular Complications in Type 2 Diabetes Mellitus. J Inflamm Res 2024; 17:8543-8554. [PMID: 39539725 PMCID: PMC11559183 DOI: 10.2147/jir.s492115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Neuregulin 4 (Nrg4), a novel adipokine produced primarily by brown adipose tissue (BAT), has been functionally characterized to exert beneficial effects on modulating energy homeostasis and glucolipid metabolism, and is closely associated with the development and progression of obesity and obesity-associated metabolic diseases, such as type 2 diabetes mellitus (T2DM) and cardiovascular diseases. Recently, there has been a growing focus on the relationship between circulating Nrg4 levels and T2DM-related vascular complications. In this review, we discussed the known and potential roles of Nrg4 in various physiological and pathological processes, and its association with vascular complications in T2DM, in the aim of finding a potential biomarker recommended for the clinical diagnosis, prognosis and follow-up of T2DM patients at high risk of developing vascular complications as well as providing new therapeutic approaches.
Collapse
Affiliation(s)
- Xiaofang Dan
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, People’s Republic of China
| | - Ke Li
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, People’s Republic of China
| | - Jiali Xu
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Pijun Yan
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, People’s Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| |
Collapse
|
2
|
Vo N, Zhang Q, Sung HK. From fasting to fat reshaping: exploring the molecular pathways of intermittent fasting-induced adipose tissue remodeling. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13062. [PMID: 39104461 PMCID: PMC11298356 DOI: 10.3389/jpps.2024.13062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024]
Abstract
Obesity, characterised by excessive fat accumulation, is a complex chronic condition that results from dysfunctional adipose tissue expansion due to prolonged calorie surplus. This leads to rapid adipocyte enlargement that exceeds the support capacity of the surrounding neurovascular network, resulting in increased hypoxia, inflammation, and insulin resistance. Intermittent fasting (IF), a dietary regimen that cycles between periods of fasting and eating, has emerged as an effective strategy to combat obesity and improve metabolic homeostasis by promoting healthy adipose tissue remodeling. However, the precise molecular and cellular mechanisms behind the metabolic improvements and remodeling of white adipose tissue (WAT) driven by IF remain elusive. This review aims to summarise and discuss the relationship between IF and adipose tissue remodeling and explore the potential mechanisms through which IF induces alterations in WAT. This includes several key structural changes, including angiogenesis and sympathetic innervation of WAT. We will also discuss the involvement of key signalling pathways, such as PI3K, SIRT, mTOR, and AMPK, which potentially play a crucial role in IF-mediated metabolic adaptations.
Collapse
Affiliation(s)
- Nathaniel Vo
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Qiwei Zhang
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Chen M, Zhu J, Luo H, Mu W, Guo L. The journey towards physiology and pathology: Tracing the path of neuregulin 4. Genes Dis 2024; 11:687-700. [PMID: 37692526 PMCID: PMC10491916 DOI: 10.1016/j.gendis.2023.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/11/2023] [Accepted: 03/05/2023] [Indexed: 09/12/2023] Open
Abstract
Neuregulin 4 (Nrg4), an epidermal growth factor (EGF) family member, can bind to and activate the ErbB4 receptor tyrosine kinase. Nrg4 has five different isoforms by alternative splicing and performs a wide variety of functions. Nrg4 is involved in a spectrum of physiological processes including neurobiogenesis, lipid metabolism, glucose metabolism, thermogenesis, and angiogenesis. In pathological processes, Nrg4 inhibits inflammatory factor levels and suppresses apoptosis in inflammatory diseases. In addition, Nrg4 could ameliorate obesity, insulin resistance, and cardiovascular diseases. Furthermore, Nrg4 improves non-alcoholic fatty liver disease (NAFLD) by promoting autophagy, improving lipid metabolism, and inhibiting cell death of hepatocytes. Besides, Nrg4 is closely related to the development of cancer, hyperthyroidism, and some other diseases. Therefore, elucidation of the functional role and mechanisms of Nrg4 will provide a clearer view of the therapeutic potential and possible risks of Nrg4.
Collapse
Affiliation(s)
- Min Chen
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Jieying Zhu
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Hongyang Luo
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Wangjing Mu
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Liang Guo
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
4
|
Li Y, Jin L, Jiang F, Yan J, Lu Y, Yang Q, Zhang Y, Zhang H, Yu H, Zhang Y, He Z, Zhang R, Yang J, Hu C. Mutations of NRG4 Contribute to the Pathogenesis of Nonalcoholic Fatty Liver Disease and Related Metabolic Disorders. Diabetes 2021; 70:2213-2224. [PMID: 34261740 DOI: 10.2337/db21-0064] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022]
Abstract
Neuregulin 4 (Nrg4), an adipose tissue-enriched endocrine factor, participates in adipocyte-to-hepatocyte communication, eliciting beneficial metabolic effects in nonalcoholic fatty liver disease (NAFLD). We evaluate the physiological roles of NRG4 in humans and unravel the role of NRG4 variants in the pathogenesis of NAFLD and related metabolic disorders. We identified two rare missense mutations-p.R44H and p.E47Q-in the NRG4 EGF-like domain by whole-exome sequencing in 224 severely obese subjects and exome genotyping in 2,388 subjects from the Shanghai Obesity Study. The overexpression animal models showed that wild-type (WT) Nrg4 could attenuate high-fat diet-induced hepatic lipogenesis and improve energy metabolism. Nrg4 E47Q enhanced the protective effect, whereas Nrg4 R44H lost this function. Unlike Nrg4 R44H, Nrg4 E47Q activated the phosphorylation of ErbB4 and negatively regulated de novo lipogenesis through the ErbB4-STAT5-SREBP-1C pathway. The surface plasmon resonance experiments revealed a higher affinity of E47Q Nrg4 than WT to bind ErbB4, while R44H showed no binding. In conclusion, the study suggests that genetic variations in NRG4 could produce mutant proteins with aberrant functions and that impaired or enhanced Nrg4 function could be either a risk factor or a protective factor for NAFLD and associated metabolic disorders.
Collapse
Affiliation(s)
- Yangyang Li
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li Jin
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Jiang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jing Yan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yan Lu
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qing Yang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yi Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hairong Yu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuemei Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhen He
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jianjun Yang
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China
| |
Collapse
|
5
|
Yan P, Zhang Z, Miao Y, Xu Y, Zhu J, Wan Q. Changes of circulating neuregulin 4 and its relationship with 25-hydroxy vitamin D and other diabetic vascular complications in patients with diabetic peripheral neuropathy. Diabetol Metab Syndr 2020; 12:42. [PMID: 32477429 PMCID: PMC7236347 DOI: 10.1186/s13098-020-00550-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuregulin 4 (Nrg4) is a novel neurotrophic adipokine associated with the development of diabetic peripheral neuropathy (DPN), however, the pathological mechanism remains poorly understood. The purpose of our study was to investigate the association of circulating Nrg4 with DPN and 25-hydroxy vitamin D [25(OH)D], a multifunctional secosteroid hormone that regulates other neurotrophic factors and adipokines gene expression, and other diabetic vascular complications. METHODS Circulating Nrg4 levels were measured with an ELISA kit in 164 newly diagnosed type 2 diabetes mellitus (nT2DM) patients. The relationship between circulating Nrg4 and DPN and other parameters was analyzed. RESULTS Circulating Nrg4 levels were significantly lower in nT2DM patients with DPN than those without, and subjects in the highest quartile of circulating Nrg4 had significantly lower vibration perception threshold (VPT), the prevalence of DPN, the proportion of persons with VPT > 25 V, and significantly higher circulating 25(OH)D (all P < 0.01). Moreover, circulating Nrg4 was positively and independently associated with 25(OH)D, and was negatively with VPT (P < 0.01 or P < 0.05), but showed no associations with the prevalence of peripheral arterial disease, diabetic nephropathy, and diabetic retinopathy (all P > 0.05). Additionally,the prevalence of DPN and risk of DPN development were progressively decreased with increasing circulating Nrg4 quartiles, independently of potential confounding factors. CONCLUSIONS These data demonstrate that decreased levels of circulating Nrg4 might lead to the development of DPN through its close interaction with circulating 25(OH)D not with other diabetic vascular complications. Further prospective studies are needed to identify our findings in these populations.
Collapse
Affiliation(s)
- Pijun Yan
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000 China
| | - Zhihong Zhang
- Department of General Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000 China
| | - Ying Miao
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000 China
| | - Yong Xu
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000 China
| | - Jianhua Zhu
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000 China
| | - Qin Wan
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000 China
| |
Collapse
|
6
|
Wang Y, Huang S, Yu P. Association between circulating neuregulin4 levels and diabetes mellitus: A meta-analysis of observational studies. PLoS One 2019; 14:e0225705. [PMID: 31815951 PMCID: PMC6901220 DOI: 10.1371/journal.pone.0225705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/11/2019] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Neuregulin 4 (Nrg4) was proven as a brown fat-enriched secreted factor that can regulate glucose and lipid metabolism. However, the association between circulating Nrg4 levels and diabetes mellitus (DM) in human remains unclear. We conducted a meta-analysis to investigate association of circulating Nrg4 with DM. METHODS Observational studies comparing circulating Nrg4 levels in diabetes patients and health controls were included. Circulating Nrg4, correlation coefficients of clinical indices and circulating Nrg4 were pooled by meta-analysis. RESULTS Seven studies were included. The pooled results indicated there were no significant difference in the circulating Nrg4 between diabetes patients and controls (SMD = 0.18, 95%CI = -0.06 to 0.42, P = 0.143). However, diabetes patients had higher circulating Nrg4 than their controls in cross-sectional studies (SMD = 0.55, 95%CI = 0.36 to 0.73, P<0.001). None of the renal function and metabolic syndrome markers were correlated with circulating Nrg4, whereas the HbA1c and BMI were positively correlated (rs = 0.09, 95%CI = 0.03 to 0.16, P = 0.005; rs = 0.20, 95%CI = 0.07 to 0.34, P = 0.003; respectively). CONCLUSION Our findings suggested circulating Nrg4 may play a role in in the development of DM in cross-sectional studies and circulating Nrg4 might be associated with imbalance in glucose metabolism and obesity.
Collapse
Affiliation(s)
- Yao Wang
- NHC Key Laboratory of Hormones and Development (Tianjn Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjn Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Shuai Huang
- NHC Key Laboratory of Hormones and Development (Tianjn Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjn Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development (Tianjn Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjn Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
- * E-mail:
| |
Collapse
|
7
|
Abstract
Cardioprotective engineering is an emerging bioengineering discipline aiming to develop engineering strategies to optimize cardioprotective actions against cardiac injuries and disorders. Although there exist innate cardioprotective mechanisms capable of supporting cardiomyocyte survival in response to an insult, not all these mechanisms are optimized in promptness and effectiveness, suggesting the necessity of cardioprotective engineering. Various cardioprotective strategies have been developed and used in experimental and clinical investigations; however, few of these strategies have exerted a significant clinical impact. There are two major challenges in cardioprotective engineering - understanding the innate cardioprotective mechanisms and developing engineering strategies for precise control of the types, levels, timing, and coordination of cardioprotective actions to facilitate recovery from injuries and disorders. Understanding the innate mechanisms is the foundation for developing cardioprotective engineering strategies. Here, ischemic myocardial injury is used as an example to demonstrate the concept of cardioprotective engineering.
Collapse
Affiliation(s)
- Shu Q Liu
- Biomedical Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston IL, 60208-3107
| |
Collapse
|
8
|
Decreased plasma neuregulin 4 levels are associated with peripheral neuropathy in Chinese patients with newly diagnosed type 2 diabetes: A cross-sectional study. Cytokine 2019; 113:356-364. [DOI: 10.1016/j.cyto.2018.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/24/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
|
9
|
Hu X, Fan Q, Hou H, Yan R. Neurological dysfunctions associated with altered BACE1-dependent Neuregulin-1 signaling. J Neurochem 2016; 136:234-49. [PMID: 26465092 PMCID: PMC4833723 DOI: 10.1111/jnc.13395] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 01/09/2023]
Abstract
Inhibition of BACE1 is being pursued as a therapeutic target to treat patients suffering from Alzheimer's disease because BACE1 is the sole β-secretase that generates β-amyloid peptide. Knowledge regarding other cellular functions of BACE1 is therefore critical for the safe use of BACE1 inhibitors in human patients. Neuregulin-1 (Nrg1) is a BACE1 substrate and BACE1 cleavage of Nrg1 is critical for signaling functions in myelination, remyelination, synaptic plasticity, normal psychiatric behaviors, and maintenance of muscle spindles. This review summarizes the most recent discoveries associated with BACE1-dependent Nrg1 signaling in these areas. This body of knowledge will help to provide guidance for preventing unwanted Nrg1-based side effects following BACE1 inhibition in humans. To initiate its signaling cascade, membrane anchored Neuregulin (Nrg), mainly type I and III β1 Nrg1 isoforms and Nrg3, requires ectodomain shedding. BACE1 is one of such indispensable sheddases to release the functional Nrg signaling fragment. The dependence of Nrg on the cleavage by BACE1 is best manifested by disrupting the critical role of Nrg in the control of axonal myelination, schizophrenic behaviors as well as the formation and maintenance of muscle spindles.
Collapse
Affiliation(s)
- Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Qingyuan Fan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Hailong Hou
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
10
|
Liu SQ, Ma XL, Qin G, Liu Q, Li YC, Wu YH. Trans-system mechanisms against ischemic myocardial injury. Compr Physiol 2015; 5:167-92. [PMID: 25589268 DOI: 10.1002/cphy.c140026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A mammalian organism possesses a hierarchy of naturally evolved protective mechanisms against ischemic myocardial injury at the molecular, cellular, and organ levels. These mechanisms comprise regional protective processes, including upregulation and secretion of paracrine cell-survival factors, inflammation, angiogenesis, fibrosis, and resident stem cell-based cardiomyocyte regeneration. There are also interactive protective processes between the injured heart, circulation, and selected remote organs, defined as trans-system protective mechanisms, including upregulation and secretion of endocrine cell-survival factors from the liver and adipose tissue as well as mobilization of bone marrow, splenic, and hepatic cells to the injury site to mediate myocardial protection and repair. The injured heart and activated remote organs exploit molecular and cellular processes, including signal transduction, gene expression, cell proliferation, differentiation, migration, mobilization, and/or extracellular matrix production, to establish protective mechanisms. Both regional and trans-system cardioprotective mechanisms are mediated by paracrine and endocrine messengers and act in coordination and synergy to maximize the protective effect, minimize myocardial infarction, and improve myocardial function, ensuring the survival and timely repair of the injured heart. The concept of the trans-system protective mechanisms may be generalized to other organ systems-injury in one organ may initiate regional as well as trans-system protective responses, thereby minimizing injury and ensuring the survival of the entire organism. Selected trans-system processes may serve as core protective mechanisms that can be exploited by selected organs in injury. These naturally evolved protective mechanisms are the foundation for developing protective strategies for myocardial infarction and injury-induced disorders in other organ systems.
Collapse
Affiliation(s)
- Shu Q Liu
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois Department of Emergency Medicine, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois Carbohydrate and Lipid Metabolism Research Laboratory, College of Life Science and Technology, Dalian University, Dalian, China Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois
| | | | | | | | | | | |
Collapse
|
11
|
Yin HK, Li XY, Jiang ZG, Zhou MD. Progress in neuregulin/ErbB signaling and chronic heart failure. World J Hypertens 2015; 5:63-73. [DOI: 10.5494/wjh.v5.i2.63] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 03/10/2015] [Accepted: 04/20/2015] [Indexed: 02/06/2023] Open
Abstract
Heart failure is one of the leading causes of death today. It is a complex clinical syndrome in which the heart has a reduced contraction ability and decreased viable myocytes. Novel approaches to the clinical management of heart failure have been achieved through an understanding of the molecular pathways necessary for normal heart development. Neuregulin-1 (NRG-1) has emerged as a potential therapeutic target based on the fact that mice null for NRG-1 or receptors mediating its activity, ErbB2 and ErbB4, are embryonic lethal and exhibit severe cardiac defects. Preclinical studies performed with animal models of heart failure demonstrate that treatment with NRG-1 significantly improves heart function and survival. Clinical data further support NRG-1 as a promising drug candidate for the treatment of cardiac dysfunction in patients. Recent studies have revealed the mechanism underlying the therapeutic effects of NRG-1/ErbB signaling in the treatment of heart failure. Through activation of upstream signaling molecules such as phosphoinositide 3-kinase, mitogen-activated protein kinase, and focal adhesion kinase, NRG-1/ErbB pathway activation results in increased cMLCK expression and enhanced intracellular calcium cycling. The former is a regulator of the contractile machinery, and the latter triggers cell contraction and relaxation. In addition, NRG-1/ErbB signaling also influences energy metabolism and induces epigenetic modification in cardiac myocytes in a way that more closely resembles healthy heart. These observations reveal potentially new treatment options for heart failure.
Collapse
|
12
|
Wang GX, Zhao XY, Lin JD. The brown fat secretome: metabolic functions beyond thermogenesis. Trends Endocrinol Metab 2015; 26:231-7. [PMID: 25843910 PMCID: PMC4417028 DOI: 10.1016/j.tem.2015.03.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/08/2015] [Accepted: 03/11/2015] [Indexed: 12/29/2022]
Abstract
Brown fat is highly active in fuel oxidation and dissipates chemical energy through uncoupling protein (UCP)1-mediated heat production. Activation of brown fat leads to increased energy expenditure, reduced adiposity, and lower plasma glucose and lipid levels, thus contributing to better homeostasis. Uncoupled respiration and thermogenesis have been considered to be responsible for the metabolic benefits of brown adipose tissue. Recent studies have demonstrated that brown adipocytes also secrete factors that act locally and systemically to influence fuel and energy metabolism. This review discusses the evidence supporting a thermogenesis-independent role of brown fat, particularly through its release of secreted factors, and their implications in physiology and therapeutic development.
Collapse
Affiliation(s)
- Guo-Xiao Wang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xu-Yun Zhao
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
13
|
Christian M. Transcriptional fingerprinting of "browning" white fat identifies NRG4 as a novel adipokine. Adipocyte 2015; 4:50-4. [PMID: 26167402 PMCID: PMC4496975 DOI: 10.4161/adip.29853] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 12/22/2022] Open
Abstract
Brown adipocytes help to maintain body temperature by the expression of a unique set of genes that facilitate cellular metabolic events including uncoupling protein 1-dependent thermogenesis. The dissipation of energy in brown adipose tissue (BAT) is in stark contrast to white adipose tissue (WAT) which is the body's primary site of energy storage. However, adipose tissue is highly dynamic and upon cold exposure profound changes occur in WAT resulting in a BAT-like phenotype due to the presence of brown-in-white (BRITE) adipocytes. In our recent report, transcription profiling was used to identify the gene expression changes that underlie the browning process as well as the intrinsic differences between BAT and WAT. Neuregulin 4 was categorized as a cold-induced BAT gene encoding an adipokine that signals between adipocytes and nerve cells and likely to have a role in increasing adipose tissue innervation in response to cold.
Collapse
|
14
|
Wang GX, Zhao XY, Meng ZX, Kern M, Dietrich A, Chen Z, Cozacov Z, Zhou D, Okunade AL, Su X, Li S, Blüher M, Lin JD. The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat Med 2014; 20:1436-1443. [PMID: 25401691 PMCID: PMC4257907 DOI: 10.1038/nm.3713] [Citation(s) in RCA: 341] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 09/10/2014] [Indexed: 12/15/2022]
Abstract
Brown fat activates uncoupled respiration in response to cold temperature and contributes to systemic metabolic homeostasis. To date, the metabolic action of brown fat has been primarily attributed to its role in fuel oxidation and uncoupling protein 1 (UCP1)-mediated thermogenesis. Whether brown fat engages other tissues through secreted factors remains largely unexplored. Here we show that neuregulin 4 (Nrg4), a member of the epidermal growth factor (EGF) family of extracellular ligands, is highly expressed in adipose tissues, enriched in brown fat and markedly increased during brown adipocyte differentiation. Adipose tissue Nrg4 expression was reduced in rodent and human obesity. Gain- and loss-of-function studies in mice demonstrated that Nrg4 protects against diet-induced insulin resistance and hepatic steatosis through attenuating hepatic lipogenic signaling. Mechanistically, Nrg4 activates ErbB3 and ErbB4 signaling in hepatocytes and negatively regulates de novo lipogenesis mediated by LXR and SREBP1c in a cell-autonomous manner. These results establish Nrg4 as a brown fat-enriched endocrine factor with therapeutic potential for the treatment of obesity-associated disorders, including type 2 diabetes and nonalcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Guo-Xiao Wang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Xu-Yun Zhao
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Zhuo-Xian Meng
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Matthias Kern
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Arne Dietrich
- Department of Surgery, University of Leipzig, Leipzig, Germany
| | - Zhimin Chen
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Zoharit Cozacov
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Dequan Zhou
- Department of Internal Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Adewole L. Okunade
- Department of Internal Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China
| | - Siming Li
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Jiandie D. Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
15
|
Rosell M, Kaforou M, Frontini A, Okolo A, Chan YW, Nikolopoulou E, Millership S, Fenech ME, MacIntyre D, Turner JO, Moore JD, Blackburn E, Gullick WJ, Cinti S, Montana G, Parker MG, Christian M. Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice. Am J Physiol Endocrinol Metab 2014; 306:E945-64. [PMID: 24549398 PMCID: PMC3989735 DOI: 10.1152/ajpendo.00473.2013] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Brown adipocytes dissipate energy, whereas white adipocytes are an energy storage site. We explored the plasticity of different white adipose tissue depots in acquiring a brown phenotype by cold exposure. By comparing cold-induced genes in white fat to those enriched in brown compared with white fat, at thermoneutrality we defined a "brite" transcription signature. We identified the genes, pathways, and promoter regulatory motifs associated with "browning," as these represent novel targets for understanding this process. For example, neuregulin 4 was more highly expressed in brown adipose tissue and upregulated in white fat upon cold exposure, and cell studies showed that it is a neurite outgrowth-promoting adipokine, indicative of a role in increasing adipose tissue innervation in response to cold. A cell culture system that allows us to reproduce the differential properties of the discrete adipose depots was developed to study depot-specific differences at an in vitro level. The key transcriptional events underpinning white adipose tissue to brown transition are important, as they represent an attractive proposition to overcome the detrimental effects associated with metabolic disorders, including obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Meritxell Rosell
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang L, Pawlak EA, Johnson PJ, Belknap JK, Alfandari D, Black SJ. Expression and activity of collagenases in the digital laminae of horses with carbohydrate overload-induced acute laminitis. J Vet Intern Med 2013; 28:215-22. [PMID: 24479657 PMCID: PMC3910380 DOI: 10.1111/jvim.12252] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/31/2013] [Accepted: 10/17/2013] [Indexed: 12/16/2022] Open
Abstract
Background Matrix metalloproteinases (MMP) are hypothesized to degrade structurally important components of the laminar extracellular matrix (ECM) in horses with laminitis. Objective To compare levels of expression of stromelysin‐1 (MMP‐3), collagenases (MMP‐1, ‐13), and membrane type‐MMPs (MMP‐14, ‐15, ‐16), and the distribution of their ECM substrates, in laminae of healthy horses and horses with carbohydrate overload laminitis. Animals Twenty‐five adult horses. Methods Gene and protein expression were determined in extracts of laminae using real‐time quantitative polymerase chain reaction and Western blotting after sodium dodecylsulfate polyacrylamide gel electrophoresis. Distribution of MMP‐13 and ECM components was determined using indirect immunofluorescent microscopy of nonfixed frozen sections. ECM morphology was assessed by hematoxylin and eosin staining. Results Of the genes studied, only those encoding MMP‐1 and ‐13 were upregulated in CHO‐induced laminitis; MMP‐1 at Obel grade (OG)1 lameness and MMP‐13 at OG3 lameness. Laminar MMP‐1 was present as 52 kDa proenzyme only. MMP‐13 was present as pro‐ (61 kDa) and processed (48 kDa) enzyme. MMP‐13 localized to the basal epithelium of the secondary epidermal laminae and its increased expression were accompanied by the appearance in secondary dermal laminae (SDL) of multiple foci that were devoid of collagen I, fibronectin, chondroitin and keratan sulfate glycosaminoglycans, and eosin‐staining material. Conclusions and Clinical Relevance MMP‐13 is upregulated in laminae of horses with CHO‐induced OG3 lameness and, by degrading components of the ECM, may contribute to the formation of ECM‐free lesions (gaps or tears) that appear in the SDL with OG3 lameness.
Collapse
Affiliation(s)
- L Wang
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA
| | | | | | | | | | | |
Collapse
|
17
|
South JCM, Blackburn E, Brown IR, Gullick WJ. The neuregulin system of ligands and their receptors in rat islets of langerhans. Endocrinology 2013; 154:2385-92. [PMID: 23610133 DOI: 10.1210/en.2012-2133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Islet cell growth and function are affected by ligands from the epidermal growth factor (EGF) family. We describe here the expression, regional distribution, and effect on growth and secretion of insulin of a subset of these, the neuregulin (NRG) family. The expression of NRG1α, NRG1β, NRG2α, NRG2β, NRG3, and NRG4 in rat islets was determined using immunohistochemical and double immunofluorescent staining. We also report the expression of the 4 receptors and the remaining 7 ligands using immunohistochemistry. The NRG1α splice variant was expressed in β-cells and the NRG1β variant mainly in α-cells. NRG3 was also predominantly present in α-cells. Most of the members of the EGF family of ligands were also expressed, with Epigen being present at the highest levels. The rat islet-derived cell line CRI-G1 was used to study the effect of addition of EGF, NRG1β, NRG3, and NRG4 on cell growth and insulin secretion. Synthetic refolded NRG3 strongly stimulated the growth of the CRI-G1 cells, and NRG4 gave the greatest stimulation of insulin release. Different members of the NRG family are therefore potentially potent stimuli for islet cell growth and insulin release and differ in expression in α- and β-cells.
Collapse
Affiliation(s)
- Jack C M South
- Cancer Biology Laboratory, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | | | | | | |
Collapse
|
18
|
Bernard JK, McCann SP, Bhardwaj V, Washington MK, Frey MR. Neuregulin-4 is a survival factor for colon epithelial cells both in culture and in vivo. J Biol Chem 2012; 287:39850-8. [PMID: 23033483 DOI: 10.1074/jbc.m112.400846] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Expression of the ErbB4 tyrosine kinase is elevated in colonic epithelial cells during inflammatory bowel disease, whereas ErbB4 overexpression in cultured colonocytes blocks TNF-induced apoptosis in a ligand-dependent manner. Together, these observations suggest that ErbB4 induction may be a protective response. However, the effects of ErbB4 signaling in the colonic epithelium in vivo are not known. Furthermore, previous work on ErbB4 used ligands shared with other receptors, raising the question of whether the observed responses are explicitly due to ErbB4. In this study, we used the ErbB4-specific ligand neuregulin-4 (NRG4) to activate ErbB4 and define its role in colonocyte biology. NRG4 treatment, either in cultured cells or in mice, blocked colonic epithelial apoptosis induced by TNF and IFN-γ. It was also protective in a murine experimental colitis model. NRG4 stimulated phosphorylation of ErbB4 but not other ErbB receptors, indicating that this is a specific response. Furthermore, in contrast to related ligands, NRG4 enhanced cell survival but not proliferation or migration, and stimulated phosphorylation of the anti-apoptotic mediator Akt but not ERK MAPK. Pharmacological inhibition of PI3K/Akt signaling reversed the anti-apoptotic effects of NRG4, confirming the role of this cascade in NRG4-induced cell survival. With regard to the potential clinical importance of this pathway, NRG4 expression was decreased in human inflammatory bowel disease samples and mouse models of colitis, suggesting that activation of ErbB4 is altered in disease. Thus, exogenous NRG4 may be beneficial for disorders in which epithelial apoptosis is part of the pathology.
Collapse
Affiliation(s)
- Jessica K Bernard
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, California 90089, USA
| | | | | | | | | |
Collapse
|
19
|
Montero JC, Rodríguez-Barrueco R, Pandiella A. Transautocrine signaling by membrane neuregulins requires cell surface targeting, which is controlled by multiple domains. J Biol Chem 2011; 286:24350-63. [PMID: 21572038 DOI: 10.1074/jbc.m110.190835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neuregulins (NRGs) play important roles in animal development and homeostasis, and their deregulation has been linked to diseases such as cancer and schizophrenia. The NRGs belong to the epidermal growth factor (EGF) family of transmembrane growth factors. Although NRGs may be synthesized as transmembrane proteins (the pro-NRGs), some of them lack an N-terminal signal sequence, raising the question of how these pro-NRGs are directed to the plasma membrane. Here we have explored the domains of pro-NRGs that are required for their membrane anchoring, cell surface exposure, and biological activity. We show that an internal hydrophobic region acts as a membrane-anchoring domain, but other regions of pro-NRG are required for proper sorting to the plasma membrane. Using mutants that are located in different subcellular compartments, we show that only plasma membrane-exposed pro-NRG is biologically active. At this location, the pro-NRGs may act as transautocrine molecules (i.e. as membrane factors able to activate receptors present in cells that are in physical contact with the pro-NRG-producing cells (in trans) or capable of activating receptors present in the pro-NRG-producing cells (in cis)).
Collapse
Affiliation(s)
- Juan Carlos Montero
- Instituto de Biología Molecular y Celular del Cáncer-Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, Salamanca 37007, Spain
| | | | | |
Collapse
|
20
|
Wang M, Trim CM, Gullick WJ. Localisation of Neuregulin 1-β3 to different sub-nuclear structures alters gene expression. Exp Cell Res 2010; 317:423-32. [PMID: 21110958 DOI: 10.1016/j.yexcr.2010.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 11/16/2010] [Accepted: 11/17/2010] [Indexed: 11/17/2022]
Abstract
Neuregulins are growth factors that signal via the ErbB3 and ErbB4 receptors. Here we show using immunohistochemistry that they are often expressed in the nucleus of a range of tumour types including soft tissue and breast. The Neuregulin 1 type I-β3 (NRG1-β3) isoform localises to two sub-nuclear compartments in animal cells, nucleoli and spliceosomes. We used NRG1-β3 tagged with photoactivatable GFP and demonstrated that this re-localised from nucleoli to spliceosomes over 90 min. Tyrosine kinase activity was not required for retaining the NRG1-β3 within the nucleus. Mutation of the lysines 14 and 16 or 15 and 16 together prevented nucleolar uptake while four positively charged residues were identified which were required for spliceosome uptake. Molecular modelling suggests that three of these may form a binding site. We showed using a kinome array that NRG1-β3 and a mutant exclusively localising to spliceosomes increased phosphorylation and/or expression of the HER4 and HER2 receptors. Using a transcriptomic analysis the same two constructs induced expression of several messenger RNAs and we confirmed the increased expression at the protein level of the most highly induced, Heat Shock Protein 70B'. These results suggest that Neuregulin activates receptor signalling in spliceosomes leading to altered gene expression.
Collapse
Affiliation(s)
- Ming Wang
- Cancer Biology Laboratory, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | | | | |
Collapse
|
21
|
Gullick WJ. The epidermal growth factor system of ligands and receptors in cancer. Eur J Cancer 2010; 45 Suppl 1:205-10. [PMID: 19775619 DOI: 10.1016/s0959-8049(09)70035-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Pentassuglia L, Sawyer DB. The role of Neuregulin-1beta/ErbB signaling in the heart. Exp Cell Res 2008; 315:627-37. [PMID: 18801360 DOI: 10.1016/j.yexcr.2008.08.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 08/19/2008] [Accepted: 08/19/2008] [Indexed: 01/13/2023]
Abstract
Products of the Neuregulin-1 (Nrg-1) gene, along with the ErbB family of receptor tyrosine kinases through which Nrg-1 ligands signal, play a critical role during cardiovascular development. Through studies of genetically manipulated mice, as well as studies in cells isolated from adult hearts, it appears that Nrg-1/ErbB signaling is an essential paracrine mediator of cell-cell interactions that not only regulates tissue organization during development, but also helps to maintain cardiac function throughout an organism's life. Studies in cells isolated from the heart demonstrate that Nrg-1 can activate a number of signaling pathways, which mediate cellular adaptations to stress in the myocardium. These observations provide insight as to why ErbB2-targeted cancer treatments have deleterious effects on cardiac function in some cancer patients. Moreover emerging data suggest that Nrg-1 ligands might be useful clinically to restore cardiac function after cardiac injury. In this review we will attempt to synthesize the literature behind this rapidly growing and exciting area of research.
Collapse
Affiliation(s)
- Laura Pentassuglia
- Cardiovascular Division, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
23
|
Hayes NVL, Gullick WJ. The neuregulin family of genes and their multiple splice variants in breast cancer. J Mammary Gland Biol Neoplasia 2008; 13:205-14. [PMID: 18415007 DOI: 10.1007/s10911-008-9078-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Accepted: 03/17/2008] [Indexed: 01/28/2023] Open
Abstract
The neuregulin family consists of four genes, NRG1-4 which can each encode products containing a domain related to the epidermal growth factor family of ligands. Each gene is subject to complex control of transcription and to splicing of their mRNA product to give many variant proteins. These do not contain secretory sequences but some, through their transmembrane sequence, are routed via the Golgi where they are glycosylated, to the cell surface. Here they may be released by regulated proteolysis to act as soluble proteins which can interact and activate members of the EGF receptor family of receptor tyrosine kinases. Other splice variants do not encode transmembrane sequences and these are found either in the cytoplasm or, if they encode a nuclear localisation sequence, in distinct compartments in the nucleoplasm. It has been shown that the variants containing a full EGF domain can act as receptor agonists but the function of the cytoplasmic and nuclear products is unknown as yet. All four neuregulin genes are expressed and play an important role in mammary gland development. They are also expressed at elevated levels in some cases of ductal carcinoma in situ of the breast and breast cancer. They seem to be active in this setting and their presence may affect the efficacy of treatment with endocrine agents or with signal transduction inhibitors directed at the EGF receptor family members. Much remains to be learned however of their normal function and their influence on breast cancer development, progression and response to therapy.
Collapse
Affiliation(s)
- Nandini V L Hayes
- Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | | |
Collapse
|