1
|
Serum-resistant CpG-STAT3 decoy for targeting survival and immune checkpoint signaling in acute myeloid leukemia. Blood 2016; 127:1687-700. [PMID: 26796361 DOI: 10.1182/blood-2015-08-665604] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/16/2016] [Indexed: 02/08/2023] Open
Abstract
Targeting oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) in acute myeloid leukemia (AML) can reduce blast survival and tumor immune evasion. Decoy oligodeoxynucleotides (dODNs), which comprise STAT3-specific DNA sequences are competitive inhibition of STAT3 transcriptional activity. To deliver STAT3dODN specifically to myeloid cells, we linked STAT3dODN to the Toll-like receptor 9 (TLR9) ligand, cytosine guanine dinucleotide (CpG). The CpG-STAT3dODN conjugates are quickly internalized by human and mouse TLR9(+)immune cells (dendritic cells, B cells) and the majority of patients' derived AML blasts, including leukemia stem/progenitor cells. Following uptake, CpG-STAT3dODNs are released from endosomes, and bind and sequester cytoplasmic STAT3, thereby inhibiting downstream gene expression in target cells. STAT3 inhibition in patients' AML cells limits their immunosuppressive potential by reduced arginase expression, thereby partly restoring T-cell proliferation. Partly chemically modified CpG-STAT3dODNs have >60 hours serum half-life which allows for IV administration to leukemia-bearing mice (50% effective dose ∼ 2.5 mg/kg). Repeated administration of CpG-STAT3dODN resulted in regression of human MV4-11 AML in mice. The antitumor efficacy of this strategy is further enhanced in immunocompetent mice by combining direct leukemia-specific cytotoxicity with immunogenic effects of STAT3 blocking/TLR9 triggering. CpG-STAT3dODN effectively reducedCbfb/MYH11/MplAML burden in various organs and eliminated leukemia stem/progenitor cells, mainly through CD8/CD4 T-cell-mediated immune responses. In contrast, small-molecule Janus kinase 2/STAT3 inhibitor failed to reproduce therapeutic effects of cell-selective CpG-STAT3dODN strategy. These results demonstrate therapeutic potential of CpG-STAT3dODN inhibitors with broad implications for treatment of AML and potentially other hematologic malignancies.
Collapse
|
2
|
Xia X, Mai J, Xu R, Perez JET, Guevara ML, Shen Q, Mu C, Tung HY, Corry DB, Evans SE, Liu X, Ferrari M, Zhang Z, Li XC, Wang RF, Shen H. Porous silicon microparticle potentiates anti-tumor immunity by enhancing cross-presentation and inducing type I interferon response. Cell Rep 2015; 11:957-966. [PMID: 25937283 PMCID: PMC4431902 DOI: 10.1016/j.celrep.2015.04.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 01/29/2015] [Accepted: 04/03/2015] [Indexed: 12/21/2022] Open
Abstract
Micro- and nanometer-size particles have become popular candidates for cancer vaccine adjuvants. However, the mechanism by which such particles enhance immune responses remains unclear. Here, we report a porous silicon microparticle (PSM)-based cancer vaccine that greatly enhances cross-presentation and activates type I interferon (IFN-I) response in dendritic cells (DCs). PSM-loaded antigen exhibited prolonged early endosome localization and enhanced cross-presentation through both proteasome- and lysosome-dependent pathways. Phagocytosis of PSM by DCs induced IFN-I responses through a TRIF- and MAVS-dependent pathway. DCs primed with PSM-loaded HER2 antigen produced robust CD8 T cell-dependent anti-tumor immunity in mice bearing HER2+ mammary gland tumors. Importantly, this vaccination activated the tumor immune microenvironment with elevated levels of intra-tumor IFN-I and MHCII expression, abundant CD11c+ DC infiltration, and tumor-specific cytotoxic T cell responses. These findings highlight the potential of PSM as an immune adjuvant to potentiate DC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaojun Xia
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Junhua Mai
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Rong Xu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | | | - Maria L Guevara
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Qi Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Chaofeng Mu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Hui-Ying Tung
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David B Corry
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Scott E Evans
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xuewu Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Zhiqiang Zhang
- Immunobiology and Transplantation Research, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Xian Chang Li
- Immunobiology and Transplantation Research, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Rong-Fu Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
3
|
Role of toll-like receptors in multiple myeloma and recent advances. Exp Hematol 2014; 43:158-67. [PMID: 25462020 DOI: 10.1016/j.exphem.2014.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/02/2014] [Accepted: 11/10/2014] [Indexed: 12/22/2022]
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized as an abnormal proliferation and invasion of plasma cells into the bone marrow. Toll-like receptors (ТLRs) connect the innate and adaptive immune responses and represent a significant and potentially linking element between inflammation and cancer. When TLRs bind to their ligands, they trigger two major signaling pathways such that both share overlapping downstream signals: one is a myeloid differentiation primary response 88 (MyD88)-dependent production and activation of nuclear factor-κB, whereas the other is a MyD88-independent production of type-I interferon. Whereas the MyD88 pathway results in proinflammatory cytokine production, the other pathway stimulates cell proliferation. Dysregulations of these pathways may eventually lead to abnormal cell proliferation and MM. Despite recent biomedical advances, MM continues to be an incurable disease. There are an increasing number of TLR-based therapeutic approaches currently being tested in a number of preclinical and clinical studies. We here attempt to outline in detail the currently available information on TLRs in various types of cancer.
Collapse
|
4
|
Leukemia cell-targeted STAT3 silencing and TLR9 triggering generate systemic antitumor immunity. Blood 2013; 123:15-25. [PMID: 24169824 DOI: 10.1182/blood-2013-07-517987] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is an oncogene and immune checkpoint commonly activated in cancer cells and in tumor-associated immune cells. We previously developed an immunostimulatory strategy based on targeted Stat3 silencing in Toll-like receptor 9 (TLR9)-positive hematopoietic cells using CpG-small interfering RNA (siRNA) conjugates. Here, we assessed the therapeutic effect of systemic STAT3 blocking/TLR9 triggering in disseminated acute myeloid leukemia (AML). We used mouse Cbfb-MYH11/Mpl-induced leukemia model, which mimics human inv(16) AML. Our results demonstrate that intravenously delivered CpG-Stat3 siRNA, but not control oligonucleotides, can eradicate established AML and impair leukemia-initiating potential. These antitumor effects require host's effector T cells but not TLR9-positive antigen-presenting cells. Instead, CpG-Stat3 siRNA has direct immunogenic effect on AML cells in vivo upregulating major histocompatibility complex class-II, costimulatory and proinflammatory mediators, such as interleukin-12, while downregulating coinhibitory PD-L1 molecule. Systemic injections of CpG-Stat3 siRNA generate potent tumor antigen-specific immune responses, increase the ratio of tumor-infiltrating CD8(+) T cells to regulatory T cells in various organs, and result in CD8(+) T-cell-dependent regression of leukemia. Our findings underscore the potential of using targeted STAT3 inhibition/TLR9 triggering to break tumor tolerance and induce immunity against AML and potentially other TLR9-positive blood cancers.
Collapse
|
5
|
TLR9-mediated siRNA delivery for targeting of normal and malignant human hematopoietic cells in vivo. Blood 2013; 121:1304-15. [PMID: 23287859 DOI: 10.1182/blood-2012-07-442590] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
STAT3 operates in both cancer cells and tumor-associated immune cells to promote cancer progression. As a transcription factor, it is a highly desirable but difficult target for pharmacologic inhibition. We have recently shown that the TLR9 agonists CpG oligonucleotides can be used for targeted siRNA delivery to mouse immune cells. In the present study, we demonstrate that a similar strategy allows for targeted gene silencing in both normal and malignant human TLR9(+) hematopoietic cells in vivo. We have developed new human cell-specific CpG(A)-STAT3 siRNA conjugates capable of inducing TLR9-dependent gene silencing and activation of primary immune cells such as myeloid dendritic cells, plasmacytoid dendritic cells, and B cells in vitro. TLR9 is also expressed by several human hematologic malignancies, including B-cell lymphoma, multiple myeloma, and acute myeloid leukemia. We further demonstrate that oncogenic proteins such as STAT3 or BCL-X(L) are effectively knocked down by specific CpG(A)-siRNAs in TLR9(+) hematologic tumor cells in vivo. Targeting survival signaling using CpG(A)-siRNAs inhibits the growth of several xenotransplanted multiple myeloma and acute myeloid leukemia tumors. CpG(A)-STAT3 siRNA is immunostimulatory and nontoxic for normal human leukocytes in vitro. The results of the present study show the potential of using tumoricidal/immunostimulatory CpG-siRNA oligonucleotides as a novel 2-pronged therapeutic strategy for hematologic malignancies.
Collapse
|
6
|
Xiaoxia Z, Weihua N, Qingyong Z, Fengli W, Yingying L, Xiaxia S, Zhonghui L, Guixiang T. Maltose-binding protein isolated from Escherichia coli induces Toll-like receptor 2-mediated viability in U937 cells. Clin Transl Oncol 2011; 13:509-18. [PMID: 21775279 DOI: 10.1007/s12094-011-0689-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Stimulation of Toll-like receptors (TLRs) by microbial products has been utilised to potentiate immune responses against haematologic malignancies. The maltose-binding protein (MBP) of Escherichia coli could induce the activation of immune cells via TLR4. The aim of the present study was to investigate whether TLRs mediated the biological effects of MBP on U937 and Jurkat cells in vitro. METHODS We observed the effect of MBP on U937 and Jurkat cells by using the WST, cell cycle analysis and morphological observation. Further, cells were stimulated with MBP for indicated times and doses, and detected by RT-PCR, western blotting, immunohistochemistry and immunofluorescence staining to investigate the mechanisms involved in cell viability. RESULTS MBP enhanced the viability of U937 and Jurkat cells, and the effects were blocked by anti-TLR2, but not anti-TLR4 in U937 cells. Further studies confirmed that MBP was able to directly bind to U937 and Jurkat cells and modulate TLR expression. The effects of MBP depended on the activation of NF-κB and MAP kinase in U937 and Jurkat cells. CONCLUSIONS Our results demonstrated that MBP could directly promote U937 cell viability via TLR2. It suggested that MBP may be used as an adjuvant for participating in the immunotherapy of haematologic malignancies.
Collapse
Affiliation(s)
- Zhao Xiaoxia
- Department of Immunology, Jilin University, 2 Xinmin Avenue, Changchun, Ji Lin 130021, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Berthon C, Driss V, Liu J, Kuranda K, Leleu X, Jouy N, Hetuin D, Quesnel B. In acute myeloid leukemia, B7-H1 (PD-L1) protection of blasts from cytotoxic T cells is induced by TLR ligands and interferon-gamma and can be reversed using MEK inhibitors. Cancer Immunol Immunother 2010; 59:1839-49. [PMID: 20814675 PMCID: PMC2945474 DOI: 10.1007/s00262-010-0909-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 08/16/2010] [Indexed: 12/15/2022]
Abstract
B7-H1 (PD-L1) is a B7-related protein that inhibits T-cell responses. B7-H1 participates in the immunoescape of cancer cells and is also involved in the long-term persistence of leukemic cells in a mouse model of leukemia. B7-H1 can be constitutively expressed by cancer cells, but is also induced by various stimuli. Therefore, we examined the constitutive and inducible expression of B7-H1 and the consequences of this expression in human acute myeloid leukemia (AML). We analyzed B7-H1 expression in a cohort of 79 patients with AML. In addition, we studied blast cells after incubation with interferon-gamma or toll-like receptors (TLR) ligands. Finally, we evaluated functionality of cytotoxic T-cell activity against blast cells. Expression of B7-H1 upon diagnosis was high in 18% of patients. Expression of TLR2, 4 and 9 was detected in one-third of AML samples. Expression of TLR2 and TLR4 ligands or IFN-γ induced by B7-H1 was found to protect AML cells from CTL-mediated lysis. Spontaneous B7-H1 expression was also found to be enhanced upon relapse in some patients. MEK inhibitors, including UO126 and AZD6244, reduced B7-H1 expression and restored CTL-mediated lysis of blast cells. In AML, B7-H1 expression by blasts represents a possible immune escape mechanism. The inducibility of B7-H1 expression by IFN-γ or TLR ligands suggests that various stimuli, either produced during the immune response against leukemia cells or released by infectious microorganisms, could protect leukemic cells from T cells. The efficacy of MEK inhibitors against B7-H1-mediated inhibition of CTLs suggests a possible cancer immunotherapy strategy using targeted drugs.
Collapse
Affiliation(s)
- Céline Berthon
- INSERM, unit 837, Institut de Recherche sur le Cancer de Lille, Lille, France
- Université Nord de France, Institut Fédératif de Recherche 114, Lille, France
- Service des Maladies du Sang, Centre Hospitalier et Universitaire de Lille, Rue Polonovski, 59037 Lille, France
| | - Virginie Driss
- INSERM, unit 837, Institut de Recherche sur le Cancer de Lille, Lille, France
- Université Nord de France, Institut Fédératif de Recherche 114, Lille, France
| | - Jizhong Liu
- INSERM, unit 837, Institut de Recherche sur le Cancer de Lille, Lille, France
- Université Nord de France, Institut Fédératif de Recherche 114, Lille, France
| | - Klaudia Kuranda
- INSERM, unit 837, Institut de Recherche sur le Cancer de Lille, Lille, France
- Université Nord de France, Institut Fédératif de Recherche 114, Lille, France
| | - Xavier Leleu
- INSERM, unit 837, Institut de Recherche sur le Cancer de Lille, Lille, France
- Université Nord de France, Institut Fédératif de Recherche 114, Lille, France
- Service des Maladies du Sang, Centre Hospitalier et Universitaire de Lille, Rue Polonovski, 59037 Lille, France
| | - Nathalie Jouy
- Université Nord de France, Institut Fédératif de Recherche 114, Lille, France
| | - Dominique Hetuin
- INSERM, unit 837, Institut de Recherche sur le Cancer de Lille, Lille, France
- Université Nord de France, Institut Fédératif de Recherche 114, Lille, France
| | - Bruno Quesnel
- INSERM, unit 837, Institut de Recherche sur le Cancer de Lille, Lille, France
- Université Nord de France, Institut Fédératif de Recherche 114, Lille, France
- Service des Maladies du Sang, Centre Hospitalier et Universitaire de Lille, Rue Polonovski, 59037 Lille, France
| |
Collapse
|
8
|
Role of the innate immune response and tumor immunity associated with simian virus 40 large tumor antigen. J Virol 2010; 84:10121-30. [PMID: 20668083 DOI: 10.1128/jvi.01095-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We examined properties of the innate immune response against the tumor-specific antigen simian virus 40 (SV40) large tumor antigen (Tag) following experimental pulmonary metastasis in naive mice. Approximately 14 days after mKSA tumor cell challenge, expression of inflammatory mediators such as tumor necrosis factor alpha (TNF-alpha), interleukin-2 (IL-2), and RANTES was upregulated in splenocytes harvested from mice, as assessed by flow cytometry and antibody array assays. This response was hypothesized to activate and induce tumor-directed NK cell lysis since IL-2-stimulated NK cells mediated tumor cell destruction in vitro. The necessary function of NK cells was further validated in vivo through selected antibody depletion of NK cells, which resulted in an overwhelming lung tumor burden relative to that in animals receiving a control rabbit IgG depletion regimen. Interestingly, mice achieved increased protection from experimental pulmonary metastasis when NK cells were further activated indirectly through in vivo administration of poly(I:C), a Toll-like receptor 3 (TLR3) agonist. In a separate study, mice receiving treatments of poly(I:C) and recombinant SV40 Tag protein immunization mounted effective tumor immunity in an established experimental pulmonary metastasis setting. Initiating broad-based immunity with poly(I:C) was observed to induce a Th1 bias in the SV40 Tag antibody response that led to successful antitumor responses not observed in animals treated only with poly(I:C) or SV40 Tag. These data have direct implications for immunotherapeutic strategies incorporating methods to elicit inflammatory reactions, particularly NK cell-driven lysis, against malignant cell types that express a tumor-specific antigen such as SV40 Tag.
Collapse
|
9
|
A phase I/II trial of TLR-7 agonist immunotherapy in chronic lymphocytic leukemia. Leukemia 2009; 24:222-6. [DOI: 10.1038/leu.2009.195] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. Nat Biotechnol 2009; 27:925-32. [PMID: 19749770 PMCID: PMC2846721 DOI: 10.1038/nbt.1564] [Citation(s) in RCA: 298] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 08/25/2009] [Indexed: 01/07/2023]
Abstract
Efficient delivery of siRNA to specific cell populations in vivo remains a formidable challenge to its successful therapeutic application. We describe a novel siRNA-based approach – synthetically linking siRNA to an oligonucleotide TLR9 agonist – that targets and silences genes in TLR9+ myeloid cells and B cells, both of which are key components of the tumor microenvironment. Because Stat3 in tumor-associated immune cells suppresses antitumor immune responses and hinders TLR9-induced immune stimulation, we tested CpG-Stat3siRNA conjugates for anti-tumor effects. When injected locally at the tumor site or systemically through an intravenous route, the CpG-Stat3siRNA conjugates access tumor-associated dendritic cells, macrophages and B cells, inhibit Stat3 expression, leading to activation of tumor-associated immune cells, and ultimately potent anti-tumor immune responses. Our findings demonstrate the potential of TLR agonist-siRNA conjugates for targeted gene silencing coupled with TLR stimulation and immune activation in the tumor microenvironment.
Collapse
|
11
|
Montero Vega M, de Andrés Martín A. The significance of toll-like receptors in human diseases. Allergol Immunopathol (Madr) 2009; 37:252-63. [PMID: 19853360 DOI: 10.1016/j.aller.2009.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 04/13/2009] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) are a family of transmembrane receptors that have been preserved throughout evolution and which selectively recognize a broad spectrum of microbial components and endogenous molecules released by injured tissue. Identification of these ligands by TLRs triggers signalling pathways which lead to the expression of numerous genes involved in a defensive response. In mammals, the products of these genes initiate inflammation, coordinate the effector functions of innate immunity, instruct and modulate adaptive immunity and initiate tissue repair and regeneration. Different mutations and experimental models which alter TLR function have revealed the significance of these receptors in susceptibility to infection and their involvement in the pathogenesis of a large number of non-infective inflammatory disorders such as cancer, allergy, autoimmunity, inflammatory bowel disease, or atherosclerosis. TLRs are currently viewed as important targets for the development of new vaccines and innovative therapies to prevent and treat human diseases.
Collapse
|
12
|
|