1
|
Al-Hussaniy HA, Hassan AF, Oraibi AI, Al-Juhaishi AMR, Naji FA, Al-Tameemi ZS. Clinical Pharmacogenetics of Angiotensin II Receptor Blockers in Iraq. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2023; 15:101-106. [PMID: 37705854 PMCID: PMC10496849 DOI: 10.4103/jpbs.jpbs_313_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/22/2023] [Accepted: 06/12/2023] [Indexed: 09/15/2023] Open
Abstract
Background Clinical pharmacogenetics is a rapidly growing field that focuses on the study of genetic variations and their impact on drug metabolism, efficacy, and safety. Angiotensin II receptor blockers (ARBs) are commonly used to treat hypertension in Iraq but not all patients respond equally to these drugs. Aim This article aims to review the current evidence on the clinical pharmacogenetics of ARBs in Iraq and its implications for personalized medicine. Materials and Methods We conducted a literature review of studies on the genetic variations that affect the response to ARBs in Iraq. We also reviewed the prevalence of these genetic variants in the Iraqi population and discussed the potential clinical implications for personalized medicine. Results The most studied genetic variations associated with ARB response in Iraq are the angiotensin-converting enzyme gene insertion/deletion polymorphism and the angiotensin II type 1 receptor gene A1166C polymorphism. The angiotensin-converting enzyme gene insertion/deletion polymorphism is associated with variability in response to ARBs, while the angiotensin II type 1 receptor A1166C polymorphism is associated with an increased risk of cardiovascular events in patients treated with ARBs. The prevalence of these genetic variants in the Iraqi population varies widely depending on the region and ethnic group. Conclusion The clinical pharmacogenetics of ARBs in Iraq suggests that pharmacogenetic testing could improve the selection and dosing of ARBs in Iraqi patients, leading to better patient outcomes and cost-effective healthcare.
Collapse
Affiliation(s)
- Hany A. Al-Hussaniy
- Dr Hany Akeel Institute, Iraqi Medical Research Center, Baghdad, Iraq
- Department of Pharmacology, College of Medicine, University of Baghdad, Baghdad, Iraq
- Bilad Alrafidain University College, Baqubah, Iraq
| | - Alaa F. Hassan
- Department of Pharmacy, Al-Mahmoudiya General Hospital, Baghdad, Iraq
| | - Amjad I. Oraibi
- Department of Pharmacy, Al-Manara College for Medical Sciences, Amarah, Iraq
| | | | - Fatima A. Naji
- Dr Hany Akeel Institute, Iraqi Medical Research Center, Baghdad, Iraq
| | | |
Collapse
|
2
|
Construction of a fused grid-based template system of CYP2C9 and its application. Drug Metab Pharmacokinet 2022; 45:100451. [DOI: 10.1016/j.dmpk.2022.100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 11/24/2022]
|
3
|
Jung EH, Cho CK, Kang P, Park HJ, Lee YJ, Bae JW, Choi CI, Jang CG, Lee SY. Physiologically based pharmacokinetic modeling of candesartan related to CYP2C9 genetic polymorphism in adult and pediatric patients. Arch Pharm Res 2021; 44:1109-1119. [PMID: 34817825 DOI: 10.1007/s12272-021-01363-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/06/2021] [Indexed: 12/18/2022]
Abstract
Candesartan cilexetil is an angiotensin II receptor blocker and it is widely used to treat hypertension and heart failure. This drug is a prodrug that rapidly converts to candesartan after oral administration. Candesartan is metabolized by cytochrome P450 2C9 (CYP2C9) enzyme or uridine diphosphate glucurinosyltransferase 1A3, or excreted in an unchanged form through urine, biliary tract and feces. We investigated the effect of genetic polymorphism of CYP2C9 enzyme on drug pharmacokinetics using physiologically based pharmacokinetic (PBPK) modeling. In addition, by introducing the age and ethnicity into the model, we developed a model that can propose an appropriate dosage regimen taking into account the individual characteristics of each patient. To evaluate the suitability of the model, the results of a clinical trial on twenty-two healthy Korean subjects and their CYP2C9 genetic polymorphism data was applied. In this study, PK-Sim® was used to develop the PBPK model of candesartan.
Collapse
Affiliation(s)
- Eui Hyun Jung
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hye-Jung Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Chang-Ik Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
4
|
Agrawal S, Heiss MS, Fenter RB, Abramova TV, Perera MA, Pacheco JA, Smith ME, Rasmussen-Torvik LJ, George AL. Impact of CYP2C9-Interacting Drugs on Warfarin Pharmacogenomics. Clin Transl Sci 2020; 13:941-949. [PMID: 32270628 PMCID: PMC7485961 DOI: 10.1111/cts.12781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/24/2020] [Indexed: 01/20/2023] Open
Abstract
Precise dosing of warfarin is important to achieve therapeutic benefit without adverse effects. Pharmacogenomics explains some interindividual variability in warfarin response, but less attention has been paid to drug‐drug interactions in the context of genetic factors. We investigated retrospectively the combined effects of cytochrome P450 (CYP)2C9 and vitamin K epoxide reductase complex (VKORC)1 genotypes and concurrent exposure to CYP2C9‐interacting drugs on long‐term measures of warfarin anticoagulation. Study participants predicted to be sensitive responders to warfarin based on CYP2C9 and VKORC1 genotypes, had significantly greater international normalized ratio (INR) variability over time. Participants who were concurrently taking CYP2C9‐interacting drugs were found to have greater INR variability and lesser time in therapeutic range. The associations of INR variability with genotype were driven by the subgroup not exposed to interacting drugs, whereas the effect of interacting drug exposure was driven by the subgroup categorized as normal responders. Our findings emphasize the importance of considering drug interactions in pharmacogenomic studies.
Collapse
Affiliation(s)
- Saaket Agrawal
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Meredith S Heiss
- Graduate Program in Genetic Counseling, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Remington B Fenter
- Graduate Program in Genetic Counseling, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tatiana V Abramova
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Minoli A Perera
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jennifer A Pacheco
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Maureen E Smith
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Laura J Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
5
|
Gedela K, Vibhuti M, Pozniak A, Ward B, Boffito M. Pharmacological management of cardiovascular conditions and diabetes in older adults with HIV infection. HIV Med 2013; 15:257-68. [PMID: 24351025 DOI: 10.1111/hiv.12116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2013] [Indexed: 01/31/2023]
Abstract
This review looks at the evidence for potential and theoretical risks of combining antiretroviral treatment with drugs prescribed for cardiovascular disease and diabetes. These conditions are common in the HIV-infected population as a result of ageing and the increased risk associated with both HIV infection and antiretroviral intake.
Collapse
Affiliation(s)
- K Gedela
- St Stephen's Centre, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | | | | | | | | |
Collapse
|
6
|
Niinuma Y, Saito T, Takahashi M, Tsukada C, Ito M, Hirasawa N, Hiratsuka M. Functional characterization of 32 CYP2C9 allelic variants. THE PHARMACOGENOMICS JOURNAL 2013; 14:107-14. [PMID: 23752738 DOI: 10.1038/tpj.2013.22] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/10/2013] [Accepted: 04/26/2013] [Indexed: 11/09/2022]
Abstract
Genetic variations in cytochrome P450 2C9 (CYP2C9) contribute to interindividual variability in the metabolism of clinically used drugs such as warfarin and tolbutamide. We functionally characterized 32 types of allelic variant CYP2C9 proteins. Recombinant CYP2C9 proteins generated using a heterologous expression system are useful for comparing functional changes in CYP2C9 variant proteins expressed from low-frequency alleles. Wild-type CYP2C9 and its 31 variants were found to be transiently expressed in COS-7 cells, and the enzymatic activity of the CYP2C9 variants was characterized using S-warfarin as a representative substrate. Among the 32 types of CYP2C9 allelic variants tested, CYP2C9.18, CYP2C9.21, CYP2C9.24, CYP2C9.26, CYP2C9.33 and CYP2C9.35 exhibited no enzyme activity, and 12 types showed significantly decreased enzyme activity. In vitro analysis of CYP2C9 variant proteins should be useful for predicting CYP2C9 phenotypes and for application to personalized drug therapy.
Collapse
Affiliation(s)
- Y Niinuma
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - T Saito
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - M Takahashi
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - C Tsukada
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Mi Ito
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - N Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - M Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
7
|
Michel MC, Foster C, Brunner HR, Liu L. A systematic comparison of the properties of clinically used angiotensin II type 1 receptor antagonists. Pharmacol Rev 2013; 65:809-48. [PMID: 23487168 DOI: 10.1124/pr.112.007278] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Angiotensin II type 1 receptor antagonists (ARBs) have become an important drug class in the treatment of hypertension and heart failure and the protection from diabetic nephropathy. Eight ARBs are clinically available [azilsartan, candesartan, eprosartan, irbesartan, losartan, olmesartan, telmisartan, valsartan]. Azilsartan (in some countries), candesartan, and olmesartan are orally administered as prodrugs, whereas the blocking action of some is mediated through active metabolites. On the basis of their chemical structures, ARBs use different binding pockets in the receptor, which are associated with differences in dissociation times and, in most cases, apparently insurmountable antagonism. The physicochemical differences between ARBs also manifest in different tissue penetration, including passage through the blood-brain barrier. Differences in binding mode and tissue penetration are also associated with differences in pharmacokinetic profile, particularly duration of action. Although generally highly specific for angiotensin II type 1 receptors, some ARBs, particularly telmisartan, are partial agonists at peroxisome proliferator-activated receptor-γ. All of these properties are comprehensively reviewed in this article. Although there is general consensus that a continuous receptor blockade over a 24-hour period is desirable, the clinical relevance of other pharmacological differences between individual ARBs remains to be assessed.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Clinical Development & Medical Affairs, Boehringer Ingelheim, 55216 Ingelheim, Germany.
| | | | | | | |
Collapse
|
8
|
Cabaleiro T, Román M, Ochoa D, Talegón M, Prieto-Pérez R, Wojnicz A, López-Rodríguez R, Novalbos J, Abad-Santos F. Evaluation of the Relationship between Sex, Polymorphisms in CYP2C8 and CYP2C9, and Pharmacokinetics of Angiotensin Receptor Blockers. Drug Metab Dispos 2012; 41:224-9. [DOI: 10.1124/dmd.112.046292] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Abstract
The cytochrome P450 (CYP) superfamily is one of the most important groups of enzymes involved in drug metabolism. It is responsible for the metabolism of a large number of drugs. Many CYP isoforms are expressed polymorphically, and catalytic alterations of allelic variant proteins can affect the metabolic activities of many drugs. The CYP2D6, CYP2C9, CYP2C19, and CYP2B6 genes are particularly polymorphic, whereas CYP1A1, CYP1A2, CYP2E1, and CYP3A4 are relatively well conserved without common functional polymorphisms. In vitro studies using cDNA expression systems are useful tools for evaluating functional alterations of the allelic variants of CYP, particularly for low-frequency alleles. Recombinant CYPs have been successfully expressed in bacteria, yeast, baculoviruses, and several mammalian cells. Determination of CYP variant-mediated kinetic parameters (Km and Vmax) in vitro can be useful for predicting drug dosing and clearance in humans. This review focuses on the advantages and disadvantages of the various cDNA-expression systems used to determine the kinetic parameters for CYP allelic variants, the methods for determining the kinetic parameters, and the findings of in vitro studies on highly polymorphic CYPs, including CYP2D6, CYP2C9, CYP2C19, and CYP2B6.
Collapse
Affiliation(s)
- Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
10
|
Liu D, Gao Y, Wang H, Zi J, Huang H, Ji J, Zhou R, Nan Y, Wang S, Zheng X, Zhu J, Cui Y, Chen C. Evaluation of the Effects of Cytochrome P450 Nonsynonymous Single-Nucleotide Polymorphisms on Tanshinol Borneol Ester Metabolism and Inhibition Potential. Drug Metab Dispos 2010; 38:2259-65. [DOI: 10.1124/dmd.110.034439] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Zhou SF, Zhou ZW, Huang M. Polymorphisms of human cytochrome P450 2C9 and the functional relevance. Toxicology 2009; 278:165-88. [PMID: 19715737 DOI: 10.1016/j.tox.2009.08.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 08/18/2009] [Accepted: 08/21/2009] [Indexed: 12/19/2022]
Abstract
Human cytochrome P450 2C9 (CYP2C9) accounts for ∼20% of hepatic total CYP content and metabolizes ~15% clinical drugs such as phenytoin, S-warfarin, tolbutamide, losartan, and many nonsteroidal anti-inflammatory agents (NSAIDs). CYP2C9 is highly polymorphic, with at least 33 variants of CYP2C9 (*1B through *34) being identified so far. CYP2C9*2 is frequent among Caucasians with ~1% of the population being homozygous carriers and 22% are heterozygous. The corresponding figures for the CYP2C9*3 allele are 0.4% and 15%, respectively. There are a number of clinical studies addressing the impact of CYP2C9 polymorphisms on the clearance and/or therapeutic response of therapeutic drugs. These studies have highlighted the importance of the CYP2C9*2 and *3 alleles as a determining factor for drug clearance and drug response. The CYP2C9 polymorphisms are relevant for the efficacy and adverse effects of numerous NSAIDs, sulfonylurea antidiabetic drugs and, most critically, oral anticoagulants belonging to the class of vitamin K epoxide reductase inhibitors. Warfarin has served as a practical example of how pharmacogenetics can be utilized to achieve maximum efficacy and minimum toxicity. For many of these drugs, a clear gene-dose and gene-effect relationship has been observed in patients. In this regard, CYP2C9 alleles can be considered as a useful biomarker in monitoring drug response and adverse effects. Genetic testing of CYP2C9 is expected to play a role in predicting drug clearance and conducting individualized pharmacotherapy. However, prospective clinical studies with large samples are warranted to establish gene-dose and gene-effect relationships for CYP2C9 and its substrate drugs.
Collapse
Affiliation(s)
- Shu-Feng Zhou
- School of Health Sciences, RMIT University, Victoria 3083, Australia.
| | | | | |
Collapse
|
12
|
Canzanello VJ, Baranco-Pryor E, Rahbari-Oskoui F, Schwartz GL, Boerwinkle E, Turner ST, Chapman AB. Predictors of blood pressure response to the angiotensin receptor blocker candesartan in essential hypertension. Am J Hypertens 2008; 21:61-6. [PMID: 18091745 DOI: 10.1038/ajh.2007.24] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Response to antihypertensive drugs varies widely among individuals. METHODS We studied characteristics that might be predictive of blood pressure (BP) response in 203 African-American and 236 non-Hispanic white subjects with essential hypertension treated with candesartan, 32 mg/day for 6 weeks, after a drug-free washout period of at least 4 weeks (baseline). Measurements at enrollment, baseline, and at the end of the treatment were incorporated into linear regression models to quantify their additive contributions to predicting response. RESULTS Enrollment measurements predictive of a greater response were non-Hispanic white ethnicity, female gender, the interaction between ethnicity and gender, and lower body weight. Of baseline measurements, higher BP and higher plasma renin activity (PRA) made additional contributions to predicting a greater response. Of the measurements made at the end of the study, only a larger increase in PRA from baseline contributed to predicting a greater response. The combined effects of all the identified predictors accounted for 39 and 33% of the interindividual variation in systolic and diastolic BP responses, respectively (P < 0.001 for both). CONCLUSIONS These results indicate that easily determined characteristics such as ethnicity, gender, body weight, as well as pretreatment levels of BP and PRA predict a substantial fraction of the BP response to candesartan and support the notion that characteristics associated with a poor response to diuretic therapy are associated with better responses to an angiotensin receptor blocker (ARB).
Collapse
Affiliation(s)
- Vincent J Canzanello
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Gardiner SJ, Begg EJ. Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharmacol Rev 2006; 58:521-90. [PMID: 16968950 DOI: 10.1124/pr.58.3.6] [Citation(s) in RCA: 235] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The application of pharmacogenetics holds great promise for individualized therapy. However, it has little clinical reality at present, despite many claims. The main problem is that the evidence base supporting genetic testing before therapy is weak. The pharmacology of the drugs subject to inherited variability in metabolism is often complex. Few have simple or single pathways of elimination. Some have active metabolites or enantiomers with different activities and pathways of elimination. Drug dosing is likely to be influenced only if the aggregate molar activity of all active moieties at the site of action is predictably affected by genotype or phenotype. Variation in drug concentration must be significant enough to provide "signal" over and above normal variation, and there must be a genuine concentration-effect relationship. The therapeutic index of the drug will also influence test utility. After considering all of these factors, the benefits of prospective testing need to be weighed against the costs and against other endpoints of effect. It is not surprising that few drugs satisfy these requirements. Drugs (and enzymes) for which there is a reasonable evidence base supporting genotyping or phenotyping include suxamethonium/mivacurium (butyrylcholinesterase), and azathioprine/6-mercaptopurine (thiopurine methyltransferase). Drugs for which there is a potential case for prospective testing include warfarin (CYP2C9), perhexiline (CYP2D6), and perhaps the proton pump inhibitors (CYP2C19). No other drugs have an evidence base that is sufficient to justify prospective testing at present, although some warrant further evaluation. In this review we summarize the current evidence base for pharmacogenetics in relation to drug-metabolizing enzymes.
Collapse
Affiliation(s)
- Sharon J Gardiner
- Department of Medicine, Christchurch School of Medicine, Private Bag 4345, Christchurch, New Zealand.
| | | |
Collapse
|
14
|
Niwa T, Honda S, Shirakawa K, Imamura Y, Osaki S, Takagi A. [Drug interaction of fluvoxamine, a selective serotonin reuptake inhibitor]. Nihon Yakurigaku Zasshi 2006; 128:93-103. [PMID: 16943644 DOI: 10.1254/fpj.128.93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
|
15
|
Abstract
Candesartan cilexetil is the prodrug of candesartan, an angiotensin II receptor antagonist. Candesartan binds selectively and non-competitively to the angiotensin II receptor type 1, thus preventing the actions of angiotensin II. Clinical trials have demonstrated its efficacy at a dose range of 2 to 32 mg once daily in hypertension of all grades, heart failure, in reducing urinary albumin excretion in diabetes mellitus and in coexisting hypertension and renal failure. Pharmacokinetic properties of candesartan cilexetil in elderly patients are not significantly different from those in younger individuals. Hepatic impairment does not change pharmacokinetics of candesartan cilexetil at doses up to 12 mg/day. No dose adjustment is necessary in patients with mild or moderate renal impairment. Tolerability of candesartan cilexetil is not much different from that of placebo. All adverse events are usually of mild to moderate severity and not dose-related. The most common adverse events were headache, upper respiratory tract infection, back pain, and dizziness. The incidence of these adverse effects, as well as of cough, was similar in patients treated with candesartan cilexetil or placebo. The incidence of adverse events in long-term trials was not different from that in short-term trials. Tolerability of candesartan cilexetil does not differ with either age or gender.
Collapse
Affiliation(s)
- Christoph H Gleiter
- Universitätsklinikum Tübingen, Institut für Pharmakologie und Toxikologie, Abteilung Klinische Pharmakologie, Otfried-Müller-Strasse 45, D-72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
16
|
Kirchheiner J, Tsahuridu M, Jabrane W, Roots I, Brockmöller J. The CYP2C9 polymorphism: from enzyme kinetics to clinical dose recommendations. Per Med 2004; 1:63-84. [DOI: 10.1517/17410541.1.1.63] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
CYP2C9 is the major human enzyme of the cytochrome P450 2C subfamily and metabolizes approximately 10% of all therapeutically relevant drugs. Two inherited SNPs termed CYP2C9*2 (Arg144Cys) and *3 (Ile359Leu) are known to affect catalytic function. Numerous rare or functionally silent polymorphisms have been identified. About 35% of the Caucasian population carries at least one *2 or *3 allele. CYP2C9 metabolizes several oral hypoglycemics, oral anticoagulants, non-steroidal anti-inflammatory drugs and other drugs, including phenytoin, losartan, fluvastatin, and torsemide. In vitro studies with several drugs indicate that the Cys144 (.2) and Leu359 (.3) variants confer only about 70 and 10% of the intrinsic clearance of the wild-type protein (.1), respectively. The clinical pharmacokinetic implications of these polymorphisms vary depending on the enzymes contribution to total oral clearance. Several studies demonstrated that the CYP2C9 polymorphisms are medically important for non-steroidal anti-inflammatory drugs, for oral hypoglycemics, vitamin K antagonistic oral anticoagulants, and phenytoin. In particular, CYP2C9 polymorphisms should be routinely considered in therapy with oral anticoagulants where severe adverse events at initiation of therapy might be reduced by genotyping. CYP2C9 polymorphisms were also clinically associated with side effects of phenytoin, with gastric bleeding during therapy with non-steroidals and with hypoglycemia under oral hypoglycemic drugs. Data appear mature enough for the routine consideration of CYP2C9 genotypes in therapy with acenocoumarol, phenytoin, warfarin, and some other drugs. Nevertheless, it is advisable before the routine clinical use of these genotype data to rigorously test the benefits of genotype-based therapeutic recommendations by randomized controlled clinical trials.
Collapse
Affiliation(s)
- Julia Kirchheiner
- University of Cologne, Department of Pharmacology, University of Cologne, Gleueler Str. 24, 50931 Koln, Germany.
| | - Martina Tsahuridu
- Humboldt University, Institute of Clinical Pharmacology, University Medical Center Charité, Humboldt University Berlin, Germany
| | - Wafaa Jabrane
- University of Cologne, Department of Pharmacology, University of Cologne, Gleueler Str. 24, 50931 Koln, Germany
| | - Ivar Roots
- Humboldt University, Institute of Clinical Pharmacology, University Medical Center Charité, Humboldt University Berlin, Germany
| | - Jürgen Brockmöller
- Georg August University, Department of Clinical Pharmacology, Georg August University Gottingen, Germany
| |
Collapse
|
17
|
Schmidt B, Schieffer B. Angiotensin II AT1 receptor antagonists. Clinical implications of active metabolites. J Med Chem 2003; 46:2261-70. [PMID: 12773029 DOI: 10.1021/jm0204237] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Boris Schmidt
- Clemens Schöpf Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Petersenstrasse 22, Germany.
| | | |
Collapse
|