1
|
Liu Z, Huang H, Yu Y, Jia Y, Li L, Shi X, Wang F. Exploring the Potential Molecular Mechanism of the Shugan Jieyu Capsule in the Treatment of Depression through Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation. Curr Comput Aided Drug Des 2024; 20:501-517. [PMID: 37340752 DOI: 10.2174/1573409919666230619105254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/21/2023] [Accepted: 05/11/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Shugan Jieyu Capsule (SJC) is a pure Chinese medicine compound prepared with Hypericum perforatum and Acanthopanacis senticosi. SJC has been approved for the clinical treatment of depression, but the mechanism of action is still unclear. OBJECTIVES Network pharmacology, molecular docking, and molecular dynamics simulation (MDS) were applied in the present study to explore the potential mechanism of SJC in the treatment of depression. METHODS TCMSP, BATMAN-TCM, and HERB databases were used, and related literature was reviewed to screen the effective active ingredients of Hypericum perforatum and Acanthopanacis senticosi. TCMSP, BATMAN-TCM, HERB, and STITCH databases were used to predict the potential targets of effective active ingredients. GeneCards database, DisGeNET database, and GEO data set were used to obtain depression targets and clarify the intersection targets of SJC and depression. STRING database and Cytoscape software were used to build a protein-protein interaction (PPI) network of intersection targets and screen the core targets. The enrichment analysis on the intersection targets was conducted. Then the receiver operator characteristic (ROC) curve was constructed to verify the core targets. The pharmacokinetic characteristics of core active ingredients were predicted by SwissADME and pkCSM. Molecular docking was performed to verify the docking activity of the core active ingredients and core targets, and molecular dynamics simulations were performed to evaluate the accuracy of the docking complex. RESULTS We obtained 15 active ingredients and 308 potential drug targets with quercetin, kaempferol, luteolin, and hyperforin as the core active ingredients. We obtained 3598 targets of depression and 193 intersection targets of SJC and depression. A total of 9 core targets (AKT1, TNF, IL6, IL1B, VEGFA, JUN, CASP3, MAPK3, PTGS2) were screened with Cytoscape 3.8.2 software. A total of 442 GO entries and 165 KEGG pathways (p <0.01) were obtained from the enrichment analysis of the intersection targets, mainly enriched in IL-17, TNF, and MAPK signaling pathways. The pharmacokinetic characteristics of the 4 core active ingredients indicated that they could play a role in SJC antidepressants with fewer side effects. Molecular docking showed that the 4 core active components could effectively bind to the 8 core targets (AKT1, TNF, IL6, IL1B, VEGFA, JUN, CASP3, MAPK3, PTGS2), which were related to depression by the ROC curve. MDS showed that the docking complex was stable. CONCLUSION SJC may treat depression by using active ingredients such as quercetin, kaempferol, luteolin, and hyperforin to regulate targets such as PTGS2 and CASP3 and signaling pathways such as IL-17, TNF, and MAPK, and participate in immune inflammation, oxidative stress, apoptosis, neurogenesis, etc.
Collapse
Affiliation(s)
- Zhiyao Liu
- Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- High Level Key Disciplines of Traditional Chinese Medicine Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Hailiang Huang
- Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- High Level Key Disciplines of Traditional Chinese Medicine Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ying Yu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuqi Jia
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lingling Li
- Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xin Shi
- Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Fangqi Wang
- Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
2
|
Mobed A, Charsouei S, Yazdani Y, Gargari MK, Ahmadalipour A, Sadremousavi SR, Farrahizadeh M, Shahbazi A, Haghani M. Biosensors, Recent Advances in Determination of BDNF and NfL. Cell Mol Neurobiol 2023; 43:3801-3814. [PMID: 37605014 DOI: 10.1007/s10571-023-01401-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023]
Abstract
Key biomarkers such as Brain Derived Neurotrophic Factor (BDNF) and Neurofilament light chain (NfL) play important roles in the development and progression of many neurological diseases, including multiple sclerosis, Alzheimer's disease, and Parkinson's disease. In these clinical conditions, the underlying biomarker processes are markedly heterogeneous. In this context, robust biomarker discovery is of critical importance for screening, early detection, and monitoring of neurological diseases. The difficulty of directly identifying biochemical processes in the central nervous system (CNS) is challenging. In recent years, biomarkers of CNS inflammatory response have been identified in various body fluids such as blood, cerebrospinal fluid, and tears. Furthermore, biotechnology and nanotechnology have facilitated the development of biosensor platforms capable of real-time detection of multiple biomarkers in clinically relevant samples. Biosensing technology is approaching maturity and will be deployed in communities, at which point screening programs and personalized medicine will become a reality. In this multidisciplinary review, our goal is to highlight clinical and current technological advances in the development of multiplex-based solutions for effective diagnosis and monitoring of neuroinflammatory and neurodegenerative diseases. The trend in the detection if BDNF and NfL.
Collapse
Affiliation(s)
- Ahmad Mobed
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Saeid Charsouei
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
- Tabriz Neuroscience Research Center (NRSC), Neurology Department, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yalda Yazdani
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morad Kohandel Gargari
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Medicine, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ahmadalipour
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyedeh Reyhaneh Sadremousavi
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Psychology, East Azarbayjan Science and Research Branch, Islamic Azad University, Tabriz, Iran
| | - Maryam Farrahizadeh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| | - Ali Shahbazi
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Haghani
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Bialek K, Czarny P, Wigner P, Synowiec E, Kolodziej L, Bijak M, Szemraj J, Papp M, Sliwinski T. Agomelatine Changed the Expression and Methylation Status of Inflammatory Genes in Blood and Brain Structures of Male Wistar Rats after Chronic Mild Stress Procedure. Int J Mol Sci 2022; 23:ijms23168983. [PMID: 36012250 PMCID: PMC9409183 DOI: 10.3390/ijms23168983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
The preclinical research conducted so far suggest that depression development may be influenced by the inflammatory pathways both at the periphery and within the central nervous system. Furthermore, inflammation is considered to be strongly connected with antidepressant treatment resistance. Thus, this study explores whether the chronic mild stress (CMS) procedure and agomelatine treatment induce changes in TGFA, TGFB, IRF1, PTGS2 and IKBKB expression and methylation status in peripheral blood mononuclear cells (PBMCs) and in the brain structures of rats. Adult male Wistar rats were subjected to the CMS and further divided into matched subgroups to receive vehicle or agomelatine. TaqMan gene expression assay and methylation-sensitive high-resolution melting (MS-HRM) were used to evaluate the expression of the genes and the methylation status of their promoters, respectively. Our findings confirm that both CMS and antidepressant agomelatine treatment influenced the expression level and methylation status of the promoter region of investigated genes in PBMCs and the brain. What is more, the present study showed that response to either stress stimuli or agomelatine differed between brain structures. Concluding, our results indicate that TGFA, TGFB, PTGS2, IRF1 and IKBKB could be associated with depression and its treatment.
Collapse
Affiliation(s)
- Katarzyna Bialek
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Paulina Wigner
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Lukasz Kolodziej
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Mariusz Papp
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- Correspondence: ; Tel.: +48-42-635-44-86; Fax: +48-42-635-44-84
| |
Collapse
|
4
|
Bialek K, Czarny P, Wigner P, Synowiec E, Barszczewska G, Bijak M, Szemraj J, Niemczyk M, Tota-Glowczyk K, Papp M, Sliwinski T. Chronic Mild Stress and Venlafaxine Treatment Were Associated with Altered Expression Level and Methylation Status of New Candidate Inflammatory Genes in PBMCs and Brain Structures of Wistar Rats. Genes (Basel) 2021; 12:genes12050667. [PMID: 33946816 PMCID: PMC8146372 DOI: 10.3390/genes12050667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 01/04/2023] Open
Abstract
Preclinical studies conducted to date suggest that depression could be elicited by the elevated expression of proinflammatory molecules: these play a key role in the mediation of neurochemical, neuroendocrine and behavioral changes. Thus, this study investigates the effect of chronic mild stress (CMS) and administration of venlafaxine (SSRI) on the expression and methylation status of new target inflammatory genes: TGFA, TGFB, IRF1, PTGS2 and IKBKB, in peripheral blood mononuclear cells (PMBCs) and in selected brain structures of rats. Adult male Wistar rats were subjected to the CMS and further divided into matched subgroups to receive vehicle or venlafaxine. TaqMan gene expression assay and methylation-sensitive high-resolution melting (MS-HRM) were used to evaluate the expression of the genes and the methylation status of their promoters, respectively. Our results indicate that both CMS and chronic treatment with venlafaxine were associated with changes in expression of the studied genes and their promoter methylation status in PMBCs and the brain. Moreover, the effect of antidepressant administration clearly differed between brain structures. Summarizing, our results confirm at least a partial association between TGFA, TGFB, IRF1, PTGS2 and IKBKB and depressive disorders.
Collapse
Affiliation(s)
- Katarzyna Bialek
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.B.); (E.S.); (G.B.)
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland; (P.C.); (J.S.)
| | - Paulina Wigner
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.B.); (E.S.); (G.B.)
| | - Gabriela Barszczewska
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.B.); (E.S.); (G.B.)
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland; (P.C.); (J.S.)
| | - Monika Niemczyk
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (M.N.); (K.T.-G.); (M.P.)
| | - Katarzyna Tota-Glowczyk
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (M.N.); (K.T.-G.); (M.P.)
| | - Mariusz Papp
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (M.N.); (K.T.-G.); (M.P.)
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.B.); (E.S.); (G.B.)
- Correspondence: ; Tel.: +48-42-635-44-86; Fax: +48-42-635-44-84
| |
Collapse
|
5
|
Bialek K, Czarny P, Watala C, Wigner P, Talarowska M, Galecki P, Szemraj J, Sliwinski T. Novel association between TGFA, TGFB1, IRF1, PTGS2 and IKBKB single-nucleotide polymorphisms and occurrence, severity and treatment response of major depressive disorder. PeerJ 2020; 8:e8676. [PMID: 32140313 PMCID: PMC7047865 DOI: 10.7717/peerj.8676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/03/2020] [Indexed: 12/25/2022] Open
Abstract
Background Activation of the immune system might affect the severity of depressive episodes as well as response to the antidepressant treatment. The purpose of this study was to investigate whether the occurrence of variant alleles of analyzed SNPs are involved in prevalence and progression of depression. Moreover, selected genes and SNPs have not been investigated in context of the disease severity and treatment. Therefore, six polymorphisms were selected: g.41354391A>G-TGFB1 (rs1800469), g.132484229C>A-IRF (rs2070729), g.186643058A>G-PTGS2 (rs5275), g.186640617C>T-PTGS2 (rs4648308), g.70677994G>A-TGFA (rs2166975) and g.42140549G>T-IKBKB (rs5029748). Methods A total of 360 (180 patients and 180 controls) DNA samples were genotyped using TaqMan probes. Results We observed that A/G of the rs2166975 TGFA, A/C of rs2070729 IRF1 and G/T of rs5029748 IKBKB were associated with an increased risk of depression development while the T/T of rs5029748 IKBKB, T/T of rs4648308 PTGS2 and G/G of rs2166975 TGFA reduced this risk. We also stratified the study group according to gender and found that genotype A/G and allele G of the rs2166975 TGFA, G/T of rs5029748 IKBKB as well as C allele of rs4648308 PTGS2, homozygote A/A and allele A of rs5275 PTGS2 were associated with increased risk of depression development in men while homozygote G/G of rs5275 PTGS2 decreased this risk. Moreover, C/T of rs4648308 PTGS2 and A/G of rs5275 PTGS2 was positively correlated with the risk of the disease occurrence in women. Furthermore, a gene-gene analysis revealed a link between studied polymorphisms and depression. In addition, A/A of rs1800469 TGFB1 was associated with earlier age of onset of the disease while G/G of this SNP increased severity of the depressive episode. Interestingly, A/C of rs2070729 IRF1 and T/T of rs5029748 IKBKB may modulate the effectiveness of selective serotonin reuptake inhibitors therapy. In conclusion, studied SNPs may modulate the risk of occurrence, age of onset, severity of the disease and response to the antidepressant treatment.
Collapse
Affiliation(s)
- Katarzyna Bialek
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Cezary Watala
- Department of Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| | - Paulina Wigner
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Monika Talarowska
- Institute of Psychology, Department of Personality and Individual Differences, University of Lodz, Lodz, Poland
| | - Piotr Galecki
- Department of Adult Psychiatry, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
Sub-chronic celecoxib prevents soluble beta amyloid-induced depressive-like behaviour in rats. J Affect Disord 2018; 238:118-121. [PMID: 29879605 DOI: 10.1016/j.jad.2018.05.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/16/2018] [Accepted: 05/21/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Depression and Alzheimer's disease (AD) are co-morbid conditions. Neuropsychiatric symptoms have been reported as prodromal symptoms of AD-like dementia and soluble forms of beta amyloid peptide (Aβ), the main constituent of insoluble plaques typical of AD brains, have been implicated in such an effect. We have previously shown that intracerebral injection of Aβ can evoke a depressive-like state in rats, accompanied by neurochemical and neuroendocrine alterations reminiscent of depressive symptoms in humans. AD and depression are crucially linked by neuroinflammation and cyclooxygenase II (COX-2) enzyme involvement is an intriguing field of research. Indeed, its pharmacological inhibition has shown both antidepressant and Aβ modulating effects. METHODS Male rats were exposed to sub-chronic celecoxib (15 mg/kg/day sc for 8 days), a selective COX-2 inhibitor or vehicle (saline), starting from the day before central intracerebroventricular injection of Aβ peptide (5µL of 4 µM solution or vehicle for sham). Animals were tested for depressive-like behaviour by using the forced swimming test paradigm and prefrontal serotonin (5-HT) content and plasma Aβ levels were further evaluated. RESULTS We found that celecoxib treatment prevented the pro-depressive effects induced by Aβ. Moreover, it also prevented the reduction in 5-HT content in prefrontal cortex of Aβ-treated rats and decreased their plasma Aβ levels. CONCLUSIONS Taken together, our data indicate that celecoxib could be a suitable pharmaceutical tool for the treatment of depressive state related to increased Aβ levels.
Collapse
|
7
|
The use of quetiapine in the treatment of major depressive disorder: Evidence from clinical and experimental studies. Neurosci Biobehav Rev 2018; 86:36-50. [DOI: 10.1016/j.neubiorev.2017.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/24/2017] [Accepted: 12/24/2017] [Indexed: 12/19/2022]
|
8
|
Baldissera MD, Sagrillo MR, de Sá MF, Peroza LR, Posser CP, de Brum GF, Peres DS, De Mello ALB, Ferrão M, Souza CF, da Silva AS, Monteiro SG. Increased in cyclooxygenase—2 immunoreactivity and DNA damage in hippocampus of rats infected by Trypanosoma evansi. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s00580-016-2235-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Schrepf A, Lutgendorf SK, Pyter LM. Pre-treatment effects of peripheral tumors on brain and behavior: neuroinflammatory mechanisms in humans and rodents. Brain Behav Immun 2015; 49:1-17. [PMID: 25958011 PMCID: PMC4567396 DOI: 10.1016/j.bbi.2015.04.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/14/2015] [Accepted: 04/17/2015] [Indexed: 12/12/2022] Open
Abstract
Cancer patients suffer high levels of affective and cognitive disturbances, which have been attributed to diagnosis-related distress, impairment of quality of life, and side effects of primary treatment. An inflammatory microenvironment is also a feature of the vast majority of solid tumors. However, the ability of tumor-associated biological processes to affect the central nervous system (CNS) has only recently been explored in the context of symptoms of depression and cognitive disturbances. In this review, we summarize the burgeoning evidence from rodent cancer models that solid tumors alter neurobiological pathways and subsequent behavioral processes with relevance to affective and cognitive disturbances reported in human cancer populations. We consider, in parallel, the evidence from human clinical cancer research demonstrating that affective and cognitive disturbances are common in some malignancies prior to diagnosis and treatment. We further consider the underlying neurobiological pathways, including altered neuroinflammation, tryptophan metabolism, prostaglandin synthesis and associated neuroanatomical changes, that are most strongly implicated in the rodent literature and supported by analogous evidence from human cancer populations. We focus on the implications of these findings for behavioral researchers and clinicians, with particular emphasis on methodological issues and areas of future research.
Collapse
Affiliation(s)
- Andrew Schrepf
- Department of Psychology, University of Iowa, Iowa City, IA 52242, USA
| | - Susan K Lutgendorf
- Department of Psychology, University of Iowa, Iowa City, IA 52242, USA; Departments of Urology and Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA
| | - Leah M Pyter
- Institute for Behavioral Medicine Research, Departments of Psychiatry and Behavioral Health and Neuroscience, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
10
|
Adzic M, Djordjevic J, Mitic M, Brkic Z, Lukic I, Radojcic M. The contribution of hypothalamic neuroendocrine, neuroplastic and neuroinflammatory processes to lipopolysaccharide-induced depressive-like behaviour in female and male rats: Involvement of glucocorticoid receptor and C/EBP-β. Behav Brain Res 2015; 291:130-139. [DOI: 10.1016/j.bbr.2015.05.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/15/2015] [Accepted: 05/17/2015] [Indexed: 12/22/2022]
|
11
|
Gałecki P, Talarowska M, Bobińska K, Szemraj J. COX-2 gene expression is correlated with cognitive function in recurrent depressive disorder. Psychiatry Res 2014; 215:488-90. [PMID: 24388097 DOI: 10.1016/j.psychres.2013.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 12/02/2013] [Accepted: 12/09/2013] [Indexed: 11/30/2022]
Abstract
Cyclooxygenase-2(COX-2) may be a key inflammatory enzyme involved in recurrent depressive disorder(rDD). In rDD group, COX-2 expression were higher and significant correlations occurred between COX-2 expression and cognitive functions. In controls there was no significant association between analysed variables. Thus, the COX-2 enzyme may be important for cognitive functioning in rDD.
Collapse
Affiliation(s)
- Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, Aleksandrowska 159, 91-229 Lodz, Poland.
| | - Monika Talarowska
- Department of Adult Psychiatry, Medical University of Lodz, Aleksandrowska 159, 91-229 Lodz, Poland
| | - Kinga Bobińska
- Department of Adult Psychiatry, Medical University of Lodz, Aleksandrowska 159, 91-229 Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
12
|
Synergistic effects of celecoxib and bupropion in a model of chronic inflammation-related depression in mice. PLoS One 2013; 8:e77227. [PMID: 24086771 PMCID: PMC3785450 DOI: 10.1371/journal.pone.0077227] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 09/01/2013] [Indexed: 11/19/2022] Open
Abstract
This study was aimed to characterize the depression-like behaviour in the classical model of chronic inflammation induced by Complete Freund's Adjuvant (CFA). Male Swiss mice received an intraplantar (i.pl.) injection of CFA (50 µl/paw) or vehicle. Behavioural and inflammatory responses were measured at different time-points (1 to 4 weeks), and different pharmacological tools were tested. The brain levels of IL-1β and BDNF, or COX-2 expression were also determined. CFA elicited a time-dependent edema formation and mechanical allodynia, which was accompanied by a significant increase in the immobility time in the tail suspension (TST) or forced-swimming (FST) depression tests. Repeated administration of the antidepressants imipramine (10 mg/kg), fluoxetine (20 mg/kg) and bupropion (30 mg/kg) significantly reversed depression-like behaviour induced by CFA. Predictably, the anti-inflammatory drugs dexamethasone (0.5 mg/kg), indomethacin (10 mg/kg) and celecoxib (30 mg/kg) markedly reduced CFA-induced edema. The oral treatment with the analgesic drugs dipyrone (30 and 300 mg/kg) or pregabalin (30 mg/kg) significantly reversed the mechanical allodyinia induced by CFA. Otherwise, either dipyrone or pregabalin (both 30 mg/kg) did not significantly affect the paw edema or the depressive-like behaviour induced by CFA, whereas the oral treatment with dipyrone (300 mg/kg) was able to reduce the immobility time in TST. Noteworthy, CFA-induced edema was reduced by bupropion (30 mg/kg), and depression behaviour was prevented by celecoxib (30 mg/kg). The co-treatment with bupropion and celecoxib (3 mg/kg each) significantly inhibited both inflammation and depression elicited by CFA. The same combined treatment reduced the brain levels of IL-1β, as well as COX-2 immunopositivity, whilst it failed to affect the reduction of BDNF levels. We provide novel evidence on the relationship between chronic inflammation and depression, suggesting that combination of antidepressant and anti-inflammatory agents bupropion and celecoxib might represent an attractive therapeutic strategy for depression.
Collapse
|
13
|
Vatairea macrocarpa lectin (VML) induces depressive-like behavior and expression of neuroinflammatory markers in mice. Neurochem Res 2013; 38:2375-84. [PMID: 24026569 DOI: 10.1007/s11064-013-1150-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 11/27/2022]
Abstract
Lectins are proteins capable of reversible binding to the carbohydrates in glycoconjugates that can regulate many physiological and pathological events. Galectin-1, a β-galactoside-binding lectin, is expressed in the central nervous system (CNS) and exhibits neuroprotective functions. Additionally, lectins isolated from plants have demonstrated beneficial action in the CNS. One example is a lectin with mannose-glucose affinity purified from Canavalia brasiliensis seeds, ConBr, which displays neuroprotective and antidepressant activity. On the other hand, the effects of the galactose-binding lectin isolated from Vatairea macrocarpa seeds (VML) on the CNS are largely unknown. The aim of this study was to verify if VML is able to alter neural function by evaluating signaling enzymes, glial and inflammatory proteins in adult mice hippocampus, as well as behavioral parameters. VML administered by intracerebroventricular (i.c.v) route increased the immobility time in the forced swimming test (FST) 60 min after its injection through a carbohydrate recognition domain-dependent mechanism. Furthermore, under the same conditions, VML caused an enhancement of COX-2, GFAP and S100B levels in mouse hippocampus. However, phosphorylation of Akt, GSK-3β and mitogen-activated protein kinases named ERK1/2, JNK1/2/3 and p38(MAPK), was not changed by VML. The results reported here suggest that VML may trigger neuroinflammatory response in mouse hippocampus and exhibit a depressive-like activity. Taken together, our findings indicate a dual role for galactose binding lectins in the modulation of CNS function.
Collapse
|
14
|
Sesia T, Bizup B, Grace AA. Evaluation of animal models of obsessive-compulsive disorder: correlation with phasic dopamine neuron activity. Int J Neuropsychopharmacol 2013; 16:1295-307. [PMID: 23360787 PMCID: PMC3674214 DOI: 10.1017/s146114571200154x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Obsessive compulsive disorder (OCD) is a psychiatric condition defined by intrusive thoughts (obsessions) associated with compensatory and repetitive behaviour (compulsions). However, advancement in our understanding of this disorder has been hampered by the absence of effective animal models and correspondingly analysis of the physiological changes that may be present in these models. To address this, we have evaluated two current rodent models of OCD; repeated injection of dopamine D2 agonist quinpirole and repeated adolescent injection of the tricyclic agent clomipramine in combination with a behavioural paradigm designed to produce compulsive lever pressing. These results were then compared with their relative impact on the state of activity of the mesolimbic dopaminergic system using extracellular recoding of spontaneously active dopamine neurons in the ventral tegmental area (VTA). The clomipramine model failed to exacerbate compulsive lever pressing and VTA dopamine neurons in clomipramine-treated rats had mildly diminished bursting activity. In contrast, quinpirole-treated animals showed significant increases in compulsive lever pressing, which was concurrent with a substantial diminution of bursting activity of VTA dopamine neurons. Therefore, VTA dopamine activity correlated with the behavioural response in these models. Taken together, these data support the view that compulsive behaviours likely reflect, at least in part, a disruption of the dopaminergic system, more specifically by a decrease in baseline phasic dopamine signalling mediated by burst firing of dopamine neurons.
Collapse
Affiliation(s)
- Thibaut Sesia
- Departments of Anatomy and Neurobiology, University of Maryland, Baltimore, MD, U.S.A
| | - Brandon Bizup
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, U.S.A
| |
Collapse
|
15
|
Bufalino C, Hepgul N, Aguglia E, Pariante CM. The role of immune genes in the association between depression and inflammation: a review of recent clinical studies. Brain Behav Immun 2013; 31:31-47. [PMID: 22580182 DOI: 10.1016/j.bbi.2012.04.009] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/27/2012] [Accepted: 04/27/2012] [Indexed: 01/08/2023] Open
Abstract
The role for dysregulation of the immune system in the pathogenesis of depressive disorder is well established, and emerging research suggests the role of an underlying genetic vulnerability. The purpose of this review is to summarize the existing literature on the genetic variants involved in neurobiological pathways associated with both immune activation and depression. Using PubMed, Scopus, The Cochrane Library, Embase, Ovid of Medline, PsycINFO and ISI web of Knowledge, we selected 52 papers which are relevant for this literature review. Findings across the literature suggest that functional allelic variants of genes for interleukin-1beta (IL)-1β, tumor necrosis factor-alpha (TNF-α) and C-reactive protein (CRP), as well as genetic variations affecting T-cell function, may increase the risk for depression. Moreover, single nucleotide polymorphisms (SNPs) in the IL-1β, IL-6 and IL-11 genes, and in those regulating T-cell function may be associated with reduced responsiveness to antidepressant therapy. There is also some evidence indicative of a role of genetic variants of the enzymes, Cyclo-oxygenase2 (COX-2) and Phospholipase2 (PLA2), in the aetiology of depression. Finally, SNPs in genes related to the serotonin pathway may play a fundamental role in the shared genetic liability to both immune activation and depressive symptoms. Our review confirms that genetic variants influence the biological mechanisms by which the innate immune system contributes to the development of depression. However, future studies are necessary to identify the molecular mechanisms underlying these associations.
Collapse
Affiliation(s)
- Chiara Bufalino
- King's College London, Institute of Psychiatry, Department of Psychological Medicine, London, UK
| | | | | | | |
Collapse
|
16
|
Li YC, Shen JD, Li J, Wang R, Jiao S, Yi LT. Chronic treatment with baicalin prevents the chronic mild stress-induced depressive-like behavior: involving the inhibition of cyclooxygenase-2 in rat brain. Prog Neuropsychopharmacol Biol Psychiatry 2013; 40:138-43. [PMID: 23022674 DOI: 10.1016/j.pnpbp.2012.09.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/12/2012] [Accepted: 09/18/2012] [Indexed: 12/16/2022]
Abstract
Baicalin, a major constituent of flavonoids isolated from Scutellariae Radix, has been previously confirmed to decrease the duration of immobility in mice exposed to the forced swimming test (FST) and tail suspension test (TST). However, its antidepressant effects and mechanisms are still seldom studied in chronic mild stress (CMS) model of depression. In the present study, we attempted to investigate the effects of baicalin on the depressive-like behavior, the mRNA expression and activity of cyclooxygenase-2 (COX-2), as well as prostaglandin E(2) (PGE(2)) levels in the frontal cortex and hippocampus. Moreover, the serum corticosterone levels were also examined. We found that CMS procedure not only decreased the sucrose preference and increased serum corticosterone levels, but also elevated the activity and mRNA expression of COX-2, and increased PGE(2) levels in rat brain regions. Treatment with baicalin (10, 20, 40 mg/kg) prevented these abnormalities induced by CMS. These results confirmed that baicalin exerted antidepressant-like effects, and suggested its mechanisms at least partially related to decease COX-2 activity and expression, subsequently resulted in reduction of PGE(2) levels in brain. Our findings may provide a new aspect to understand the antidepressant action of baicalin, which is targeted on the COX-2 system in brain.
Collapse
Affiliation(s)
- Yu-Cheng Li
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, Henan province, PR China.
| | | | | | | | | | | |
Collapse
|
17
|
Gałecki P, Gałecka E, Maes M, Chamielec M, Orzechowska A, Bobińska K, Lewiński A, Szemraj J. The expression of genes encoding for COX-2, MPO, iNOS, and sPLA2-IIA in patients with recurrent depressive disorder. J Affect Disord 2012; 138:360-6. [PMID: 22331023 DOI: 10.1016/j.jad.2012.01.016] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 01/09/2012] [Accepted: 01/10/2012] [Indexed: 01/22/2023]
Abstract
BACKGROUND There is evidence that inflammation, oxidative and nitrosative stress (IO&NS) play a role in the pathophysiology of depression. There are also data indicating altered inflammatory gene expression in depressive disorder and that genetic variants of IO&NS genes are associated with increased risk of the disease in question. The aim of this study was to explore mRNA expression of four IO&NS genes PTGS2, MPO, NOS2A, and PLA2G2A coding respectively: cyclooxygenase-2 (COX-2), myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS) and secretory phospholipase A2 type IIA (sPLA2-IIA). METHOD Expression of the mRNA was determined using quantitative real-time PCR, in peripheral blood cells of patients with recurrent depressive disorder (rDD) and normal controls. RESULTS The mRNA expressions of the genes encoding for COX-2, MPO, iNOS and sPLA2-IIA were significantly increased in the peripheral blood cells of depressed patients versus controls. LIMITATIONS Patients were treated with antidepressants. CONCLUSION Our results indicate and may confirm the role of peripheral IO&NS pathways in the pathophysiology of depression. The results represent a promising way to investigate biological markers of depression.
Collapse
Affiliation(s)
- Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Łódź, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Savelyev SA, Rantamäki T, Rytkönen KM, Castren E, Porkka-Heiskanen T. Sleep homeostasis and depression: studies with the rat clomipramine model of depression. Neuroscience 2012; 212:149-58. [PMID: 22516018 DOI: 10.1016/j.neuroscience.2012.03.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 03/22/2012] [Accepted: 03/23/2012] [Indexed: 12/17/2022]
Abstract
Neonatal treatment of rat pups with clomipramine (CLI) has been shown to cause long-lasting and persistent depression-related behaviors and changes in sleep architecture and in brain-derived neurotrophic factor (BDNF) signaling in adult animals, producing an animal model of depression. However, the molecular mechanisms which mediate these effects of early-life CLI treatment on adult animals remain largely unknown. In order to characterize these further, we investigated in neonatally CLI-treated rats the sleep architecture as well as the extracellular and cellular levels of sleep regulators (nitric oxide, adenosine) and BDNF, respectively, in the basal forebrain (BF), i.e. the brain area which is implicated in sleep and depression. We found that CLI-treated rats exhibited a disturbed sleep architecture (REM sleep fragmentation was increased and NREM periods preceding REM were shorter) and reduced levels of BDNF and adenosine in the BF, whereas the levels of nitric oxide were elevated. Next, we examined sleep deprivation (SD)-induced homeostatic responses on sleep regulation and brain BDNF levels in CLI-treated rats. Compared to control rats, 3h of SD induced a smaller increase in the amount of NREM sleep during sleep recovery. At the molecular level, the normal homeostatic response was dissociated: the rise in the adenosine level was not accompanied by a rise in the nitric oxide concentration. Moreover, while BF BDNF levels decreased during SD in control rats, such a decline was not observed in CLI rats. Taken together, neonatal CLI treatment produces long-lasting functional changes in the sleep architecture and sleep regulation in adult rats, accompanied by dysregulated BDNF signaling in the BF.
Collapse
Affiliation(s)
- S A Savelyev
- Institute of Biomedicine, Department of Physiology, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), 00014 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
19
|
Differential effects of treadmill exercise on cyclooxygenase-2 in the rat hippocampus at early and chronic stages of diabetes. Lab Anim Res 2011; 27:189-95. [PMID: 21998607 PMCID: PMC3188725 DOI: 10.5625/lar.2011.27.3.189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 08/06/2011] [Accepted: 08/17/2011] [Indexed: 11/21/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) is believed to be a multifunctional neural modulator that affects synaptic plasticity in the hippocampus. In the present study, we investigated the differential effects of treadmill exercise on COX-2 immunoreactivity in the dentate gyrus in early and chronic diabetic stages in Zucker diabetic fatty (ZDF) rats and lean control (ZLC) rats. To this end, ZLC and ZDF rats at 6 or 23 weeks of age were put on a treadmill with or without running for 1 h/day for 5 consecutive days at 16-22 m/min for 5 weeks or 12-16 m/min for 7 weeks, respectively. Treadmill exercise in prediabetic and chronic diabetic rats significantly reduced blood glucose levels. In particular, exercise in the prediabetic rat blocked the onset of diabetes. COX-2 immunoreactivity was mainly detected in the granule cell layer of the dentate gyrus and stratum pyramidale of the CA3 region in all groups. COX-2 immunoreactivity was significantly increased in these regions of ZLC and ZDF rats after treadmill exercise in the early diabetic stage. However, COX-2 immunoreactivity was not changed in these regions in ZDF rats after treadmill exercise in the chronic stage. These results suggest that treadmill exercise in diabetic animals in the chronic stage has limited ability to cause plasticity in the dentate gyrus.
Collapse
|
20
|
Maes M, Galecki P, Chang YS, Berk M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:676-92. [PMID: 20471444 DOI: 10.1016/j.pnpbp.2010.05.004] [Citation(s) in RCA: 785] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 04/17/2010] [Accepted: 05/03/2010] [Indexed: 02/06/2023]
Abstract
This paper reviews the body of evidence that major depression is accompanied by a decreased antioxidant status and by induction of oxidative and nitrosative (IO&NS) pathways. Major depression is characterized by significantly lower plasma concentrations of a number of key antioxidants, such as vitamin E, zinc and coenzyme Q10, and a lowered total antioxidant status. Lowered antioxidant enzyme activity, e.g. glutathione peroxidase (GPX), is another hallmark of depression. The abovementioned lowered antioxidant capacity may impair protection against reactive oxygen species (ROS), causing damage to fatty acids, proteins and DNA by oxidative and nitrosative stress (O&NS). Increased ROS in depression is demonstrated by increased levels of plasma peroxides and xanthine oxidase. Damage caused by O&NS is shown by increased levels of malondialdehyde (MDA), a by-product of polyunsaturated fatty acid peroxidation and arachidonic acid; and increased 8-hydroxy-2-deoxyguanosine, indicating oxidative DNA damage. There is also evidence in major depression, that O&NS may have changed inactive autoepitopes to neoantigens, which have acquired immunogenicity and serve as triggers to bypass immunological tolerance, causing (auto)immune responses. Thus, depression is accompanied by increased levels of plasma IgG antibodies against oxidized LDL; and increased IgM-mediated immune responses against membrane fatty acids, like phosphatidyl inositol (Pi); oleic, palmitic, and myristic acid; and NO modified amino-acids, e.g. NO-tyrosine, NO-tryptophan and NO-arginine; and NO-albumin. There is a significant association between depression and polymorphisms in O&NS genes, like manganese superoxide dismutase, catalase, and myeloperoxidase. Animal models of depression very consistently show lowered antioxidant defences and activated O&NS pathways in the peripheral blood and the brain. In animal models of depression, antidepressants consistently increase lowered antioxidant levels and normalize the damage caused by O&NS processes. Antioxidants, such as N-acetyl-cysteine, compounds that mimic GPX activity, and zinc exhibit antidepressive effects. This paper reviews the pathways by which lowered antioxidants and O&NS may contribute to depression, and the (neuro)degenerative processes that accompany that illness. It is concluded that aberrations in O&NS pathways are--together with the inflammatory processes--key components of depression. All in all, the results suggest that depression belongs to the spectrum of (neuro)degenerative disorders.
Collapse
|
21
|
Bay-Richter C, Janelidze S, Hallberg L, Brundin L. Changes in behaviour and cytokine expression upon a peripheral immune challenge. Behav Brain Res 2011; 222:193-9. [PMID: 21466824 DOI: 10.1016/j.bbr.2011.03.060] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 03/22/2011] [Accepted: 03/27/2011] [Indexed: 12/12/2022]
Abstract
Depression is frequently associated with inflammation. Animal studies have shown that peripheral inflammation induces depressive-like behaviour, but the underlying mechanisms remain unclear. A distinction between sickness- and depressive-like behaviour has been proposed. We hypothesize that the behavioural distinction is due to changes in the central production of immune mediators. As a model of peripheral inflammation, we administered lipopolysaccharide (LPS) intraperitoneally daily for 4 days in rats. The effect of LPS on sickness- and depressive-like behaviour was assessed. We examined protein levels and mRNA expression of cytokines and cyclooxygenase (COX) enzymes in serum, cerebrospinal fluid (CSF) and specific brain regions. Two hours post-LPS, the rats displayed sickness behaviour and cytokine levels were elevated in both serum and CSF. This was paralleled by specific alterations of mRNA transcription of IL-1β, IL-6 and TNF-α in frontal cortex, hippocampus and striatum. Twenty-four hours post-LPS the rats showed depressive-like behaviour and peripheral cytokine levels were back close to baseline. In contrast, the central transcription of IL-1β mRNA had increased even further, as well as IL-1β CSF levels. IL-6 and TNF-α transcription was unaltered compared to controls. COX enzymes were downregulated in the hippocampus during sickness behaviour and unaltered during depressive-like behaviour. Our results show for the first time that a peripheral immune challenge induces a region specific transcription of cytokines and COX-enzymes in the brain, at time-points corresponding to behavioural sickness and depression. When the peripheral inflammation and sickness behaviour had ceased, a production of proinflammatory cytokines remained within the brain parenchyma.
Collapse
Affiliation(s)
- Cecilie Bay-Richter
- Psychoimmunology Unit, Division of Psychiatry, Department of Clinical Sciences, Lund University, Kioskgatan 19, 221 85 Lund, Sweden. Cecilie.Bay
| | | | | | | |
Collapse
|
22
|
Chronic escitalopram treatment restores spatial learning, monoamine levels, and hippocampal long-term potentiation in an animal model of depression. Psychopharmacology (Berl) 2011; 214:477-94. [PMID: 21052984 DOI: 10.1007/s00213-010-2054-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 10/12/2010] [Indexed: 01/22/2023]
Abstract
RATIONALE The neural basis of depression-associated cognitive impairment remains poorly understood, and the effect of antidepressants on learning and synaptic plasticity in animal models of depression is unknown. In our previous study, learning was impaired in the neonatal clomipramine model of endogenous depression. However, it is not known whether the cognitive impairment in this model responds to antidepressant treatment, and the electrophysiological and neurochemical bases remain to be determined. OBJECTIVES To address this, we assessed the effects of escitalopram treatment on spatial learning and memory in the partially baited radial arm maze (RAM) task and long-term potentiation (LTP) in the Schaffer collateral-CA1 synapses in neonatal clomipramine-exposed rats. Also, alterations in the levels of biogenic amines and acetylcholinesterase (AChE) activity were estimated. RESULTS Fourteen days of escitalopram treatment restored the mobility and preference to sucrose water in the forced swim and sucrose consumption tests, respectively. The learning impairment in the RAM was reversed by escitalopram treatment. Interestingly, CA1-LTP was decreased in the neonatal clomipramine-exposed rats, which was restored by escitalopram treatment. Monoamine levels and AChE activity were decreased in several brain regions, which were restored by chronic escitalopram treatment. CONCLUSIONS Thus, we demonstrate that hippocampal LTP is decreased in this animal model of depression, possibly explaining the learning deficits. Further, the reversal of learning and electrophysiological impairments by escitalopram reveals the important therapeutic effects of escitalopram that could benefit patients suffering from depression.
Collapse
|
23
|
|
24
|
Abstract
The aetiology of psychiatric diseases such as depression or schizophrenia remains largely unknown, even though multiple theories have been proposed. Although monoamine theory is the cornerstone of available pharmacological therapies, relapses, incomplete control of symptoms or failure in treatment occur frequently. From an inflammatory/immune point of view, both entities share several common hallmarks in their pathophysiology, e.g. neuroendocrine/immune alterations, structural/functional abnormalities in particular brain areas, and cognitive deficits, suggesting a dysregulated inflammatory-related component of these diseases that better explains the myriad of symptoms presented by affected individuals. In this review we aimed to explore the role and relevance of inflammatory related lipids (prostanoids) derived from arachidonic acid metabolism by identification of new inflammatory markers and possible pharmacological/dietary modulation of these compounds, with the aim of improving some of the symptoms developed by individuals affected with psychiatric diseases (a critical review of basic and clinical studies about inflammatory-related arachidonic acid metabolism on neuropsychiatric diseases is included). As a specific candidate, one of these immunoregulatory lipids, the anti-inflammatory prostaglandin 15d-PGJ₂ and its nuclear receptor peroxisome proliferator-activated nuclear receptor (PPARγ) could be used as a biological marker for psychiatric diseases. In addition, its pharmacological activation can be considered as a multi-faceted therapeutic target due to its anti-inflammatory/antioxidant/anti-excitotoxic/pro-energetic profile, reported in some inflammatory-related scenarios (neurological and stress-related diseases). PPARs are activated by a great variety of compounds, the most relevant being the currently prescribed group of anti-diabetic drugs thiazolidinediones, and some cannabinoids (both endocannabinoids, phytocannabinoids or synthetic), as possible novel therapeutical strategy.
Collapse
|
25
|
Kentner AC, McLeod SA, Field EF, Pittman QJ. Sex-dependent effects of neonatal inflammation on adult inflammatory markers and behavior. Endocrinology 2010; 151:2689-99. [PMID: 20392837 PMCID: PMC3524265 DOI: 10.1210/en.2009-1101] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inflammatory molecules, such as cyclooxygenase (COX), a prostaglandin synthetic enzyme, have been identified as a marker of depressive symptomology. Previously, we have observed elevated basal COX-2 expression in the hypothalamus of adult male rats treated neonatally with lipopolysaccharide (LPS), which might suggest a phenotype for disrupted hedonic behavior, a symptom of depression. However, COX-2 and its contribution to the expression of anhedonic behavior has not been investigated in these males or in female rats across the estrous cycle, which is the purpose of the current work. Here, we examine the effects of a neonatal LPS challenge or saline on the sucrose preference test as a measure of anhedonia, and hypothalamic COX-2 expression, in adult male and freely cycling female rats. Our data indicate a sex difference in that neonatal LPS at postnatal d 14 causes elevated basal expression of hypothalamic COX-2 in male, but not in female, rats. Additionally, baseline sucrose preference in male and female rats was unaltered as a function of neonatal LPS treatment or estrous cycle stage. In both male and female animals, 50 microg/kg LPS in adulthood caused elevated plasma IL-6 and hypothalamic COX-2 expression in neonatally saline-treated rats but significantly less so in neonatally LPS-treated rats of both sexes; this neonatal programming was not evident for sucrose preference or for total fluid intake (even after much higher doses of LPS). Our data are suggestive of a dissociation between inflammation and anhedonic behavior and a differential effect of neonatal inflammation in males and females.
Collapse
Affiliation(s)
- A C Kentner
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, 3330 Hospital Drive N.W., Calgary, Alberta, Canada T2N 4N1.
| | | | | | | |
Collapse
|
26
|
Lagus M, Gass N, Saharinen J, Saarela J, Porkka-Heiskanen T, Paunio T. Gene expression patterns in a rodent model for depression. Eur J Neurosci 2010; 31:1465-73. [DOI: 10.1111/j.1460-9568.2010.07166.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Some molecular effectors of antidepressant action of quetiapine revealed by DNA microarray in the frontal cortex of anhedonic rats. Pharmacogenet Genomics 2009; 19:600-12. [PMID: 19587612 DOI: 10.1097/fpc.0b013e32832ee573] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES AND METHODS We have previously demonstrated that quetiapine (QTP) had antidepressant-like action by using the chronic mild stress (CMS) paradigm, an animal model of human depression. The aim of this study was to investigate the molecular mechanism(s) of QTP antidepressant effect by coupling the CMS protocol with Affymetrix microarray technology to screen the entire rat genome for gene changes in the frontal cortex. RESULTS The genes regulated by the administration of CMS whose transcription was reversed by chronic QTP treatment (2 mg/kg/day) were 42 (23 upregulated and 19 downregulated). The transcripts that showed no significant altered expression levels in anhedonic rats but were regulated by the administration of QTP were 19 (nine upregulated and 10 downregulated). On the whole, the action of QTP prevented the stress-induced impairment of some processes involved in central nervous system development or having a crucial role for viability of neural cells and cell-cell communications, like regulation of signal transduction, inorganic cation transport, membrane organization, and neurite morphogenesis. For 11 genes (Ptgs2, Gad1, Plcb1, Camk2a, Homer1, Senp2, Junb, Nfib, Hes5, Capon, and Marcks), significant differential expressions were confirmed by real-time reverse-transcriptase polymerase chain reaction. CONCLUSION We have shown that chronic QTP treatment prevented anhedonia and reversed, at least in part, the changes of gene expression induced by CMS in the rat frontal cortex. We have also identified and confirmed by two different methods that 11 genes, representing molecular targets of QTP, are presumably the effectors of its clinical efficacy.
Collapse
|
28
|
Soletti AC, Gaio EJ, Rösing CK. Effect of neonatal clomipramine in the pathogenesis of ligature-induced periodontitis in Lewis rats. Acta Odontol Scand 2009; 67:94-8. [PMID: 19169913 DOI: 10.1080/00016350802683822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The aim of this study was to verify the association between an endogenous depression model and the development of ligature-induced periodontitis in rats. MATERIAL AND METHODS Nine male Lewis rats received 30 mg/kg clomipramine from neonatal day 8 to day 21 (depressed group), while 13 control Lewis rats were left untouched (control group). On day 150, ligatures were placed around the 2nd upper molars in both groups, i.e. the contralateral molar of the intra-group control. On day 190, the rats were killed and the maxillae were defleshed. The distance between the cemento-enamel junction and the alveolar bone crest was measured by a blinded examiner using standardized digital photographs. RESULTS The depressed rats showed hyperactivity in open field on day 142 and greater attempts to escape on day 143 compared to controls. The other behavioral data did not show statistically significant differences between the groups (Mann-Whitney, p>0.05). In teeth with ligature, mean alveolar bone loss varied from 0.51 to 0.60 and from 0.63 to 0.64 mm for tests and controls, respectively (t-test, p>0.05). In teeth without ligature, these values varied from 0.38 to 0.43 and 0.42 to 0.45 mm in the test and control groups, respectively (t-test, p>0.05). CONCLUSION Induced depression did not alter ligature-induced bone loss in Lewis rats.
Collapse
|
29
|
Guo JY, Li CY, Ruan YP, Sun M, Qi XL, Zhao BS, Luo F. Chronic treatment with celecoxib reverses chronic unpredictable stress-induced depressive-like behavior via reducing cyclooxygenase-2 expression in rat brain. Eur J Pharmacol 2009; 612:54-60. [PMID: 19356723 DOI: 10.1016/j.ejphar.2009.03.076] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 03/17/2009] [Accepted: 03/31/2009] [Indexed: 01/09/2023]
Abstract
Recent clinical trails reported that adjunctive cyclooxygenase (COX)-2 inhibition with celecoxib is beneficial in treating depression. However, another clinical study showed celecoxib did not have inhibitory effect of COX-2 in human brain when given at a therapeutic dose. Therefore, whether celecoxib is exerting its influence through COX inhibition or by some other mechanism remains unclear. The present study further investigated the effect of celecoxib on COX-2 expression, prostaglandin E(2) (PGE2, a major COX-2-mediated inflammatory mediator) concentration and the depressive-like behaviors in rats. Celecoxib was administrated by oral gavage to naive rats (16 mg/kg) or stressed rats (2, 8, 16 mg/kg, respectively) for 21 days, or to stressed rats for a single dose (16 mg/kg). The results showed that 21 days chronic unpredictable stress induced depressive-like behaviors and increased the COX-2 expression and PGE2 concentration in rat brain. Chronic treatments with celecoxib alleviated the depressive-like behavior and reversed the levels of COX-2 expression and PGE2 concentration in stressed rat in a dose-dependent manner. Celecoxib also improved the emotional state and decreased COX-2 expression and PGE2 concentration in naive rats. In addition, a single dose of celecoxib treatment reversed COX-2 expression and PGE2 concentration, but didn't alter the depressive-like behavior in stressed rat. These results suggest that COX-2 enzyme might play a key role in pathophysiology of depression. Furthermore, these data indicate that chronic celecoxib treatment reverse chronic unpredictable stress-induced depressive-like behavior might via reducing COX-2 enzyme in brain, and the selective COX-2 inhibitors could be developed as potential remedies for the management of depression.
Collapse
Affiliation(s)
- Jian-You Guo
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 10A Datun Road, Chaoyang District, Beijing 100101, PR China.
| | | | | | | | | | | | | |
Collapse
|
30
|
Orsetti M, Di Brisco F, Canonico PL, Genazzani AA, Ghi P. Gene regulation in the frontal cortex of rats exposed to the chronic mild stress paradigm, an animal model of human depression. Eur J Neurosci 2008; 27:2156-64. [PMID: 18371075 DOI: 10.1111/j.1460-9568.2008.06155.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present study, we have coupled the chronic mild stress (CMS) protocol with Affymetrix microarray technology to screen the rat genome for gene changes in the frontal cortex. The aim of our work was to assess whether the CMS protocol could be a useful experimental model to provide insights into the molecular basis of depression. Under our experimental conditions, 59 transcripts changed by more than +/-1.5-fold between naïve and anhedonic rats and showed significantly altered expression levels (P < 0.05). Among these, 18 were upregulated (fold change range +1.509 to +3.161) and 41 were downregulated (fold change range -1.505 to -2.659). To confirm the data obtained with microarrays, we used real-time reverse transcription polymerase chain reaction (RT-PCR). The results confirmed the downregulation of Itga6, Camk2a, Plcb1, Cart, Gad1, Homer1 and Th and the upregulation of Egr2 and Ptgs2 observed in the DNA microarray analysis. Moreover, the fold change data of the nine validated transcripts from microarray analysis and real-time polymerase chain reaction showed a good correlation (r = 0.863, 7 d.f., P < 0.01; slope = 0.976). It is of great interest that prostaglandin-endoperoxide synthase 2, tyrosine hydroxylase, Cart, Homer1 and glutamate decarboxylase have already been implicated in affective disorders by different approaches in previous reports. In conclusion, our findings indicate that the CMS paradigm is a useful preclinical model with which to investigate the molecular basis of anhedonia and to help in the discovery of novel targets for antidepressant drugs.
Collapse
Affiliation(s)
- M Orsetti
- Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche e Farmacologiche (DiSCAFF) Università del Piemonte Orientale A. Avogadro, Via Bovio 6, 28100 Novara, Italy.
| | | | | | | | | |
Collapse
|
31
|
Uz T, Dimitrijevic N, Imbesi M, Manev H, Manev R. Effects of MK-886, a 5-lipoxygenase activating protein (FLAP) inhibitor, and 5-lipoxygenase deficiency on the forced swimming behavior of mice. Neurosci Lett 2008; 436:269-72. [PMID: 18403121 DOI: 10.1016/j.neulet.2008.03.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 03/04/2008] [Accepted: 03/18/2008] [Indexed: 12/29/2022]
Abstract
A common biological pathway may contribute to the comorbidity of atherosclerosis and depression. Increased activity of the enzymatic 5-lipoxygenase (5-LOX, 5LO) pathway is a contributing factor in atherosclerosis and a 5-LOX inhibitor, MK-886, is beneficial in animal models of atherosclerosis. In the brain, MK-886 increases phosphorylation of the glutamate receptor subunit GluR1, and the increased phosphorylation of this receptor has been associated with antidepressant treatment. In this work, we evaluated the behavioral effects of MK-886 in an automated assay of mouse forced swimming, which identifies antidepressant activity as increased climbing behavior and/or decreased rest time. Whereas a single injection of MK-886 (3 and 10 mg/kg) did not affect forced swimming behaviors assayed 30 min later, six daily injections of 3 mg/kg MK-886 slightly increased climbing and significantly reduced rest time in wild-type mice but not in 5-LOX-deficient mice. A diet delivery of MK-886, 4 micro/(100 mg(body-weight)day), required 3 weeks to affect forced swimming; it increased climbing behavior. Climbing behavior was also increased in naive 5-LOX-deficient mice compared to naive wild-type controls. These results suggest that 5-LOX inhibition and deficiency may be associated with antidepressant activity. Increased climbing in a forced swimming assay is a typical outcome of antidepressants that increase noradrenergic and dopaminergic activity. Interestingly, 5-LOX deficiency and MK-886 treatment have been shown to be capable of increasing the behavioral effects of a noradrenaline/dopamine-potentiating drug, cocaine. Future research is needed to evaluate the clinical relevance of our findings.
Collapse
Affiliation(s)
- Tolga Uz
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
32
|
Bhagya V, Srikumar BN, Raju TR, Shankaranarayana Rao BS. Neonatal clomipramine induced endogenous depression in rats is associated with learning impairment in adulthood. Behav Brain Res 2008; 187:190-4. [PMID: 17889946 DOI: 10.1016/j.bbr.2007.08.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 08/17/2007] [Accepted: 08/20/2007] [Indexed: 11/22/2022]
Abstract
Clinical studies show cognitive impairment in depression. However, the neural substrates underlying these remain elusive. Hence, we have examined the effect of neonatal clomipramine treatment on cognition in adulthood. The neonatal clomipramine treated rats displayed a profound impairment in partially baited 8-arm radial maze task. This work provides a novel perspective into neural basis of depression associated cognitive changes and help in development of therapeutic strategies to treat depression related memory dysfunctions.
Collapse
Affiliation(s)
- V Bhagya
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, PB #2900, Hosur Road, Bangalore 560029, India
| | | | | | | |
Collapse
|
33
|
Müller N, Schwarz MJ. The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry 2007; 12:988-1000. [PMID: 17457312 DOI: 10.1038/sj.mp.4002006] [Citation(s) in RCA: 466] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Beside the well-known deficiency in serotonergic neurotransmission as pathophysiological correlate of major depression (MD), recent evidence points to a pivotal role of increased glutamate receptor activation as well. However, cause and interaction of these neurotransmitter alterations are not understood. In this review, we present a hypothesis integrating current concepts of neurotransmission and hypothalamus-pituitary-adrenal (HPA) axis dysregulation with findings on immunological alterations and alterations in brain morphology in MD. An immune activation including increased production of proinflammatory cytokines has repeatedly been described in MD. Proinflammatory cytokines such as interleukin-2, interferon-gamma, or tumor necrosis factor-alpha activate the tryptophan- and serotonin-degrading enzyme indoleamine 2,3-dioxygenase (IDO). Depressive states during inflammatory somatic disorders are also associated with increased proinflammatory cytokines and increased consumption of tryptophan via activation of IDO. An enhanced consumption of serotonin and its precursor tryptophan through IDO activation could well explain the reduced availability of serotonergic neurotransmission in MD. An increased activation of IDO and its subsequent enzyme kynurenine monooxygenase by proinflammatory cytokines, moreover, leads to an enhanced production of quinolinic acid, a strong agonist of the glutamatergic N-methyl-D-aspartate receptor. In inflammatory states of the central nervous system, IDO is mainly activated in microglial cells, which preferentially metabolize tryptophan to the NMDA receptor agonist quinolinic acid, whereas astrocytes - counteracting this metabolism due to the lack of an enzyme of this metabolism - have been observed to be reduced in MD. Therefore the type 1/type 2 immune response imbalance, associated with an astrocyte/microglia imbalance, leads to serotonergic deficiency and glutamatergic overproduction. Astrocytes are further strongly involved in re-uptake and metabolic conversion of glutamate. The reduced number of astrocytes could contribute to both, a diminished counterregulation of IDO activity in microglia and an altered glutamatergic neurotransmission. Further search for antidepressant agents should take into account anti-inflammatory drugs, for example, cyclooxygenase-2 inhibitors, might exert antidepressant effects by acting on serotonergic deficiency, glutamatergic hyperfunction and antagonizing neurotoxic effects of quinolinic acid.
Collapse
Affiliation(s)
- N Müller
- Department for Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, München, Germany.
| | | |
Collapse
|
34
|
Yang LM, Hu B, Xia YH, Zhang BL, Zhao H. Lateral habenula lesions improve the behavioral response in depressed rats via increasing the serotonin level in dorsal raphe nucleus. Behav Brain Res 2007; 188:84-90. [PMID: 18054396 DOI: 10.1016/j.bbr.2007.10.022] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 10/22/2007] [Accepted: 10/25/2007] [Indexed: 12/28/2022]
Abstract
The dorsal raphe nucleus (DRN)-serotonin (5-HT) system plays a key role in stress-related psychiatric disorders such as anxiety and depression. The habenular nucleus (Hb) is closely connected with the DRN both morphologically and functionally. Here, we used two types of depressive animal models by exposing rats to chronic mild stress (CMS) and by chronically administering the tricyclic antidepressant clomipramine (CLI) in the rat during the neonatal state of life to produce adult depressed rats. We investigated the effects of lateral habenular nucleus (LHb) lesions on the behavioral response and on the level of 5-HT in DRN in the depressed rats. Forced-swimming test (FST) showed that the immobility time decreased, and the climbing time increased after lesioning LHb of depressed rats. Microdialysis results indicated that the 5-HT level in DRN in depressed rats was lower than that of the control group. Lesion of the LHb was followed by an increased 5-HT turnover in the DRN. Our results suggested that the lesion of the LHb could improve the behavioral response of the depressed rats and the 5-HT level of the DRN increased by LHb lesions could be involved in the effects.
Collapse
Affiliation(s)
- Li-Min Yang
- Department of Physiology, School of Basic Medical Sciences, Jilin University, 2 Xinmin Street, Changchun 130021, China
| | | | | | | | | |
Collapse
|
35
|
Tenenbaum M, Azab AN, Kaplanski J. Effects of estrogen against LPS-induced inflammation and toxicity in primary rat glial and neuronal cultures. ACTA ACUST UNITED AC 2007; 13:158-66. [PMID: 17621558 DOI: 10.1177/0968051907080428] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Several lines of evidence link inflammation with neurodegenerative diseases, which are aggravated by the age-related decline in estrogen levels in postmenopausal women. Lipopolysaccharide (LPS) is used widely to stimulate glial cells to produce pro-inflammatory mediators such as NO, PGE(2), and TNF-alpha, and was found to be toxic in high doses. We examined the effects of a physiological dose of 17beta-estradiol (E2) against LPS-induced inflammation and toxicity (cell death) in rat primary glial and neuronal cultures. Cultures were treated with 0.1 nM E2 for 24 h and then exposed to LPS 0.5-200 microg/ml for another 24 h. Levels of NO, PGE(2), and TNF-alpha in the culture medium were determined by the Griess reaction assay, radio-immunoassay, and enzyme-linked immunoassay, respectively. Cell death was quantified by measuring the leakage of lactate dehydrogenase (LDH) into the medium from dead or dying cells using the non-radioactive cytotoxicity assay. E2 significantly reduced the LPS-induced increase in NO and TNF-alpha (but not PGE(2)) production in glial cells. PGE(2) and TNF-alpha were undetectable in neuronal cultures, while only basal levels of NO were detected, even after stimulation with LPS. Moreover, pretreatment with E2 significantly reduced LPS-induced cell death, as measured by the release of LDH, in both glial and neuronal cultures. These results suggest that the neuroprotective effects attributed to E2 are derived, at least in part, from its anti-inflammatory and cytoprotective effects in both glial and neuronal cells.
Collapse
Affiliation(s)
- Meytal Tenenbaum
- Department of Clinical Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | |
Collapse
|