1
|
Zhu Y, Li SY, Zhang LJ, Lei B, Wang YC, Wang Z. Neuroprotection of the P2X7 receptor antagonist A740003 on retinal ganglion cells in experimental glaucoma. Neuroreport 2024; 35:822-831. [PMID: 38973496 DOI: 10.1097/wnr.0000000000002071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The aim of this study was to explore the neuroprotective effects of the P2X7 receptor antagonist A740003 on retinal ganglion cells (RGCs) in chronic intraocular hypertension (COH) experimental glaucoma mouse model. Bioinformatics was used to analyze the glaucoma-related genes. Western blot, real-time fluorescence quantitative PCR, and immunofluorescence staining techniques were employed to explore the mechanisms underlying the neuroprotective effects of A740003 on RGCs in COH retinas. Bioinformatic analysis revealed that oxidative stress, neuroinflammation, and cell apoptosis were highly related to the pathogenesis of glaucoma. In COH retinas, intraocular pressure elevation significantly increased the levels of translocator protein, a marker of microglial activation, which could be reversed by intravitreal preinjection of A740003. A740003 also suppressed the increased mRNA levels of proinflammatory cytokines interleukin (IL) 1β and tumor necrosis factor α in COH retinas. In addition, although the mRNA levels of anti-inflammatory cytokine IL-4 and IL-10 were kept unchanged in COH retinas, administration of A740003 could increase their levels. The mRNA and protein levels of Bax and cleaved caspase-3 were increased in COH retinas, which could be partially reversed by A740003, while the levels of Bcl-2 kept unchanged in COH retinas with or without the injections of A740003. Furthermore, A740003 partially attenuated the reduction in the numbers of Brn-3a-positive RGCs in COH mice. A740003 could provide neuroprotective roles on RGCs by inhibiting the microglia activation, attenuating the retinal inflammatory response, reducing the apoptosis of RGCs, and enhancing the survival of RGCs in COH experimental glaucoma.
Collapse
Affiliation(s)
- Yan Zhu
- Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou
| | - Shu-Ying Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai
| | - Lu-Jia Zhang
- Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou
| | - Bo Lei
- Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou
- Henan Eye Institute, Henan Eye Hospital, Henan Academy of Innovations in Medical Science, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yong-Chen Wang
- Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou
| | - Zhongfeng Wang
- Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai
| |
Collapse
|
2
|
Borrás T, Stepankoff M, Danias J. Genes as drugs for glaucoma: latest advances. Curr Opin Ophthalmol 2024; 35:131-137. [PMID: 38117663 DOI: 10.1097/icu.0000000000001025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
PURPOSE OF REVIEW To provide the latest advances on the future use of gene therapy for the treatment of glaucoma. RECENT FINDINGS In preclinical studies, a number of genes have been shown to be able to reduce elevated intraocular pressure (IOP), and to exert neuroprotection of the retinal ganglion cells. These genes target various mechanisms of action and include among others: MMP3 , PLAT, IκB, GLIS, SIRT, Tie-2, AQP1. Some of these as well as some previously identified genes ( MMP3, PLAT, BDNF, C3, TGFβ, MYOC, ANGPTL7 ) are starting to move onto drug development. At the same time, progress has been made in the methods to deliver and control gene therapeutics (advances in these areas are not covered in this review). SUMMARY While preclinical efforts continue in several laboratories, an increasing number of start-up and large pharmaceutical companies are working on developing gene therapeutics for glaucoma ( Sylentis, Quetera/Astellas, Exhaura, Ikarovec, Genentech, Regeneron, Isarna, Diorasis Therapeutics ). Despite the presence of generic medications to treat glaucoma, given the size of the potential world-wide market (∼$7B), it is likely that the number of companies developing glaucoma gene therapies will increase further in the near future.
Collapse
Affiliation(s)
- Teresa Borrás
- University of North Carolina at Chapel Hill, North Carolina
| | | | - John Danias
- Downstate Health Science University, SUNY, New York, USA
| |
Collapse
|
3
|
Sulak R, Liu X, Smedowski A. The concept of gene therapy for glaucoma: the dream that has not come true yet. Neural Regen Res 2024; 19:92-99. [PMID: 37488850 PMCID: PMC10479832 DOI: 10.4103/1673-5374.375319] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 07/26/2023] Open
Abstract
Gene therapies, despite of being a relatively new therapeutic approach, have a potential to become an important alternative to current treatment strategies in glaucoma. Since glaucoma is not considered a single gene disease, the identified goals of gene therapy would be rather to provide neuroprotection of retinal ganglion cells, especially, in intraocular-pressure-independent manner. The most commonly reported type of vector for gene delivery in glaucoma studies is adeno-associated virus serotype 2 that has a high tropism to retinal ganglion cells, resulting in long-term expression and low immunogenic profile. The gene therapy studies recruit inducible and genetic animal models of optic neuropathy, like DBA/2J mice model of high-tension glaucoma and the optic nerve crush-model. Reported gene therapy-based neuroprotection of retinal ganglion cells is targeting specific genes translating to growth factors (i.e., brain derived neurotrophic factor, and its receptor TrkB), regulation of apoptosis and neurodegeneration (i.e., Bcl-xl, Xiap, FAS system, nicotinamide mononucleotide adenylyl transferase 2, Digit3 and Sarm1), immunomodulation (i.e., Crry, C3 complement), modulation of neuroinflammation (i.e., erythropoietin), reduction of excitotoxicity (i.e., CamKIIα) and transcription regulation (i.e., Max, Nrf2). On the other hand, some of gene therapy studies focus on lowering intraocular pressure, by impacting genes involved in both, decreasing aqueous humor production (i.e., aquaporin 1), and increasing outflow facility (i.e., COX2, prostaglandin F2α receptor, RhoA/RhoA kinase signaling pathway, MMP1, Myocilin). The goal of this review is to summarize the current state-of-art and the direction of development of gene therapy strategies for glaucomatous neuropathy.
Collapse
Affiliation(s)
- Robert Sulak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Xiaonan Liu
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Adrian Smedowski
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- GlaucoTech Co., Katowice, Poland
| |
Collapse
|
4
|
Basavarajappa D, Galindo-Romero C, Gupta V, Agudo-Barriuso M, Gupta VB, Graham SL, Chitranshi N. Signalling pathways and cell death mechanisms in glaucoma: Insights into the molecular pathophysiology. Mol Aspects Med 2023; 94:101216. [PMID: 37856930 DOI: 10.1016/j.mam.2023.101216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Glaucoma is a complex multifactorial eye disease manifesting in retinal ganglion cell (RGC) death and optic nerve degeneration, ultimately causing irreversible vision loss. Research in recent years has significantly enhanced our understanding of RGC degenerative mechanisms in glaucoma. It is evident that high intraocular pressure (IOP) is not the only contributing factor to glaucoma pathogenesis. The equilibrium of pro-survival and pro-death signalling pathways in the retina strongly influences the function and survival of RGCs and optic nerve axons in glaucoma. Molecular evidence from human retinal tissue analysis and a range of experimental models of glaucoma have significantly contributed to unravelling these mechanisms. Accumulating evidence reveals a wide range of molecular signalling pathways that can operate -either alone or via intricate networks - to induce neurodegeneration. The roles of several molecules, including neurotrophins, interplay of intracellular kinases and phosphates, caveolae and adapter proteins, serine proteases and their inhibitors, nuclear receptors, amyloid beta and tau, and how their dysfunction affects retinal neurons are discussed in this review. We further underscore how anatomical alterations in various animal models exhibiting RGC degeneration and susceptibility to glaucoma-related neuronal damage have helped to characterise molecular mechanisms in glaucoma. In addition, we also present different regulated cell death pathways that play a critical role in RGC degeneration in glaucoma.
Collapse
Affiliation(s)
- Devaraj Basavarajappa
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| | - Caridad Galindo-Romero
- Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) & Ophthalmology Department, Universidad de Murcia, Murcia, Spain
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Marta Agudo-Barriuso
- Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) & Ophthalmology Department, Universidad de Murcia, Murcia, Spain
| | - Veer B Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Stuart L Graham
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
5
|
Zhao WJ, Fan CL, Hu XM, Ban XX, Wan H, He Y, Zhang Q, Xiong K. Regulated Cell Death of Retinal Ganglion Cells in Glaucoma: Molecular Insights and Therapeutic Potentials. Cell Mol Neurobiol 2023; 43:3161-3178. [PMID: 37338781 DOI: 10.1007/s10571-023-01373-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Glaucoma is a group of diseases characterized by the degeneration of retinal ganglion cells (RGCs) and progressive, irreversible vision loss. High intraocular pressure (IOP) heightens the likelihood of glaucoma and correlates with RGC loss. While the current glaucoma therapy prioritizes lower the IOP; however, RGC, and visual loss may persist even when the IOP is well-controlled. As such, discovering and creating IOP-independent neuroprotective strategies for safeguard RGCs is crucial for glaucoma management. Investigating and clarifying the mechanism behind RGC death to counteract its effects is a promising direction for glaucoma control. Empirical studies of glaucoma reveal the role of multiple regulated cell death (RCD) pathways in RGC death. This review delineates the RCD of RGCs following IOP elevation and optic nerve damage and discusses the substantial benefits of mitigating RCD in RGCs in preserving visual function.
Collapse
Affiliation(s)
- Wen-Juan Zhao
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China
| | - Chun-Ling Fan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China
| | - Xiao-Xia Ban
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China
| | - Hao Wan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China
| | - Ye He
- Changsha Aier Eye Hospital, Hunan Province, No. 188, Furong Road, Furong District, Changsha City, 410015, China
| | - Qi Zhang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
- Hunan Key Laboratory of Ophthalmology, Changsha, 410013, China.
| |
Collapse
|
6
|
Maes ME, Donahue RJ, Schlamp CL, Marola OJ, Libby RT, Nickells R. BAX activation in mouse retinal ganglion cells occurs in two temporally and mechanistically distinct steps. RESEARCH SQUARE 2023:rs.3.rs-2846437. [PMID: 37292963 PMCID: PMC10246290 DOI: 10.21203/rs.3.rs-2846437/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Pro-apoptotic BAX is a central mediator of retinal ganglion cell (RGC) death after optic nerve damage. BAX activation occurs in two stages including translocation of latent BAX to the mitochondrial outer membrane (MOM) and then permeabilization of the MOM to facilitate the release of apoptotic signaling molecules. As a critical component of RGC death, BAX is an attractive target for neuroprotective therapies and an understanding of the kinetics of BAX activation and the mechanisms controlling the two stages of this process in RGCs is potentially valuable in informing the development of a neuroprotective strategy. Methods The kinetics of BAX translocation were assessed by both static and live-cell imaging of a GFP-BAX fusion protein introduced into RGCs using AAV2-mediated gene transfer in mice. Activation of BAX was achieved using an acute optic nerve crush (ONC) protocol. Live-cell imaging of GFP-BAX was achieved using explants of mouse retina harvested 7 days after ONC. Kinetics of translocation in RGCs were compared to GFP-BAX translocation in 661W tissue culture cells. Permeabilization of GFP-BAX was assessed by staining with the 6A7 monoclonal antibody, which recognizes a conformational change in this protein after MOM insertion. Assessment of individual kinases associated with both stages of activation was made using small molecule inhibitors injected into the vitreous either independently or in concert with ONC surgery. The contribution of the Dual Leucine Zipper-JUN-N-Terminal Kinase cascade was evaluated using mice with a double conditional knock-out of both Mkk4 and Mkk7 . Results ONC induces the translocation of GFP-BAX in RGCs at a slower rate and with less intracellular synchronicity than 661W cells, but exhibits less variability among mitochondrial foci within a single cell. GFP-BAX was also found to translocate in all compartments of an RGC including the dendritic arbor and axon. Approximately 6% of translocating RGCs exhibited retrotranslocation of BAX immediately following translocation. Unlike tissue culture cells, which exhibit simultaneous translocation and permeabilization, RGCs exhibited a significant delay between these two stages, similar to detached cells undergoing anoikis. Translocation, with minimal permeabilization could be induced in a subset of RGCs using an inhibitor of Focal Adhesion Kinase (PF573228). Permeabilization after ONC, in a majority of RGCs, could be inhibited with a broad spectrum kinase inhibitor (sunitinib) or a selective inhibitor for p38/MAPK14 (SB203580). Intervention of DLK-JNK axis signaling abrogated GFP-BAX translocation after ONC. Conclusions A comparison between BAX activation kinetics in tissue culture cells and in cells of a complex tissue environment shows distinct differences indicating that caution should be used when translating findings from one condition to the other. RGCs exhibit both a delay between translocation and permeabilization and the ability for translocated BAX to be retrotranslocated, suggesting several stages at which intervention of the activation process could be exploited in the design of a therapeutic strategy.
Collapse
|
7
|
Basavarajappa D, Gupta V, Wall RV, Gupta V, Chitranshi N, Mirshahvaladi SSO, Palanivel V, You Y, Mirzaei M, Klistorner A, Graham SL. S1PR1 signaling attenuates apoptosis of retinal ganglion cells via modulation of cJun/Bim cascade and Bad phosphorylation in a mouse model of glaucoma. FASEB J 2023; 37:e22710. [PMID: 36520045 DOI: 10.1096/fj.202201346r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/09/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Glaucoma is a complex neurodegenerative disease characterized by optic nerve damage and apoptotic retinal ganglion cell (RGC) death, and is the leading cause of irreversible blindness worldwide. Among the sphingosine 1-phosphate receptors (S1PRs) family, S1PR1 is a highly expressed subtype in the central nervous system and has gained rapid attention as an important mediator of pathophysiological processes in the brain and the retina. Our recent study showed that mice treated orally with siponimod drug exerted neuroprotection via modulation of neuronal S1PR1 in experimental glaucoma. This study identified the molecular signaling pathway modulated by S1PR1 activation with siponimod treatment in RGCs in glaucomatous injury. We investigated the critical neuroprotective signaling pathway in vivo using mice deleted for S1PR1 in RGCs. Our results showed marked upregulation of the apoptotic pathway was associated with decreased Akt and Erk1/2 activation levels in the retina in glaucoma conditions. Activation of S1PR1 with siponimod treatment significantly increased neuroprotective Akt and Erk1/2 activation and attenuated the apoptotic signaling via suppression of c-Jun/Bim cascade and by increasing Bad phosphorylation. Conversely, deletion of S1PR1 in RGCs significantly increased the apoptotic cells in the ganglion cell layer in glaucoma and diminished the neuroprotective effects of siponimod treatment on Akt/Erk1/2 activation, c-Jun/Bim cascade, and Bad phosphorylation. Our data demonstrated that activation of S1PR1 in RGCs induces crucial neuroprotective signaling that suppresses the proapoptotic c-Jun/Bim cascade and increases antiapoptotic Bad phosphorylation. Our findings suggest that S1PR1 is a potential therapeutic target for neuroprotection of RGCs in glaucoma.
Collapse
Affiliation(s)
- Devaraj Basavarajappa
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Roshana Vander Wall
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Seyed Shahab Oddin Mirshahvaladi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Viswanthram Palanivel
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Yuyi You
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Alexander Klistorner
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Stuart L Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Sorenson CM, Song YS, Wang S, Darjatmoko SR, Saghiri MA, Ranji M, Sheibani N. Bim Expression Modulates Branching Morphogenesis of the Epithelium and Endothelium. Biomolecules 2022; 12:1295. [PMID: 36139134 PMCID: PMC9496469 DOI: 10.3390/biom12091295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Branching morphogenesis is a key developmental process during organogenesis, such that its disruption frequently leads to long-term consequences. The kidney and eye share many etiologies, perhaps, due to similar use of developmental branching morphogenesis and signaling pathways including cell death. Tipping the apoptotic balance towards apoptosis imparts a ureteric bud and retinal vascular branching phenotype similar to one that occurs in papillorenal syndrome. Here, to compare ureteric bud and retinal vascular branching in the context of decreased apoptosis, we investigated the impact of Bim, Bcl-2's rival force. In the metanephros, lack of Bim expression enhanced ureteric bud branching with increases in ureteric bud length, branch points, and branch end points. Unfortunately, enhanced ureteric bud branching also came with increased branching defects and other undesirable consequences. Although we did see increased nephron number and renal mass, we observed glomeruli collapse. Retinal vascular branching in the absence of Bim expression had similarities with the ureteric bud including increased vascular length, branching length, segment length, and branching interval. Thus, our studies emphasize the impact appropriate Bim expression has on the overall length and branching in both the ureteric bud and retinal vasculature.
Collapse
Affiliation(s)
- Christine M. Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Yong-Seok Song
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Shoujian Wang
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Soesiawati R. Darjatmoko
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Mohammad Ali Saghiri
- Biomaterial and Prosthodontic Laboratory, Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Mahsa Ranji
- EECS Department, I-Sense and I-Brain, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Nader Sheibani
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| |
Collapse
|
9
|
Mechanisms of Qing-Gan Li-Shui Formulation in Ameliorating Primary Open Angle Glaucoma: An Analysis Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8336131. [PMID: 35911154 PMCID: PMC9328959 DOI: 10.1155/2022/8336131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/07/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022]
Abstract
Objective In this study, we investigated the mechanism of Qing-Gan Li-Shui formulation (QGLSF) in treating primary open glaucoma (POAG) by network pharmacology and in vitro experiments. Methods The active pharmaceutical ingredients (APIs) of GLQSF (prepared with Prunella vulgaris, Kudzu root, Plantago asiatica, and Lycium barbarum) were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and Yet Another Traditional Chinese Medicine database (YATCM). The targets of POAG were screened out with GeneCards, OMIM, PharmGKB, Therapeutic Target Database (TTD), and DrugBank databases. The Venny platform was used to summarize the core targets. Topological analysis was performed using Cytoscape3.8.0. A protein-protein interaction network was plotted by STRING online. The key targets were subjected to GO and KEGG enrichment analyses. Finally, the effects of APIs were verified by a model of chloride hexahydrate (CoCl2)-induced retinal ganglion cells-5 (RGC-5). Results The main APIs were selected as quercetin (Que) by network pharmacology. Nine clusters of QGLSF targets were obtained by the PPI network analysis, including AKT-1, TP53, and JUN. KEGG enrichment analysis showed that these targets were mainly involved in the AGE-RAGE signaling pathway. By in vitro experiments, Que promoted cell proliferation. The secretion of AKT-1, TP53, JUN, AGE, and RAGE in the cell culture supernatant decreased, as shown by ELISA. The mRNA levels of AKT-1, TP53, JUN, and RAGE decreased, as shown by RT-PCR. QGLSF may employ the AGE-RAGE signaling pathway to counter POAG. Conclusion This study preliminarily elucidates the efficacy and mechanism of QGLSF in the treatment of POAG.
Collapse
|
10
|
Transcriptional control of retinal ganglion cell death after axonal injury. Cell Death Dis 2022; 13:244. [PMID: 35296661 PMCID: PMC8927149 DOI: 10.1038/s41419-022-04666-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 01/19/2022] [Accepted: 02/09/2022] [Indexed: 11/25/2022]
Abstract
Injury to the axons of retinal ganglion cells (RGCs) is a key pathological event in glaucomatous neurodegeneration. The transcription factors JUN (the target of the c-Jun N-terminal kinases, JNKs) and DDIT3/CHOP (a mediator of the endoplasmic reticulum stress response) have been shown to control the majority of proapoptotic signaling after mechanical axonal injury in RGCs and in other models of neurodegeneration. The downstream transcriptional networks controlled by JUN and DDIT3, which are critical for RGC death, however, are not well defined. To determine these networks, RNA was isolated from the retinas of wild-type mice and mice deficient in Jun, Ddit3, and both Jun and Ddit3 three days after mechanical optic nerve crush injury (CONC). RNA-sequencing data analysis was performed and immunohistochemistry was used to validate potential transcriptional signaling changes after axonal injury. This study identified downstream transcriptional changes after injury including both neuronal survival and proinflammatory signaling that were attenuated to differing degrees by loss of Ddit3, Jun, and Ddit3/Jun. These data suggest proinflammatory signaling in the retina might be secondary to activation of pro-death pathways in RGCs after acute axonal injury. These results determine the downstream transcriptional networks important for apoptotic signaling which may be important for ordering and staging the pro-degenerative signals after mechanical axonal injury.
Collapse
|
11
|
Donahue RJ, Fehrman RL, Gustafson JR, Nickells RW. BCLX L gene therapy moderates neuropathology in the DBA/2J mouse model of inherited glaucoma. Cell Death Dis 2021; 12:781. [PMID: 34376637 PMCID: PMC8355227 DOI: 10.1038/s41419-021-04068-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022]
Abstract
Axonal degeneration of retinal ganglion cells (RGCs) causes blindness in glaucoma. Currently, there are no therapies that target axons to prevent them from degenerating. Activation of the BAX protein has been shown to be the determining step in the intrinsic apoptotic pathway that causes RGCs to die in glaucoma. A putative role for BAX in axonal degeneration is less well elucidated. BCLXL (BCL2L1) is the primary antagonist of BAX in RGCs. We developed a mCherry-BCLXL fusion protein, which prevented BAX recruitment and activation to the mitochondria in tissue culture cells exposed to staurosporine. This fusion protein was then packaged into adeno-associated virus serotype 2, which was used to transduce RGCs after intravitreal injection and force its overexpression. Transduced RGCs express mCherry-BCLXL throughout their somas and axons along the entire optic tract. In a model of acute optic nerve crush, the transgene prevented the recruitment of a GFP-BAX fusion protein to mitochondria and provided long-term somal protection up to 12 weeks post injury. To test the efficacy in glaucoma, DBA/2J mice were transduced at 5 months of age, just prior to the time they begin to exhibit ocular hypertension. Gene therapy with mCherry-BCLXL did not affect the longitudinal history of intraocular pressure elevation compared to naive mice but did robustly attenuate both RGC soma pathology and axonal degeneration in the optic nerve at both 10.5 and 12 months of age. BCLXL gene therapy is a promising candidate for glaucoma therapy.
Collapse
Affiliation(s)
- Ryan J Donahue
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Rachel L Fehrman
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jenna R Gustafson
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Robert W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA.
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
12
|
Marola OJ, Syc-Mazurek SB, Howell GR, Libby RT. Endothelin 1-induced retinal ganglion cell death is largely mediated by JUN activation. Cell Death Dis 2020; 11:811. [PMID: 32980857 PMCID: PMC7519907 DOI: 10.1038/s41419-020-02990-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/02/2023]
Abstract
Glaucoma is a neurodegenerative disease characterized by loss of retinal ganglion cells (RGCs), the output neurons of the retina. Multiple lines of evidence show the endothelin (EDN, also known as ET) system is important in glaucomatous neurodegeneration. To date, the molecular mechanisms within RGCs driving EDN-induced RGC death have not been clarified. The pro-apoptotic transcription factor JUN (the canonical target of JNK signaling) and the endoplasmic reticulum stress effector and transcription factor DNA damage inducible transcript 3 (DDIT3, also known as CHOP) have been shown to act downstream of EDN receptors. Previous studies demonstrated that JUN and DDIT3 were important regulators of RGC death after glaucoma-relevant injures. Here, we characterized EDN insult in vivo and investigated the role of JUN and DDIT3 in EDN-induced RGC death. To accomplish this, EDN1 ligand was intravitreally injected into the eyes of wildtype, Six3-cre+Junfl/fl (Jun-/-), Ddit3 null (Ddit3-/-), and Ddit3-/-Jun-/- mice. Intravitreal EDN1 was sufficient to drive RGC death in vivo. EDN1 insult caused JUN activation in RGCs, and deletion of Jun from the neural retina attenuated RGC death after EDN insult. However, deletion of Ddit3 did not confer significant protection to RGCs after EDN1 insult. These results indicate that EDN caused RGC death via a JUN-dependent mechanism. In addition, EDN signaling is known to elicit potent vasoconstriction. JUN signaling was shown to drive neuronal death after ischemic insult. Therefore, the effects of intravitreal EDN1 on retinal vessel diameter and hypoxia were explored. Intravitreal EDN1 caused transient retinal vasoconstriction and regions of RGC and Müller glia hypoxia. Thus, it remains a possibility that EDN elicits a hypoxic insult to RGCs, causing apoptosis via JNK-JUN signaling. The importance of EDN-induced vasoconstriction and hypoxia in causing RGC death after EDN insult and in models of glaucoma requires further investigation.
Collapse
Affiliation(s)
- Olivia J. Marola
- grid.412750.50000 0004 1936 9166Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY USA ,grid.16416.340000 0004 1936 9174The Center for Visual Sciences, University of Rochester, Rochester, NY USA
| | - Stephanie B. Syc-Mazurek
- grid.412750.50000 0004 1936 9166Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Medical Scientist Training Program, University of Rochester Medical Center, Rochester, NY USA
| | - Gareth R. Howell
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory, 600 Main Street, Bar Harbor, ME USA
| | - Richard T. Libby
- grid.412750.50000 0004 1936 9166Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY USA ,grid.16416.340000 0004 1936 9174The Center for Visual Sciences, University of Rochester, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY USA
| |
Collapse
|
13
|
Donahue RJ, Maes ME, Grosser JA, Nickells RW. BAX-Depleted Retinal Ganglion Cells Survive and Become Quiescent Following Optic Nerve Damage. Mol Neurobiol 2019; 57:1070-1084. [PMID: 31673950 DOI: 10.1007/s12035-019-01783-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022]
Abstract
Removal of the Bax gene from mice completely protects the somas of retinal ganglion cells (RGCs) from apoptosis following optic nerve injury. This makes BAX a promising therapeutic target to prevent neurodegeneration. In this study, Bax+/- mice were used to test the hypothesis that lowering the quantity of BAX in RGCs would delay apoptosis following optic nerve injury. RGCs were damaged by performing optic nerve crush (ONC) and then immunostaining for phospho-cJUN, and quantitative PCR were used to monitor the status of the BAX activation mechanism in the months following injury. The apoptotic susceptibility of injured cells was directly tested by virally introducing GFP-BAX into Bax-/- RGCs after injury. The competency of quiescent RGCs to reactivate their BAX activation mechanism was tested by intravitreal injection of the JNK pathway agonist, anisomycin. Twenty-four weeks after ONC, Bax+/- mice had significantly less cell loss in their RGC layer than Bax+/+ mice 3 weeks after ONC. Bax+/- and Bax+/+ RGCs exhibited similar patterns of nuclear phospho-cJUN accumulation immediately after ONC, which persisted in Bax+/- RGCs for up to 7 weeks before abating. The transcriptional activation of BAX-activating genes was similar in Bax+/- and Bax+/+ RGCs following ONC. Intriguingly, cells deactivated their BAX activation mechanism between 7 and 12 weeks after crush. Introduction of GFP-BAX into Bax-/- cells at 4 weeks after ONC showed that these cells had a nearly normal capacity to activate this protein, but this capacity was lost 8 weeks after crush. Collectively, these data suggest that 8-12 weeks after crush, damaged cells no longer displayed increased susceptibility to BAX activation relative to their naïve counterparts. In this same timeframe, retinal glial activation and the signaling of the pro-apoptotic JNK pathway also abated. Quiescent RGCs did not show a timely reactivation of their JNK pathway following intravitreal injection with anisomycin. These findings demonstrate that lowering the quantity of BAX in RGCs is neuroprotective after acute injury. Damaged RGCs enter a quiescent state months after injury and are no longer responsive to an apoptotic stimulus. Quiescent RGCs will require rejuvenation to reacquire functionality.
Collapse
Affiliation(s)
- Ryan J Donahue
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
| | - Margaret E Maes
- Department of Life Sciences, Institute of Science and Technology, Klosterneuburg, Austria
| | - Joshua A Grosser
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA
| | - Robert W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
14
|
Marola OJ, Syc-Mazurek SB, Libby RT. DDIT3 (CHOP) contributes to retinal ganglion cell somal loss but not axonal degeneration in DBA/2J mice. Cell Death Discov 2019; 5:140. [PMID: 31632741 PMCID: PMC6787076 DOI: 10.1038/s41420-019-0220-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 09/04/2019] [Indexed: 01/08/2023] Open
Abstract
Glaucoma is an age-related neurodegenerative disease characterized by the progressive loss of retinal ganglion cells (RGCs). Chronic ocular hypertension, an important risk factor for glaucoma, leads to RGC axonal injury at the optic nerve head. This insult triggers molecularly distinct cascades governing RGC somal apoptosis and axonal degeneration. The molecular mechanisms activated by ocular hypertensive insult that drive both RGC somal apoptosis and axonal degeneration are incompletely understood. The cellular response to endoplasmic reticulum stress and induction of pro-apoptotic DNA damage inducible transcript 3 (DDIT3, also known as CHOP) have been implicated as drivers of neurodegeneration in many disease models, including glaucoma. RGCs express DDIT3 after glaucoma-relevant insults, and importantly, DDIT3 has been shown to contribute to both RGC somal apoptosis and axonal degeneration after acute induction of ocular hypertension. However, the role of DDIT3 in RGC somal and axonal degeneration has not been critically tested in a model of age-related chronic ocular hypertension. Here, we investigated the role of DDIT3 in glaucomatous RGC death using an age-related, naturally occurring ocular hypertensive mouse model of glaucoma, DBA/2J mice (D2). To accomplish this, a null allele of Ddit3 was backcrossed onto the D2 background. Homozygous Ddit3 deletion did not alter gross retinal or optic nerve head morphology, nor did it change the ocular hypertensive profile of D2 mice. In D2 mice, Ddit3 deletion conferred mild protection to RGC somas, but did not significantly prevent RGC axonal degeneration. Together, these data suggest that DDIT3 plays a minor role in perpetuating RGC somal apoptosis caused by chronic ocular hypertension-induced axonal injury, but does not significantly contribute to distal axonal degeneration.
Collapse
Affiliation(s)
- Olivia J Marola
- 1Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY USA.,2Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY USA.,3The Center for Visual Sciences, University of Rochester, Rochester, NY USA
| | - Stephanie B Syc-Mazurek
- 1Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY USA.,4Medical Scientist Training Program, University of Rochester Medical Center, Rochester, NY USA
| | - Richard T Libby
- 1Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY USA.,3The Center for Visual Sciences, University of Rochester, Rochester, NY USA.,5Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY USA
| |
Collapse
|
15
|
Hollville E, Romero SE, Deshmukh M. Apoptotic cell death regulation in neurons. FEBS J 2019; 286:3276-3298. [PMID: 31230407 DOI: 10.1111/febs.14970] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/15/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022]
Abstract
Apoptosis plays a major role in shaping the developing nervous system during embryogenesis as neuronal precursors differentiate to become post-mitotic neurons. However, once neurons are incorporated into functional circuits and become mature, they greatly restrict their capacity to die via apoptosis, thus allowing the mature nervous system to persist in a healthy and functional state throughout life. This robust restriction of the apoptotic pathway during neuronal differentiation and maturation is defined by multiple unique mechanisms that function to more precisely control and restrict the intrinsic apoptotic pathway. However, while these mechanisms are necessary for neuronal survival, mature neurons are still capable of activating the apoptotic pathway in certain pathological contexts. In this review, we highlight key mechanisms governing the survival of post-mitotic neurons, while also detailing the physiological and pathological contexts in which neurons are capable of overcoming this high apoptotic threshold.
Collapse
Affiliation(s)
| | - Selena E Romero
- Neuroscience Center, UNC Chapel Hill, NC, USA.,Department of Cell Biology and Physiology, UNC Chapel Hill, NC, 27599-7250, USA
| | - Mohanish Deshmukh
- Neuroscience Center, UNC Chapel Hill, NC, USA.,Department of Cell Biology and Physiology, UNC Chapel Hill, NC, 27599-7250, USA
| |
Collapse
|
16
|
Syc-Mazurek SB, Libby RT. Axon injury signaling and compartmentalized injury response in glaucoma. Prog Retin Eye Res 2019; 73:100769. [PMID: 31301400 DOI: 10.1016/j.preteyeres.2019.07.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022]
Abstract
Axonal degeneration is an active, highly controlled process that contributes to beneficial processes, such as developmental pruning, but also to neurodegeneration. In glaucoma, ocular hypertension leads to vision loss by killing the output neurons of the retina, the retinal ganglion cells (RGCs). Multiple processes have been proposed to contribute to and/or mediate axonal injury in glaucoma, including: neuroinflammation, loss of neurotrophic factors, dysregulation of the neurovascular unit, and disruption of the axonal cytoskeleton. While the inciting injury to RGCs in glaucoma is complex and potentially heterogeneous, axonal injury is ultimately thought to be the key insult that drives glaucomatous neurodegeneration. Glaucomatous neurodegeneration is a complex process, with multiple molecular signals contributing to RGC somal loss and axonal degeneration. Furthermore, the propagation of the axonal injury signal is complex, with injury triggering programs of degeneration in both the somal and axonal compartment. Further complicating this process is the involvement of multiple cell types that are known to participate in the process of axonal and neuronal degeneration after glaucomatous injury. Here, we review the axonal signaling that occurs after injury and the molecular signaling programs currently known to be important for somal and axonal degeneration after glaucoma-relevant axonal injuries.
Collapse
Affiliation(s)
- Stephanie B Syc-Mazurek
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA; Neuroscience Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard T Libby
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA; Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA; The Center for Visual Sciences, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
17
|
Pérez de Lara MJ, Avilés-Trigueros M, Guzmán-Aránguez A, Valiente-Soriano FJ, de la Villa P, Vidal-Sanz M, Pintor J. Potential role of P2X7 receptor in neurodegenerative processes in a murine model of glaucoma. Brain Res Bull 2019; 150:61-74. [PMID: 31102752 DOI: 10.1016/j.brainresbull.2019.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 04/23/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022]
Abstract
Glaucoma is a common cause of visual impairment and blindness, characterized by retinal ganglion cell (RGC) death. The mechanisms that trigger the development of glaucoma remain unknown and have gained significant relevance in the study of this neurodegenerative disease. P2X7 purinergic receptors (P2X7R) could be involved in the regulation of the synaptic transmission and neuronal death in the retina through different pathways. The aim of this study was to characterize the molecular signals underlying glaucomatous retinal injury. The time-course of functional, morphological, and molecular changes in the glaucomatous retina of the DBA/2J mice were investigated. The expression and localization of P2X7R was analysed in relation with retinal markers. Caspase-3, JNK, and p38 were evaluated in control and glaucomatous mice by immunohistochemical and western-blot analysis. Furthermore, electroretinogram recordings (ERG) were performed to assess inner retina dysfunction. Glaucomatous mice exhibited changes in P2X7R expression as long as the pathology progressed. There was P2X7R overexpression in RGCs, the primary injured neurons, which correlated with the loss of function through ERG measurements. All analyzed MAPK and caspase-3 proteins were upregulated in the DBA/2J retinas suggesting a pro-apoptotic cell death. The increase in P2X7Rs presence may contribute, together with other factors, to the changes in retinal functionality and the concomitant death of RGCs. These findings provide evidence of possible intracellular pathways responsible for apoptosis regulation during glaucomatous degeneration.
Collapse
Affiliation(s)
- María J Pérez de Lara
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Complutense University of Madrid, c/Arcos de Jalón 118, E-28037, Madrid, Spain
| | - Marcelino Avilés-Trigueros
- Laboratory of Experimental Ophthalmology, Dept. of Ophthalmology, Faculty of Medicine, University of Murcia and Murcia Institute of Bio-Health Research (IMIB), E-30120, El Palmar, Murcia, Spain
| | - Ana Guzmán-Aránguez
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Complutense University of Madrid, c/Arcos de Jalón 118, E-28037, Madrid, Spain
| | - F Javier Valiente-Soriano
- Laboratory of Experimental Ophthalmology, Dept. of Ophthalmology, Faculty of Medicine, University of Murcia and Murcia Institute of Bio-Health Research (IMIB), E-30120, El Palmar, Murcia, Spain
| | - Pedro de la Villa
- Systems Biology Department, Faculty of Medicine, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Manuel Vidal-Sanz
- Laboratory of Experimental Ophthalmology, Dept. of Ophthalmology, Faculty of Medicine, University of Murcia and Murcia Institute of Bio-Health Research (IMIB), E-30120, El Palmar, Murcia, Spain.
| | - Jesús Pintor
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Complutense University of Madrid, c/Arcos de Jalón 118, E-28037, Madrid, Spain
| |
Collapse
|
18
|
Mkk4 and Mkk7 are important for retinal development and axonal injury-induced retinal ganglion cell death. Cell Death Dis 2018; 9:1095. [PMID: 30367030 PMCID: PMC6203745 DOI: 10.1038/s41419-018-1079-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/28/2018] [Accepted: 09/10/2018] [Indexed: 01/25/2023]
Abstract
The mitogen-activated protein kinase (MAPK) pathway has been shown to be involved in both neurodevelopment and neurodegeneration. c-Jun N-terminal kinase (JNK), a MAPK important in retinal development and after optic nerve crush injury, is regulated by two upstream kinases: MKK4 and MKK7. The specific requirements of MKK4 and MKK7 in retinal development and retinal ganglion cell (RGC) death after axonal injury, however, are currently undefined. Optic nerve injury is an important insult in many neurologic conditions including traumatic, ischemic, inflammatory, and glaucomatous optic neuropathies. Mice deficient in Mkk4, Mkk7, and both Mkk4 and Mkk7 were generated. Immunohistochemistry was used to study the distribution and structure of retinal cell types and to assess RGC survival after optic nerve injury (mechanical controlled optic nerve crush (CONC)). Adult Mkk4- and Mkk7-deficient retinas had all retinal cell types, and with the exception of small areas of disrupted photoreceptor lamination in Mkk4-deficient mice, the retinas of both mutants were grossly normal. Deficiency of Mkk4 or Mkk7 reduced JNK signaling in RGCs after axonal injury and resulted in a significantly greater percentage of surviving RGCs 35 days after CONC as compared to wild-type controls (Mkk4: 51.5%, Mkk7: 29.1%, WT: 15.2%; p < 0.001). Combined deficiency of Mkk4 and Mkk7 caused failure of optic nerve formation, irregular retinal axonal trajectories, disruption of retinal lamination, clumping of RGC bodies, and dendritic fasciculation of dopaminergic amacrine cells. These results suggest that MKK4 and MKK7 may serve redundant and unique roles in molecular signaling important for retinal development and injury response following axonal insult.
Collapse
|
19
|
Rausch RL, Libby RT, Kiernan AE. Ciliary margin-derived BMP4 does not have a major role in ocular development. PLoS One 2018; 13:e0197048. [PMID: 29738572 PMCID: PMC5940228 DOI: 10.1371/journal.pone.0197048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/25/2018] [Indexed: 11/18/2022] Open
Abstract
Heterozygous Bmp4 mutations in humans and mice cause severe ocular anterior segment dysgenesis (ASD). Abnormalities include pupil displacement, corneal opacity, iridocorneal adhesions, and variable intraocular pressure, as well as some retinal and vascular defects. It is presently not known what source of BMP4 is responsible for these defects, as BMP4 is expressed in several developing ocular and surrounding tissues. In particular, BMP4 is expressed in the ciliary margins of the optic cup which give rise to anterior segment structures such as the ciliary body and iris, making it a good candidate for the required source of BMP4 for anterior segment development. Here, we test whether ciliary margin-derived BMP4 is required for ocular development using two different conditional knockout approaches. In addition, we compared the conditional deletion phenotypes with Bmp4 heterozygous null mice. Morphological, molecular, and functional assays were performed on adult mutant mice, including histology, immunohistochemistry, in vivo imaging, and intraocular pressure measurements. Surprisingly, in contrast to Bmp4 heterozygous mutants, our analyses revealed that the anterior and posterior segments of Bmp4 conditional knockouts developed normally. These results indicate that ciliary margin-derived BMP4 does not have a major role in ocular development, although subtle alterations could not be ruled out. Furthermore, we demonstrated that the anterior and posterior phenotypes observed in Bmp4 heterozygous animals showed a strong propensity to co-occur, suggesting a common, non-cell autonomous source for these defects.
Collapse
Affiliation(s)
- Rebecca L. Rausch
- Neuroscience Graduate Program, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, United States of America
- Center for Visual Sciences, University of Rochester, Rochester, NY, United States of America
| | - Richard T. Libby
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, United States of America
- Center for Visual Sciences, University of Rochester, Rochester, NY, United States of America
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Amy E. Kiernan
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States of America
| |
Collapse
|
20
|
Rausch RL, Libby RT, Kiernan AE. Trabecular meshwork morphogenesis: A comparative analysis of wildtype and anterior segment dysgenesis mouse models. Exp Eye Res 2018; 170:81-91. [PMID: 29452107 DOI: 10.1016/j.exer.2018.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/12/2018] [Accepted: 02/12/2018] [Indexed: 10/18/2022]
Abstract
The trabecular meshwork (TM), a tissue residing in the iridocorneal angle of the eye, is the primary site of aqueous humor outflow and often develops abnormally in children with anterior segment dysgenesis (ASD). However, the cellular mechanisms underlying both normal and pathophysiological TM formation are poorly understood. Here, we improve the characterization of TM development via morphological and molecular analyses. We first assessed the TM of wild-type C57BL/6J mice at multiple time points throughout development (E15.5-P21). The morphology of TM cells, rate of cell division, presence of apoptotic cell death, and age of onset of an established TM marker (αSMA) were each assessed in the developing iridocorneal angle. We discovered that TM cells are identifiable histologically at P1, which coincided with both the onset of αSMA expression and a significant decrease in TM precursor cell proliferation. Significant apoptotic cell death was not detected during TM development. These findings were then used to assess two mouse models of ASD. Jag1 and Bmp4 heterozygous null mice display ASD phenotypes in the adult, including TM hypoplasia and corneal adherence to the iris. We further discovered that both mutants exhibited similar patterns of developmental TM dysgenesis at P1, P5, and P10. Our data indicate that P1 is an important time point in TM development and that TM dysgenesis in Jag1 and Bmp4 heterozygous null mice likely results from impaired TM cell migration and/or differentiation.
Collapse
Affiliation(s)
- Rebecca L Rausch
- Neuroscience Graduate Program, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Visual Sciences, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Richard T Libby
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Visual Sciences, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Amy E Kiernan
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
21
|
Syc-Mazurek SB, Fernandes KA, Wilson MP, Shrager P, Libby RT. Together JUN and DDIT3 (CHOP) control retinal ganglion cell death after axonal injury. Mol Neurodegener 2017; 12:71. [PMID: 28969695 PMCID: PMC5625643 DOI: 10.1186/s13024-017-0214-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/22/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Optic nerve injury is an important pathological component in neurodegenerative diseases such as traumatic optic neuropathies and glaucoma. The molecular signaling pathway(s) critical for retinal ganglion cell (RGC) death after axonal insult, however, is/are not fully defined. RGC death after axonal injury is known to occur by BAX-dependent apoptosis. Two transcription factors JUN (the canonical target of JNK) and DDIT3 (CHOP; a key mediator of the endoplasmic reticulum stress response) are known to be important apoptotic signaling molecules after axonal injury, including in RGCs. However, neither Jun nor Ddit3 deficiency provide complete protection to RGCs after injury. Since Jun and Ddit3 are important apoptotic signaling molecules, we sought to determine if their combined deficiency might provide additive protection to RGCs after axonal injury. METHODS To determine if DDIT3 regulated the expression of JUN after an axonal insult, mice deficient for Ddit3 were examined after optic nerve crush (ONC). In order to critically test the importance of these genes in RGC death after axonal injury, RGC survival was assessed at multiple time-points after ONC (14, 35, 60, and 120 days after injury) in Jun, Ddit3, and combined Jun/Ddit3 deficient mice. Finally, to directly assess the role of JUN and DDIT3 in axonal degeneration, compound actions potentials were recorded from Jun, Ddit3, and Jun/Ddit3 deficient mice after ONC. RESULTS Single and combined deficiency of Jun and Ddit3 did not appear to alter gross retinal morphology. Ddit3 deficiency did not alter expression of JUN after axonal injury. Deletion of both Jun and Ddit3 provided significantly greater long-term protection to RGCs as compared to Jun or Ddit3 deficiency alone. Finally, despite the profound protection to RGC somas provided by the deficiency of Jun plus Ddit3, their combined loss did not lessen axonal degeneration. CONCLUSIONS These results suggest JUN and DDIT3 are independently regulated pro-death signaling molecules in RGCs and together account for the vast majority of apoptotic signaling in RGCs after axonal injury. Thus, JUN and DDIT3 may represent key molecular hubs that integrate upstream signaling events triggered by axonal injury with downstream transcriptional events that ultimately culminate in RGC apoptosis.
Collapse
Affiliation(s)
- Stephanie B Syc-Mazurek
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Box 314, 601 Elmwood Ave, Rochester, NY, 14642, USA.,Neuroscience Graduate Program, Rochester, USA
| | - Kimberly A Fernandes
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Box 314, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Michael P Wilson
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Box 314, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | | | - Richard T Libby
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Box 314, 601 Elmwood Ave, Rochester, NY, 14642, USA. .,Department of Biomedical Genetics, Rochester, USA. .,The Center for Visual Sciences, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
22
|
JUN is important for ocular hypertension-induced retinal ganglion cell degeneration. Cell Death Dis 2017; 8:e2945. [PMID: 28726785 PMCID: PMC5550879 DOI: 10.1038/cddis.2017.338] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/06/2017] [Accepted: 06/12/2017] [Indexed: 12/14/2022]
Abstract
Ocular hypertension, a major risk factor for glaucoma, is thought to trigger glaucomatous neurodegeneration through injury to retinal ganglion cell (RGC) axons. The molecular signaling pathway leading from ocular hypertension to RGC degeneration, however, is not well defined. JNK signaling, a component of the mitogen-activated protein kinase (MAPK) family, and its canonical target, the transcription factor JUN, have been shown to regulate neurodegeneration in many different systems. JUN is expressed after glaucoma-relevant injuries and Jun deficiency protects RGCs after mechanical injury to the optic nerve. Here, we tested the importance of JNK–JUN signaling for RGC death after ocular hypertensive axonal injury in an age-related, mouse model of ocular hypertension. Immunohistochemistry was performed to evaluate JUN expression in ocular hypertensive DBA/2J mice. JUN was expressed in a temporal and spatial pattern consistent with a role in glaucomatous injury. To determine the importance of JUN in ocular hypertension-induced RGC death, a floxed allele of Jun and a retinal expressed cre recombinase (Six3-cre) were backcrossed onto the DBA/2J background. Intraocular pressure (IOP) and gross morphology of the retina and optic nerve head were assessed to determine whether removing Jun from the developing retina altered IOP elevation or retinal development. Jun deficiency in the retina did not alter DBA/2J IOP elevation or retinal development. Optic nerves and retinas were assessed at ages known to have glaucomatous damage in DBA/2J mice. Jun deficiency protected RGC somas from ocular hypertensive injury, but did not protect RGC axons from glaucomatous neurodegeneration. Jun is a major regulator of RGC somal degeneration after glaucomatous ocular hypertensive injury. These results suggest in glaucomatous neurodegeneration, JNK–JUN signaling has a major role as a pro-death signaling pathway between axonal injury and somal degeneration.
Collapse
|
23
|
Roy Chowdhury U, Bahler CK, Holman BH, Fautsch MP. ATP-sensitive potassium (KATP) channel openers diazoxide and nicorandil lower intraocular pressure by activating the Erk1/2 signaling pathway. PLoS One 2017; 12:e0179345. [PMID: 28594895 PMCID: PMC5464668 DOI: 10.1371/journal.pone.0179345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/26/2017] [Indexed: 01/17/2023] Open
Abstract
Elevated intraocular pressure is the most prevalent and only treatable risk factor for glaucoma, a degenerative disease of the optic nerve. While treatment options to slow disease progression are available, all current therapeutic and surgical treatments have unwanted side effects or limited efficacy, resulting in the need to identify new options. Previous reports from our laboratory have established a novel ocular hypotensive effect of ATP-sensitive potassium channel (KATP) openers including diazoxide (DZ) and nicorandil (NCD). In the current study, we evaluated the role of Erk1/2 signaling pathway in KATP channel opener mediated reduction of intraocular pressure (IOP). Western blot analysis of DZ and NCD treated primary normal trabecular meshwork (NTM) cells, human TM (isolated from perfusion cultures of human anterior segments) and mouse eyes showed increased phosphorylation of Erk1/2 when compared to vehicle treated controls. DZ and NCD mediated pressure reduction (p<0.02) in human anterior segments (n = 7 for DZ, n = 4 for NCD) was abrogated by U0126 (DZ + U0126: -9.7 ± 11.5%, p = 0.11; NCD + U0126: -0.1 ± 11.5%, p = 1.0). In contrast, U0126 had no effect on latanoprostfree acid-induced pressure reduction (-52.5 ± 6.8%, n = 4, p = 0.001). In mice, DZ and NCD reduced IOP (DZ, 14.9 ± 3.8%, NCD, 16.9 ± 2.5%, n = 10, p<0.001), but the pressure reduction was inhibited by U0126 (DZ + U0126, 0.7 ± 3.0%; NCD + U0126, 0.9 ± 2.2%, n = 10, p>0.1). Histologic evaluation of transmission electron micrographs from DZ + U0126 and NCD + U0126 treated eyes revealed no observable morphological changes in the ultrastructure of the conventional outflow pathway. Taken together, the results indicate that the Erk1/2 pathway is necessary for IOP reduction by KATP channel openers DZ and NCD.
Collapse
Affiliation(s)
- Uttio Roy Chowdhury
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Cindy K. Bahler
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Bradley H. Holman
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michael P. Fautsch
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
24
|
Maes ME, Schlamp CL, Nickells RW. BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells. Prog Retin Eye Res 2017; 57:1-25. [PMID: 28064040 DOI: 10.1016/j.preteyeres.2017.01.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 12/19/2022]
Abstract
Retinal ganglion cell (RGC) death is the principal consequence of injury to the optic nerve. For several decades, we have understood that the RGC death process was executed by apoptosis, suggesting that there may be ways to therapeutically intervene in this cell death program and provide a more direct treatment to the cells and tissues affected in diseases like glaucoma. A major part of this endeavor has been to elucidate the molecular biological pathways active in RGCs from the point of axonal injury to the point of irreversible cell death. A major component of this process is the complex interaction of members of the BCL2 gene family. Three distinct family members of proteins orchestrate the most critical junction in the apoptotic program of RGCs, culminating in the activation of pro-apoptotic BAX. Once active, BAX causes irreparable damage to mitochondria, while precipitating downstream events that finish off a dying ganglion cell. This review is divided into two major parts. First, we summarize the extent of knowledge of how BCL2 gene family proteins interact to facilitate the activation and function of BAX. This area of investigation has rapidly changed over the last few years and has yielded a dramatically different mechanistic understanding of how the intrinsic apoptotic program is run in mammalian cells. Second, we provided a comprehensive analysis of nearly two decades of investigation of the role of BAX in the process of RGC death, much of which has provided many important insights into the overall pathophysiology of diseases like glaucoma.
Collapse
Affiliation(s)
- Margaret E Maes
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Cassandra L Schlamp
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
25
|
Bi MM, Hong S, Ma LJ, Zhou HY, Lu J, Zhao J, Zheng YJ. Chloride channel protein 2 prevents glutamate-induced apoptosis in retinal ganglion cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:705-11. [PMID: 27635193 PMCID: PMC5010841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVES The purpose of this study was to investigate the role of chloride channel protein 2 (ClC-2) in glutamate-induced apoptosis in the retinal ganglion cell line (RGC-5). MATERIALS AND METHODS RGC-5 cells were treated with 1 mM glutamate for 24 hr. The expression of ClC-2, Bax, and Bcl-2 was detected by western blot analysis. Cell survival and apoptosis were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays, respectively. Caspase-3 and -9 activities were determined by a colorimetric assay. The roles of ClC-2 in glutamate-induced apoptosis were examined by using ClC-2 complementary deoxyribonucleic acid (cDNA) and small inference ribonucleic acid (RNA) transfection technology. RESULTS Overexpression of ClC-2 in RGC-5 cells significantly decreased glutamate-induced apoptosis and increased cell viability, whereas silencing of ClC-2 with short hairpin (sh) RNA produced opposite effects. ClC-2 overexpression increased the expression of Bcl-2, decreased the expression of Bax, and decreased caspase-3 and -9 activation in RGC-5 cells treated with glutamate, but silencing of ClC-2 produced opposite effects. CONCLUSION Our data suggest that ClC-2 chloride channels might play a protective role in glutamate-induced apoptosis in retinal ganglion cells via the mitochondria-dependent apoptosis pathway.
Collapse
Affiliation(s)
- Miao-Miao Bi
- Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin, 130041, P.R. China,Department of Ophthalmology, The China-Japan Union Hospitial of Jilin University, Jilin University, Changchun, Jilin, 130033, Xiantai Street No. 126, Jilin Province, China
| | - Sen Hong
- Department of Colon and Anal Surgery, the First hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Ling-Jun Ma
- Department of Ophthalmology, The China-Japan Union Hospitial of Jilin University, Jilin University, Changchun, Jilin, 130033, Xiantai Street No. 126, Jilin Province, China
| | - Hong-Yan Zhou
- Department of Ophthalmology, The China-Japan Union Hospitial of Jilin University, Jilin University, Changchun, Jilin, 130033, Xiantai Street No. 126, Jilin Province, China
| | - Jia Lu
- Department of Ophthalmology, The China-Japan Union Hospitial of Jilin University, Jilin University, Changchun, Jilin, 130033, Xiantai Street No. 126, Jilin Province, China
| | - Jing Zhao
- Department of Ophthalmology, The China-Japan Union Hospitial of Jilin University, Jilin University, Changchun, Jilin, 130033, Xiantai Street No. 126, Jilin Province, China
| | - Ya-Juan Zheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin, 130041, P.R. China,Corresponding author: Ya-Juan Zheng. Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin 130041; Tel: 13843017821;
| |
Collapse
|
26
|
Bosco A, Breen KT, Anderson SR, Steele MR, Calkins DJ, Vetter ML. Glial coverage in the optic nerve expands in proportion to optic axon loss in chronic mouse glaucoma. Exp Eye Res 2016; 150:34-43. [PMID: 26851485 DOI: 10.1016/j.exer.2016.01.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 12/21/2015] [Accepted: 01/23/2016] [Indexed: 01/08/2023]
Abstract
Within the white matter, axonal loss by neurodegeneration is coupled to glial cell changes in gene expression, structure and function commonly termed gliosis. Recently, we described the highly variable expansion of gliosis alebosco@neuro.utah.edu in degenerative optic nerves from the DBA/2J mouse model of chronic, age-related glaucoma. Here, to estimate and compare the levels of axonal loss with the expansion of glial coverage and axonal degeneration in DBA/2J nerves, we combined semiautomatic axon counts with threshold-based segmentation of total glial/scar areas and degenerative axonal profiles in plastic cross-sections. In nerves ranging from mild to severe degeneration, we found that the progression of axonal dropout is coupled to an increase of gliotic area. We detected a strong correlation between axon loss and the aggregate coverage by glial cells and scar, whereas axon loss did not correlate with the small fraction of degenerating profiles. Nerves with low to medium levels of axon loss displayed moderate glial reactivity, consisting of hypertrophic astrocytes, activated microglia and normal distribution of oligodendrocytes, with minimal reorganization of the tissue architecture. In contrast, nerves with extensive axonal loss showed prevalent rearrangement of the nerve, with loss of axon fascicle territories and enlarged or almost continuous gliotic and scar domains, containing reactive astrocytes, oligodendrocytes and activated microglia. These findings support the value of optic nerve gliotic expansion as a quantitative estimate of optic neuropathy that correlates with axon loss, applicable to grade the severity of optic nerve damage in mouse chronic glaucoma.
Collapse
Affiliation(s)
- Alejandra Bosco
- Department of Neurobiology and Anatomy, School of Medicine, University of Utah, Salt Lake City, UT 84112, United States.
| | - Kevin T Breen
- Department of Neurobiology and Anatomy, School of Medicine, University of Utah, Salt Lake City, UT 84112, United States
| | - Sarah R Anderson
- Department of Neurobiology and Anatomy, School of Medicine, University of Utah, Salt Lake City, UT 84112, United States
| | - Michael R Steele
- Department of Neurobiology and Anatomy, School of Medicine, University of Utah, Salt Lake City, UT 84112, United States
| | - David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37205, United States
| | - Monica L Vetter
- Department of Neurobiology and Anatomy, School of Medicine, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
27
|
He Y, Liu JN, Zhang JJ, Fan W. Involvement of microRNA-181a and Bim in a rat model of retinal ischemia-reperfusion injury. Int J Ophthalmol 2016; 9:33-40. [PMID: 26949607 DOI: 10.18240/ijo.2016.01.06] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/25/2015] [Indexed: 02/05/2023] Open
Abstract
AIM To investigate the changes in the expression of microRNA-181a (miR-181a) and Bim in a rat model of retinal ischemia-reperfusion (RIR), to explore their target relationship in RIR and their involvement in regulating apoptosis of retinal ganglion cells (RGCs). METHODS Target gene prediction for miR-181a was performed with the aid of bioinformatics and Bim was identified as a potential target gene of miR-181a. A rat model of RIR was created by increasing the intraocular pressure. RGCs in the flatmounted retinas were labeled with Brn3, a marker for alive RGCs, by immunofluorescent staining. The changes in the number of RGCs after RIR were recorded. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to determine the expression level of miR-181a in the retina. Bim/Brn3 double immunofluorescence was used to detect the localization of Bim. The expression of Bim in the retina was determined with the aids of Western blot and qRT-PCR. RESULTS Compared with the negative control group, the density of RGCs was significantly lower in the ischemia/reperfusion (I/R)-24h and I/R-72h groups (P<0.001). The expression level of miR-181a started to decrease at 0h after RIR, and further decreased at 24h and 72h compared with the negative control group (P<0.001). Bim was significantly upregulated at 12h after RIR (P<0.05) and reached peak at 24, 72h compared with the negative control group (P<0.01). Pearson correlation analysis showed that the expression level of Bim was negatively correlated with the expression level of miR-181a and the density of RGCs. CONCLUSION Bim may be a potential target gene of miR-181a. Both miR-181a and Bim are involved in RGCs death in RIR. RIR may promote RGCs apoptosis in the retina via downregulation of miR-181a and its inhibition on Bim expression.
Collapse
Affiliation(s)
- Yu He
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Department of Ophthalmology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu 610041, Sichuan Province, China
| | - Jin-Nan Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Department of Ophthalmology, the Third People's Hospital of Chengdu, Chengdu 610031, Sichuan Province, China
| | - Jun-Jun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wei Fan
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
28
|
Levkovitch-Verbin H. Retinal ganglion cell apoptotic pathway in glaucoma: Initiating and downstream mechanisms. PROGRESS IN BRAIN RESEARCH 2015; 220:37-57. [PMID: 26497784 DOI: 10.1016/bs.pbr.2015.05.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Apoptosis of retinal ganglion cells (RGCs) in glaucoma causes progressive visual field loss, making it the primary cause of irreversible blindness worldwide. Elevated intraocular pressure and aging, the main risk factors for glaucoma, accelerate RGC apoptosis. Numerous pathways and mechanisms were found to be involved in RGC death in glaucoma. Neurotrophic factors deprivation is an early event. Oxidative stress, mitochondrial dysfunction, inflammation, glial cell dysfunction, and activation of apoptotic pathways and prosurvival pathways play a significant role in RGC death in glaucoma. The most important among the involved pathways are the MAP-kinase pathway, PI-3 kinase/Akt pathway, Bcl-2 family, caspase family, and IAP family.
Collapse
Affiliation(s)
- Hani Levkovitch-Verbin
- Glaucoma Service, Goldschleger Eye Institute, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Hashomer, Israel.
| |
Collapse
|
29
|
Wang W, Zhang G, Gu H, Liu Y, Lao J, Li K, Guan H. Role of CtBP2 in the Apoptosis of Retinal Ganglion Cells. Cell Mol Neurobiol 2015; 35:633-40. [PMID: 25627828 DOI: 10.1007/s10571-015-0158-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
Glaucoma damages the optic nerve and is a leading cause of irreversible blindness, and its pathogenesis remains unclear. C-terminal-binding protein 2 (CtBP2) is a transcriptional repressor which plays an important role in central nervous system injury and repair. Using the glaucoma model of DBA/2J mouse whose retina ganglion cells (RGCs) were degenerating with the process of glaucoma, we demonstrated for the first time the special relationship between CtBP2 protein and RGCs. Our research indicated that the expression of CtBP2 was gradually decreased with aging by the means of Western blotting. The CtBP2 immunoreactivity-positive cells were present in the various retinal layers, and CtBP2-positive cells were dramatically decreased in ganglion cell layer. Our research also found ectopic expression of CtBP2 can protect the apoptosis of primary mouse RGC cells induced by L-glutamate. These results suggest that CtBP2 may have a potential therapeutic effect in protecting RGC.
Collapse
Affiliation(s)
- Wenwen Wang
- Department of Pathology of Traditional Chinese Medicine Hospital, Jiangyin, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Using genetic mouse models to gain insight into glaucoma: Past results and future possibilities. Exp Eye Res 2015; 141:42-56. [PMID: 26116903 DOI: 10.1016/j.exer.2015.06.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/16/2015] [Accepted: 06/23/2015] [Indexed: 12/18/2022]
Abstract
While all forms of glaucoma are characterized by a specific pattern of retinal ganglion cell death, they are clinically divided into several distinct subclasses, including normal tension glaucoma, primary open angle glaucoma, congenital glaucoma, and secondary glaucoma. For each type of glaucoma there are likely numerous molecular pathways that control susceptibility to the disease. Given this complexity, a single animal model will never precisely model all aspects of all the different types of human glaucoma. Therefore, multiple animal models have been utilized to study glaucoma but more are needed. Because of the powerful genetic tools available to use in the laboratory mouse, it has proven to be a highly useful mammalian system for studying the pathophysiology of human disease. The similarity between human and mouse eyes coupled with the ability to use a combination of advanced cell biological and genetic tools in mice have led to a large increase in the number of studies using mice to model specific glaucoma phenotypes. Over the last decade, numerous new mouse models and genetic tools have emerged, providing important insight into the cell biology and genetics of glaucoma. In this review, we describe available mouse genetic models that can be used to study glaucoma-relevant disease/pathobiology. Furthermore, we discuss how these models have been used to gain insights into ocular hypertension (a major risk factor for glaucoma) and glaucomatous retinal ganglion cell death. Finally, the potential for developing new mouse models and using advanced genetic tools and resources for studying glaucoma are discussed.
Collapse
|
31
|
Zhang G, Han M, Wang X, Xiao A. GRP75 Involves in Retinal Ganglion Cell Apoptosis After Rat Optic Nerve Crush. J Mol Neurosci 2015; 56:422-30. [PMID: 25600835 DOI: 10.1007/s12031-015-0493-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/06/2015] [Indexed: 01/09/2023]
Abstract
Glucose-regulated protein 75 (GRP75), a member of the heat-shock protein 70 family, is known to protect cells from stress-induced injury. However, information regarding its distribution and possible function in the retina is limited. In this study, we performed an optic nerve crush (ONC) model in adult rats and found that GRP75 was significantly upregulated in the retina after ONC. Double immunofluorescent staining revealed that GRP75 was localized in the retinal ganglion cells (RGCs). We also examined the expression profile of active caspase3, whose change was correlated with the expression profile of GRP75. In addition, we utilized co-staining of GRP75 and active caspase3 and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) to study their correlation in the retina following ONC. Furthermore, the expressions of Bax, cytochrome c (Cytc), p-extracellular-signal-regulated kinases (ERK)1/2, and p-AKT were enhanced in the retina after ONC, and they were parallel with the expression profile of GRP75. Based on our data, we speculated that GRP75 might play an important role in RGCs apoptosis following ONC.
Collapse
Affiliation(s)
- Gaoming Zhang
- Department of Ophthalmology, Jiangyin Hospital of Traditional Chinese Medicine, Nanjing Traditional Chinese Medicine University, No. 130 Renming zhong Road, Jiangyin, 214400, Jiangsu, China,
| | | | | | | |
Collapse
|
32
|
Murakami Y, Notomi S, Hisatomi T, Nakazawa T, Ishibashi T, Miller JW, Vavvas DG. Photoreceptor cell death and rescue in retinal detachment and degenerations. Prog Retin Eye Res 2013; 37:114-40. [PMID: 23994436 DOI: 10.1016/j.preteyeres.2013.08.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 08/08/2013] [Accepted: 08/10/2013] [Indexed: 02/08/2023]
Abstract
Photoreceptor cell death is the ultimate cause of vision loss in various retinal disorders, including retinal detachment (RD). Photoreceptor cell death has been thought to occur mainly through apoptosis, which is the most characterized form of programmed cell death. The caspase family of cysteine proteases plays a central role for inducing apoptosis, and in experimental models of RD, dying photoreceptor cells exhibit caspase activation; however, there is a paradox that caspase inhibition alone does not provide a sufficient protection against photoreceptor cell loss, suggesting that other mechanisms of cell death are involved. Recent accumulating evidence demonstrates that non-apoptotic forms of cell death, such as autophagy and necrosis, are also regulated by specific molecular machinery, such as those mediated by autophagy-related proteins and receptor-interacting protein kinases, respectively. Here we summarize the current knowledge of cell death signaling and its roles in photoreceptor cell death after RD and other retinal degenerative diseases. A body of studies indicate that not only apoptotic but also autophagic and necrotic signaling are involved in photoreceptor cell death, and that combined targeting of these pathways may be an effective neuroprotective strategy for retinal diseases associated with photoreceptor cell loss.
Collapse
Affiliation(s)
- Yusuke Murakami
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA; Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
JUN regulates early transcriptional responses to axonal injury in retinal ganglion cells. Exp Eye Res 2013; 112:106-17. [PMID: 23648575 DOI: 10.1016/j.exer.2013.04.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 11/23/2022]
Abstract
The AP1 family transcription factor JUN is an important molecule in the neuronal response to injury. In retinal ganglion cells (RGCs), JUN is upregulated soon after axonal injury and disrupting JUN activity delays RGC death. JUN is known to participate in the control of many different injury response pathways in neurons, including pathways controlling cell death and axonal regeneration. The role of JUN in regulating genes involved in cell death, ER stress, and regeneration was tested to determine the overall importance of JUN in regulating RGC response to axonal injury. Genes from each of these pathways were transcriptionally controlled following axonal injury and Jun deficiency altered the expression of many of these genes. The differentially expressed genes included, Atf3, Ddit3, Ecel1, Gadd45α, Gal, Hrk, Pten, Socs3, and Sprr1a. Two of these genes, Hrk and Atf3, were tested for importance in RGC death using null alleles of each gene. Disruption of the prodeath Bcl2 family member Hrk did not affect the rate or amount of RGC death after axonal trauma. Deficiency in the ATF/CREB family transcription factor Atf3 did lessen the amount of RGC death after injury, though it did not provide long term protection to RGCs. Since JUN's dimerization partner determines its transcriptional targets, the expression of several candidate AP1 family members were examined. Multiple AP1 family members were induced by axonal injury and had a different expression profile in Jun deficient retinas compared to wildtype retinas (Fosl1, Fosl2 and Jund). Overall, JUN appears to play a multifaceted role in regulating RGC response to axonal injury.
Collapse
|
34
|
17β-estradiol impedes Bax-involved mitochondrial apoptosis of retinal nerve cells induced by oxidative damage via the phosphatidylinositol 3-kinase/Akt signal pathway. J Mol Neurosci 2013; 50:482-93. [PMID: 23361188 DOI: 10.1007/s12031-013-9968-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 01/15/2013] [Indexed: 01/17/2023]
Abstract
Oxidative stress leading to retinal nerve cells (RNCs) apoptosis is a major cause of neurodegenerative disorders of the retina. 17β-Estradiol (E2) has been suggested to be a neuroprotective agent in the central nervous system; however, at present, the underlying mechanisms are not well understood, and the related research on the RNCs is less reported. Here, in order to investigate the protective role and mechanism of E2 against oxidative stress-induced damage on RNCs, the transmission electron microscopy and annexin V-FITC/propidium iodide assay were applied to detect the RNCs apoptosis. Western blot and real-time PCR were used to determine the expression of the critical molecules in Bcl-2 and caspase family associated with apoptosis. The transmission electron microscopy results showed that H(2)O(2) could induce typical features of apoptosis in RNCs, including formation of the apoptosome. E2 could, however, suppress the H(2)O(2)-induced morphological changes of apoptosis. Intriguingly, we observed E2-mediated phagocytic scavenging of apoptosome. In response to H(2)O(2)-induced apoptosis, Bax, acting as one of the pivotal pro-apoptotic members of Bcl-2 family, increased significantly, which directly resulted in an increased ratio of Bax to anti-apoptotic protein Bcl-2 (Bax/Bcl-2). Additionally, caspases 9 and 3, which are the critical molecules of the mitochondrial apoptosis pathway, were activated by H(2)O(2). In contrast, E2 exerted anti-apoptotic effects by reducing the expression of Bax to decrease the ratio of Bax/Bcl-2 and impeded the caspases 9/3 activation. Moreover, LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, could sharply block the effect of E2 in reducing the percentage of apoptotic cells resistance to H(2)O(2). And the attenuation of Bax, the reduced activities of caspases 9/3 and the impeded release of mitochondrial cytochrome c mediated by E2 resistance to H(2)O(2) damage were significantly retrieved by LY294002 administration. Taken together, E2 protects the RNCs against H(2)O(2)-induced apoptosis by significantly inhibiting the Bax-involved mitochondrial apoptosis via the activation of PI3K/Akt signal pathway.
Collapse
|
35
|
Harder JM, Libby RT. Deficiency in Bim, Bid and Bbc3 (Puma) do not prevent axonal injury induced death. Cell Death Differ 2012; 20:182. [PMID: 22996683 DOI: 10.1038/cdd.2012.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|