1
|
Moreno-Alcántar G, Drexler M, Casini A. Assembling a new generation of radiopharmaceuticals with supramolecular theranostics. Nat Rev Chem 2024; 8:893-914. [PMID: 39468298 DOI: 10.1038/s41570-024-00657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Supramolecular chemistry has been used to tackle some of the major challenges in modern science, including cancer therapy and diagnosis. Supramolecular platforms provide synthetic flexibility, rapid generation through self-assembly, facile labelling, unique topologies, tunable reversibility of the enabling noncovalent interactions, and opportunities for host-guest chemistry and mechanical bonding. In this Review, we summarize recent advances in the design and radiopharmaceutical application of discrete self-assembled coordination complexes and mechanically interlocked molecules - namely, metallacages and rotaxanes, respectively - as well as in situ-forming supramolecular aggregates, specifically pinpointing their potential as next-generation radiotheranostic agents. The outlook of such supramolecular constructs for potential applications in the clinic is discussed.
Collapse
Affiliation(s)
- Guillermo Moreno-Alcántar
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany
| | - Marike Drexler
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany
| | - Angela Casini
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany.
- Munich Data Science Institute (MDSI), Technical University of Munich, Garching bei München, Germany.
| |
Collapse
|
2
|
O'Brien AM, Pileski GC, Henry MP, Soika DQM, Deutsch AW, Hornak JP, Schmitthenner HF. Self-Assembling Peptide-Based High-Relaxivity Targeted MRI Contrast Agents. ChemMedChem 2024; 19:e202400391. [PMID: 38830117 DOI: 10.1002/cmdc.202400391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Concentration-dependent increases in relaxivity (r1) were found to be induced by self-assembly when Fmoc is adjacent to tryptophan in peptide-based MRI contrast agents featuring Gd-DOTA. A series of di- and tri-peptides were synthesized to test the effect of ionic strength, N-terminal substituent, peptide length, net charge, and relative location of Fmoc and tryptophan on r1 and critical aggregation concentration (CAC) at 1.0 Tesla. Compared to nominal r1 values of 3.5-7.4 mM-1 s-1 per Gd(III), r1 values increased dramatically to 13.2-16.9 mM-1 s-1 per Gd(III) upon self-assembly, with CACs between 0.22 and 2.59 mM when tested in H2O or PBS. When tested in fetal bovine serum (FBS), the compounds maintained high r1 values of 11.2-13.0 mM-1 s-1, but had dramatically lower CAC values below 25 μM. These findings guided the synthesis of two targeted, high-relaxivity MRI contrast agents that contained PSMA-binding ligand, DCL. Their r1 values in H2O or PBS increased from 5.9-7.4 mM-1 s-1 to 13.5-14.8 mM-1 s-1 with CAC values of 1.65-2.70 mM. In FBS, their r1 values were found to be 11.2-11.9 mM-1 s-1, with CAC values below 25 μM. By the conjugation of targeting agents in the last step of synthesis, a broadly applicable route to targeted, high-relaxivity MRI contrast agents is offered.
Collapse
Affiliation(s)
- Andrew M O'Brien
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY-14623
| | - Griffin C Pileski
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY-14623
| | - Matthew P Henry
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY-14623
| | - Dana Q M Soika
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY-14623
| | - Alex W Deutsch
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY-14623
| | - Joseph P Hornak
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY-14623
- Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, NY-14623
| | - Hans F Schmitthenner
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY-14623
| |
Collapse
|
3
|
Zeng W, Wu Z, Xu Y, Yang W, Zhang B. Furin-Catalyzed Enhanced Magnetic Resonance Imaging Probe for Differential Diagnosis of Malignant Breast Cancers. Anal Chem 2024; 96:6707-6714. [PMID: 38631336 DOI: 10.1021/acs.analchem.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Molecular magnetic resonance imaging (mMRI) of biomarkers is essential for accurate cancer detection in precision medicine. However, the current clinically used contrast agents provide structural magnetic resonance imaging (sMRI) information only and rarely provide mMRI information. Here, a tumor-specific furin-catalyzed nanoprobe (NP) was reported for differential diagnosis of malignant breast cancers (BCs) in vivo. This NP with a compact structure of Fe3O4@Gd-DOTA NPs (FFG NPs) contains an "always-on" T2-weighted MR signal provided by the magnetic Fe3O4 core and a furin-catalyzed enhanced T1-weighted MR signal provided by the Gd-DOTA moiety. The FFG NPs were found to produce an activated T1 signal in the presence of furin catalysis and an "always-on" T2 signal, providing mMRI and sMRI information simultaneously. Ratiometric mMRI:sMRI intensity can be used for differential diagnosis of malignant BCs MDA-MB-231 and MCF-7, where the furin levels relatively differ. The proposed probe not only provides structural imaging but also enables real-time molecular differential visualization of BC through enzymatic activities of cancer tissues.
Collapse
Affiliation(s)
- Weiwei Zeng
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai 200065, China
| | - Zhuoyao Wu
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yan Xu
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai 200065, China
| | - Weitao Yang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai 200065, China
| | - Bingbo Zhang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai 200065, China
| |
Collapse
|
4
|
Yang J, Feng J, Yang S, Xu Y, Shen Z. Exceedingly Small Magnetic Iron Oxide Nanoparticles for T 1 -Weighted Magnetic Resonance Imaging and Imaging-Guided Therapy of Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302856. [PMID: 37596716 DOI: 10.1002/smll.202302856] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/01/2023] [Indexed: 08/20/2023]
Abstract
Magnetic iron oxide nanoparticles (MIONs) based T2 -weighted magnetic resonance imaging (MRI) contrast agents (CAs) are liver-specific with good biocompatibility, but have been withdrawn from the market and replaced with Eovist (Gd-EOB-DTPA) due to their inherent limitations (e.g., susceptibility to artifacts, high magnetic moment, dark signals, long processing time of T2 imaging, and long waiting time for patients after administration). Without the disadvantages of Gd-chelates and MIONs, the recently emerging exceedingly small MIONs (ES-MIONs) (<5 nm) are promising T1 CAs for MRI. However, there are rare review articles focusing on ES-MIONs for T1 -weighted MRI. Herein, the recent progress of ES-MIONs, including synthesis methods (the current basic synthesis methods and improved methods), surface modifications (artificial polymers, natural polymers, zwitterions, and functional protein), T1 -MRI visual strategies (structural remodeling, reversible self-assemblies, metal ions doped, T1 /T2 dual imaging modes, and PET/MRI strategy), and imaging-guided cancer therapy (chemotherapy, gene therapy, ferroptosis therapy, photothermal therapy, photodymatic therapy, radiotherapy, immuotherapy, sonodynamic therapy, and multimode therapy), is summarized. The detailed description of synthesis methods and applications of ES-MIONs in this review is anticipated to attract extensive interest from researchers in different fields and promote their participation in the establishment of ES-MIONs based nanoplatforms for tumor theranostics.
Collapse
Affiliation(s)
- Jing Yang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Sugeun Yang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22212, South Korea
| | - Yikai Xu
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
5
|
Basso CR, Crulhas BP, Castro GR, Pedrosa VA. Recent Advances in Functional Nanomaterials for Diagnostic and Sensing Using Self-Assembled Monolayers. Int J Mol Sci 2023; 24:10819. [PMID: 37445998 DOI: 10.3390/ijms241310819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 07/15/2023] Open
Abstract
Functional nanomaterials have attracted attention by producing different structures in any field. These materials have several potential applications, including medicine, electronics, and energy, which provide many unique properties. These nanostructures can be synthesized using various methods, including self-assembly, which can be used for the same applications. This unique nanomaterial is increasingly being used for biological detection due to its unique optical, electrical, and mechanical properties, which provide sensitive and specific sensors for detecting biomolecules such as DNA, RNA, and proteins. This review highlights recent advances in the field and discusses the fabrication and characterization of the corresponding materials, which can be further applied in optical, magnetic, electronic, and sensor fields.
Collapse
Affiliation(s)
| | - Bruno P Crulhas
- Institute of Bioscience, UNESP, Botucatu 18618-000, SP, Brazil
| | | | | |
Collapse
|
6
|
Ernenwein D, Geisler I, Pavlishchuk A, Chmielewski J. Metal-Assembled Collagen Peptide Microflorettes as Magnetic Resonance Imaging Agents. Molecules 2023; 28:molecules28072953. [PMID: 37049716 PMCID: PMC10095756 DOI: 10.3390/molecules28072953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Magnetic resonance imaging (MRI) is a medical imaging technique that provides detailed information on tissues and organs. However, the low sensitivity of the technique requires the use of contrast agents, usually ones that are based on the chelates of gadolinium ions. In an effort to improve MRI signal intensity, we developed two strategies whereby the ligand DOTA and Gd(III) ions are contained within Zn(II)-promoted collagen peptide (NCoH) supramolecular assemblies. The DOTA moiety was included in the assembly either via a collagen peptide sidechain (NHdota) or through metal–ligand interactions with a His-tagged DOTA conjugate (DOTA-His6). SEM verified that the morphology of the NCoH assembly was maintained in the presence of the DOTA-containing peptides (microflorettes), and EDX and ICP-MS confirmed that Gd(III) ions were incorporated within the microflorettes. The Gd(III)-loaded DOTA florettes demonstrated higher intensities for the T1-weighted MRI signal and higher longitudinal relaxivity (r1) values, as compared to the clinically used contrast agent Magnevist. Additionally, no appreciable cellular toxicity was observed with the collagen microflorettes loaded with Gd(III). Overall, two peptide-based materials were generated that have potential as MRI contrast agents.
Collapse
|
7
|
Salaam J, Fogeron T, Pilet G, Bolbos R, Bucher C, Khrouz L, Hasserodt J. Unprecedented Relaxivity Gap in pH-Responsive Fe III -Based MRI Probes. Angew Chem Int Ed Engl 2023; 62:e202212782. [PMID: 36548129 PMCID: PMC10107872 DOI: 10.1002/anie.202212782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Two mononuclear ferric complexes are reported that respond to a pH change with a 27- and 71-fold jump, respectively, in their capacity to accelerate the longitudinal relaxation rate of water-hydrogen nuclei, and this starting from a negligible base value of only 0.06. This unprecedented performance bodes well for tackling the sensitivity issues hampering the development of Molecular MRI. The two chelates also excel in the fully reversible and fatigue-less nature of this phenomenon. The structural reasons for this performance reside in the macrocyclic nature of the hexa-dentate ligand, as well as the presence of a single pendant arm displaying a five-membered lactam or carbamate which show (perturbed) pKa values of 3.5 in the context of this N6 ⇔ ${ \Leftrightarrow }$ N5O1 coordination motif.
Collapse
Affiliation(s)
- Jeremy Salaam
- Laboratoire de Chimie, UMR CNRS/ENSL 5182, Université de Lyon-ENS de Lyon, 46 allee d'Italie, Lyon, France
| | - Thibault Fogeron
- Laboratoire de Chimie, UMR CNRS/ENSL 5182, Université de Lyon-ENS de Lyon, 46 allee d'Italie, Lyon, France
| | - Guillaume Pilet
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS/UCBL 5615, Université de Lyon-Université Claude Bernard Lyon 1, DOUA, Villeurbanne, France
| | - Radu Bolbos
- Dpt. Animage, CERMEP-Imagerie du Vivant, 59 Blvd Pinel, 69677, Bron, France
| | - Christophe Bucher
- Laboratoire de Chimie, UMR CNRS/ENSL 5182, Université de Lyon-ENS de Lyon, 46 allee d'Italie, Lyon, France
| | - Lhoussain Khrouz
- Laboratoire de Chimie, UMR CNRS/ENSL 5182, Université de Lyon-ENS de Lyon, 46 allee d'Italie, Lyon, France
| | - Jens Hasserodt
- Laboratoire de Chimie, UMR CNRS/ENSL 5182, Université de Lyon-ENS de Lyon, 46 allee d'Italie, Lyon, France
| |
Collapse
|
8
|
Zhu Y, Zhang X, You Q, Jiang Z. Recent applications of CBT-Cys click reaction in biological systems. Bioorg Med Chem 2022; 68:116881. [PMID: 35716587 DOI: 10.1016/j.bmc.2022.116881] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
Abstract
Click chemistry is a hot topic in many research fields. A biocompatible reaction from fireflies has attracted increasing attention since 2009. Herein, we focus on the firefly-sourced click reaction between cysteine (Cys) and 2-cyanobenzothiazole (2-CBT). This reaction has many excellent properties, such as rapidity, simplicity and high selectivity, which make it successfully applied in protein labeling, molecular imaging, drug discovery and other fields. Meanwhile, its unique ability to form nanoparticles expands its applications in biological systems. We review its principle, development, and latest applications in the past 5 years and hope this review provides more profound and comprehensive insights to its further application.
Collapse
Affiliation(s)
- Yuechao Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xian Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
9
|
Wang C, Du W, Wu C, Dan S, Sun M, Zhang T, Wang B, Yuan Y, Liang G. Cathespin B-Initiated Cypate Nanoparticle Formation for Tumor Photoacoustic Imaging. Angew Chem Int Ed Engl 2022; 61:e202114766. [PMID: 34878207 DOI: 10.1002/anie.202114766] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 12/30/2022]
Abstract
Cathepsin B (CTSB) is a lysosomal protease that is overexpressed in the early stage of many cancer types. Precise evaluation of CTSB expression in vivo may provide a promising method for the early diagnosis of cancers. By virtue of the high-resolution PA imaging modality, a "smart" photoacoustic (PA) probe Cypate-CBT, which can self-assemble to cypate-containing nanoparticles in response to abundant GSH and CTSB inside tumor cells, was developed for the sensitive and specific detection of CTSB activity. Compared with unmodified Cypate, our probe Cypate-CBT exhibited a 4.9-fold or 4.7-fold PA signal enhancement in CTSB-overexpressing MDA-MB-231 cancer cells or tumors, respectively, revealing intracellular accumulation of the probe after CTSB-initiated self-assembly. We expect Cypate-CBT to be employed as an effective PA imaging agent for clinical diagnosis of cancer at early stages.
Collapse
Affiliation(s)
- Chenchen Wang
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wei Du
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Chenfan Wu
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shan Dan
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Miao Sun
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Tong Zhang
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Bin Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Yue Yuan
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Gaolin Liang
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| |
Collapse
|
10
|
Wang C, Du W, Wu C, Dan S, Sun M, Zhang T, Wang B, Yuan Y, Liang G. Cathespin B‐Initiated Cypate Nanoparticle Formation for Tumor Photoacoustic Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chenchen Wang
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Wei Du
- Institute of Food Safety and Environment Monitoring College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Chenfan Wu
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Shan Dan
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education Institutes of Physical Science and Information Technology Anhui University Hefei Anhui 230601 China
| | - Miao Sun
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education Institutes of Physical Science and Information Technology Anhui University Hefei Anhui 230601 China
| | - Tong Zhang
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Bin Wang
- Department of Anesthesiology The Second Affiliated Hospital of Anhui Medical University Hefei Anhui 230601 China
| | - Yue Yuan
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Gaolin Liang
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University Nanjing Jiangsu 210096 China
| |
Collapse
|
11
|
La Manna S, Di Natale C, Onesto V, Marasco D. Self-Assembling Peptides: From Design to Biomedical Applications. Int J Mol Sci 2021; 22:12662. [PMID: 34884467 PMCID: PMC8657556 DOI: 10.3390/ijms222312662] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
Self-assembling peptides could be considered a novel class of agents able to harvest an array of micro/nanostructures that are highly attractive in the biomedical field. By modifying their amino acid composition, it is possible to mime several biological functions; when assembled in micro/nanostructures, they can be used for a variety of purposes such as tissue regeneration and engineering or drug delivery to improve drug release and/or stability and to reduce side effects. Other significant advantages of self-assembled peptides involve their biocompatibility and their ability to efficiently target molecular recognition sites. Due to their intrinsic characteristics, self-assembled peptide micro/nanostructures are capable to load both hydrophobic and hydrophilic drugs, and they are suitable to achieve a triggered drug delivery at disease sites by inserting in their structure's stimuli-responsive moieties. The focus of this review was to summarize the most recent and significant studies on self-assembled peptides with an emphasis on their application in the biomedical field.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Concetta Di Natale
- Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci, 53, 80125 Napoli, Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, Università di Napoli Federico II, Piazzale Tecchio, 80, 80125 Napoli, Italy
| | - Valentina Onesto
- Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, CNR NANOTEC, via Monteroni, c/o Campus Ecotekne, 73100 Lecce, Italy;
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy;
| |
Collapse
|
12
|
Jia H, Ding D, Hu J, Dai J, Yang J, Li G, Lou X, Xia F. AIEgen-Based Lifetime-Probes for Precise Furin Quantification and Identification of Cell Subtypes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104615. [PMID: 34553420 DOI: 10.1002/adma.202104615] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Biochemical sensing probes based on aggregation-induced-emission luminogens (AIEgens) are widely used in biological imaging and therapy, chemical sensing, and material sciences. However, it is still a great challenge to quantify the targets through fluorescence intensity of AIEgen probes due to their undesirable aggregations. Here, a PyTPA-ZGO probe with three lifetime signals for precise quantification of furin is constructed: the lifetime signal 1 and signal 2 comes from AIEgen PyTPA-P (τPn ) and inorganic nanoparticles Zn2 GeO4 :Mn2+ -NH2 (τZn ), respectively, while the lifetime signal 3 is marked as the composite dual-lifetime signal (CDLSn , C D L S n = τ Z n τ P n ). In contrast, the fluorescence intensity signal of PyTPA-P shows defectively quantitative performance. Furthermore, it is found that the CDLSn exhibits higher significant differences than the two other lifetime signals (τPn and τZn ) thanks to its wide range between the maximum and minimum signal values and small standard deviation. Therefore, CDLSn is further used to accurately identify cell subtypes based on the specific concentration of furin in each subtype. The lifetime criterion can realize precise quantification, and it should be a promising direction of AIEgen-based quantitative analysis in the future.
Collapse
Affiliation(s)
- Hui Jia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Defang Ding
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jingjing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Juliang Yang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Guogang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
13
|
Tarvirdipour S, Skowicki M, Schoenenberger CA, Palivan CG. Peptide-Assisted Nucleic Acid Delivery Systems on the Rise. Int J Mol Sci 2021; 22:9092. [PMID: 34445799 PMCID: PMC8396486 DOI: 10.3390/ijms22169092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Concerns associated with nanocarriers' therapeutic efficacy and side effects have led to the development of strategies to advance them into targeted and responsive delivery systems. Owing to their bioactivity and biocompatibility, peptides play a key role in these strategies and, thus, have been extensively studied in nanomedicine. Peptide-based nanocarriers, in particular, have burgeoned with advances in purely peptidic structures and in combinations of peptides, both native and modified, with polymers, lipids, and inorganic nanoparticles. In this review, we summarize advances on peptides promoting gene delivery systems. The efficacy of nucleic acid therapies largely depends on cell internalization and the delivery to subcellular organelles. Hence, the review focuses on nanocarriers where peptides are pivotal in ferrying nucleic acids to their site of action, with a special emphasis on peptides that assist anionic, water-soluble nucleic acids in crossing the membrane barriers they encounter on their way to efficient function. In a second part, we address how peptides advance nanoassembly delivery tools, such that they navigate delivery barriers and release their nucleic acid cargo at specific sites in a controlled fashion.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- Department of Biosystem Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Michal Skowicki
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
14
|
Gopalan D, Pandey A, Alex AT, Kalthur G, Pandey S, Udupa N, Mutalik S. Nanoconstructs as a versatile tool for detection and diagnosis of Alzheimer biomarkers. NANOTECHNOLOGY 2021; 32:142002. [PMID: 33238254 DOI: 10.1088/1361-6528/abcdcb] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The current review focuses towards the advancements made in the past decade in the field of nanotechnology for the early Alzheimer's disease (AD) diagnosis. This review includes the application of nanomaterials and nanosensors for the early detection of the main AD biomarkers (amyloid beta, phosphorylated tau, apolipoprotein E4 allele or APOE4, microRNAs, cholesterol, hydrogen peroxide etc) in biological fluids, to detect the biomarkers at a very low concentration ranging in pico, femto and even atto molar concentrations. The field of drug development has always aimed and is constantly working on developing disease modifying drugs, but these drugs will only succeed when given in the early disease stages. Thus, developing efficient diagnostic tools is of vital importance. Various nanomaterials such as liposomes; dendrimers; polymeric nanoparticles; coordination polymers; inorganic nanoparticles such as silica, manganese oxide, zinc oxide, iron oxide, super paramagnetic iron oxides; quantum dots, silver nanoparticles, gold nanoparticles, and carbon based nanostructures (carbon nanotubes, graphene oxide, nanofibres, nanodiamonds, carbon dots); Up-conversion nanoparticles; 2D nanomaterials; and radioactive nanoprobes have been used in constructing and improving efficiency of nano-sensors for AD biosensing at an early stage of diagnosis.
Collapse
Affiliation(s)
- Divya Gopalan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Angel Treasa Alex
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Sureshwar Pandey
- School of Pharmacy, Faculty of Medical Sciences, The university of West Indies, St. Augustine, Trinidad and Tobago, Jamaica
| | - Nayanabhirama Udupa
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| |
Collapse
|
15
|
Kwek G, Do TC, Lu X, Lin J, Xing B. Scratching the Surface of Unventured Possibilities with In Situ Self-Assembly: Protease-Activated Developments for Imaging and Therapy. ACS APPLIED BIO MATERIALS 2021; 4:2192-2216. [PMID: 35014345 DOI: 10.1021/acsabm.0c01340] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In situ self-assembly has attracted increasing research interest for applications in imaging and therapy in recent years. Particularly for protease-activated developments, inspiration is drawn from the innate specificity of their catalytic activities, rapid discovery of the various roles they play in the proliferation of certain diseases, and inherent susceptibility of small molecule peptide conjugates to proteolytic digestion in vivo. The overexpression of a disease-related protease of interest can be exploited as an endogenous stimulus for site-specific self-assembly to largely amplify a molecular event happening at the cellular level. This holds great potential for applications in early stage disease detection, long-term disease monitoring, and sustained therapeutic effects. This review summarizes the recent developments in protease-activated self-assemblies for imaging and therapeutic applications toward the manifestation of tumors, bacterial infections, neurodegenerative disorders, and wound recovery.
Collapse
Affiliation(s)
- Germain Kwek
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Thang Cong Do
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Xiaoling Lu
- International Nanobody Research Centre of Guangxi, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 637371 Singapore.,School of Chemical & Biomedical Engineering, Nanyang Technological University, 637549 Singapore
| |
Collapse
|
16
|
Vizovisek M, Ristanovic D, Menghini S, Christiansen MG, Schuerle S. The Tumor Proteolytic Landscape: A Challenging Frontier in Cancer Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms22052514. [PMID: 33802262 PMCID: PMC7958950 DOI: 10.3390/ijms22052514] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, dysregulation of proteases and atypical proteolysis have become increasingly recognized as important hallmarks of cancer, driving community-wide efforts to explore the proteolytic landscape of oncologic disease. With more than 100 proteases currently associated with different aspects of cancer development and progression, there is a clear impetus to harness their potential in the context of oncology. Advances in the protease field have yielded technologies enabling sensitive protease detection in various settings, paving the way towards diagnostic profiling of disease-related protease activity patterns. Methods including activity-based probes and substrates, antibodies, and various nanosystems that generate reporter signals, i.e., for PET or MRI, after interaction with the target protease have shown potential for clinical translation. Nevertheless, these technologies are costly, not easily multiplexed, and require advanced imaging technologies. While the current clinical applications of protease-responsive technologies in oncologic settings are still limited, emerging technologies and protease sensors are poised to enable comprehensive exploration of the tumor proteolytic landscape as a diagnostic and therapeutic frontier. This review aims to give an overview of the most relevant classes of proteases as indicators for tumor diagnosis, current approaches to detect and monitor their activity in vivo, and associated therapeutic applications.
Collapse
|
17
|
Chen J, Ma Y, Du W, Dai T, Wang Y, Jiang W, Wan Y, Wang Y, Liang G, Wang G. Furin‐Instructed Intracellular Gold Nanoparticle Aggregation for Tumor Photothermal Therapy. ADVANCED FUNCTIONAL MATERIALS 2020; 30. [DOI: 10.1002/adfm.202001566] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Indexed: 01/04/2025]
Abstract
AbstractToday, exploring ideal photothermal agents (PTAs) for effective photothermal therapy (PTT) of cancer is an important issue. Cancer‐related enzyme‐instructed aggregation of gold nanoparticles less than 8 nm in diameter will significantly enhance the PTT efficiency of the traditional PTA gold nanoparticle (AuNP). Furin is a type of trans‐Golgi protein convertase upregulated in multiple malignancies. However, furin‐instructed intracellular aggregation of AuNP in cancer cells for PTT of tumor has not yet been reported. Herein, exploiting the advantages of furin and a biocompatible 2‐cyanobenzothiazole‐cysteine (CBT‐Cys) condensation reaction, a furin‐instructed intracellular gold nanoparticle aggregation strategy is developed and a furin‐responsive gold nanoparticle platform (AuNP@1) is designed for effective PTT of cancer both in vitro and in vivo. After being internalized via the high furin‐expression cancer cells, AuNP@1 is subject to a furin‐guided condensation reaction to yield the 1‐Dimers between AuNP@1s, which cross‐link AuNP@1s to form aggregates of AuNP. Experimental results show that formation of AuNP aggregates can largely enhance its photothermal properties, as a result, AuNP@1 shows more efficient photothermal therapeutic effects than its scrambled control AuNP@1‐Scr on MDA‐MB‐468 cells in vitro and MDA‐MB‐468 tumors in vivo. It is envisioned that AuNP@1 can be employed for the clinical PTT of furin‐related cancer in the near future.
Collapse
Affiliation(s)
- Jihua Chen
- Key Laboratory of Chem‐Biosensing and Key Laboratory of Functional Molecular Solids of Anhui province College of Chemistry and Materials Science Anhui Normal University 189 Jiuhua South Road Wuhu Anhui 241000 China
| | - Yinchu Ma
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Wei Du
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Tianyue Dai
- Key Laboratory of Chem‐Biosensing and Key Laboratory of Functional Molecular Solids of Anhui province College of Chemistry and Materials Science Anhui Normal University 189 Jiuhua South Road Wuhu Anhui 241000 China
| | - Yanfang Wang
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Wei Jiang
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Yifei Wan
- Key Laboratory of Chem‐Biosensing and Key Laboratory of Functional Molecular Solids of Anhui province College of Chemistry and Materials Science Anhui Normal University 189 Jiuhua South Road Wuhu Anhui 241000 China
| | - Yucai Wang
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Gaolin Liang
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
- State Key Laboratory of Bioelectronics School of Biological Sciences and Medical Engineering Southeast University 2 Sipailou Road Nanjing Jiangsu 210096 China
| | - Guangfeng Wang
- Key Laboratory of Chem‐Biosensing and Key Laboratory of Functional Molecular Solids of Anhui province College of Chemistry and Materials Science Anhui Normal University 189 Jiuhua South Road Wuhu Anhui 241000 China
| |
Collapse
|
18
|
Wang Y, Weng J, Wen X, Hu Y, Ye D. Recent advances in stimuli-responsive in situ self-assembly of small molecule probes for in vivo imaging of enzymatic activity. Biomater Sci 2020; 9:406-421. [PMID: 32627767 DOI: 10.1039/d0bm00895h] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stimuli-responsive in situ self-assembly of small molecule probes into nanostructures has been promising for the construction of molecular probes for in vivo imaging. In the past few years, a number of intelligent molecular imaging probes with fluorescence, magnetic resonance imaging (MRI), positron electron tomography (PET) or photoacoustic imaging (PA) modality have been developed based on the in situ self-assembly strategy. In this minireview, we summarize the recent advances in the development of different modality imaging probes through controlling in situ self-assembly for in vivo imaging of enzymatic activity. This review starts from the brief introduction of two different chemical approaches amenable for in situ self-assembly, including (1) stimuli-mediated proteolysis and (2) stimuli-triggered biocompatible reaction. We then discuss their applications in the design of fluorescence, MRI, PET, PA, and bimodality imaging probes for in vivo imaging of different enzymes, such as caspase-3, furin, gelatinase and phosphatase. Finally, we discuss the current and prospective challenges in the stimuli-responsive in situ self-assembly strategy for in vivo imaging.
Collapse
Affiliation(s)
- Yuqi Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | | | | | | | | |
Collapse
|
19
|
One-step 18F-fluorination of smart positron emission tomography tracer for sensing furin activity in tumors. Nucl Med Biol 2020; 82-83:72-79. [PMID: 32109829 DOI: 10.1016/j.nucmedbio.2020.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 01/13/2020] [Accepted: 02/18/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Peptide analogues have attracted considerable attention in the field of developing novel positron emission tomography (PET) imaging agents due to their unique properties. Nevertheless, the complicated radiolabeling process and fast metabolism usually pose challenges to the clinical applications of peptide-based molecular probes. Herein a novel PET tracer containing a specific peptide sequence Arg-Val-Arg-Arg (RVRR), Acetyl-Arg-Val-Arg-Arg-Cys(StBu)-Gly(AMB[18F]F3)-CBT ([18F]1), was designed and radiosynthesized using a simple and convenient one-step 18F-fluorination procedure. The smart tracer can be activated by the protease furin and then undergoes an intermolecular cyclization reaction in tumor cells, leading to improved PET imaging efficiency of tumor. METHODS The radiosynthesis of the target tracer [18F]1 and the control tracer [18F]1-ctrl was performed under facile conditions in pyridazine-HCl buffer (pH~2.5) at 80 °C within 30 min. The enzyme-controlled condensation was studied for non-radioactive compound 1 in the human breast cancer cell lysates (MDA-MB-468). The cellular uptake of [18F]1 and [18F]1-ctrl was studied and compared by measuring the activity in MDA-MB-468 cells using a γ-counter after incubation with 37 kBq of [18F]1 or [18F]1-ctrl, respectively. In vivo behavior of [18F]1 was examined through PET imaging of MDA-MB-468 tumor-bearing mice and compared with that of [18F]1-ctrl as well as that of [18F]1 co-injected with non-radioactive compound 1. RESULTS The tracer [18F]1 was obtained with a high radiochemical yield (RCY) of 42.5 ± 1.47% and an excellent radiochemical purity (RCP > 99%). Under the activation of furin and GSH, the tracer suffered a condensation reaction to form dimers and then self-assembled into nanoparticles to produce enduring signal. The cellular uptake of [18F]1 and [18F]1-ctrl was determined to be 10.2 ± 0.37 and 1.19 ± 0.25%ID at 120 min, respectively. For in vivo PET imaging, [18F]1 exhibited the optimum tumor uptake of 2.39 ± 0.31%ID/g and the tumor-to-muscle uptake ratio of 2.93 ± 0.92 at 10 min post injection. Co-injection of [18F]1 and non-radioactive compound 1 produced a high tumor uptake ranging from 2.83 ± 0.23%ID/g to 3.40 ± 0.18%ID/g at 10 min and 60 min post injection, respectively. CONCLUSIONS The one-step labeling method of tracer [18F]1 showed advantage in simplifying the radiolabeling process with high RCY, which could enable a real kit process for the synthesis of 18F-radiopharmaceuticals and was significant for the large-scale production of tracers for clinical applications. PET imaging results suggested that the tracer [18F]1 had good tumor uptake and the co-injection strategy of [18F]1 with 1 could enhance the imaging signal in tumor.
Collapse
|
20
|
Wang H, Chen P, Wu H, Zou P, Wu J, Liu Y, Liang G. Furin-Guided Intracellular 68Ga Nanoparticle Formation Enhancing Tumor MicroPET Imaging. Anal Chem 2019; 91:14842-14845. [PMID: 31718142 DOI: 10.1021/acs.analchem.9b04788] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Positron-emission tomography (PET) is routinely used in the clinic for tumor imaging with ultrahigh sensitivity, but tumor-targeted PET imaging probes are quite few. In this work, we rationally designed a furin-responsive radiotracer Acetyl-Arg-Val-Arg-Arg-Cys(StBu)-Lys(DOTA-68Ga)-CBT (CBT-68Ga) and demonstrated that coinjection of the radiotracer with its cold analogue CBT-Ga instructed the formation of 68Ga nanoparticles in furin-overexpressing MDA-MB-468 cancer cells, which significantly enhanced microPET imaging of the tumor in vivo. In vitro results showed that CBT-Ga subjected to furin-initiated CBT-Cys condensation reaction and self-assembly to form the nanoparticles CBT-Ga-NPs with an average diameter of 258.3 nm. In vivo microPET imaging results indicate that the mice coinjected with CBT-68Ga and CBT-Ga, which warrants 68Ga nanoparticle formation in their MDA-MB-468 tumors, had a tumor/liver ratio 9.1-fold of that of the mice only injected with CBT-68Ga. We envisioned that, by replacing the RVRR substrate of CBT-68Ga with other enzyme-specific ones and using the strategy of intracellular nanoparticle formation, a series of radioactive probes could be developed for more sensitive and precise tumor microPET imaging in the near future.
Collapse
Affiliation(s)
- Hongyong Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine , Jiangsu Institute of Nuclear Medicine , 20 Qianrong Road , Wuxi , Jiangsu 214063 , China
| | - Peiyao Chen
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China
| | - Hao Wu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine , Jiangsu Institute of Nuclear Medicine , 20 Qianrong Road , Wuxi , Jiangsu 214063 , China
| | - Pei Zou
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine , Jiangsu Institute of Nuclear Medicine , 20 Qianrong Road , Wuxi , Jiangsu 214063 , China
| | - Jun Wu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine , Jiangsu Institute of Nuclear Medicine , 20 Qianrong Road , Wuxi , Jiangsu 214063 , China
| | - Yaling Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine , Jiangsu Institute of Nuclear Medicine , 20 Qianrong Road , Wuxi , Jiangsu 214063 , China
| | - Gaolin Liang
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China.,State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering , Southeast University , 2 Sipailou , Nanjing , Jiangsu 210096 , China
| |
Collapse
|
21
|
Cao C, Sheng D, Li X, Xue F, Liu L, Zhong Y, Wei P, Li R, Yi T. Furin substrate as a novel cell-penetrating peptide: combining a delivery vector and an inducer of cargo release. Chem Commun (Camb) 2019; 55:11872-11875. [PMID: 31528875 DOI: 10.1039/c9cc02353d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have developed a new cell-penetrating peptide (CPP) using a repeated protease (furin) substrate. This CPP can not only deliver cargo into cells but can also be cleaved by furin in cells and release the cargo. Cell-impermeable antitumor pro-apoptotic peptide KLAKLAKKLAKLAK (KLA) and chemotherapy drug chlorambucil were chosen to be delivered by the CPP into live cancer cells and their cytotoxicity was greatly enhanced for in vivo cancer treatment.
Collapse
Affiliation(s)
- Chunyan Cao
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Danli Sheng
- Department of Ultrasound, Fudan University, Shanghai Cancer Center, Shanghai 200032, China
| | - Xiang Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Fengfeng Xue
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Lingyan Liu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Yaping Zhong
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Peng Wei
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Ruohan Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Tao Yi
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| |
Collapse
|
22
|
Toljić Ð, Platas-Iglesias C, Angelovski G. In-depth Study of a Novel Class of Ditopic Gadolinium(III)-based MRI Probes Sensitive to Zwitterionic Neurotransmitters. Front Chem 2019; 7:490. [PMID: 31396504 PMCID: PMC6668053 DOI: 10.3389/fchem.2019.00490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/25/2019] [Indexed: 01/22/2023] Open
Abstract
The efficacy of Gd-based low-molecular weight ditopic MRI probes on binding zwitterionic neurotransmitters (ZNTs) relies on their structural compatibility. ZNTs are challenging biomarkers for monitoring chemical neurotransmission due to their intrinsic complexity as target molecules. In this work, we focus on tuning the cyclen- and azacrown ether-based binding sites properties to increase the affinity toward ZNTs. Our approach consisted in performing structural modifications on the binding sites in terms of charge and size, followed by the affinity evaluation through T1-weighted relaxometric titrations. We prepared and investigated six Gd3+ complexes with different structures and thus properties, which were found to be acetylcholine insensitive; moreover, two of them displayed considerably stronger affinity toward glutamate and glycine over hydrogencarbonate and other ZNTs. Complexes with small and non-charged or no substituents on the azacrown moiety displayed the highest affinities toward ZNTs, followed by strong decrease in longitudinal relaxivity r1 of around 70%. In contrast, hosts with negatively charged substituents exhibited lower decrease in r1 of nearly 30%. The thorough investigations involving relaxometric titrations, luminescence, and NMR diffusion experiments, as well as theoretical density functional theory calculations, revealed that the affinity of reported hosts toward ZNTs is greatly affected by the remote pendant on the azacrown derivative.
Collapse
Affiliation(s)
- Ðorđe Toljić
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
| | - Goran Angelovski
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| |
Collapse
|
23
|
Pinto SM, Tomé V, Calvete MJ, Castro MMC, Tóth É, Geraldes CF. Metal-based redox-responsive MRI contrast agents. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Zhu L, Liu HW, Yang Y, Hu XX, Li K, Xu S, Li JB, Ke G, Zhang XB. Near-Infrared Fluorescent Furin Probe for Revealing the Role of Furin in Cellular Carcinogenesis and Specific Cancer Imaging. Anal Chem 2019; 91:9682-9689. [DOI: 10.1021/acs.analchem.9b01220] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Longmin Zhu
- Molecular Science and Biomedicine Laboratory (MBL), College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
| | - Hong-Wen Liu
- Molecular Science and Biomedicine Laboratory (MBL), College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, P.R. China
| | - Yue Yang
- Molecular Science and Biomedicine Laboratory (MBL), College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
| | - Xiao-Xiao Hu
- Molecular Science and Biomedicine Laboratory (MBL), College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
| | - Ke Li
- Molecular Science and Biomedicine Laboratory (MBL), College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
| | - Shuai Xu
- Molecular Science and Biomedicine Laboratory (MBL), College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
| | - Jun-Bin Li
- Molecular Science and Biomedicine Laboratory (MBL), College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
| | - Guoliang Ke
- Molecular Science and Biomedicine Laboratory (MBL), College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
25
|
Li H, Parigi G, Luchinat C, Meade TJ. Bimodal Fluorescence-Magnetic Resonance Contrast Agent for Apoptosis Imaging. J Am Chem Soc 2019; 141:6224-6233. [PMID: 30919628 PMCID: PMC6939894 DOI: 10.1021/jacs.8b13376] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Effective cancer therapy largely depends on inducing apoptosis in cancer cells via chemotherapy and/or radiation. Monitoring apoptosis in real-time provides invaluable information for evaluating cancer therapy response and screening preclinical anticancer drugs. In this work, we describe the design, synthesis, characterization, and in vitro evaluation of caspase probe 1 (CP1), a bimodal fluorescence-magnetic resonance (FL-MR) probe that exhibits simultaneous FL-MR turn-on response to caspase-3/7. Both caspases exist as inactive zymogens in normal cells but are activated during apoptosis and are unique biomarkers for this process. CP1 has three distinct components: a DOTA-Gd(III) chelate that provides the MR signal enhancement, tetraphenylethylene as the aggregation induced emission luminogen (AIEgen), and DEVD peptide which is a substrate for caspase-3/7. In response to caspase-3/7, the water-soluble peptide DEVD is cleaved and the remaining Gd(III)-AIEgen (Gad-AIE) conjugate aggregates leading to increased FL-MR signals. CP1 exhibited sensitive and selective dual FL-MR turn-on response to caspase-3/7 in vitro and was successfully tested by fluorescence imaging of apoptotic cells. Remarkably, we were able to use the FL response of CP1 to quantify the exact concentrations of inactive and active agents and accurately predict the MR signal in vitro. We have demonstrated that the aggregation-driven FL-MR probe design is a unique method for MR signal quantification. This probe design platform can be adapted for a variety of different imaging targets, opening new and exciting avenues for multimodal molecular imaging.
Collapse
Affiliation(s)
- Hao Li
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology , Northwestern University , Evanston , Illinois 60208 , United States
| | - Giacomo Parigi
- Department of Chemistry and Magnetic Resonance Center (CERM) , University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) , Via L. Sacconi 6 , 50019 Sesto Fiorentino , Italy
| | - Claudio Luchinat
- Department of Chemistry and Magnetic Resonance Center (CERM) , University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) , Via L. Sacconi 6 , 50019 Sesto Fiorentino , Italy
| | - Thomas J Meade
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology , Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|
26
|
Zhang J, Chai X, He XP, Kim HJ, Yoon J, Tian H. Fluorogenic probes for disease-relevant enzymes. Chem Soc Rev 2019; 48:683-722. [PMID: 30520895 DOI: 10.1039/c7cs00907k] [Citation(s) in RCA: 393] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Traditional biochemical methods for enzyme detection are mainly based on antibody-based immunoassays, which lack the ability to monitor the spatiotemporal distribution and, in particular, the in situ activity of enzymes in live cells and in vivo. In this review, we comprehensively summarize recent progress that has been made in the development of small-molecule as well as material-based fluorogenic probes for sensitive detection of the activities of enzymes that are related to a number of human diseases. The principles utilized to design these probes as well as their applications are reviewed. Specific attention is given to fluorogenic probes that have been developed for analysis of the activities of enzymes including oxidases and reductases, those that act on biomacromolecules including DNAs, proteins/peptides/amino acids, carbohydrates and lipids, and those that are responsible for translational modifications. We envision that this review will serve as an ideal reference for practitioners as well as beginners in relevant research fields.
Collapse
Affiliation(s)
- Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China.
| | | | | | | | | | | |
Collapse
|
27
|
Zhu Z, Sun H, Jin J, Wang M, Zhang Y, Yu D, Jiang Y. Pulsed laser assisted synthesis of gadolinium carbide/carbon shell dots with enhanced magnetic resonance properties. NANOTECHNOLOGY 2019; 30:105705. [PMID: 30524007 DOI: 10.1088/1361-6528/aaf6c5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
There is now the opportunity for nanomaterials to be utilized in bioapplications with low toxicity, good stability and fine dissolvability. Herein, we present a pulsed laser assisted carbon coating method for nanocrystals, and gadolinium carbide/carbon shell (GC/CS) dots with a face-centered cubic structured gadolinium carbide core that have been synthesized in toluene. Good stability of the GC/CS dots was observed, not only in ethanol but also in the immunoconjugates. The MTT assay revealed immunoconjugates with non/low cytotoxicities. As a type of paramagnetic species, the GC/CS dots revealed excellent enhancement in magnetic resonance imaging at a high magnetic field of 14.1 T at ultra-low concentrations. In terms of the relaxivity values of the 1-3 nm GC/CS sample, both [Formula: see text] and [Formula: see text] have been dramatically increased to 86.5 mM-1 s-1 and 107.3 mM-1 s-1, respectively, thereby demonstrating the great potential for GC/CS dots to be utilized as advanced magnetic resonance agents for the diagnosis of cancers.
Collapse
Affiliation(s)
- Zhifeng Zhu
- School of Materials Science and Engineering, Hefei University of Technology, Anhui 230009, People's Republic of China. State Key Laboratory of Pulsed Power Laser Technology, Electronic Engineering Institute, Anhui 230037, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
28
|
Yao D, Zhao W, Zhang L, Tian Y. A ratiometric electrochemical strategy for sensitive determination of Furin activity based on dual signal amplification and antifouling nanosurfaces. Analyst 2018; 142:4215-4220. [PMID: 29058010 DOI: 10.1039/c7an01295k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Developing a sensitive and accurate method for Furin activity is still the bottleneck for understanding the role played by Furin in cell-surface systems and even in Alzheimer's disease. In this work, a ratiometric electrochemical biosensor was developed for sensitive and accurate determination of Furin activity in the cell based on dual signal amplification stemming from a peptide with multiple response sites and the antifouling gold nano-bellflowers (GBFs). A new peptide, HS-CMRVRR↓YKDFDFG (P3), was designed for the first time to be selectively cleaved by Furin at site↓. More importantly, this peptide P3 constitutes three amino acid residues with the -COOH group subsequently used to bind with the response molecule of ferrocene, and can remarkably improve the determination sensitivity by about 2.3 fold. Meanwhile, GBFs stabilized by PEG were taken as a second element to magnify the signal of the ferrocene group via a large ratio surface area and good conductivity, as well as an antibiofouling nanosurface to reduce the biofouling of the electrode surface in cells. This double amplification strategy can greatly enhance the sensitivity of Furin detection by 6.5-fold, which is favorable for detection of low amounts of Furin. In addition, 5'-MB-GGCGCGA(T)13-SH-3' was co-assembled as an inner reference to provide a built-in element to correct the determination error resulting from a complicated analysis environment. Finally, this sensitive and accurate Furin biosensor was successfully applied to detect Furin activity in Furin overexpressed U251 and MDA-MB-468 cells. As far as we know, this is the first report to mention an electrochemical strategy to detect Furin activity in cells.
Collapse
Affiliation(s)
- Dazhi Yao
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dong Chuan Road 500, Shanghai 200241, P.R. China.
| | | | | | | |
Collapse
|
29
|
Li K, Hu XX, Liu HW, Xu S, Huan SY, Li JB, Deng TG, Zhang XB. In Situ Imaging of Furin Activity with a Highly Stable Probe by Releasing of Precipitating Fluorochrome. Anal Chem 2018; 90:11680-11687. [DOI: 10.1021/acs.analchem.8b03335] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ke Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| | - Xiao-Xiao Hu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| | - Hong-Wen Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Shuai Xu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| | - Shuang-Yan Huan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| | - Jun-Bin Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| | - Tang-Gang Deng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| |
Collapse
|
30
|
|
31
|
Cong Y, Qiao ZY, Wang H. Molecular Self-Assembly Constructed in Physiological Conditions for Cancer Diagnosis and Therapy. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yong Cong
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| |
Collapse
|
32
|
Affiliation(s)
- Zijuan Hai
- Hefei National Laboratory of Physical Sciences at Microscale; Department of Chemistry; University of Science and Technology of China; 96 Jinzhai Road Hefei Anhui 230026 China
| | - Gaolin Liang
- Hefei National Laboratory of Physical Sciences at Microscale; Department of Chemistry; University of Science and Technology of China; 96 Jinzhai Road Hefei Anhui 230026 China
| |
Collapse
|
33
|
Iron(III)-Tannic Molecular Nanoparticles Enhance Autophagy effect and T 1 MRI Contrast in Liver Cell Lines. Sci Rep 2018; 8:6647. [PMID: 29703912 PMCID: PMC5923259 DOI: 10.1038/s41598-018-25108-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023] Open
Abstract
Herein, a new molecular nanoparticle based on iron(III)-tannic complexes (Fe–TA NPs) is presented. The Fe–TA NPs were simply obtained by mixing the precursors in a buffered solution at room temperature, and they exhibited good physicochemical properties with capability of inducing autophagy in both hepatocellular carcinoma cells (HepG2.2.15) and normal rat hepatocytes (AML12). The Fe–TA NPs were found to induce HepG2.2.15 cell death via autophagic cell death but have no effect on cell viability in AML12 cells. This is possibly due to the much higher uptake of the Fe–TA NPs by the HepG2.2.15 cells via the receptor-mediated endocytosis pathway. As a consequence, enhancement of the T1 MRI contrast was clearly observed in the HepG2.2.15 cells. The results demonstrate that the Fe–TA NPs could provide a new strategy combining diagnostic and therapeutic functions for hepatocellular carcinoma. Additionally, because of their autophagy-inducing properties, they can be applied as autophagy enhancers for prevention and treatment of other diseases.
Collapse
|
34
|
Zhao X, Lv G, Peng Y, Liu Q, Li X, Wang S, Li K, Qiu L, Lin J. Targeted Delivery of an Activatable Fluorescent Probe for the Detection of Furin Activity in Living Cells. Chembiochem 2018; 19:1060-1065. [DOI: 10.1002/cbic.201800015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Xueyu Zhao
- School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 China
- Key Laboratory of Nuclear Medicine, Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Gaochao Lv
- Key Laboratory of Nuclear Medicine, Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Ying Peng
- Key Laboratory of Nuclear Medicine, Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Qingzhu Liu
- Key Laboratory of Nuclear Medicine, Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Xi Li
- School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 China
- Key Laboratory of Nuclear Medicine, Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Shanshan Wang
- School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 China
- Key Laboratory of Nuclear Medicine, Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Ke Li
- Key Laboratory of Nuclear Medicine, Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Ling Qiu
- School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 China
- Key Laboratory of Nuclear Medicine, Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Jianguo Lin
- Key Laboratory of Nuclear Medicine, Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| |
Collapse
|
35
|
Du W, Hu X, Wei W, Liang G. Intracellular Peptide Self-Assembly: A Biomimetic Approach for in Situ Nanodrug Preparation. Bioconjug Chem 2018; 29:826-837. [PMID: 29316785 DOI: 10.1021/acs.bioconjchem.7b00798] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Most nanodrugs are preprepared by encapsulating or loading the drugs with nanocarriers (e.g., dendrimers, liposomes, micelles, and polymeric nanoparticles). However, besides the low bioavailability and fast excretion of the nanodrugs in vivo, nanocarriers often exhibit in vitro and in vivo cytotoxicity, oxidative stress, and inflammation. Self-assembly is a ubiquitous process in biology where it plays important roles and underlies the formation of a wide variety of complex biological structures. Inspired by some cellular nanostructures (e.g., actin filaments, microtubules, vesicles, and micelles) in biological systems which are formed via molecular self-assembly, in recent decades, scientists have utilized self-assembly of oligomeric peptide under specific physiological or pathological environments to in situ construct nanodrugs for lesion-targeted therapies. On one hand, peptide-based nanodrugs always have some excellent intrinsic chemical (specificity, intrinsic bioactivity, biodegradability) and physical (small size, conformation) properties. On the other hand, stimuli-regulated intracellular self-assembly of nanodrugs is quite an efficient way to accumulate the drugs in lesion location and can realize an in situ slow release of the drugs. In this review article, we provided an overview on recent design principles for intracellular peptide self-assembly and illustrate how these principles have been applied for the in situ preparation of nanodrugs at the lesion location. In the last part, we list some challenges underlying this strategy and their possible solutions. Moreover, we envision the future possible theranostic applications of this strategy.
Collapse
Affiliation(s)
- Wei Du
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China
| | - Xiaomu Hu
- Department of Medicinal Chemistry, School of Pharmacy , The Fourth Military Medical University , Changle West Road 169 , Xi'an , Shanxi 710032 , China
| | - Weichen Wei
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China
| | - Gaolin Liang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China
| |
Collapse
|
36
|
Wang Y, An R, Luo Z, Ye D. Firefly Luciferin-Inspired Biocompatible Chemistry for Protein Labeling and In Vivo Imaging. Chemistry 2017; 24:5707-5722. [PMID: 29068109 DOI: 10.1002/chem.201704349] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Indexed: 12/27/2022]
Abstract
Biocompatible reactions have emerged as versatile tools to build various molecular imaging probes that hold great promise for the detection of biological processes in vitro and/or in vivo. In this Minireview, we describe the recent advances in the development of a firefly luciferin-inspired biocompatible reaction between cyanobenzothiazole (CBT) and cysteine (Cys), and highlight its versatility to label proteins and build multimodality molecular imaging probes. The review starts from the general introduction of biocompatible reactions, which is followed by briefly describing the development of the firefly luciferin-inspired biocompatible chemistry. We then discuss its applications for the specific protein labeling and for the development of multimodality imaging probes (fluorescence, bioluminescence, MRI, PET, photoacoustic, etc.) that enable high sensitivity and spatial resolution imaging of redox environment, furin and caspase-3/7 activity in living cells and mice. Finally, we offer the conclusions and our perspective on the various and potential applications of this reaction. We hope that this review will contribute to the research of biocompatible reactions for their versatile applications in protein labeling and molecular imaging.
Collapse
Affiliation(s)
- Yuqi Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Ruibing An
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhiliang Luo
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
37
|
Shamsutdinova N, Zairov R, Nizameev I, Gubaidullin A, Mukhametshina A, Podyachev S, Ismayev I, Kadirov M, Voloshina A, Mukhametzyanov T, Mustafina A. Tuning magnetic relaxation properties of "hard cores" in core-shell colloids by modification of "soft shell". Colloids Surf B Biointerfaces 2017; 162:52-59. [PMID: 29149728 DOI: 10.1016/j.colsurfb.2017.10.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/31/2017] [Indexed: 01/15/2023]
Abstract
The present work introduces an impact of polyelectrolyte-based hydrophilic shell on magnetic relaxivity and luminescence of hard cores built from isostructural complexes of Tb(III) and Gd(III) in the core-shell aqueous colloids. Microscopic and scattering techniques reveal "plum pudding" morphology of the colloids, where polyelectrolyte-coated ultrasmall (<5nm) hard cores form aggregates in aqueous solutions. Interaction of bovine serum albumin (BSA) with the colloids provides a tool to modify the polyelectrolyte-based shell, which is the reason for the improvement in both aggregation behavior of the colloids and their relaxivity. The modification of the hydrophilic polyelectrolyte-based shell enables to tune the longitudinal relaxivity from 5.9 to 23.3mM-1s-1 at 0.47T. This tendency is the reason for significant improvement of contrasting effect of the colloids in T1- and T2-weighted images obtained by whole body scanner at 1.5T. High contrasting effect of the colloids, together with low cytotoxicity towards Wi-38 diploid human cells makes them promising MRI contrast agents.
Collapse
Affiliation(s)
- Nataliya Shamsutdinova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, Kazan, 420088, Russian Federation
| | - Rustem Zairov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, Kazan, 420088, Russian Federation.
| | - Irek Nizameev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, Kazan, 420088, Russian Federation
| | - Aidar Gubaidullin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, Kazan, 420088, Russian Federation
| | - Alsu Mukhametshina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, Kazan, 420088, Russian Federation
| | - Sergey Podyachev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, Kazan, 420088, Russian Federation
| | - Ildus Ismayev
- A.N. Tupolev Kazan National Research Technical University, 10, K. Marx St., Kazan, 420111, Russian Federation
| | - Marsil Kadirov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, Kazan, 420088, Russian Federation
| | - Alexandra Voloshina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, Kazan, 420088, Russian Federation
| | - Timur Mukhametzyanov
- Kazan Federal University, Kremlyovskaya Street 18, 420008, Kazan, Russian Federation
| | - Asiya Mustafina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, Kazan, 420088, Russian Federation
| |
Collapse
|
38
|
Ma D, Chen J, Luo Y, Wang H, Shi X. Zwitterion-coated ultrasmall iron oxide nanoparticles for enhanced T 1-weighted magnetic resonance imaging applications. J Mater Chem B 2017; 5:7267-7273. [PMID: 32264176 DOI: 10.1039/c7tb01588g] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report a convenient strategy to prepare ultrasmall Fe3O4 nanoparticles (NPs) coated with zwitterion l-cysteine (Cys) for enhanced T1-weighted magnetic resonance (MR) imaging applications. The formed Fe3O4-PEG-Cys NPs possess antifouling properties, good r1 relaxivity, excellent cytocompatibility and hemocompatibility, and can be used as a contrast agent for enhanced blood pool and tumor MR imaging.
Collapse
Affiliation(s)
- Dan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.
| | | | | | | | | |
Collapse
|
39
|
Activatable interpolymer complex-superparamagnetic iron oxide nanoparticles as magnetic resonance contrast agents sensitive to oxidative stress. Colloids Surf B Biointerfaces 2017; 158:578-588. [PMID: 28750340 DOI: 10.1016/j.colsurfb.2017.07.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/29/2017] [Accepted: 07/08/2017] [Indexed: 12/14/2022]
Abstract
Magnetic resonance contrast agents that can be activated in response to specific triggers hold potential as molecular biosensors that may be of great utility in non-invasive disease diagnosis. We developed an activatable agent based on superparamagnetic iron oxide nanoparticles (SPIOs) that is sensitive to oxidative stress, a factor in the pathophysiology of numerous diseases. SPIOs were coated with poly(ethylene glycol) (PEG) and complexed with poly(gallol), a synthetic tannin. Hydrogen bonding between PEG and poly(gallol) creates a complexed layer around the SPIO that decreases the interaction of solute water with the SPIO, attenuating its magnetic resonance relaxivity. The complexed interpolymer nanoparticle is in an OFF state (decreased T2 contrast), where the contrast agent has a low T2 relaxivity of 7±2mM-1s-1. In the presence of superoxides, the poly(gallol) is oxidized and the polymers decomplex, allowing solute water to again interact with the SPIO, representing an ON state (increased T2 contrast) with a T2 relaxivity of 70±10mM-1s-1. These contrast agents show promise as effective sensors for diseases characterized in part by oxidative stress such as atherosclerosis, diabetes, and cancer.
Collapse
|
40
|
Jaaks P, Bernasconi M. The proprotein convertase furin in tumour progression. Int J Cancer 2017; 141:654-663. [PMID: 28369813 DOI: 10.1002/ijc.30714] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/06/2017] [Accepted: 03/23/2017] [Indexed: 01/17/2023]
Abstract
Proprotein convertases are proteases that have been implicated in the activation of a wide variety of proteins. These proteins are generally synthesised as precursor proteins and require limited proteolysis for conversion into their mature bioactive counterparts. Many of these proteins, including metalloproteases, growth factors and their receptors or adhesion molecules, have been shown to facilitate tumour formation and progression. Hence, this review will focus on the proprotein convertase furin and its role in cancer. The expression of furin has been confirmed in a large spectrum of cancers such as head and neck squamous cell carcinoma, breast cancer and rhabdomyosarcoma. Functional studies modulating furin activity uncovered its importance for the processing of many cancer-related substrates and strongly indicate that high furin activity promotes the malignant phenotype of cancer cells. In this review, we summarise the expression and function of furin in different cancer types, discuss its role in processing cancer-related proproteins and give examples of potential therapeutic approaches that take advantage of the proteolytic activity of furin in cancer cells.
Collapse
Affiliation(s)
- Patricia Jaaks
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Michele Bernasconi
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Li H, Harriss BI, Phinikaridou A, Lacerda S, Ramniceanu G, Doan BT, Ho KL, Chan CF, Lo WS, Botnar RM, Lan R, Richard C, Law GL, Long NJ, Wong KL. Gadolinium and Platinum in Tandem: Real-time Multi-Modal Monitoring of Drug Delivery by MRI and Fluorescence Imaging. Nanotheranostics 2017; 1:186-195. [PMID: 29071187 PMCID: PMC5646715 DOI: 10.7150/ntno.18619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/11/2017] [Indexed: 12/25/2022] Open
Abstract
A novel dual-imaging cisplatin-carrying molecular cargo capable of performing simultaneous optical and MR imaging is reported herein. This long-lasting MRI contrast agent (r1 relaxivity of 23.4 mM-1s-1 at 3T, 25 oC) is a photo-activated cisplatin prodrug (PtGdL) which enables real-time monitoring of anti-cancer efficacy. PtGdL is a model for monitoring the drug delivery and anti-cancer efficacy by MRI with a much longer retention time (24 hours) in several organs such as renal cortex and spleen than GdDOTA and its motif control GdL. Upon complete release of cisplatin, all PtGdL is converted to GdL enabling subsequent MRI analyses of therapy efficacy within its reasonably short clearance time of 4 hours. There is also responsive fluorescence enhancement for monitoring by photon-excitation.
Collapse
Affiliation(s)
- Hongguang Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR
| | - Bethany I Harriss
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Alkystis Phinikaridou
- King's College London, Division of Imaging Sciences, Lambeth Wing, St Thomas' Hospital London SE1 7EH
| | - Sara Lacerda
- King's College London, Division of Imaging Sciences, Lambeth Wing, St Thomas' Hospital London SE1 7EH
| | - Gregory Ramniceanu
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS); CNRS UMR 8258; Inserm U 1022; Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France.,Chimie-ParisTech, PSL, 75005 Paris, France
| | - Bich-Thuy Doan
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS); CNRS UMR 8258; Inserm U 1022; Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France.,Chimie-ParisTech, PSL, 75005 Paris, France
| | - Ka-Lok Ho
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR
| | - Chi-Fai Chan
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR.,Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR
| | - Wai-Sum Lo
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR
| | - René M Botnar
- King's College London, Division of Imaging Sciences, Lambeth Wing, St Thomas' Hospital London SE1 7EH
| | - Rongfeng Lan
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR
| | - Cyrille Richard
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS); CNRS UMR 8258; Inserm U 1022; Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France.,Chimie-ParisTech, PSL, 75005 Paris, France
| | - Ga-Lai Law
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR
| | - Nicholas J Long
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR
| |
Collapse
|
42
|
Kaushik AC, Kumar A, Dwivedi VD, Bharadwaj S, Kumar S, Bharti K, Kumar P, Chaudhary RK, Mishra SK. Deciphering the Biochemical Pathway and Pharmacokinetic Study of Amyloid βeta-42 with Superparamagnetic Iron Oxide Nanoparticles (SPIONs) Using Systems Biology Approach. Mol Neurobiol 2017; 55:3224-3236. [DOI: 10.1007/s12035-017-0546-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
|
43
|
Acar H, Srivastava S, Chung EJ, Schnorenberg MR, Barrett JC, LaBelle JL, Tirrell M. Self-assembling peptide-based building blocks in medical applications. Adv Drug Deliv Rev 2017; 110-111:65-79. [PMID: 27535485 PMCID: PMC5922461 DOI: 10.1016/j.addr.2016.08.006] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/01/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022]
Abstract
Peptides and peptide-conjugates, comprising natural and synthetic building blocks, are an increasingly popular class of biomaterials. Self-assembled nanostructures based on peptides and peptide-conjugates offer advantages such as precise selectivity and multifunctionality that can address challenges and limitations in the clinic. In this review article, we discuss recent developments in the design and self-assembly of various nanomaterials based on peptides and peptide-conjugates for medical applications, and categorize them into two themes based on the driving forces of molecular self-assembly. First, we present the self-assembled nanostructures driven by the supramolecular interactions between the peptides, with or without the presence of conjugates. The studies where nanoassembly is driven by the interactions between the conjugates of peptide-conjugates are then presented. Particular emphasis is given to in vivo studies focusing on therapeutics, diagnostics, immune modulation and regenerative medicine. Finally, challenges and future perspectives are presented.
Collapse
Affiliation(s)
- Handan Acar
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA.
| | - Samanvaya Srivastava
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Institute for Molecular Engineering, Argonne National Laboratory, Argonne, IL 60439, USA.
| | - Eun Ji Chung
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Mathew R Schnorenberg
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA; Medical Scientist Training Program, University of Chicago, Chicago, IL 60637, USA.
| | - John C Barrett
- Biophysical Sciences Graduate Program, University of Chicago, Chicago, IL 60637, USA.
| | - James L LaBelle
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA.
| | - Matthew Tirrell
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Institute for Molecular Engineering, Argonne National Laboratory, Argonne, IL 60439, USA.
| |
Collapse
|
44
|
Nowak R, Prasetyanto EA, De Cola L, Bojer B, Siegel R, Senker J, Rössler E, Weber B. Proton-driven coordination-induced spin state switch (PD-CISSS) of iron(ii) complexes. Chem Commun (Camb) 2017; 53:971-974. [DOI: 10.1039/c6cc08618g] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pH dependent reversible spin state switch is observed for strong field iron(ii) complexes in line with a significant relaxivity gap between the high spin and the low spin state.
Collapse
Affiliation(s)
- René Nowak
- Anorganische Chemie II
- Universität Bayreuth
- 95440 Bayreuth
- Germany
| | - Eko Adi Prasetyanto
- Institut de Science et d'Ingenierie Supramoleculaire (ISIS), Université de Strasbourg
- 67083 Strasbourg Cedex
- France
| | - Luisa De Cola
- Institut de Science et d'Ingenierie Supramoleculaire (ISIS), Université de Strasbourg
- 67083 Strasbourg Cedex
- France
| | - Beate Bojer
- Anorganische Chemie III
- Universität Bayreuth
- 95440 Bayreuth
- Germany
| | - Renée Siegel
- Anorganische Chemie III
- Universität Bayreuth
- 95440 Bayreuth
- Germany
| | - Jürgen Senker
- Anorganische Chemie III
- Universität Bayreuth
- 95440 Bayreuth
- Germany
| | - Ernst Rössler
- Experimentalphysik II
- Universität Bayreuth
- 95440 Bayreuth
- Germany
| | - Birgit Weber
- Anorganische Chemie II
- Universität Bayreuth
- 95440 Bayreuth
- Germany
| |
Collapse
|
45
|
Liu X, Liang G. Dual aggregation-induced emission for enhanced fluorescence sensing of furin activity in vitro and in living cells. Chem Commun (Camb) 2017; 53:1037-1040. [DOI: 10.1039/c6cc09106g] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A dual aggregation-induced emission probe was designed for effectively sensing furin activity in vitro and in living cells.
Collapse
Affiliation(s)
- Xiaomei Liu
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- China
| | - Gaolin Liang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- China
| |
Collapse
|
46
|
Russo M, Bevilacqua P, Netti PA, Torino E. A Microfluidic Platform to design crosslinked Hyaluronic Acid Nanoparticles (cHANPs) for enhanced MRI. Sci Rep 2016; 6:37906. [PMID: 27901092 PMCID: PMC5128828 DOI: 10.1038/srep37906] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022] Open
Abstract
Recent advancements in imaging diagnostics have focused on the use of nanostructures that entrap Magnetic Resonance Imaging (MRI) Contrast Agents (CAs), without the need to chemically modify the clinically approved compounds. Nevertheless, the exploitation of microfluidic platforms for their controlled and continuous production is still missing. Here, a microfluidic platform is used to synthesize crosslinked Hyaluronic Acid NanoParticles (cHANPs) in which a clinically relevant MRI-CAs, gadolinium diethylenetriamine penta-acetic acid (Gd-DTPA), is entrapped. This microfluidic process facilitates a high degree of control over particle synthesis, enabling the production of monodisperse particles as small as 35 nm. Furthermore, the interference of Gd-DTPA during polymer precipitation is overcome by finely tuning process parameters and leveraging the use of hydrophilic-lipophilic balance (HLB) of surfactants and pH conditions. For both production strategies proposed to design Gd-loaded cHANPs, a boosting of the relaxation rate T1 is observed since a T1 of 1562 is achieved with a 10 μM of Gd-loaded cHANPs while a similar value is reached with 100 μM of the relevant clinical Gd-DTPA in solution. The advanced microfluidic platform to synthesize intravascularly-injectable and completely biocompatible hydrogel nanoparticles entrapping clinically approved CAs enables the implementation of straightforward and scalable strategies in diagnostics and therapy applications.
Collapse
Affiliation(s)
- Maria Russo
- Istituto Italiano di Tecnologia, IIT - Center for Advanced Biomaterials for Health Care, CABHC@CRIB, Largo Barsanti e Matteucci, 80125, Naples, Italy.,University of Naples Federico II, Department of Chemical Engineering, Materials and Industrial Production, P.le Tecchio 80, 80125, Naples, Italy
| | - Paolo Bevilacqua
- Istituto Italiano di Tecnologia, IIT - Center for Advanced Biomaterials for Health Care, CABHC@CRIB, Largo Barsanti e Matteucci, 80125, Naples, Italy.,IRCCS Fondazione SDN, Istituto di Ricerca Diagnostica e Nucleare, 80143 Naples, Italy
| | - Paolo Antonio Netti
- Istituto Italiano di Tecnologia, IIT - Center for Advanced Biomaterials for Health Care, CABHC@CRIB, Largo Barsanti e Matteucci, 80125, Naples, Italy.,University of Naples Federico II, Department of Chemical Engineering, Materials and Industrial Production, P.le Tecchio 80, 80125, Naples, Italy.,University of Naples Federico II, Department of Chemical Engineering, Materials and Industrial Production, P.le Tecchio 80, 80125, Naples, Italy
| | - Enza Torino
- Istituto Italiano di Tecnologia, IIT - Center for Advanced Biomaterials for Health Care, CABHC@CRIB, Largo Barsanti e Matteucci, 80125, Naples, Italy.,University of Naples Federico II, Department of Chemical Engineering, Materials and Industrial Production, P.le Tecchio 80, 80125, Naples, Italy
| |
Collapse
|
47
|
|
48
|
Zhou J, Cheng M, Zeng L, Liu W, Zhang T, Xing D. Specific capture of the hydrolysate on magnetic beads for sensitive detecting plant vacuolar processing enzyme activity. Biosens Bioelectron 2016; 79:881-6. [DOI: 10.1016/j.bios.2016.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/29/2015] [Accepted: 01/04/2016] [Indexed: 01/05/2023]
|
49
|
Ni K, Zhao Z, Zhang Z, Zhou Z, Yang L, Wang L, Ai H, Gao J. Geometrically confined ultrasmall gadolinium oxide nanoparticles boost the T(1) contrast ability. NANOSCALE 2016; 8:3768-74. [PMID: 26814592 DOI: 10.1039/c5nr08402d] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
High-performance magnetic resonance imaging (MRI) contrast agents and novel contrast enhancement strategies are urgently needed for sensitive and accurate diagnosis. Here we report a strategy to construct a new T1 contrast agent based on the Solomon-Bloembergen-Morgan (SBM) theory. We loaded the ultrasmall gadolinium oxide nanoparticles into worm-like interior channels of mesoporous silica nanospheres (Gd2O3@MSN nanocomposites). This unique structure endows the nanocomposites with geometrical confinement, high molecular tumbling time, and a large coordinated number of water molecules, which results in a significant enhancement of the T1 contrast with longitudinal proton relaxivity (r1) as high as 45.08 mM(-1) s(-1). Such a high r1 value of Gd2O3@MSN, compared to those of ultrasmall Gd2O3 nanoparticles and gadolinium-based clinical contrast agents, is mainly attributed to the strong geometrical confinement effect. This strategy provides new guidance for developing various high-performance T1 contrast agents for sensitive imaging and disease diagnosis.
Collapse
Affiliation(s)
- Kaiyuan Ni
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Deb S, Ghosh K, Shetty SD. Nanoimaging in cardiovascular diseases: Current state of the art. Indian J Med Res 2016; 141:285-98. [PMID: 25963489 PMCID: PMC4442326 DOI: 10.4103/0971-5916.156557] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nanotechnology has been integrated into healthcare system in terms of diagnosis as well as therapy. The massive impact of imaging nanotechnology has a deeper intervention in cardiology i.e. as contrast agents, to target vulnerable plaques with site specificity and in a theranostic approach to treat these plaques, stem cell delivery in necrotic myocardium, etc. Thus cardiovascular nanoimaging is not limited to simple diagnosis but also can help real time tracking during therapy as well as surgery. The present review provides a comprehensive description of the molecular imaging techniques for cardiovascular diseases with the help of nanotechnology and the potential clinical implications of nanotechnology for future applications.
Collapse
Affiliation(s)
- Suryyani Deb
- Department of Hemostasis & Thrombosis, National Institute of Immunohaematology (ICMR), Mumbai, India
| | | | | |
Collapse
|