1
|
Albergoni A, Paizis C, Papaxanthis C, Biggio M, Bove M, Bisio A. Weight discrimination ability during an action observation task is dependent on the type of muscle contraction. Eur J Neurosci 2024; 60:7025-7037. [PMID: 39551615 DOI: 10.1111/ejn.16604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/11/2024] [Accepted: 10/26/2024] [Indexed: 11/19/2024]
Abstract
Concentric and eccentric contractions show different patterns of neural activity at both peripheral and cortical levels, which are thought to influence the perception of action properties such as the weight of objects moved by others. The aim of this study was to investigate how the type of muscle contraction influences weight estimation during action observation. Forty-eight volunteers completed the Main experiment and the Control experiment. In the Main experiment, they performed a weight discrimination video task in which they watched videos of an actor moving two objects, a comparison, and a reference box, executing concentric or eccentric contractions and they had to indicate which box was the heaviest. Sensitivity analysis and psychometric functions were used to analyse the data. In the Control experiment, observers judged the actor's effort in moving the boxes. The results of the Main experiment showed that the weight discrimination sensitivity was higher in the eccentric condition for the light boxes. Conversely, for the heaviest boxes, discrimination sensitivity was higher in the concentric condition. These results were confirmed by the psychometric function analysis. The control experiment showed that the perceived difference in effort between the comparison and reference stimuli was greater in the eccentric than in the concentric condition for light stimuli. These results showed that the ability to evaluate the weight of the object involved in the observed action was influenced by the type of contraction and the amount of weight. The effort attributed to the actor influenced the observer's perception.
Collapse
Affiliation(s)
- Andrea Albergoni
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy
- Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Christos Paizis
- INSERM UMR1093-CAPS, Faculty of Sport Sciences, Université de Bourgogne Franche-Comté, Dijon, France
- Centre d'Expertise de la Performance, Faculty of Sport Sciences, Université de Bourgogne Franche Comté, Dijon, France
| | - Charalambos Papaxanthis
- INSERM UMR1093-CAPS, Faculty of Sport Sciences, Université de Bourgogne Franche-Comté, Dijon, France
- Centre d'Expertise de la Performance, Faculty of Sport Sciences, Université de Bourgogne Franche Comté, Dijon, France
| | - Monica Biggio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy
| | - Marco Bove
- Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Ambra Bisio
- Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| |
Collapse
|
2
|
Bogon J, Högerl J, Kocur M, Wolff C, Henze N, Riemer M. Validating virtual reality for time perception research: Virtual reality changes expectations about the duration of physical processes, but not the sense of time. Behav Res Methods 2024; 56:4553-4562. [PMID: 37752369 PMCID: PMC11289030 DOI: 10.3758/s13428-023-02201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 09/28/2023]
Abstract
Immersive virtual reality (VR) provides a versatile method for investigating human time perception, because it allows the manipulation and control of relevant variables (e.g., the speed of environmental changes) that cannot be modified in the real world. However, an important premise for interpreting the results of VR studies, namely that the method itself does not affect time perception, has received little attention. Here we tested this assumption by comparing timing performance in a real environment and a VR scenario. Participants performed two timing tasks, requiring the production of intervals defined either by numerical values ("eight seconds") or by a physical process ("the time it takes for a bottle to run out when turned over"). We found that the experience of immersive VR exclusively altered judgments about the duration of physical processes, whereas judgments about the duration of abstract time units were unaffected. These results demonstrate that effects of VR on timing performance are not driven by changes in time perception itself, but rather by altered expectations regarding the duration of physical processes. The present study validates the use of VR in time perception research and strengthens the interpretation of changed timing behaviour induced by manipulations within VR.
Collapse
Affiliation(s)
- Johanna Bogon
- Media Informatics Group, University of Regensburg, Regensburg, Germany.
| | - Julian Högerl
- Media Informatics Group, University of Regensburg, Regensburg, Germany
| | - Martin Kocur
- Digital Media, University of Applied Sciences Upper Austria, Hagenberg, Austria
| | - Christian Wolff
- Media Informatics Group, University of Regensburg, Regensburg, Germany
| | - Niels Henze
- Media Informatics Group, University of Regensburg, Regensburg, Germany
| | - Martin Riemer
- Biological Psychology and Neuroergonomics, Technical University Berlin, Berlin, Germany
| |
Collapse
|
3
|
Naghibi N, Jahangiri N, Khosrowabadi R, Eickhoff CR, Eickhoff SB, Coull JT, Tahmasian M. Embodying Time in the Brain: A Multi-Dimensional Neuroimaging Meta-Analysis of 95 Duration Processing Studies. Neuropsychol Rev 2024; 34:277-298. [PMID: 36857010 PMCID: PMC10920454 DOI: 10.1007/s11065-023-09588-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/05/2022] [Indexed: 03/02/2023]
Abstract
Time is an omnipresent aspect of almost everything we experience internally or in the external world. The experience of time occurs through such an extensive set of contextual factors that, after decades of research, a unified understanding of its neural substrates is still elusive. In this study, following the recent best-practice guidelines, we conducted a coordinate-based meta-analysis of 95 carefully-selected neuroimaging papers of duration processing. We categorized the included papers into 14 classes of temporal features according to six categorical dimensions. Then, using the activation likelihood estimation (ALE) technique we investigated the convergent activation patterns of each class with a cluster-level family-wise error correction at p < 0.05. The regions most consistently activated across the various timing contexts were the pre-SMA and bilateral insula, consistent with an embodied theory of timing in which abstract representations of duration are rooted in sensorimotor and interoceptive experience, respectively. Moreover, class-specific patterns of activation could be roughly divided according to whether participants were timing auditory sequential stimuli, which additionally activated the dorsal striatum and SMA-proper, or visual single interval stimuli, which additionally activated the right middle frontal and inferior parietal cortices. We conclude that temporal cognition is so entangled with our everyday experience that timing stereotypically common combinations of stimulus characteristics reactivates the sensorimotor systems with which they were first experienced.
Collapse
Affiliation(s)
- Narges Naghibi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Nadia Jahangiri
- Faculty of Psychology & Education, Allameh Tabataba'i University, Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Claudia R Eickhoff
- Institute of Neuroscience and Medicine Research, Structural and functional organisation of the brain (INM-1), Jülich Research Center, Jülich, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine Research, Brain and Behaviour (INM-7), Jülich Research Center, Wilhelm-Johnen-Straße, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Jennifer T Coull
- Laboratoire de Neurosciences Cognitives (UMR 7291), Aix-Marseille Université & CNRS, Marseille, France
| | - Masoud Tahmasian
- Institute of Neuroscience and Medicine Research, Brain and Behaviour (INM-7), Jülich Research Center, Wilhelm-Johnen-Straße, Jülich, Germany.
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
4
|
Johari K, Tabari F, Desai RH. Right frontal HD-tDCS reveals causal involvement of time perception networks in temporal processing of concepts. Sci Rep 2023; 13:16658. [PMID: 37789056 PMCID: PMC10547783 DOI: 10.1038/s41598-023-43416-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/23/2023] [Indexed: 10/05/2023] Open
Abstract
Evidence suggests that perceptual and action related features of concepts are grounded in the corresponding sensory-motor networks in the human brain. However, less is known about temporal features of event concepts (e.g., a lecture) and whether they are grounded in time perception networks. We examined this question by stimulating the right dorsolateral prefrontal cortex (rDLPFC)-a part of time perception network-using HD-tDCS and subsequently recording EEG while participants performed semantic and time perception tasks. Semantic tasks were composed of event noun duration judgment (EDur), object noun size judgement (OSize), event (EVal) and object noun valence judgement. In the time perception task, participants judged the durations of pure tones. Results showed that cathodal stimulation accelerated responses for time perception task and decreased the magnitude of global field power (GFP) compared to sham stimulation. Semantic tasks results revealed that cathodal, but not sham, stimulation significantly decreased GFP for EDur relative to OSize, and to EVal. These findings provide first causal evidence that temporal features of event words are grounded in the rDLPFC as part of the temporal cognition network and shed light on the conceptual processing of time.
Collapse
Affiliation(s)
- Karim Johari
- Human Neurophysiology and Neuromodulation Laboratory, Department of Communication Science and Disorders, Louisiana State University, 86 Hatcher Hall, Field House Drive, Baton Rouge, LA, 70803, USA.
| | - Fatemeh Tabari
- Human Neurophysiology and Neuromodulation Laboratory, Department of Communication Science and Disorders, Louisiana State University, 86 Hatcher Hall, Field House Drive, Baton Rouge, LA, 70803, USA
| | - Rutvik H Desai
- Department of Psychology, University of South Carolina, Columbia, SC, USA
- Institute for Mind and Brain, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
5
|
Labaune O, Deroche T, Castanier C, Berret B. On the perception of movement vigour. Q J Exp Psychol (Hove) 2023; 76:2329-2345. [PMID: 36376994 DOI: 10.1177/17470218221140986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is common to get the impression that someone moves rather slowly or quickly in everyday life. In motor control, the natural pace of movement is captured by the concept of vigour, which is often quantified from the speed or duration of goal-directed actions. A common phenomenon, here referred to as the vigour law, is that preferred speed and duration idiosyncratically increase with the magnitude of the motion. According to the direct-matching hypothesis, this vigour law could thus underlie the judgement of someone else's movement vigour. We conducted a series of three experiments (N = 80) to test whether the vigour law also exists in perception and whether it is linked to that of action. In addition to measuring participants' vigour, we also asked them to judge the quickness of stimuli representing horizontal arm reaching movements varying through amplitudes, speeds, and durations. Results showed that speed and duration of movements perceived as neither fast nor slow (i.e., natural pace) increased with amplitude, thereby indicating that the vigour law holds when an observer judges the natural pace of others' movements. Results also revealed that this judgement was population-based (related to the average vigour of all participants) rather than individual-based (participant's own vigour).
Collapse
Affiliation(s)
- Ombeline Labaune
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d'Orléans, Orléans, France
| | - Thomas Deroche
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d'Orléans, Orléans, France
| | - Carole Castanier
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d'Orléans, Orléans, France
| | - Bastien Berret
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d'Orléans, Orléans, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
6
|
Spapé MM, Serrien DJ, Ravaja N. 3-2-1, action! A combined motor control-temporal reproduction task shows intentions, motions, and consequences alter time perception. Heliyon 2023; 9:e19728. [PMID: 37809398 PMCID: PMC10559010 DOI: 10.1016/j.heliyon.2023.e19728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Affiliation(s)
- Michiel M. Spapé
- University of Helsinki, Faculty of Medicine, Department of Psychology & Logopedics, Finland
| | - Deborah J. Serrien
- University of Nottingham, School of Psychology, Faculty of Science, United Kingdom
| | - Niklas Ravaja
- University of Helsinki, Faculty of Medicine, Department of Psychology & Logopedics, Finland
| |
Collapse
|
7
|
Teghil A, D'Antonio F, Di Vita A, Guariglia C, Boccia M. Temporal learning in the suprasecond range: insights from cognitive style. PSYCHOLOGICAL RESEARCH 2023; 87:568-582. [PMID: 35344099 PMCID: PMC9928821 DOI: 10.1007/s00426-022-01667-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
Abstract
The acquisition of information on the timing of events or actions (temporal learning) occurs in both the subsecond and suprasecond range. However, although relevant differences between participants have been reported in temporal learning, the role of dimensions of individual variability in affecting performance in such tasks is still unclear. Here we investigated this issue, assessing the effect of field-dependent/independent cognitive style on temporal learning in the suprasecond range. Since different mechanisms mediate timing when a temporal representation is self-generated, and when it depends on an external referent, temporal learning was assessed in two conditions. Participants observed a stimulus across six repetitions and reproduced it. Unbeknownst to them, in an internally-based learning (IBL) condition, the stimulus duration was fixed within a trial, although the number of events defining it varied; in an externally-cued learning (ECL) condition, the stimulus was defined by the same number of events within each trial, although its duration varied. The effect of the reproduction modality was also assessed (motor vs. perceptual). Error scores were higher in IBL compared to ECL; the reverse was true for variability. Field-independent individuals performed better than field-dependent ones only in IBL, as further confirmed by correlation analyses. Findings provide evidence that differences in dimensions of variability in high-level cognitive functioning, such as field dependence/independence, significantly affect temporal learning in the suprasecond range, and that this effect depends on the type of temporal representation fostered by the specific task demands.
Collapse
Affiliation(s)
- Alice Teghil
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185, Rome, Italy.
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Fabrizia D'Antonio
- Department of Human Neuroscience, "Sapienza" University of Rome, Rome, Italy
| | - Antonella Di Vita
- Department of Human Neuroscience, "Sapienza" University of Rome, Rome, Italy
| | - Cecilia Guariglia
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maddalena Boccia
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
8
|
Torricelli F, Tomassini A, Pezzulo G, Pozzo T, Fadiga L, D'Ausilio A. Motor invariants in action execution and perception. Phys Life Rev 2023; 44:13-47. [PMID: 36462345 DOI: 10.1016/j.plrev.2022.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The nervous system is sensitive to statistical regularities of the external world and forms internal models of these regularities to predict environmental dynamics. Given the inherently social nature of human behavior, being capable of building reliable predictive models of others' actions may be essential for successful interaction. While social prediction might seem to be a daunting task, the study of human motor control has accumulated ample evidence that our movements follow a series of kinematic invariants, which can be used by observers to reduce their uncertainty during social exchanges. Here, we provide an overview of the most salient regularities that shape biological motion, examine the role of these invariants in recognizing others' actions, and speculate that anchoring socially-relevant perceptual decisions to such kinematic invariants provides a key computational advantage for inferring conspecifics' goals and intentions.
Collapse
Affiliation(s)
- Francesco Torricelli
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy; Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Alice Tomassini
- Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Thierry Pozzo
- Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy; INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Luciano Fadiga
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy; Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Alessandro D'Ausilio
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy; Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy.
| |
Collapse
|
9
|
Hüttner* N, Sperl* L, Schroeger A. Slow motion bias: Exploring the relation between time overestimation and increased perceived intentionality. Perception 2023; 52:77-96. [PMID: 36471555 PMCID: PMC9837152 DOI: 10.1177/03010066221139943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/02/2022] [Indexed: 12/12/2022]
Abstract
Recent research on time perception has revealed that actions which are replayed in slow motion are perceived to take longer and rated to be more intentional (e.g., foul plays). Interestingly, the bias on duration estimations seems to disappear when information on the slow motion factor (i.e., the degree the video was slowed down) was provided. Here, we scrutinize the question whether also the intentionality bias disappears when explicit information about the slow motion factor is provided. To this end, two groups watched the same video clips, all displaying foul situations in a basketball match, in different video speeds. While the uninformed group saw the videos without further information, the informed group received additional information about the current slow motion factor. This study replicated the overestimation of original duration with increasing slow motion and indicated that this effect might be reduced when information about the slow motion factor is provided. However, despite generally lower intentionality ratings in the informed group, video speed information was not able to reduce the rise in intentionality ratings with increasing slow motion. Potential reasons and open questions regarding the nature and mechanisms behind these perceptual temporal biases (e.g., different time processing systems) are discussed.
Collapse
Affiliation(s)
| | - Laura Sperl*
- FernUniversität Hagen, Germany; Friedrich Schiller University Jena, Germany
| | - Anna Schroeger
- Friedrich Schiller University Jena, Germany; Justus Liebig University Giessen, Germany
| |
Collapse
|
10
|
Lin B, Chen Y, Li B, Avitt A, Guo Y, Pan L, Huang X. Spatial Selectivity of the Visual Duration Aftereffect in the Sub-second Range: An Event-related Potentials Study. Behav Brain Res 2022; 431:113950. [DOI: 10.1016/j.bbr.2022.113950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 05/03/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022]
|
11
|
De Kock R, Gladhill KA, Ali MN, Joiner WM, Wiener M. How movements shape the perception of time. Trends Cogn Sci 2021; 25:950-963. [PMID: 34531138 PMCID: PMC9991018 DOI: 10.1016/j.tics.2021.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022]
Abstract
In order to keep up with a changing environment, mobile organisms must be capable of deciding both where and when to move. This precision necessitates a strong sense of time, as otherwise we would fail in many of our movement goals. Yet, despite this intrinsic link, only recently have researchers begun to understand how these two features interact. Primarily, two effects have been observed: movements can bias time estimates, but they can also make them more precise. Here we review this literature and propose that both effects can be explained by a Bayesian cue combination framework, in which movement itself affords the most precise representation of time, which can influence perception in either feedforward or active sensing modes.
Collapse
|
12
|
Direct Social Perception of Others’ Subjective Time. COGN SYST RES 2021. [DOI: 10.1016/j.cogsys.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Balzarotti S, Cavaletti F, D'Aloia A, Colombo B, Cardani E, Ciceri MR, Antonietti A, Eugeni R. The Editing Density of Moving Images Influences Viewers' Time Perception: The Mediating Role of Eye Movements. Cogn Sci 2021; 45:e12969. [PMID: 33844350 DOI: 10.1111/cogs.12969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 11/29/2022]
Abstract
The present study examined whether cinematographic editing density affects viewers' perception of time. As a second aim, based on embodied models that conceive time perception as strictly connected to the movement, we tested the hypothesis that the editing density of moving images also affects viewers' eye movements and that these later mediate the effect of editing density on viewers' temporal judgments. Seventy participants watched nine video clips edited by manipulating the number of cuts (slow- and fast-paced editing against a master shot, unedited condition). For each editing density, multiple video clips were created, representing three different kinds of routine actions. The participants' eye movements were recorded while watching the video, and the participants were asked to report duration judgments and subjective passage of time judgments after watching each clip. The results showed that participants subjectively perceived that time flew more while watching fast-paced edited videos than slow-paced or unedited videos; by contrast, concerning duration judgments, participants overestimated the duration of fast-paced videos compared to the master-shot videos. Both the slow- and the fast-paced editing generated shorter fixations than the master shot, and the fast-paced editing led to shorter fixations than the slow-paced editing. Finally, compared to the unedited condition, editing led to an overestimation of durations through increased eye mobility. These findings suggest that the editing density of moving images by increasing the number of cuts effectively altered viewers' experience of time and add further evidence to prior research showing that performed eye movement is associated with temporal judgments.
Collapse
Affiliation(s)
| | | | - Adriano D'Aloia
- Department of Letters, Philosophy, Communication, University of Bergamo
| | | | - Elisa Cardani
- Department of Psychology, Università Cattolica del Sacro Cuore
| | | | | | - Ruggero Eugeni
- Department of Communication and Performing Arts, Università Cattolica del Sacro Cuore
| |
Collapse
|
14
|
De Kock R, Zhou W, Joiner WM, Wiener M. Slowing the body slows down time perception. eLife 2021; 10:e63607. [PMID: 33830016 PMCID: PMC8051945 DOI: 10.7554/elife.63607] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
Interval timing is a fundamental component of action and is susceptible to motor-related temporal distortions. Previous studies have shown that concurrent movement biases temporal estimates, but have primarily considered self-modulated movement only. However, real-world encounters often include situations in which movement is restricted or perturbed by environmental factors. In the following experiments, we introduced viscous movement environments to externally modulate movement and investigated the resulting effects on temporal perception. In two separate tasks, participants timed auditory intervals while moving a robotic arm that randomly applied four levels of viscosity. Results demonstrated that higher viscosity led to shorter perceived durations. Using a drift-diffusion model and a Bayesian observer model, we confirmed these biasing effects arose from perceptual mechanisms, instead of biases in decision making. These findings suggest that environmental perturbations are an important factor in movement-related temporal distortions, and enhance the current understanding of the interactions of motor activity and cognitive processes.
Collapse
Affiliation(s)
- Rose De Kock
- University of California, DavisDavisUnited States
| | - Weiwei Zhou
- University of California, DavisDavisUnited States
| | | | | |
Collapse
|
15
|
Allingham E, Hammerschmidt D, Wöllner C. Time perception in human movement: Effects of speed and agency on duration estimation. Q J Exp Psychol (Hove) 2021; 74:559-572. [PMID: 33234012 PMCID: PMC8044617 DOI: 10.1177/1747021820979518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/16/2020] [Accepted: 09/14/2020] [Indexed: 11/24/2022]
Abstract
While the effects of synthesised visual stimuli on time perception processes are well documented, very little research on time estimation in human movement stimuli exists. This study investigated the effects of movement speed and agency on duration estimation of human motion. Participants were recorded using optical motion capture while they performed dance-like movements at three different speeds. They later returned for a perceptual experiment in which they watched point-light displays of themselves and one other participant. Participants were asked to identify themselves, to estimate the duration of the recordings, and to rate expressivity and quality of the movements. Results indicate that speed of movement affected duration estimations such that faster speeds were rated longer, in accordance with previous findings in non-biological motion. The biasing effects of speed were stronger for watching others' movements than for watching one's own point-light movements. Duration estimations were longer after acting out the movement compared with watching it, and speed differentially affected ratings of expressivity and quality. Findings suggest that aspects of temporal processing of visual stimuli may be modulated by inner motor representations of previously performed movements, and by physically carrying out an action compared with just watching it. Results also support the inner clock and change theories of time perception for the processing of human motion stimuli, which can inform the temporal mechanisms of the hypothesised separate processor for human movement information.
Collapse
Affiliation(s)
- Emma Allingham
- Institute of Systematic Musicology, University of Hamburg, Hamburg, Germany
| | | | - Clemens Wöllner
- Institute of Systematic Musicology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
16
|
Sperl L, Hüttner N, Schroeger A. Why Do Actions in Slow Motion Appear to Last Longer? On the Effect of Video Speed Information. Perception 2021; 50:69-79. [PMID: 33446067 DOI: 10.1177/0301006620982212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
When displayed in slow motion, actions are often perceived longer compared with original speed. However, it remains to be determined why this bias exists. Is it possible that the bias emerges because participants underestimate the factor by which a video was slowed down and hence arrive at erroneous conclusions about the original duration? If true, providing explicit information about the respective video speed should eliminate this slow motion effect. To scrutinize the nature of this bias, participants rated the original duration of sports actions displayed at original speed or slow motion. Results revealed the expected overestimation bias consisting in longer ratings with increasing slow motion. However, the bias disappeared when information about the current video speed was provided. The observations suggest an influence of knowledge about video playback speed on cognitive-evaluative processes which may hold important implications for future research and practice.
Collapse
Affiliation(s)
- Laura Sperl
- Department for the Psychology of Human Movement and Sport, Institute of Sport Science, Friedrich Schiller University Jena, Germany
| | - Norman Hüttner
- Department for the Psychology of Human Movement and Sport, Institute of Sport Science, Friedrich Schiller University Jena, Germany
| | - Anna Schroeger
- Department for the Psychology of Human Movement and Sport, Institute of Sport Science, Friedrich Schiller University Jena, Germany
| |
Collapse
|
17
|
Differences in perceived durations between plausible biological and non-biological stimuli. Exp Brain Res 2020; 239:161-173. [PMID: 33140193 DOI: 10.1007/s00221-020-05904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
Visual motion stimuli can sometimes distort our perception of time. This effect is dependent on the apparent speed of the moving stimulus, where faster stimuli are usually perceived lasting longer than slower stimuli. Although it has been shown that neural and cognitive processing of biological motion stimuli differ from non-biological motion stimuli, no study has yet investigated whether perceived durations of biological stimuli differ from non-biological stimuli across different speeds. Here, a prospective temporal reproduction task was used to assess that question. Biological motion stimuli consisted of a human silhouette running in place. Non-biological motion stimuli consisted of a rectangle moving in a pendular way. Amount and plausibility of movement for each stimulus and frame-rate (speed) were evaluated by an independent group of participants. Although the amount of movement perceived was positively correlated to frame rate both for biological and non-biological stimuli, movie clips involving biological motion stimuli were judged to last longer than non-biological motion stimuli only at frame rates for which movement was rated as plausible. These results suggest that plausible representations of biomechanical movement induce additional temporal distortions to those modulated by increases in stimulus speed. Moreover, most studies reporting neural and cognitive differences in the processing of biological and non-biological motion stimuli acquired neurophysiological data using fMRI. Here, we report differences in the processing of biological and non-biological motion stimuli across different speeds using functional near-infrared spectroscopy (fNIRS), a less costly and portable form of neurophysiological data acquisition.
Collapse
|
18
|
Martins E Silva DC, Marinho V, Teixeira S, Teles G, Marques J, Escórcio A, Fernandes T, Freitas AC, Nunes M, Ayres M, Ayres C, Marques JB, Cagy M, Gupta DS, Bastos VH. Non-immersive 3D virtual stimulus alter the time production task performance and increase the EEG theta power in dorsolateral prefrontal cortex. Int J Neurosci 2020; 132:563-573. [PMID: 32962509 DOI: 10.1080/00207454.2020.1826945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIM The study investigated the cortical activity changes and time production task performance induced by changes in motion speed of a non-immersive 3D virtual stimulus. MATERIAL AND METHODS Twenty-one individuals were participated in the crossover study with the visual-time reproduction task under three-speed conditions: original, slow and fast virtual stimulus. In addition, the electroencephalographic analysis of the theta band power in the dorsolateral prefrontal cortex was done simultaneously with time production task execution. RESULTS The results demonstrated that in the slow speed condition, there is an increase in the error in the time production task after virtual reality (p < 0.05). There is also increased EEG theta power in the right dorsolateral prefrontal cortex in all speed conditions (p < 0.05). CONCLUSIONS We propose that the modulations of speed of virtual stimulus may underlie the accumulation of temporal pulses, which could be responsible for changes in the performance of the production task of the time intervals and a substantial increase in right dorsolateral prefrontal cortex activity related to attention and memory, acting in cognitive domains of supraseconds.
Collapse
Affiliation(s)
| | - Victor Marinho
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta do Parnaíba, Parnaíba, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Silmar Teixeira
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta do Parnaíba, Parnaíba, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Gabriela Teles
- Brain Mapping and Functionality, Laboratory, Federal University of Delta do Parnaíba, Parnaíba, Brazil
| | - João Marques
- Brain Mapping and Functionality, Laboratory, Federal University of Delta do Parnaíba, Parnaíba, Brazil
| | - Anderson Escórcio
- Brain Mapping and Functionality, Laboratory, Federal University of Delta do Parnaíba, Parnaíba, Brazil
| | - Thayaná Fernandes
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta do Parnaíba, Parnaíba, Brazil
| | - Ana Cláudia Freitas
- Brain Mapping and Functionality, Laboratory, Federal University of Delta do Parnaíba, Parnaíba, Brazil
| | - Monara Nunes
- Brain Mapping and Functionality, Laboratory, Federal University of Delta do Parnaíba, Parnaíba, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Marcos Ayres
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta do Parnaíba, Parnaíba, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Carla Ayres
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta do Parnaíba, Parnaíba, Brazil
| | - Juliana Bittencourt Marques
- Laboratory of Neurophysiology and Neuropsychology of Attention, Veiga de Almeida University, Cabo Frio, Brazil
| | - Maurício Cagy
- Masters and PhD Program in Biomedical Engineering, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daya S Gupta
- Department of Biology, Camden County College, Blackwood, NJ, USA
| | - Victor Hugo Bastos
- Brain Mapping and Functionality, Laboratory, Federal University of Delta do Parnaíba, Parnaíba, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
19
|
Benedetti V, Gavazzi G, Giovannelli F, Bravi R, Giganti F, Minciacchi D, Mascalchi M, Cincotta M, Viggiano MP. Mouse Tracking to Explore Motor Inhibition Processes in Go/No-Go and Stop Signal Tasks. Brain Sci 2020; 10:brainsci10070464. [PMID: 32698348 PMCID: PMC7408439 DOI: 10.3390/brainsci10070464] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
Response inhibition relies on both proactive and reactive mechanisms that exert a synergic control on goal-directed actions. It is typically evaluated by the go/no-go (GNG) and the stop signal task (SST) with response recording based on the key-press method. However, the analysis of discrete variables (i.e., present or absent responses) registered by key-press could be insufficient to capture dynamic aspects of inhibitory control. Trying to overcome this limitation, in the present study we used a mouse tracking procedure to characterize movement profiles related to proactive and reactive inhibition. A total of fifty-three participants performed a cued GNG and an SST. The cued GNG mainly involves proactive control whereas the reactive component is mainly engaged in the SST. We evaluated the velocity profile from mouse trajectories both for responses obtained in the Go conditions and for inhibitory failures. Movements were classified as one-shot when no corrections were observed. Multi-peaked velocity profiles were classified as non-one-shot. A higher proportion of one-shot movements was found in the SST compared to the cued GNG when subjects failed to inhibit responses. This result suggests that proactive control may be responsible for unsmooth profiles in inhibition failures, supporting a differentiation between these tasks.
Collapse
Affiliation(s)
- Viola Benedetti
- Section of Psychology—Department of Neuroscience, Psychology, Drug Research and Child’s Health (NEUROFARBA), University of Florence, 50135 Florence, Italy; (V.B.); (F.G.); (F.G.)
| | | | - Fabio Giovannelli
- Section of Psychology—Department of Neuroscience, Psychology, Drug Research and Child’s Health (NEUROFARBA), University of Florence, 50135 Florence, Italy; (V.B.); (F.G.); (F.G.)
| | - Riccardo Bravi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (R.B.); (D.M.)
| | - Fiorenza Giganti
- Section of Psychology—Department of Neuroscience, Psychology, Drug Research and Child’s Health (NEUROFARBA), University of Florence, 50135 Florence, Italy; (V.B.); (F.G.); (F.G.)
| | - Diego Minciacchi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (R.B.); (D.M.)
| | - Mario Mascalchi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy;
| | - Massimo Cincotta
- Unit of Neurology of Florence, Central Tuscany Local Health Authority, 50143 Florence, Italy;
| | - Maria Pia Viggiano
- Section of Psychology—Department of Neuroscience, Psychology, Drug Research and Child’s Health (NEUROFARBA), University of Florence, 50135 Florence, Italy; (V.B.); (F.G.); (F.G.)
- Correspondence:
| |
Collapse
|
20
|
Ayhan I, Ozbagci D. Action-induced changes in the perceived temporal features of visual events. Vision Res 2020; 175:1-13. [PMID: 32623245 DOI: 10.1016/j.visres.2020.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 11/28/2022]
Abstract
Perceived duration can be subject to deviations around the time of a voluntary action. Whether the mechanisms underlying action-induced visual duration effects are effector-specific or require a more generalized action-linked multimodal calibration with the transient visual system, however, is a question yet to be answered. Here, we investigate this using dynamic visual stimuli presented as contingent upon the execution of an arbitrarily associated voluntary manual response. Our results demonstrate that the duration of intervals with arbitrarily associated keypress-visual event pair is perceived as shorter than the duration in a pure visual condition, where the same stimuli are rather passively observed without the execution of a concurrent action. Whereas the control experiments show that motor memory and attention cannot explain the action-induced changes in perceived temporal features, action-induced changes in perceived speed are dissociated from those in perceived duration, and that the duration compression disappears using isoluminant or static stimuli, which together provide evidence that these two effects can be modulated in the motion-processing units, although via separate neural mechanisms.
Collapse
Affiliation(s)
- Inci Ayhan
- Department of Psychology, Bogazici University, Istanbul, Turkey; Cognitive Science Program, Bogazici University, Istanbul, Turkey.
| | - Duygu Ozbagci
- Cognitive Science Program, Bogazici University, Istanbul, Turkey.
| |
Collapse
|
21
|
Pedullà L, Gervasoni E, Bisio A, Biggio M, Ruggeri P, Avanzino L, Bove M. The last chance to pass the ball: investigating the role of temporal expectation and motor resonance in processing temporal errors in motor actions. Soc Cogn Affect Neurosci 2020; 15:123-134. [PMID: 32064526 PMCID: PMC7171376 DOI: 10.1093/scan/nsaa021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/13/2020] [Accepted: 01/31/2020] [Indexed: 11/13/2022] Open
Abstract
Humans can acquire information on others' motor outputs (action prediction) and intentions (action understanding) according to their individual motor repertoire and to the detected gesture's features (e.g. temporal patterns). We aimed at dissociating between action prediction and action understanding abilities in soccer players and novices observing soccer action videos including correct timing pass (CTP) or delayed pass (DP). First, we used an occluding paradigm to evaluate participants' ability to predict the correct time to pass the ball. Although soccer players showed reduced reaction times, all subjects showed a similar pattern of performance: during DP observation, responses appeared delayed with respect to the other conditions but anticipated with respect to the observed DP. In a separate experiment, we investigated the ability to recognize CTP vs DP and the modulation of primary motor cortex (M1) excitability associated to video observation. Only soccer players showed selective modulation of M1 according to the plausibility of the observed action, with increased excitability during the observation of the CTP and in a phase preceding the DP. In conclusion, action prediction ability seems to be independent from the individual motor repertoire. By contrast, only subjects with previously acquired sensorimotor skills are able to infer the observed action's long-term intention.
Collapse
Affiliation(s)
- Ludovico Pedullà
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa 16132, Italy
| | | | - Ambra Bisio
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa 16132, Italy
| | - Monica Biggio
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa 16132, Italy
| | - Piero Ruggeri
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa 16132, Italy
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| |
Collapse
|
22
|
Farina E, Borgnis F, Pozzo T. Mirror neurons and their relationship with neurodegenerative disorders. J Neurosci Res 2020; 98:1070-1094. [DOI: 10.1002/jnr.24579] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Thierry Pozzo
- INSERM UMR1093‐CAPS, Université Bourgogne Franche‐Comté Dijon France
- IT@UniFe Center for Translational Neurophysiology Istituto Italiano di Tecnologia Ferrara Italy
| |
Collapse
|
23
|
Sciutti A, Patanè L, Sandini G. Development of visual perception of others' actions: Children's judgment of lifted weight. PLoS One 2019; 14:e0224979. [PMID: 31730653 PMCID: PMC6857952 DOI: 10.1371/journal.pone.0224979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 10/25/2019] [Indexed: 11/24/2022] Open
Abstract
Humans are excellent at perceiving different features of the actions performed by others. For instance, by viewing someone else manipulating an unknown object, one can infer its weight–an intrinsic feature otherwise not directly accessible through vision. How such perceptual skill develops during childhood remains unclear. To confront this gap, the current study had children (N:63, 6–10 years old) and adults (N:21) judge the weight of objects after observing videos of an actor lifting them. Although 6-year-olds could already discriminate different weights, judgment accuracy had not reached adult-like levels by 10 years of age. Additionally, children’s stature was a more reliable predictor of their ability to read others’ actions than was their chronological age. This paper discusses the results in light of a potential link between motor development and action perception.
Collapse
Affiliation(s)
- Alessandra Sciutti
- Cognitive Architecture for Collaborative Technologies (CONTACT) Unit, Istituto Italiano di Tecnologia, Genova, Italy
- * E-mail:
| | - Laura Patanè
- Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Giulio Sandini
- Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
24
|
Faelli E, Strassera L, Pelosin E, Perasso L, Ferrando V, Bisio A, Ruggeri P. Action Observation Combined With Conventional Training Improves the Rugby Lineout Throwing Performance: A Pilot Study. Front Psychol 2019; 10:889. [PMID: 31068872 PMCID: PMC6491509 DOI: 10.3389/fpsyg.2019.00889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 04/03/2019] [Indexed: 11/23/2022] Open
Abstract
Combining action observation (AO) and physical practice contributes to motor skill learning, and a number of studies pointed out the beneficial role of AO training in improving the motor performance and the athletes' movement kinematics. The aim of this study was to investigate if AO combined with immediate conventional training was able to improve motor performance and kinematic parameters of a complex motor skill such as the lineout throw, a gesture that represents a key aspect of rugby, that is unique to this sport. Twenty elite rugby players were divided into two groups. The AO group watched a 5-min video-clip of an expert model performing the lineout throw toward a target at 7 m distance and, immediately after the AO, this group executed the conventional training, consisting of six repetitions x five blocks of throws. The CONTROL group performed only the conventional lineout training. Intervention period lasted 4 weeks, 3 sessions/week. The AO group showed significant improvements in throwing accuracy (i.e., number of throws hitting the target), whilst no significant changes were observed in the CONTROL group. As concerns kinematic parameters, hooker's arm mean velocity significantly increased in both groups, but the increase was higher in AO group compared to CONTROL group. Ball velocity significantly increased only in the AO group, whereas ball angle release and ball spinning significantly decreased in both groups, with no differences between groups. Finally, no significant changes in knee and elbow angles were observed. Our results showed that the combination of AO and conventional training was more effective than a conventional training alone in improving the performance of elite rugby players, in executing a complex motor skill, such as the lineout. This combined training led to significant improvements in throwing accuracy and in hooker's and ball's kinematic parameters. Since AO can be easily implemented in combination with conventional training, the results of this study can encourage coaches in designing specific lineout training programs, which include AO cognitive training.
Collapse
Affiliation(s)
- Emanuela Faelli
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Laura Strassera
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Luisa Perasso
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Vittoria Ferrando
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Ambra Bisio
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Piero Ruggeri
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| |
Collapse
|
25
|
Anobile G, Burr DC, Iaia M, Marinelli CV, Angelelli P, Turi M. Independent adaptation mechanisms for numerosity and size perception provide evidence against a common sense of magnitude. Sci Rep 2018; 8:13571. [PMID: 30206271 PMCID: PMC6134088 DOI: 10.1038/s41598-018-31893-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/09/2018] [Indexed: 01/29/2023] Open
Abstract
How numerical quantity is processed is a central issue for cognition. On the one hand the "number sense theory" claims that numerosity is perceived directly, and may represent an early precursor for acquisition of mathematical skills. On the other, the "theory of magnitude" notes that numerosity correlates with many continuous properties such as size and density, and may therefore not exist as an independent feature, but be part of a more general system of magnitude. In this study we examined interactions in sensitivity between numerosity and size perception. In a group of children, we measured psychophysically two sensory parameters: perceptual adaptation and discrimination thresholds for both size and numerosity. Neither discrimination thresholds nor adaptation strength for numerosity and size correlated across participants. This clear lack of correlation (confirmed by Bayesian analyses) suggests that numerosity and size interference effects are unlikely to reflect a shared sensory representation. We suggest these small interference effects may rather result from top-down phenomena occurring at late decisional levels rather than a primary "sense of magnitude".
Collapse
Affiliation(s)
- Giovanni Anobile
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Calambrone Pisa, Italy.
| | - David C Burr
- Department of Translational Research on New Technologies in Medicines and Surgery, University of Pisa, Pisa, Italy
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Marika Iaia
- Department of History, Society and Human Studies, Lab. of Applied Psychology and Intervention, University of Salento, Lecce, Italy
| | - Chiara V Marinelli
- Department of History, Society and Human Studies, Lab. of Applied Psychology and Intervention, University of Salento, Lecce, Italy
- IRCSS Santa Lucia, Rome, Italy
| | - Paola Angelelli
- Department of History, Society and Human Studies, Lab. of Applied Psychology and Intervention, University of Salento, Lecce, Italy
| | - Marco Turi
- Department of Translational Research on New Technologies in Medicines and Surgery, University of Pisa, Pisa, Italy
- Fondazione Stella Maris Mediterraneo, Chiaromonte, Potenza, Italy
| |
Collapse
|
26
|
Crivelli D, Pedullà L, Bisio A, Rueda MDS, Brichetto G, Bove M, Balconi M. When "Extraneous" Becomes "Mine". Neurophysiological Evidence of Sensorimotor Integration During Observation of Suboptimal Movement Patterns Performed by People with Multiple Sclerosis. Neuroscience 2018; 386:326-338. [PMID: 30004007 DOI: 10.1016/j.neuroscience.2018.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/18/2018] [Accepted: 07/01/2018] [Indexed: 10/28/2022]
Abstract
Action observation is known to enhance sensorimotor system activation, and such effect has been linked to neural priming and response facilitation mechanisms. This facilitation effect, however, has been primarily studied by focusing on high-level motor proficiency, whereas evidence on the effect of observing poorly performed actions is still lacking. We then devised a study to investigate neural correlates of the observation of suboptimal motor acts as mirrored by corticospinal activation (via transcranial magnetic stimulation (TMS), Experiment 1) and by modulation of cortical oscillatory activity (via electroencephalography (EEG), Experiment 2). 40 participants were presented with four randomly reiterated videos. Videos depicted a healthy confederate, a minimally impaired multiple sclerosis (MS) patient, a mildly impaired MS patient, or a confederate trying to simulate mild motor difficulties performing a test concerning fine motor abilities. In Experiment 1 we analyzed TMS-induced motor-evoked potentials during the observation of videos. In Experiment 2 EEG data were analyzed in the frequency-domain. Analyses highlighted both increased corticospinal excitability and desynchronized alpha-beta oscillations during the observation of poorly performed motor acts performed by the mildly impaired MS patient. Further, we observed gradually increasing beta activity across videos reiterations, specifically for the minimally impaired patient's video. Reported findings corroborate the hypotheses that the action-observation network and the motor system might be involved in processes evoked in the attempt to understand and predict observed actions which do not belong to the onlookers' motor repertoire, reflecting in an increased sensorimotor activity.
Collapse
Affiliation(s)
- Davide Crivelli
- Research Unit in Affective and Social Neuroscience, Catholic University of the Sacred Heart, Largo Gemelli 1, 20123 Milano, Italy; Department of Psychology, Catholic University of the Sacred Heart, Largo Gemelli 1, 20123 Milano, Italy
| | - Ludovico Pedullà
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Via Leon Battista Alberti 2, 16132 Genova, Italy; Italian Multiple Sclerosis Foundation, Via Operai 40, 16149 Genoa, Italy
| | - Ambra Bisio
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Via Leon Battista Alberti 2, 16132 Genova, Italy
| | | | | | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Via Leon Battista Alberti 2, 16132 Genova, Italy.
| | - Michela Balconi
- Research Unit in Affective and Social Neuroscience, Catholic University of the Sacred Heart, Largo Gemelli 1, 20123 Milano, Italy; Department of Psychology, Catholic University of the Sacred Heart, Largo Gemelli 1, 20123 Milano, Italy.
| |
Collapse
|
27
|
Hsu HT, Lee WK, Shyu KK, Yeh TK, Chang CY, Lee PL. Analyses of EEG Oscillatory Activities during Slow and Fast Repetitive Movements using Holo-Hilbert Spectral Analysis. IEEE Trans Neural Syst Rehabil Eng 2018; 26:1659-1668. [PMID: 30010582 DOI: 10.1109/tnsre.2018.2855804] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neural oscillatory activities existing in multiple fre-quency bands usually represent different levels of neurophysiolog-ical meanings, from micro-scale to macro-scale organizations. In this study, we adopted Holo-Hilbert spectral analysis (HHSA) to study the amplitude-modulated (AM) and frequency-modulated (FM) components in sensorimotor Mu rhythm, induced by slow- and fast-rate repetitive movements. The HHSA-based approach is a two-layer empirical mode decomposition (EMD) architecture, which firstly decomposes the EEG signal into a series of frequency-modulated intrinsic mode functions (IMF) and then decomposes each frequency-modulated IMF into a set of amplitude-modulated IMFs. With the HHSA, the FM and AM components were incor-porated with their instantaneous power to achieve full-informa-tional spectral analysis. We observed that the instantaneous power induced by slow-rate movements was significantly higher than that induced by fast-rate movements (p < 0.01, Wilcoxon signed rank test). The alpha-band AM frequencies induced by slow-rate movements were higher than those induced by fast-rate move-ments, while no statistical difference was found in beta-band AM frequencies. In addition, to study the functional coupling between the primary sensorimotor area and other brain regions, spectral coherence was applied and statistical difference was found in frontal area in slow-rate versus fast-rate movements. The discrep-ancy between slow- and fast-rate movements might be owing to the change of motor functional modes from default mode network (DMN) to automatic timing with the increase of movement rates. The use of HHSA for oscillatory activity analysis can be an effi-cient tool to provide informative interaction among different fre-quency bands.
Collapse
|
28
|
Riemer M, Shine JP, Wolbers T. On the (a)symmetry between the perception of time and space in large-scale environments. Hippocampus 2018; 28:539-548. [DOI: 10.1002/hipo.22954] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Martin Riemer
- Aging & Cognition Research Group; German Center for Neurodegenerative Diseases (DZNE); Magdeburg, 39120 Germany
- Center for Behavioral Brain Sciences; Magdeburg, 39118 Germany
| | - Jonathan P. Shine
- Aging & Cognition Research Group; German Center for Neurodegenerative Diseases (DZNE); Magdeburg, 39120 Germany
| | - Thomas Wolbers
- Aging & Cognition Research Group; German Center for Neurodegenerative Diseases (DZNE); Magdeburg, 39120 Germany
- Center for Behavioral Brain Sciences; Magdeburg, 39118 Germany
| |
Collapse
|
29
|
Di Lernia D, Serino S, Pezzulo G, Pedroli E, Cipresso P, Riva G. Feel the Time. Time Perception as a Function of Interoceptive Processing. Front Hum Neurosci 2018; 12:74. [PMID: 29559902 PMCID: PMC5845687 DOI: 10.3389/fnhum.2018.00074] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022] Open
Abstract
The nature of time is rooted in our body. Constellations of impulses arising from the flesh constantly create our interoceptive perception and, in turn, the unfolding of these perceptions defines human awareness of time. This study explored the connection between time perception and interoception and proposes the Interoceptive Buffer saturation (IBs) index. IBs evaluates subjects’ ability to process salient stimuli from the body by measuring subjective distortions of interoceptive time perception, i.e., the estimated duration of tactile interoceptive stimulations. Thirty female healthy subjects were recruited through consecutive sampling and assessed for common variables related to interoceptive alterations: depressive symptoms (Beck Depression Inventory, BDI-II), eating disorders (EDI-3) risk, and anxiety levels (State Trait Anxiety Inventory, STAI). Interoceptive cardiac accuracy (IAc) was assessed as well. Subjects performed verbal time estimation of interoceptive stimuli (IBs) delivered using a specifically designed interoceptive tactile stimulator, as well as verbal time estimation of visual and auditory stimuli. Results showed that IBs index positively correlated with IAc, and negatively with EDI-3 Drive for Thinness (DT) risk subscale. Moreover, IBs index was positively predicted by IAc, and negatively predicted by DT and somatic factors of depression. Our results suggest that underestimations in interoceptive time perception are connected to different psychological conditions characterized by a diminished processing of high salience stimuli from the body. Conversely, overestimations of the duration of interoceptive stimuli appear to be function of subjects’ ability to correctly perceive their own bodily information. Evidence supported IBs index, fostering the concept of interoceptive treatments for clinical purposes.
Collapse
Affiliation(s)
- Daniele Di Lernia
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Silvia Serino
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy.,Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Elisa Pedroli
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Pietro Cipresso
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy.,Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Giuseppe Riva
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy.,Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
30
|
Bove M, Strassera L, Faelli E, Biggio M, Bisio A, Avanzino L, Ruggeri P. Sensorimotor Skills Impact on Temporal Expectation: Evidence from Swimmers. Front Psychol 2017; 8:1714. [PMID: 29085314 PMCID: PMC5649184 DOI: 10.3389/fpsyg.2017.01714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/19/2017] [Indexed: 11/24/2022] Open
Abstract
Aim of this study was to assess whether the ability to predict the temporal outcome of a sport action was influenced by the sensorimotor skills previously acquired during a specific sport training. Four groups, each of 30 subjects, were enrolled in this study; subjects of three groups practiced different sports disciplines (i.e., swimming, rhythmic gymnastics, and water polo) at competitive level whilst the fourth group consisted of control subjects. Subjects were asked to observe a video showing a swimmer doing two laps in crawl style. This video was shown 36 times, and was occluded after variable intervals, randomized across trials, by a dark window that started 3, 6, and 12 s before the swimmer touched the poolside. During the occluded interval, subjects were asked to indicate when the swimmer touched the edge of the pool by clicking on any button of the laptop keyboard. We found that swimmers were more accurate than subjects performing other sports in temporally predicting the final outcome of the swimming task. Particularly, we observed a significant difference in absolute timing error that was lower in swimmers compared to other groups when they were asked to make a temporal prediction with the occluded interval of short duration (i.e., 3 s). Our findings demonstrate that the ability to extract temporal patterns of a motor action depends largely on the subjective expertise, suggesting that sport-acquired sensorimotor skills impact on the temporal representation of the previously observed action, allowing subjects to predict the time course of the action in absence of visual information.
Collapse
Affiliation(s)
- Marco Bove
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Laura Strassera
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Emanuela Faelli
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Monica Biggio
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Ambra Bisio
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Piero Ruggeri
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| |
Collapse
|
31
|
Sciutti A, Sandini G. Interacting With Robots to Investigate the Bases of Social Interaction. IEEE Trans Neural Syst Rehabil Eng 2017; 25:2295-2304. [PMID: 29035218 DOI: 10.1109/tnsre.2017.2753879] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Humans show a great natural ability at interacting with each other. Such efficiency in joint actions depends on a synergy between planned collaboration and emergent coordination, a subconscious mechanism based on a tight link between action execution and perception. This link supports phenomena as mutual adaptation, synchronization, and anticipation, which cut drastically the delays in the interaction and the need of complex verbal instructions and result in the establishment of joint intentions, the backbone of social interaction. From a neurophysiological perspective, this is possible, because the same neural system supporting action execution is responsible of the understanding and the anticipation of the observed action of others. Defining which human motion features allow for such emergent coordination with another agent would be crucial to establish more natural and efficient interaction paradigms with artificial devices, ranging from assistive and rehabilitative technology to companion robots. However, investigating the behavioral and neural mechanisms supporting natural interaction poses substantial problems. In particular, the unconscious processes at the basis of emergent coordination (e.g., unintentional movements or gazing) are very difficult-if not impossible-to restrain or control in a quantitative way for a human agent. Moreover, during an interaction, participants influence each other continuously in a complex way, resulting in behaviors that go beyond experimental control. In this paper, we propose robotics technology as a potential solution to this methodological problem. Robots indeed can establish an interaction with a human partner, contingently reacting to his actions without losing the controllability of the experiment or the naturalness of the interactive scenario. A robot could represent an "interactive probe" to assess the sensory and motor mechanisms underlying human-human interaction. We discuss this proposal with examples from our research with the humanoid robot iCub, showing how an interactive humanoid robot could be a key tool to serve the investigation of the psychological and neuroscientific bases of social interaction.
Collapse
|
32
|
Abstract
When we knock on a door, we perceive the impact as a collection of simultaneous events, combining sound, sight, and tactile sensation. In reality, information from different modalities but from a single source is flowing inside the brain along different pathways, reaching processing centers at different times. Therefore, interpreting different sensory modalities which seem to occur simultaneously requires information processing that accounts for these different delays. As in a computer-based robotic system, does the brain use some explicit estimation of the time delay, to realign the sensory flows? Or does it compensate for temporal delays by representing them as changes in the body/environment mechanics? Using delayed-state or an approximation for delayed-state manipulations between visual and proprioceptive feedback during a tracking task, we show that tracking errors, grip forces, and learning curves are consistent with predictions of a representation that is based on approximation for delay, refuting an explicit delayed-state representation. Delayed-state representations are based on estimating the time elapsed between the movement commands and their observed consequences. In contrast, an approximation for delay representations result from estimating the instantaneous relation between the expected and observed motion variables, without explicit reference to time.
Collapse
|
33
|
As time passes by: Observed motion-speed and psychological time during video playback. PLoS One 2017; 12:e0177855. [PMID: 28614353 PMCID: PMC5470665 DOI: 10.1371/journal.pone.0177855] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/04/2017] [Indexed: 12/03/2022] Open
Abstract
Research shows that psychological time (i.e., the subjective experience and assessment of the passage of time) is malleable and that the central nervous system re-calibrates temporal information in accordance with situational factors so that psychological time flows slower or faster. Observed motion-speed (e.g., the visual perception of a rolling ball) is an important situational factor which influences the production of time estimates. The present study examines previous findings showing that observed slow and fast motion-speed during video playback respectively results in over- and underproductions of intervals of time. Here, we investigated through three separate experiments: a) the main effect of observed motion-speed during video playback on a time production task and b) the interactive effect of the frame rate (frames per second; fps) and motion-speed during video playback on a time production task. No main effect of video playback-speed or interactive effect between video playback-speed and frame rate was found on time production.
Collapse
|
34
|
Vignolo A, Noceti N, Rea F, Sciutti A, Odone F, Sandini G. Detecting Biological Motion for Human–Robot Interaction: A Link between Perception and Action. Front Robot AI 2017. [DOI: 10.3389/frobt.2017.00014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
35
|
Addyman C, Rocha S, Fautrelle L, French RM, Thomas E, Mareschal D. Embodiment and the origin of interval timing: kinematic and electromyographic data. Exp Brain Res 2017; 235:923-930. [PMID: 27933358 PMCID: PMC5315706 DOI: 10.1007/s00221-016-4842-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/18/2016] [Indexed: 10/29/2022]
Abstract
Recent evidence suggests that interval timing (the judgment of durations lasting from approximately 500 ms. to a few minutes) is closely coupled to the action control system. We used surface electromyography (EMG) and motion capture technology to explore the emergence of this coupling in 4-, 6-, and 8-month-olds. We engaged infants in an active and socially relevant arm-raising task with seven cycles and response period. In one condition, cycles were slow (every 4 s); in another, they were fast (every 2 s). In the slow condition, we found evidence of time-locked sub-threshold EMG activity even in the absence of any observed overt motor responses at all three ages. This study shows that EMGs can be a more sensitive measure of interval timing in early development than overt behavior.
Collapse
Affiliation(s)
- Caspar Addyman
- Department of Psychology, Goldsmiths, University of London, New Cross, London, SE14 6NW, UK.
| | - Sinead Rocha
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck University of London, London, WC1E 7HX, UK
| | - Lilian Fautrelle
- Unité de Formation et de Recherche en Sciences et Techniques des Activités Physiques et Sportives, Université Paris Ouest, Nanterre La Défense, Nanterre, France
| | - Robert M French
- UMR 5022, Laboratoire d'Etude de l'Apprentissage et du Développement, Centre National de la Recherche Scientifique (CNRS), 21065, Dijon, France
| | - Elizabeth Thomas
- Unité de Formation et de Recherche en Sciences et Techniques des Activités Physiques et Sportives, Institut National de la Santé et de la Recherche Médicale (INSERM), U1093, Cognition, Action et Plasticité Sensori Motrice, Université de Bourgogne, Campus Universitaire, 21078, Dijon, France
| | - Denis Mareschal
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck University of London, London, WC1E 7HX, UK
| |
Collapse
|
36
|
Hsu CC, Lee WK, Shyu KK, Chang HH, Yeh TK, Hsu HT, Chang CY, Lan GY, Lee PL. Study of Repetitive Movements Induced Oscillatory Activities in Healthy Subjects and Chronic Stroke Patients. Sci Rep 2016; 6:39046. [PMID: 27976723 PMCID: PMC5157038 DOI: 10.1038/srep39046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/17/2016] [Indexed: 11/29/2022] Open
Abstract
Repetitive movements at a constant rate require the integration of internal time counting and motor neural networks. Previous studies have proved that humans can follow short durations automatically (automatic timing) but require more cognitive efforts to track or estimate long durations. In this study, we studied sensorimotor oscillatory activities in healthy subjects and chronic stroke patients when subjects were performing repetitive finger movements. We found the movement-modulated changes in alpha and beta oscillatory activities were decreased with the increase of movement rates in finger lifting of healthy subjects and the non-paretic hands in stroke patients, whereas no difference was found in the paretic-hand movements at different movement rates in stroke patients. The significant difference in oscillatory activities between movements of non-paretic hands and paretic hands could imply the requirement of higher cognitive efforts to perform fast repetitive movements in paretic hands. The sensorimotor oscillatory response in fast repetitive movements could be a possible indicator to probe the recovery of motor function in stroke patients.
Collapse
Affiliation(s)
- Chuan-Chih Hsu
- Division of Cardiovascular Surgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wai-Keung Lee
- Department of Rehabilitation, Tao Yuan General Hospital, Taoyuan, Taiwan
| | - Kuo-Kai Shyu
- Department of Electrical Engineering, National Central University, Taoyuan City 32001, Taiwan
| | - Hsiao-Huang Chang
- Division of Cardiovascular Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ting-Kuang Yeh
- Science Education Center, National Taiwan Normal University, Taipei, Taiwan
| | - Hao-Teng Hsu
- Department of Electrical Engineering, National Central University, Taoyuan City 32001, Taiwan
| | - Chun-Yen Chang
- Science Education Center, National Taiwan Normal University, Taipei, Taiwan
| | - Gong-Yau Lan
- Section of General Diagnostic Radiology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Po-Lei Lee
- Department of Electrical Engineering, National Central University, Taoyuan City 32001, Taiwan
| |
Collapse
|
37
|
Abstract
Multiple, action-based space representations are each based on the extent to which action is possible toward a specific sector of space, such as near/reachable and far/unreachable. Studies on tool-use revealed how the boundaries between these representations are dynamic. Space is not only multidimensional and dynamic, but it is also known for interacting with other dimensions of magnitude, such as time. However, whether time operates on similar action-driven multiple representations and whether it can be modulated by tool-use is yet unknown. To address these issues, healthy participants performed a time bisection task in two spatial positions (near and far space) before and after an active tool-use training, which consisted of performing goal-directed actions holding a tool with their right hand (Experiment 1). Before training, perceived stimuli duration was influenced by their spatial position defined by action. Hence, a dissociation emerged between near/reachable and far/unreachable space. Strikingly, this dissociation disappeared after the active tool-use training since temporal stimuli were now perceived as nearer. The remapping was not found when a passive tool-training was executed (Experiment 2) or when the active tool-training was performed with participants' left hand (Experiment 3). Moreover, no time remapping was observed following an equivalent active hand-training but without a tool (Experiment 4). Taken together, our findings reveal that time processing is based on action-driven multiple representations. The dynamic nature of these representations is demonstrated by the remapping of time, which is action- and effector-dependent.
Collapse
|
38
|
Binetti N, Hagura N, Fadipe C, Tomassini A, Walsh V, Bestmann S. Binding space and time through action. Proc Biol Sci 2015; 282:rspb.2015.0381. [PMID: 25808892 DOI: 10.1098/rspb.2015.0381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Space and time are intimately coupled dimensions in the human brain. Several lines of evidence suggest that space and time are processed by a shared analogue magnitude system. It has been proposed that actions are instrumental in establishing this shared magnitude system. Here we provide evidence in support of this hypothesis, by showing that the interaction between space and time is enhanced when magnitude information is acquired through action. Participants observed increases or decreases in the height of a visual bar (spatial magnitude) while judging whether a simultaneously presented sequence of acoustic tones had accelerated or decelerated (temporal magnitude). In one condition (Action), participants directly controlled the changes in bar height with a hand grip device, whereas in the other (No Action), changes in bar height were externally controlled but matched the spatial/temporal profile of the Action condition. The sign of changes in bar height biased the perceived rate of the tone sequences, where increases in bar height produced apparent increases in tone rate. This effect was amplified when the visual bar was actively controlled in the Action condition, and the strength of the interaction was scaled by the magnitude of the action. Subsequent experiments ruled out that this was simply explained by attentional factors, and additionally showed that a monotonic mapping is also required between grip force and bar height in order to bias the perception of the tones. These data provide support for an instrumental role of action in interfacing spatial and temporal quantities in the brain.
Collapse
Affiliation(s)
- N Binetti
- UCL Institute of Cognitive Neuroscience, 17-19 Queen Square, London WC1N 3AR, UK UCL Division of Psychology and Language Sciences, 26 Bedford Way, London WC1H 0AP, UK
| | - N Hagura
- UCL Institute of Cognitive Neuroscience, 17-19 Queen Square, London WC1N 3AR, UK
| | - C Fadipe
- UCL Institute of Cognitive Neuroscience, 17-19 Queen Square, London WC1N 3AR, UK
| | - A Tomassini
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, 33 Queen Square, London WC1N 3BG, UK
| | - V Walsh
- UCL Institute of Cognitive Neuroscience, 17-19 Queen Square, London WC1N 3AR, UK
| | - S Bestmann
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, 33 Queen Square, London WC1N 3BG, UK
| |
Collapse
|
39
|
Bisio A, Avanzino L, Lagravinese G, Biggio M, Ruggeri P, Bove M. Spontaneous movement tempo can be influenced by combining action observation and somatosensory stimulation. Front Behav Neurosci 2015; 9:228. [PMID: 26441565 PMCID: PMC4585335 DOI: 10.3389/fnbeh.2015.00228] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/10/2015] [Indexed: 11/20/2022] Open
Abstract
Spontaneous movement tempo (SMT) was a popular field of study of the Gestalt psychologists It can be determined from subjects freely tapping out a rhythm with their finger, and it has been found to average about 2 Hz. A previous study showed that SMT changed after the observation of rhythmical movements performed at frequency different from the SMT. This effect was long-lasting only when movement execution immediately followed action observation (AO). We recently demonstrated that only when AO was combined with peripheral nerve stimulation (AO-PNS) was it possible to induce plastic changes in the excitability of the motor cortex, whereas AO and PNS alone did not evoke any changes. Here we investigated whether the observation of rhythmical actions at a frequency higher than the SMT combined with PNS induced lasting changes in SMT even in absence of immediate movement execution. Forty-eight participants were assigned to four groups. In AO-PNS group they observed a video showing a right hand performing a finger opposition movement sequence at 3 Hz and contemporarily received an electrical stimulation at the median nerve; in AO group and PNS group participants either observed the same video or received the same electrical stimulation of the AO-PNS group, respectively; in LANDSCAPE group subjects observed a neutral video. Participants performed a finger opposition movement sequence at spontaneous movement rate before and 30 min after the conditioning protocols. Results showed that SMT significantly changed only after AO-PNS. This result suggested that the AO-PNS protocol was able to induce lasting changes in SMT due to neuroplasticity mechanisms, indicating possible application of AO-PNS in rehabilitative treatments.
Collapse
Affiliation(s)
- Ambra Bisio
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa Genoa, Italy
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa Genoa, Italy
| | - Giovanna Lagravinese
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa Genoa, Italy ; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa Genoa, Italy
| | - Monica Biggio
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa Genoa, Italy ; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa Genoa, Italy
| | - Piero Ruggeri
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa Genoa, Italy
| | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa Genoa, Italy
| |
Collapse
|
40
|
Avanzino L, Lagravinese G, Bisio A, Perasso L, Ruggeri P, Bove M. Action observation: mirroring across our spontaneous movement tempo. Sci Rep 2015; 5:10325. [PMID: 25989029 PMCID: PMC4437370 DOI: 10.1038/srep10325] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 04/08/2015] [Indexed: 11/17/2022] Open
Abstract
During action observation (AO), the activity of the “mirror system” is influenced by the viewer’s expertise in the observed action. A question that remains open is whether the temporal aspects of the subjective motor repertoire can influence the “mirror system” activation.
Collapse
Affiliation(s)
- Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, 16132, Genoa, Italy
| | - Giovanna Lagravinese
- 1] Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, 16132, Genoa, Italy [2] Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy
| | - Ambra Bisio
- 1] Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, 16132, Genoa, Italy [2] Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy
| | - Luisa Perasso
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, 16132, Genoa, Italy
| | - Piero Ruggeri
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, 16132, Genoa, Italy
| | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, 16132, Genoa, Italy
| |
Collapse
|
41
|
Leib R, Karniel A, Nisky I. The effect of force feedback delay on stiffness perception and grip force modulation during tool-mediated interaction with elastic force fields. J Neurophysiol 2015; 113:3076-89. [PMID: 25717155 PMCID: PMC4455557 DOI: 10.1152/jn.00229.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 02/23/2015] [Indexed: 11/22/2022] Open
Abstract
During interaction with objects, we form an internal representation of their mechanical properties. This representation is used for perception and for guiding actions, such as in precision grip, where grip force is modulated with the predicted load forces. In this study, we explored the relationship between grip force adjustment and perception of stiffness during interaction with linear elastic force fields. In a forced-choice paradigm, participants probed pairs of virtual force fields while grasping a force sensor that was attached to a haptic device. For each pair, they were asked which field had higher level of stiffness. In half of the pairs, the force feedback of one of the fields was delayed. Participants underestimated the stiffness of the delayed field relatively to the nondelayed, but their grip force characteristics were similar in both conditions. We analyzed the magnitude of the grip force and the lag between the grip force and the load force in the exploratory probing movements within each trial. Right before answering which force field had higher level of stiffness, both magnitude and lag were similar between delayed and nondelayed force fields. These results suggest that an accurate internal representation of environment stiffness and time delay was used for adjusting the grip force. However, this representation did not help in eliminating the bias in stiffness perception. We argue that during performance of a perceptual task that is based on proprioceptive feedback, separate neural mechanisms are responsible for perception and action-related computations in the brain.
Collapse
Affiliation(s)
- Raz Leib
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Amir Karniel
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ilana Nisky
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
42
|
Fautrelle L, Mareschal D, French R, Addyman C, Thomas E. Motor activity improves temporal expectancy. PLoS One 2015; 10:e0119187. [PMID: 25806813 PMCID: PMC4373886 DOI: 10.1371/journal.pone.0119187] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 01/16/2015] [Indexed: 11/19/2022] Open
Abstract
Certain brain areas involved in interval timing are also important in motor activity. This raises the possibility that motor activity might influence interval timing. To test this hypothesis, we assessed interval timing in healthy adults following different types of training. The pre- and post-training tasks consisted of a button press in response to the presentation of a rhythmic visual stimulus. Alterations in temporal expectancy were evaluated by measuring response times. Training consisted of responding to the visual presentation of regularly appearing stimuli by either: (1) pointing with a whole-body movement, (2) pointing only with the arm, (3) imagining pointing with a whole-body movement, (4) simply watching the stimulus presentation, (5) pointing with a whole-body movement in response to a target that appeared at irregular intervals (6) reading a newspaper. Participants performing a motor activity in response to the regular target showed significant improvements in judgment times compared to individuals with no associated motor activity. Individuals who only imagined pointing with a whole-body movement also showed significant improvements. No improvements were observed in the group that trained with a motor response to an irregular stimulus, hence eliminating the explanation that the improved temporal expectations of the other motor training groups was purely due to an improved motor capacity to press the response button. All groups performed a secondary task equally well, hence indicating that our results could not simply be attributed to differences in attention between the groups. Our results show that motor activity, even when it does not play a causal or corrective role, can lead to improved interval timing judgments.
Collapse
Affiliation(s)
- Lilian Fautrelle
- Unité de Formation et de Recherche en Sciences et Techniques des Activités Physiques et Sportives, EA2931 Centre de Recherches sur le Sport et le Mouvement, Université Paris Ouest, Nanterre La Défense, France
| | - Denis Mareschal
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck University of London, London, United Kingdom
| | - Robert French
- Centre National de la Recherche Scientifique, UMR 5022, Laboratoire d’Etude de l’Apprentissage et du Développement, Dijon, France
| | - Caspar Addyman
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck University of London, London, United Kingdom
| | - Elizabeth Thomas
- Institut National de la Santé et de la Recherche Médicale, Unité 1093, Cognition, Action et Plasticité Sensori-Motrice, Université de Bourgogne, Dijon, Campus Universitaire, Unité de Formation et de Recherche en Sciences et Techniques des Activités Physiques et Sportives, Dijon, France
| |
Collapse
|
43
|
Toma S, Sciutti A, Papaxanthis C, Pozzo T. Visuomotor adaptation to a visual rotation is gravity dependent. J Neurophysiol 2015; 113:1885-95. [DOI: 10.1152/jn.00369.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Humans perform vertical and horizontal arm motions with different temporal patterns. The specific velocity profiles are chosen by the central nervous system by integrating the gravitational force field to minimize energy expenditure. However, what happens when a visuomotor rotation is applied, so that a motion performed in the horizontal plane is perceived as vertical? We investigated the dynamic of the adaptation of the spatial and temporal properties of a pointing motion during prolonged exposure to a 90° visuomotor rotation, where a horizontal movement was associated with a vertical visual feedback. We found that participants immediately adapted the spatial parameters of motion to the conflicting visual scene in order to keep their arm trajectory straight. In contrast, the initial symmetric velocity profiles specific for a horizontal motion were progressively modified during the conflict exposure, becoming more asymmetric and similar to those appropriate for a vertical motion. Importantly, this visual effect that increased with repetitions was not followed by a consistent aftereffect when the conflicting visual feedback was absent (catch and washout trials). In a control experiment we demonstrated that an intrinsic representation of the temporal structure of perceived vertical motions could provide the error signal allowing for this progressive adaptation of motion timing. These findings suggest that gravity strongly constrains motor learning and the reweighting process between visual and proprioceptive sensory inputs, leading to the selection of a motor plan that is suboptimal in terms of energy expenditure.
Collapse
Affiliation(s)
- Simone Toma
- Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Alessandra Sciutti
- Department of Robotics, Brain and Cognitive Sciences, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Charalambos Papaxanthis
- Unité 1093, Cognition, Action et Plasticité Sensorimotrice, Institut National de la Santé et de la Recherche Médicale (INSERM), UFR STAPS, Dijon, France; and
| | - Thierry Pozzo
- Department of Robotics, Brain and Cognitive Sciences, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
- Unité 1093, Cognition, Action et Plasticité Sensorimotrice, Institut National de la Santé et de la Recherche Médicale (INSERM), UFR STAPS, Dijon, France; and
- Institut Universitaire de France (IUF), Université de Bourgogne, Dijon, France
| |
Collapse
|
44
|
Press C, Berlot E, Bird G, Ivry R, Cook R. Moving time: the influence of action on duration perception. J Exp Psychol Gen 2014; 143:1787-93. [PMID: 25089534 PMCID: PMC4170821 DOI: 10.1037/a0037650] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/17/2014] [Accepted: 07/07/2014] [Indexed: 11/22/2022]
Abstract
Perceiving the sensory consequences of action accurately is essential for appropriate interaction with our physical and social environments. Prediction mechanisms are considered necessary for fine-tuned sensory control of action, yet paradoxically may distort perception. Here, we examine this paradox by addressing how movement influences the perceived duration of sensory outcomes congruent with action. Experiment 1 required participants to make judgments about the duration of vibrations applied to a moving or stationary finger. In Experiments 2 and 3, participants judged observed finger movements that were congruent or incongruent with their own actions. In all experiments, target events were perceived to be longer when congruent with movement. Interestingly, this temporal dilation did not differ as a function of stimulus perspective (1st or 3rd person) or spatial location. We propose that this bias may reflect the operation of an adaptive mechanism for sensorimotor selection and control that preactivates anticipated outcomes of action. The bias itself may have surprising implications for both action control and perception of others: we may be in contact with grasped objects for less time than we realize, and others' reactions to us may be briefer than we believe.
Collapse
Affiliation(s)
| | - Eva Berlot
- Division of Psychology and Language Sciences, University College London
| | - Geoffrey Bird
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London
| | - Richard Ivry
- Department of Psychology, University of California-Berkeley
| | - Richard Cook
- Department of Psychology, City University London
| |
Collapse
|
45
|
Visual tracking combined with hand-tracking improves time perception of moving stimuli. Sci Rep 2014; 4:5363. [PMID: 24946842 PMCID: PMC4064321 DOI: 10.1038/srep05363] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 05/16/2014] [Indexed: 11/23/2022] Open
Abstract
A number of studies have shown that performing a secondary task while executing a time-judgment task impairs performance on the latter task. However, this turns out not to be the case for certain motor secondary tasks. We show that concomitant secondary motor tasks involving pointing, when performed during a time-judgment task, can actually improve our time-judgment abilities. We compared adult participants' performance in a time-of-movement paradigm with visual pursuit-only and with visual pursuit plus hand pursuit. Rather than interfering with their estimation of stimulus movement duration, the addition of hand pursuit significantly improved their judgment. In addition, we considered the effect of three different movement profiles and four different movement speeds for the moving stimulus. As predicted by Vierordt's law, time judgments of shorter stimuli are overestimated and longer stimuli underestimated. Finally, timing performances appear to improve when the moving target follows a “biological” velocity profile.
Collapse
|
46
|
Orgs G, Kirsch L, Haggard P. Time perception during apparent biological motion reflects subjective speed of movement, not objective rate of visual stimulation. Exp Brain Res 2013; 227:223-9. [PMID: 23588421 DOI: 10.1007/s00221-013-3502-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/25/2013] [Indexed: 11/26/2022]
Abstract
We have investigated links between biological motion perception and time perception. Participants compared the durations of two paired visual frames, inside which task-irrelevant sequences of static body postures were presented. The sequences produced apparent movements of shorter and longer path lengths, depending on the sequential order of body postures (ABC or ACB). Shorter and longer path lengths were paired with shorter and longer interstimulus intervals (ISIs) to produce path/ISI congruent sequences with intermediate subjective speeds and path/ISI incongruent sequences with slowest and fastest subjective speeds. Participants compared the duration of the visual frames surrounding these sequences; body postures and biological motion were irrelevant. The ability to discriminate the duration of the frames (as measured by the just noticeable difference, JND) was reduced for pairs of path/ISI congruent sequences as compared to pairs of path/ISI incongruent sequences. That is, duration discrimination improved when implied speed differed between the two sequences of a pair compared to when the implied speed was the same. Since stimuli showed no actual movement and were fully matched for lower-level visual input and objective stimulus durations, our findings suggest an involvement of higher-order visual or even motor areas in temporal biases during apparent biological motion perception. We show that apparent speed is the primary dimension of such percepts consistent with a dominant role of movement dynamics in the perception of other people's actions. Our results also confirm an intimate relation between time perception and processing of human movement.
Collapse
Affiliation(s)
- Guido Orgs
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London WC1N 3AR, UK.
| | | | | |
Collapse
|