1
|
Skarmoutsos I. Substantial breakdown of the hydrogen-bonding network, local density inhomogeneities and fluid-liquid structural transitions in supercritical octanol-1: A molecular dynamics investigation. J Chem Phys 2024; 161:044506. [PMID: 39056384 DOI: 10.1063/5.0219417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Molecular dynamics simulations have been employed to explore the hydrogen-bonding structure and dynamics in supercritical octanol-1 at a near-critical temperature and up to high densities and pressures. A substantial breakdown of the hydrogen-bonding network when going from ambient-liquid to supercritical conditions is revealed. The fraction of the non-hydrogen bonded molecules significantly increases in supercritical octanol-1, and a substantial decrease in the intermittent hydrogen-bond lifetime is observed. This behavior is also reflected on the maximum local density augmentation, which is comparable to the values obtained for non-polar and non-hydrogen bonded fluids. The existence of a structural transition from an inhomogeneous fluid phase to a soft-liquid one at densities higher than 2.0 ρc is also revealed. At higher densities, a significant change in the reorientational relaxation process is observed, reflected on the significant increase in the ratio of the Legendre reorientational times τ1R/τ2R. The latter becomes much higher than the value predicted by the Debye model of diffusive reorientation and the corresponding ratio for ambient liquid octanol-1. The non-polar tail of octanol-1 under supercritical conditions reorients more slowly in comparison with the polar tail. Interestingly, the opposite behavior is observed for the ambient liquid, further verifying the strong effect of the breakdown of the hydrogen bonding network on the properties of supercritical octanol-1. In accordance with the above-mentioned findings, the static dielectric constant of supercritical octanol-1 is very low even at high densities and pressures, comparable to the values obtained for non-polar and non-hydrogen bonded fluids.
Collapse
Affiliation(s)
- Ioannis Skarmoutsos
- Laboratory of Physical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
2
|
Ranieri U, Formisano F, Gorelli FA, Santoro M, Koza MM, De Francesco A, Bove LE. Crossover from gas-like to liquid-like molecular diffusion in a simple supercritical fluid. Nat Commun 2024; 15:4142. [PMID: 38755136 PMCID: PMC11099187 DOI: 10.1038/s41467-024-47961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
According to textbooks, no physical observable can be discerned allowing to distinguish a liquid from a gas beyond the critical point. Yet, several proposals have been put forward challenging this view and various transition boundaries between a gas-like and a liquid-like behaviour, including the so-called Widom and Frenkel lines, and percolation line, have been suggested to delineate the supercritical state space. Here we report observation of a crossover from gas-like (Gaussian) to liquid-like (Lorentzian) self-dynamic structure factor by incoherent quasi-elastic neutron scattering measurements on supercritical fluid methane as a function of pressure, along the 200 K isotherm. The molecular self-diffusion coefficient was derived from the best Gaussian (at low pressures) or Lorentzian (at high pressures) fits to the neutron spectra. The Gaussian-to-Lorentzian crossover is progressive and takes place at about the Widom line intercept (59 bar). At considerably higher pressures, a liquid-like jump diffusion mechanism properly describes the supercritical fluid on both sides of the Frenkel line. The present observation of a gas-like to liquid-like crossover in the self dynamics of a simple supercritical fluid confirms emerging views on the unexpectedly complex physics of the supercritical state, and could have planet-wide implications and possible industrial applications in green chemistry.
Collapse
Affiliation(s)
- Umbertoluca Ranieri
- Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, Roma, 00187, Italy
- Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Ferdinando Formisano
- CNR - Istituto Officina dei Materiali (IOM), Grenoble, INSIDE@ILL, 71 Avenue des Martyrs, Grenoble, Cedex 9, France.
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble, Cedex 9, France.
| | - Federico A Gorelli
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), 1690 Cailun Road, Shanghai, 201203, China.
- Shanghai Advanced Research in Physical Sciences (SHARPS), Pudong, Shanghai, 201203, China.
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, CNR-INO, Via Nello Carrara 1, Sesto Fiorentino (FI), 50019, Italy.
| | - Mario Santoro
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, CNR-INO, Via Nello Carrara 1, Sesto Fiorentino (FI), 50019, Italy
- European Laboratory for Nonlinear Spectroscopy, LENS, Via Nello Carrara 1, Sesto Fiorentino (FI), 50019, Italy
| | - Michael Marek Koza
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble, Cedex 9, France
| | - Alessio De Francesco
- CNR - Istituto Officina dei Materiali (IOM), Grenoble, INSIDE@ILL, 71 Avenue des Martyrs, Grenoble, Cedex 9, France
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble, Cedex 9, France
| | - Livia E Bove
- Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, Roma, 00187, Italy
- Laboratory of Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, UMR CNRS 7590, 5 Place Jussieu, Paris, 75005, France
| |
Collapse
|
3
|
Li X, Jin Y. Thermodynamic crossovers in supercritical fluids. Proc Natl Acad Sci U S A 2024; 121:e2400313121. [PMID: 38652745 PMCID: PMC11067041 DOI: 10.1073/pnas.2400313121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Can liquid-like and gas-like states be distinguished beyond the critical point, where the liquid-gas phase transition no longer exists and conventionally only a single supercritical fluid phase is defined? Recent experiments and simulations report strong evidence of dynamical crossovers above the critical temperature and pressure. Despite using different criteria, many existing theoretical explanations consider a single crossover line separating liquid-like and gas-like states in the supercritical fluid phase. We argue that such a single-line scenario is inconsistent with the supercritical behavior of the Ising model, which has two crossover lines due to its symmetry, violating the universality principle of critical phenomena. To reconcile the inconsistency, we define two thermodynamic crossover lines in supercritical fluids as boundaries of liquid-like, indistinguishable, and gas-like states. Near the critical point, the two crossover lines follow critical scalings with exponents of the Ising universality class, supported by calculations of theoretical models and analyses of experimental data from the standard database. The upper line agrees with crossovers independently estimated from the inelastic X-ray scattering data of supercritical argon, and from the small-angle neutron scattering data of supercritical carbon dioxide. The lower line is verified by the equation of states for the compressibility factor. This work provides a fundamental framework for understanding supercritical physics in general phase transitions.
Collapse
Affiliation(s)
- Xinyang Li
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Yuliang Jin
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100049, China
- Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang325001, China
| |
Collapse
|
4
|
Lundin AA, Chaikina YA, Shushin AI, Umanskii SY. On the Capabilities of Optical Diagnostics Methods to Monitor the State of Supercritical Fluids near the Widom Line. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122080115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Skarmoutsos I, Samios J, Guardia E. Fingerprints of the Crossing of the Frenkel and Melting Line on the Properties of High-Pressure Supercritical Water. J Phys Chem Lett 2022; 13:7636-7644. [PMID: 35952379 DOI: 10.1021/acs.jpclett.2c01477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Using molecular dynamics simulations in combination with the two-phase thermodynamic model, we reveal novel characteristic fingerprints of the crossing of the Frenkel and melting line on the properties of high-pressure water at a near-critical temperature (1.03Tc). The crossing of the Frenkel line at about 1.17 GPa is characterized by a crossover in the rotational and translational entropy ratio Srot/Strans, indicating a change in the coupling between translational and rotational motions which is also reflected in the shape of the rotational density of states. The observed isosbestic points in the translational and rotational density of states are also blue-shifted at density and pressure conditions higher than the ones corresponding to the Frenkel line. The first-order phase transition from a rigid liquid to a face-centered cubic plastic crystal phase at about 8.5 GPa is reflected in the discontinuous changes in the translational and rotational entropy, particularly in the significant increase of the ratio Srot/Strans. A noticeable discontinuous increase of the dielectric constant has also been revealed when crossing this melting line, which is attributed to the different arrangement of the water molecules in the plastic crystal phase. The reorientational dynamics in the plastic crystal phase is faster in comparison with the "rigid" liquid-like phase, but it remains unchanged upon a further pressure increase in the range of 8.5-11 GPa.
Collapse
Affiliation(s)
- Ioannis Skarmoutsos
- Laboratory of Physical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Jannis Samios
- Department of Chemistry, Laboratory of Physical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 157-71, Athens, Greece
| | - Elvira Guardia
- Departament de Física, Universitat Politècnica de Catalunya, Campus Nord-Edifici B4-B5, Jordi Girona 1-3, Barcelona E-08034, Spain
| |
Collapse
|
6
|
Abstract
It is demonstrated that the crossover between gas- and liquid-like regions on the phase diagram of the Lennard-Jones system occurs at a fixed value of the density divided by its value at the freezing point, ρ/ ρfr ≃ 0.35. This definition is consistent with other definitions proposed recently. As a result, a very simple practical expression for the gas-to-liquid crossover line emerges.
Collapse
Affiliation(s)
- S. A. Khrapak
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| |
Collapse
|
7
|
Jafari S, Gaballa H, Habchi C, Hemptinne JCD, Mougin P. Exploring the interaction between phase separation and turbulent fluid dynamics in multi-species supercritical jets using a tabulated real-fluid model. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Liu M, Tang J, Liu S, Xi D, Min L, Zang J, Liu G, Wang J, Huang S, Huang Y. Modified Landau model for fluids: A rethink of pseudoboiling theory for supercritical fluids. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Yamaoka S, Hyeon-Deuk K. Distinct molecular dynamics dividing liquid-like and gas-like supercritical hydrogens. Phys Chem Chem Phys 2021; 23:22110-22118. [PMID: 34580684 DOI: 10.1039/d1cp02650j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding how a supercritical fluid is related to normal liquid and gas and separating it into liquid-like and gas-like regions are of fundamental and practical importance. Despite the usefulness of hydrogen storage, molecular dynamics images on supercritical hydrogens exhibiting strong nuclear quantum effects are scarce. Taking advantage of the non-empirical ab initio molecular dynamics method for hydrogen molecules, we found that, while radial distribution functions and diffusion show a monotonic change along the density, van Hove time correlation functions and intramolecular properties such as bond length and vibrational frequency exhibit the anomalous order crossing the Widom line. By demonstrating that the anomalous order stemmed from the largest deviations between liquid-like and gas-like solvations formed around the Widom line, we concluded that this supercritical fluid is a mixture of liquid and gas possessing heterogeneity. The obtained physical insights can be an index to monitor the supercriticality and to identify distinct liquid-like and gas-like supercritical fluids.
Collapse
Affiliation(s)
- Shutaro Yamaoka
- Department of Chemistry, Kyoto University, Kyoto 606-8502, Japan.
| | - Kim Hyeon-Deuk
- Department of Chemistry, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
10
|
Skarmoutsos I, Henao A, Guardia E, Samios J. On the Different Faces of the Supercritical Phase of Water at a Near-Critical Temperature: Pressure-Induced Structural Transitions Ranging from a Gaslike Fluid to a Plastic Crystal Polymorph. J Phys Chem B 2021; 125:10260-10272. [PMID: 34491748 DOI: 10.1021/acs.jpcb.1c05053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study reports a systematic analysis of a wide variety of structural, thermodynamic, and dynamic properties of supercritical water along the near-critical isotherm of T = 1.03Tc and up to extreme pressures, using molecular dynamics and Monte Carlo simulations. The methodology employed provides solid evidence about the existence of a structural transition from a liquidlike fluid to a compressed, tightly packed liquid, in the density and pressure region around 3.4ρc and 1.17 GPa, introducing an alternative approach to locate the crossing of the Frenkel line. Around 8.5 GPa another transition to a face-centered-cubic plastic crystal polymorph with density 5.178ρc is also observed, further confirmed by Gibbs free energy calculations using the two-phase thermodynamic model. The isobaric heat capacity maximum, closely related to the crossing of the Widom line, has also been observed around 0.8ρc, where the local density augmentation is also maximized. Another structural transition has been observed at 0.2ρc, related to the transformation of the fluid to a dilute gas at lower densities. These findings indicate that a near-critical isotherm can be divided into different domains where supercritical water exhibits distinct behavior, ranging from a gaslike one to a plastic crystal one.
Collapse
Affiliation(s)
- Ioannis Skarmoutsos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Vas. Constantinou 48, GR-116 35, Athens, Greece
| | - Andrés Henao
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Department of Chemistry, University of Paderborn, Warburger Strasse 100, D-33098 Paderborn, Germany
| | - Elvira Guardia
- Departament de Física, Universitat Politècnica de Catalunya, Campus Nord-Edifici B4-B5, Jordi Girona 1-3, Barcelona E-08034, Spain
| | - Jannis Samios
- Department of Chemistry, Laboratory of Physical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis GR-157 71, Athens, Greece
| |
Collapse
|
11
|
The Anomalous Behavior of Thermodynamic Parameters in the Three Widom Deltas of Carbon Dioxide-Ethanol Mixture. Int J Mol Sci 2021; 22:ijms22189813. [PMID: 34575970 PMCID: PMC8472178 DOI: 10.3390/ijms22189813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/23/2022] Open
Abstract
Using molecular dynamics, we demonstrated that in the mixture of carbon dioxide and ethanol (25% molar fraction) there are three pronounced regions on the p-T diagram characterized by not only high-density fluctuations but also anomalous behavior of thermodynamic parameters. The regions are interpreted as Widom deltas. The regions were identified as a result of analyzing the dependences of density, density fluctuations, isobaric thermal conductivity, and clustering of a mixture of carbon dioxide and ethanol in a wide range of pressures and temperatures. Two of the regions correspond to the Widom delta for pure supercritical carbon dioxide and ethanol, while the third region is in the immediate vicinity of the critical point of the binary mixture. The origin of these Widom deltas is a result of the large mixed linear clusters formation.
Collapse
|
12
|
Bell IH, Delage-Santacreu S, Hoang H, Galliero G. Dynamic Crossover in Fluids: From Hard Spheres to Molecules. J Phys Chem Lett 2021; 12:6411-6417. [PMID: 34232673 DOI: 10.1021/acs.jpclett.1c01594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We propose a simple and generic definition of a demarcation reconciling structural and dynamic frameworks when combined with the entropy scaling framework. This crossover line between gas- and liquid-like behaviors is defined as the curve for which an individual property, the contribution to viscosity due to molecules' translation, is exactly equal to a collective property, the contribution to viscosity due to molecular interactions. Such a definition is shown to be consistent with the one based on the minima of the kinematic viscosity. For the hard sphere, this is shown to be an exact solution. For Lennard-Jones spheres and dimers and for some simple real fluids, this relation holds very well. This crossover line passes nearby the critical point, and for all studied fluids, it is well captured by the critical excess entropy curve for atomic fluids, emphasizing the link between transport properties and local structure.
Collapse
Affiliation(s)
- Ian H Bell
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Stéphanie Delage-Santacreu
- Université de Pau et des Pays de l'Adour, e2s UPPA, Laboratoire de Mathematiques et de leurs Applications de Pau (IPRA, CNRS UMR5142), Pau 64000, France
| | - Hai Hoang
- Institute of Fundamental and Applied Sciences, Duy Tan University, 10C Tran Nhat Duat Street, District 1, Ho Chi Minh City 700000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Guillaume Galliero
- Université de Pau et des Pays de l'Adour, e2s UPPA, TOTAL, CNRS, LFCR, UMR 5150, Laboratoire des fluides complexes et leurs reservoirs, Pau 64000, France
| |
Collapse
|
13
|
Diffusion in dense supercritical methane from quasi-elastic neutron scattering measurements. Nat Commun 2021; 12:1958. [PMID: 33785748 PMCID: PMC8009954 DOI: 10.1038/s41467-021-22182-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/26/2021] [Indexed: 11/08/2022] Open
Abstract
Methane, the principal component of natural gas, is an important energy source and raw material for chemical reactions. It also plays a significant role in planetary physics, being one of the major constituents of giant planets. Here, we report measurements of the molecular self-diffusion coefficient of dense supercritical CH4 reaching the freezing pressure. We find that the high-pressure behaviour of the self-diffusion coefficient measured by quasi-elastic neutron scattering at 300 K departs from that expected for a dense fluid of hard spheres and suggests a density-dependent molecular diameter. Breakdown of the Stokes-Einstein-Sutherland relation is observed and the experimental results suggest the existence of another scaling between self-diffusion coefficient D and shear viscosity η, in such a way that Dη/ρ=constant at constant temperature, with ρ the density. These findings underpin the lack of a simple model for dense fluids including the pressure dependence of their transport properties.
Collapse
|
14
|
Chatwell RS, Guevara-Carrion G, Gaponenko Y, Shevtsova V, Vrabec J. Diffusion of the carbon dioxide-ethanol mixture in the extended critical region. Phys Chem Chem Phys 2021; 23:3106-3115. [PMID: 33491706 DOI: 10.1039/d0cp04985a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of traces of ethanol in supercritical carbon dioxide on the mixture's thermodynamic properties is studied by molecular simulations and Taylor dispersion measurements. This mixture is investigated along the isobar p = 10 MPa in the temperature range between T = 304 and 343 K. Along this path, the mixture undergoes two transitions: First, the Widom line is crossed, marking the transition from liquid-like to gas-like conditions. A second transition occurs from the supercritical gas-like domain to a subcritical gas. The Widom line crossover entails inflection points for most of the studied properties, i.e. density, enthalpy, shear viscosity, Maxwell-Stefan and intradiffusion coefficients. On the other hand, the transition between the super- and subcritical regions is found to be generally smooth, an observation that is qualitatively confirmed by experimental Taylor dispersion measurements. Dedicated atomistic simulations show the presence of microheterogeneities due to ethanol self-association along the investigated path, which lead to the mixture's anomalous behavior in its extended critical region.
Collapse
Affiliation(s)
- René Spencer Chatwell
- Thermodynamics and Process Engineering, Technische Universität Berlin, 10587 Berlin, Germany.
| | | | - Yuri Gaponenko
- Microgravity Research Center, Université Libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Valentina Shevtsova
- Microgravity Research Center, Université Libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Jadran Vrabec
- Thermodynamics and Process Engineering, Technische Universität Berlin, 10587 Berlin, Germany.
| |
Collapse
|
15
|
Mareev E, Semenov T, Lazarev A, Minaev N, Sviridov A, Potemkin F, Gordienko V. Optical Diagnostics of Supercritical CO 2 and CO 2-Ethanol Mixture in the Widom Delta. Molecules 2020; 25:molecules25225424. [PMID: 33228172 PMCID: PMC7699601 DOI: 10.3390/molecules25225424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022] Open
Abstract
The supercritical CO2 (scCO2) is widely used as solvent and transport media in different technologies. The technological aspects of scCO2 fluid applications strongly depend on spatial–temporal fluctuations of its thermodynamic parameters. The region of these parameters’ maximal fluctuations on the p-T (pressure-temperature) diagram is called Widom delta. It has significant practical and fundamental interest. We offer an approach that combines optical measurements and molecular dynamics simulation in a wide range of pressures and temperatures. We studied the microstructure of supercritical CO2 fluid and its binary mixture with ethanol in a wide range of temperatures and pressures using molecular dynamics (MD) simulation. MD is used to retrieve a set of optical characteristics such as Raman spectra, refractive indexes and molecular refraction and was verified by appropriate experimental measurements. We demonstrated that in the Widom delta the monotonic dependence of the optical properties on the CO2 density is violated. It is caused by the rapid increase of density fluctuations and medium-sized (20–30 molecules) cluster formation. We identified the correlation between cluster parameters and optical properties of the media; in particular, it is established that the clusters in the Widom delta acts as a seed for clustering in molecular jets. MD demonstrates that the cluster formation is stronger in the supercritical CO2-ethanol mixture, where the extended binary clusters are formed; that is, the nonlinear refractive index significantly increased. The influence of the supercritical state in the cell on the formation of supersonic cluster jets is studied using the Mie scattering technique.
Collapse
Affiliation(s)
- Evgenii Mareev
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Pionerskaya 2, Troitsk, 108840 Moscow, Russia; (N.M.); (A.S.); (V.G.)
- Faculty of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory bld.1/2, 119991 Moscow, Russia; (T.S.); (F.P.)
- Correspondence:
| | - Timur Semenov
- Faculty of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory bld.1/2, 119991 Moscow, Russia; (T.S.); (F.P.)
- Institute on Laser and Information Technologies—Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Svyatoozerskaya 1, Shatura, 140700 Moscow, Russia
| | - Alexander Lazarev
- Faculty of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory bld.1/2, 119991 Moscow, Russia;
| | - Nikita Minaev
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Pionerskaya 2, Troitsk, 108840 Moscow, Russia; (N.M.); (A.S.); (V.G.)
| | - Alexander Sviridov
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Pionerskaya 2, Troitsk, 108840 Moscow, Russia; (N.M.); (A.S.); (V.G.)
| | - Fedor Potemkin
- Faculty of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory bld.1/2, 119991 Moscow, Russia; (T.S.); (F.P.)
| | - Vyacheslav Gordienko
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Pionerskaya 2, Troitsk, 108840 Moscow, Russia; (N.M.); (A.S.); (V.G.)
- Faculty of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory bld.1/2, 119991 Moscow, Russia; (T.S.); (F.P.)
| |
Collapse
|
16
|
Banuti D, Raju M, Ihme M. Between supercritical liquids and gases – Reconciling dynamic and thermodynamic state transitions. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104895] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Bell IH, Galliero G, Delage-Santacreu S, Costigliola L. An entropy scaling demarcation of gas- and liquid-like fluid behaviors. J Chem Phys 2020; 152:191102. [PMID: 33687260 DOI: 10.1063/1.5143854] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we propose a generic and simple definition of a line separating gas-like and liquid-like fluid behaviors from the standpoint of shear viscosity. This definition is valid even for fluids such as the hard sphere and the inverse power law that exhibit a unique fluid phase. We argue that this line is defined by the location of the minimum of the macroscopically scaled viscosity when plotted as a function of the excess entropy, which differs from the popular Widom lines. For hard sphere, Lennard-Jones, and inverse-power-law fluids, such a line is located at an excess entropy approximately equal to -2/3 times Boltzmann's constant and corresponds to points in the thermodynamic phase diagram for which the kinetic contribution to viscosity is approximately half of the total viscosity. For flexible Lennard-Jones chains, the excess entropy at the minimum is a linear function of the chain length. This definition opens a straightforward route to classify the dynamical behavior of fluids from a single thermodynamic quantity obtainable from high-accuracy thermodynamic models.
Collapse
Affiliation(s)
- Ian H Bell
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Guillaume Galliero
- Universite de Pau et des Pays de l'Adour, e2s UPPA, TOTAL, CNRS, LFCR, UMR 5150, Laboratoire des fluides complexes et leurs reservoirs, Pau, France
| | - Stéphanie Delage-Santacreu
- Universite de Pau et des Pays de l'Adour, e2s UPPA, Laboratoire de Mathematiques et de leurs Applications de Pau (IPRA, CNRS UMR5142), Pau, France
| | - Lorenzo Costigliola
- Department of Science and Environment, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
18
|
Enhanced Specific Heat Capacity of Liquid Entrapped between Two Solid Walls Separated by a Nanogap. Processes (Basel) 2020. [DOI: 10.3390/pr8040459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Size and thermal effect on molar heat capacity of liquid at constant volume (Cv) on a nanometer scale have been investigated by controlling the temperature and density of the liquid domain using equilibrium molecular dynamics (EMD) simulations. Lennard-Jones (LJ) type molecular model with confinement gap thickness (h) 0.585 nm to 27.8 nm has been used with the temperature (T) ranging from 100 K to 140 K. The simulation results revealed that the heat capacity of the nanoconfined liquid surpasses that of the bulk liquid within a defined interval of gap thickness; that the temperature at which maximum heat capacity occurs for a nanoconfined liquid vary with gap thickness following a power law, TCv,max = 193.4 × (h/a)−0.3431, ‘a’ being the lattice constant of Argon (solid) at 300 K; and that for a specified gap thickness and temperature, the confined liquid can exhibit a heat capacity that can be more than twice the heat capacity of the bulk liquid. The increase in heat capacity is underpinned by an increase in non-configurational (phonon and anharmonic modes of vibration) and configurational (non-uniform density distribution, enhanced thermal resistance, guided molecular mobility, etc.) contributions.
Collapse
|
19
|
Proctor JE, Pruteanu CG, Morrison I, Crowe IF, Loveday JS. Transition from Gas-like to Liquid-like Behavior in Supercritical N 2. J Phys Chem Lett 2019; 10:6584-6589. [PMID: 31604009 DOI: 10.1021/acs.jpclett.9b02358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We have studied in detail the transition from gas-like to rigid liquid-like behavior in supercritical N2 at 300 K (2.4 TC). Our study combines neutron diffraction and Raman spectroscopy with ab initio molecular dynamics simulations. We observe a narrow transition from gas-like to rigid liquid-like behavior at ca. 150 MPa, which we associate with the Frenkel line. Our findings allow us to reliably characterize the Frenkel line using both diffraction and spectroscopy methods, backed up by simulation, for the same substance. We clearly lay out what parameters change, and what parameters do not change, when the Frenkel line is crossed.
Collapse
Affiliation(s)
- J E Proctor
- Materials and Physics Research Group , University of Salford , Manchester M5 4WT , U.K
| | - C G Pruteanu
- Department of Physics and Astronomy , University College London , Gower Street , London WC1E 6BT , U.K
| | - I Morrison
- Materials and Physics Research Group , University of Salford , Manchester M5 4WT , U.K
| | - I F Crowe
- Photon Science Institute and School of Electrical and Electronic Engineering , University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | - J S Loveday
- SUPA, School of Physics and Astronomy and Centre for Science at Extreme Conditions , The University of Edinburgh , Edinburgh EH9 3JZ , U.K
| |
Collapse
|
20
|
Bachler J, Handle PH, Giovambattista N, Loerting T. Glass polymorphism and liquid-liquid phase transition in aqueous solutions: experiments and computer simulations. Phys Chem Chem Phys 2019; 21:23238-23268. [PMID: 31556899 DOI: 10.1039/c9cp02953b] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One of the most intriguing anomalies of water is its ability to exist as distinct amorphous ice forms (glass polymorphism or polyamorphism). This resonates well with the possible first-order liquid-liquid phase transition (LLPT) in the supercooled state, where ice is the stable phase. In this Perspective, we review experiments and computer simulations that search for LLPT and polyamorphism in aqueous solutions containing salts and alcohols. Most studies on ionic solutes are devoted to NaCl and LiCl; studies on alcohols have mainly focused on glycerol. Less attention has been paid to protein solutions and hydrophobic solutes, even though they reveal promising avenues. While all solutions show polyamorphism and an LLPT only in dilute, sub-eutectic mixtures, there are differences regarding the nature of the transition. Isocompositional transitions for varying mole fractions are observed in alcohol but not in ionic solutions. This is because water can surround alcohol molecules either in a low- or high-density configuration whereas for ionic solutes, the water ion hydration shell is forced into high-density structures. Consequently, the polyamorphic transition and the LLPT are prevented near the ions, but take place in patches of water within the solutions. We highlight discrepancies and different interpretations within the experimental community as well as the key challenges that need consideration when comparing experiments and simulations. We point out where reinterpretation of past studies helps to draw a unified, consistent picture. In addition to the literature review, we provide original experimental results. A list of eleven open questions that need further consideration is identified.
Collapse
Affiliation(s)
- Johannes Bachler
- Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria.
| | | | | | | |
Collapse
|
21
|
Ng Pack G, Rotondaro MC, Shah PP, Mandal A, Erramilli S, Ziegler LD. Two-dimensional infrared spectroscopy from the gas to liquid phase: density dependent J-scrambling, vibrational relaxation, and the onset of liquid character. Phys Chem Chem Phys 2019; 21:21249-21261. [PMID: 31538165 DOI: 10.1039/c9cp04101j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrafast 2DIR spectra and pump-probe responses of the N2O ν3 asymmetric stretch in SF6 as a function of density from the gas to supercritical phase and liquid are reported. 2DIR spectra unequivocally reveal free rotor character at all densities studied in the gas and supercritical region. Analysis of the 2DIR spectra determines that J-scrambling or rotational relaxation in N2O is highly efficient, occurring in ∼1.5 to ∼2 collisions with SF6 at all non-liquid densities. In contrast, N2O ν3 vibrational energy relaxation requires ∼15 collisions, and complete vibrational equilibrium occurs on the ∼ns scale at all densities. An independent binary collision model is sufficient to describe these supercritical state point dynamics. The N2O ν3 in liquid SF6 2DIR spectrum shows no evidence of free rotor character or spectral diffusion. Using these 2DIR results, hindered rotor or liquid-like character is found in gas and all supercritical solutions for SF6 densities ≥ρ* = 0.3, and increases with SF6 density. 2DIR spectral analysis offers direct time domain evidence of critical slowing for SF6 solutions closest to the critical point density. Applications of 2DIR to other high density and supercritical solution dynamics and descriptions are discussed.
Collapse
Affiliation(s)
- Greg Ng Pack
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and Photonics Center, Boston University, Boston, MA 02215, USA
| | - Matthew C Rotondaro
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and Photonics Center, Boston University, Boston, MA 02215, USA
| | - Parth P Shah
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and Photonics Center, Boston University, Boston, MA 02215, USA
| | - Aritra Mandal
- Department of Chemistry, University of Colorado, Boulder, CO 80309, USA
| | - Shyamsunder Erramilli
- Photonics Center, Boston University, Boston, MA 02215, USA and Department of Physics, Boston University, Boston, MA 02215, USA
| | - L D Ziegler
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and Photonics Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
22
|
Ploetz EA, Smith PE. Gas or Liquid? The Supercritical Behavior of Pure Fluids. J Phys Chem B 2019; 123:6554-6563. [DOI: 10.1021/acs.jpcb.9b04058] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elizabeth A. Ploetz
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid Campus Dr. North, Manhattan, Kansas 66506-0401, United States
| | - Paul E. Smith
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid Campus Dr. North, Manhattan, Kansas 66506-0401, United States
| |
Collapse
|
23
|
Takemoto A, Kinugawa K. Quantumness and state boundaries hidden in supercritical helium-4: A path integral centroid molecular dynamics study. J Chem Phys 2018; 149:204504. [DOI: 10.1063/1.5053988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ayumi Takemoto
- Division of Chemistry, Graduate School of Humanities and Sciences, Nara Women’s University, Nara 630-8506, Japan
| | - Kenichi Kinugawa
- Division of Chemistry, Graduate School of Humanities and Sciences, Nara Women’s University, Nara 630-8506, Japan
| |
Collapse
|
24
|
Bakai O, Bratchenko M, Dyuldya S. Three-state mesoscopic model of a heterophase fluid in application to the gas-liquid and dielectric-semiconductor-metal transformations in expanded mercury. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Bryk T, Gorelli FA, Mryglod I, Ruocco G, Santoro M, Scopigno T. Reply to “Comment on ‘Behavior of Supercritical Fluids across the Frenkel Line’”. J Phys Chem B 2018; 122:6120-6123. [DOI: 10.1021/acs.jpcb.8b01900] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- T. Bryk
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Street, UA-79011 Lviv, Ukraine
- Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, UA-79013 Lviv, Ukraine
| | - F. A. Gorelli
- Istituto Nazionale di Ottica INO-CNR, I-50019 Sesto Fiorentino, Italy
- European Laboratory for Non Linear Spectroscopy, LENS, I-50019 Sesto Fiorentino, Italy
| | - I. Mryglod
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Street, UA-79011 Lviv, Ukraine
| | - G. Ruocco
- Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia, 295 Viale Regina Elena, I-00161 Roma, Italy
- Dipartimento di Fisica, Universita di Roma La Sapienza, I-00185 Roma, Italy
| | - M. Santoro
- Istituto Nazionale di Ottica INO-CNR, I-50019 Sesto Fiorentino, Italy
- European Laboratory for Non Linear Spectroscopy, LENS, I-50019 Sesto Fiorentino, Italy
| | - T. Scopigno
- Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia, 295 Viale Regina Elena, I-00161 Roma, Italy
- Dipartimento di Fisica, Universita di Roma La Sapienza, I-00185 Roma, Italy
| |
Collapse
|
26
|
Ha MY, Yoon TJ, Tlusty T, Jho Y, Lee WB. Widom Delta of Supercritical Gas-Liquid Coexistence. J Phys Chem Lett 2018; 9:1734-1738. [PMID: 29553732 DOI: 10.1021/acs.jpclett.8b00430] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Density fluctuations and the Widom line are of great importance in understanding the critical phenomena and the behaviors of supercritical fluids (SCFs). We report on the direct classification of liquid-like and gas-like molecules coexisting in the SCF, identified by machine learning analysis on simulation data. The deltoid coexistence region encloses the Widom line and may therefore be termed the Widom delta. Number fractions of gas-like and liquid-like particles are found to undergo continuous transition across the delta, following a simplified two-state model. These fractions are closely related to the magnitude of supercritical anomaly, which originates from the fluctuation between the two types. This suggests a microscopic view of the SCF as a mixture of liquid-like and gas-like structures, providing an integrative explanation to the anomalous behaviors near the critical point and the Widom line.
Collapse
Affiliation(s)
- Min Young Ha
- School of Chemical and Biological Engineering, Institute of Chemical Processes , Seoul National University , Seoul 08826 , Republic of Korea
| | - Tae Jun Yoon
- School of Chemical and Biological Engineering, Institute of Chemical Processes , Seoul National University , Seoul 08826 , Republic of Korea
| | - Tsvi Tlusty
- Center for Soft and Living Matter , Institute for Basic Science (IBS) , Ulsan 44919 , Korea
- Department of Physics , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Korea
| | - Yongseok Jho
- Department of Physics and Research Institute of Natural Science , Gyeongsang National University , Jinju 52828 , Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes , Seoul National University , Seoul 08826 , Republic of Korea
| |
Collapse
|
27
|
Sharma D, Erriguible A, Amiroudine S. Cooling beyond the boundary value in supercritical fluids under vibration. Phys Rev E 2018; 96:063102. [PMID: 29347440 DOI: 10.1103/physreve.96.063102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Indexed: 11/07/2022]
Abstract
Supercritical fluids when subjected to simultaneous quench and vibration have been known to cause various intriguing flow phenomena and instabilities depending on the relative direction of temperature gradient and vibration. Here we describe a surprising and interesting phenomenon wherein temperature in the fluid falls below the imposed boundary value when the walls are quenched and the direction of vibration is normal to the temperature gradient. We define these regions in the fluid as sink zones, because they act like sink for heat within the fluid domain. The formation of these zones is first explained using a one-dimensional (1D) analysis with acceleration in constant direction. Subsequently, the effect of various boundary conditions and the relative direction of the temperature gradient to acceleration are analyzed, highlighting the necessary conditions for the formation of sink zones. It is found that the effect of high compressibility and the action of self-weight (due to high acceleration) causes the temperature to change in the bulk besides the usual action of piston effect. This subsequently affects the overall temperature profile thereby leading to the formation of sink zones. Though the examined 1D cases differ from the current two-dimensional (2D) cases, owing to the direction of acceleration being normal as compared to parallel in case of former, the explanations pertaining to 1D cases are judiciously utilized to elucidate the formation of sink zones in 2D supercritical fluids subjected to thermal quench and vibrational acceleration. The appearance of sink zones is found to be dependent on several factors such as proximity to the critical point and acceleration. A surface three-dimensional plot illustrating the effect of these parameters on onset time of sink zones is presented to further substantiate these arguments.
Collapse
Affiliation(s)
- D Sharma
- Université Bordeaux, I2M, UMR CNRS 5295, 16 Av. Pey-Berland, 33607 Pessac, France
| | - A Erriguible
- Bordeaux INP, I2M, UMR CNRS 5295, 16 Av. Pey-Berland, 33607 Pessac, France
| | - S Amiroudine
- Université Bordeaux, I2M, UMR CNRS 5295, 16 Av. Pey-Berland, 33607 Pessac, France
| |
Collapse
|
28
|
Smith D, Hakeem MA, Parisiades P, Maynard-Casely HE, Foster D, Eden D, Bull DJ, Marshall ARL, Adawi AM, Howie R, Sapelkin A, Brazhkin VV, Proctor JE. Crossover between liquidlike and gaslike behavior in CH_{4} at 400 K. Phys Rev E 2017; 96:052113. [PMID: 29347717 DOI: 10.1103/physreve.96.052113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Indexed: 06/07/2023]
Abstract
We report experimental evidence for a crossover between a liquidlike state and a gaslike state in fluid methane (CH_{4}). This crossover is observed in all of our experiments, up to a temperature of 397 K, 2.1 times the critical temperature of methane. The crossover has been characterized with both Raman spectroscopy and x-ray diffraction in a number of separate experiments, and confirmed to be reversible. We associate this crossover with the Frenkel line-a recently hypothesized crossover in dynamic properties of fluids extending to arbitrarily high pressure and temperature, dividing the phase diagram into separate regions where the fluid possesses liquidlike and gaslike properties. On the liquidlike side the Raman-active vibration increases in frequency linearly as pressure is increased, as expected due to the repulsive interaction between adjacent molecules. On the gaslike side this competes with the attractive van der Waals potential leading the vibration frequency to decrease as pressure is increased.
Collapse
Affiliation(s)
- D Smith
- Materials and Physics Research Group, School of Computing, Science and Engineering, University of Salford, Manchester M5 4WT, United Kingdom
- School of Mathematics and Physical Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - M A Hakeem
- Materials and Physics Research Group, School of Computing, Science and Engineering, University of Salford, Manchester M5 4WT, United Kingdom
| | - P Parisiades
- European Synchrotron Radiation Facility, Beamline ID27, Boîte Postale 220, Grenoble, France
- IMPMC, Université Pierre et Marie Curie, 4 place Jussieu, 75005 Paris, France
| | - H E Maynard-Casely
- Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, New South Wales, 2232, Australia
| | - D Foster
- Materials and Physics Research Group, School of Computing, Science and Engineering, University of Salford, Manchester M5 4WT, United Kingdom
| | - D Eden
- Materials and Physics Research Group, School of Computing, Science and Engineering, University of Salford, Manchester M5 4WT, United Kingdom
| | - D J Bull
- Materials and Physics Research Group, School of Computing, Science and Engineering, University of Salford, Manchester M5 4WT, United Kingdom
| | - A R L Marshall
- School of Mathematics and Physical Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - A M Adawi
- School of Mathematics and Physical Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - R Howie
- SUPA, School of Physics and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
- Center for High Pressure Science & Technology Advanced Research (HPSTAR), Shanghai 201203, People's Republic of China
| | - A Sapelkin
- School of Physics and Astronomy, Queen Mary University of London, London E1 4NS, United Kingdom
| | - V V Brazhkin
- Institute for High Pressure Physics, RAS, 108440 Troitsk, Moscow, Russia
| | - J E Proctor
- Materials and Physics Research Group, School of Computing, Science and Engineering, University of Salford, Manchester M5 4WT, United Kingdom
- School of Mathematics and Physical Sciences, University of Hull, Hull HU6 7RX, United Kingdom
- Photon Science Institute and School of Electrical and Electronic Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
29
|
Bryk T, Gorelli FA, Mryglod I, Ruocco G, Santoro M, Scopigno T. Behavior of Supercritical Fluids across the "Frenkel Line". J Phys Chem Lett 2017; 8:4995-5001. [PMID: 28945381 DOI: 10.1021/acs.jpclett.7b02176] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The "Frenkel line" (FL), the thermodynamic locus where the time for a particle to move by its size equals the shortest transverse oscillation period, has been proposed as a boundary between recently discovered liquid-like and gas-like regions in supercritical fluids. We report a simulation study of isothermal supercritical neon in a range of densities intersecting the FL. Specifically, structural properties and single-particle and collective dynamics are scrutinized to unveil the onset of any anomalous behavior at the FL. We find that (i) the pair distribution function smoothly evolves across the FL displaying medium-range order, (ii) low-frequency transverse excitations are observed below the "Frenkel frequency", and (iii) the high-frequency shear modulus does not vanish even for low-density fluids, indicating that positive sound dispersion characterizing the liquid-like region of the supercritical state is unrelated to transverse dynamics. These facts critically undermine the definition of the FL and its significance for any relevant partition of the supercritical phase.
Collapse
Affiliation(s)
- T Bryk
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine , 1 Svientsitskii Street, UA-79011 Lviv, Ukraine
- Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University , UA-79013 Lviv, Ukraine
| | - F A Gorelli
- Istituto Nazionale di Ottica INO-CNR , I-50019 Sesto Fiorentino, Italy
- European Laboratory for Non Linear Spectroscopy, LENS , I-50019 Sesto Fiorentino, Italy
| | - I Mryglod
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine , 1 Svientsitskii Street, UA-79011 Lviv, Ukraine
| | - G Ruocco
- Dipartimento di Fisica, Universita di Roma La Sapienza , I-00185 Roma, Italy
- Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia , 295 Viale Regina Elena, I-00161 Roma, Italy
| | - M Santoro
- Istituto Nazionale di Ottica INO-CNR , I-50019 Sesto Fiorentino, Italy
- European Laboratory for Non Linear Spectroscopy, LENS , I-50019 Sesto Fiorentino, Italy
| | - T Scopigno
- Dipartimento di Fisica, Universita di Roma La Sapienza , I-00185 Roma, Italy
- Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia , 295 Viale Regina Elena, I-00161 Roma, Italy
| |
Collapse
|
30
|
Raju M, Banuti DT, Ma PC, Ihme M. Widom Lines in Binary Mixtures of Supercritical Fluids. Sci Rep 2017; 7:3027. [PMID: 28596591 PMCID: PMC5465206 DOI: 10.1038/s41598-017-03334-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/26/2017] [Indexed: 12/02/2022] Open
Abstract
Recent experiments on pure fluids have identified distinct liquid-like and gas-like regimes even under supercritical conditions. The supercritical liquid-gas transition is marked by maxima in response functions that define a line emanating from the critical point, referred to as Widom line. However, the structure of analogous state transitions in mixtures of supercritical fluids has not been determined, and it is not clear whether a Widom line can be identified for binary mixtures. Here, we present first evidence for the existence of multiple Widom lines in binary mixtures from molecular dynamics simulations. By considering mixtures of noble gases, we show that, depending on the phase behavior, mixtures transition from a liquid-like to a gas-like regime via distinctly different pathways, leading to phase relationships of surprising complexity and variety. Specifically, we show that miscible binary mixtures have behavior analogous to a pure fluid and the supercritical state space is characterized by a single liquid-gas transition. In contrast, immiscible binary mixture undergo a phase separation in which the clusters transition separately at different temperatures, resulting in multiple distinct Widom lines. The presence of this unique transition behavior emphasizes the complexity of the supercritical state to be expected in high-order mixtures of practical relevance.
Collapse
Affiliation(s)
- Muralikrishna Raju
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Daniel T Banuti
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Peter C Ma
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Matthias Ihme
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
31
|
Bakai O. Mesoscopic equation of state of the heterophase fluid and its application to description of the liquid-gas asymmetry. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Bryk T, Wax JF. A search for manifestation of two types of collective excitations in dynamic structure of a liquid metal: Ab initio study of collective excitations in liquid Na. J Chem Phys 2017; 144:194501. [PMID: 27208952 DOI: 10.1063/1.4948709] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using a combination of ab initio molecular dynamics and several fit models for dynamic structure of liquid metals, we explore an issue of possible manifestation of non-acoustic collective excitations in longitudinal dynamics having liquid Na as a case study. A model with two damped harmonic oscillators (DHOs) in time domain is used for analysis of the density-density time correlation functions. Another similar model with two propagating contributions and three lowest exact sum rules is considered, as well as an extended hydrodynamic model known as thermo-viscoelastic one which permits two types of propagating modes outside the hydrodynamic region to be used for comparison with ab initio obtained time correlation functions and calculations of dispersions of collective excitations. Our results do not support recent suggestions that, even in simple liquid metals, non-hydrodynamics transverse excitations contribute to the longitudinal collective dynamics and can be detected as a DHO-like spectral shape at their transverse frequency. We found that the thermo-viscoelastic dynamic model permits perfect description of the density-density and current-current time correlation functions of the liquid Na in a wide range of wave numbers, which implies that the origin of the non-hydrodynamic collective excitations contributing to longitudinal dynamics can be short-wavelength heat waves.
Collapse
Affiliation(s)
- Taras Bryk
- Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, 1 Svientsitskii Street, UA-79011 Lviv, Ukraine and Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, UA-79013 Lviv, Ukraine
| | - J-F Wax
- Université de Lorraine, LCP-A2MC, EA4632, 1, boulevard Arago, 57078 Metz Cedex 3, France
| |
Collapse
|
33
|
Bellissima S, Neumann M, Guarini E, Bafile U, Barocchi F. Density of states and dynamical crossover in a dense fluid revealed by exponential mode analysis of the velocity autocorrelation function. Phys Rev E 2017; 95:012108. [PMID: 28208443 DOI: 10.1103/physreve.95.012108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Indexed: 11/07/2022]
Abstract
Extending a preceding study of the velocity autocorrelation function (VAF) in a simulated Lennard-Jones fluid [Phys. Rev. E 92, 042166 (2015)PLEEE81539-375510.1103/PhysRevE.92.042166] to cover higher-density and lower-temperature states, we show that the recently demonstrated multiexponential expansion method allows for a full account and understanding of the basic dynamical processes encompassed by a fundamental quantity as the VAF. In particular, besides obtaining evidence of a persisting long-time tail, we assign specific and unambiguous physical meanings to groups of exponential modes related to the longitudinal and transverse collective dynamics, respectively. We have made this possible by consistently introducing the interpretation of the VAF frequency spectrum as a global density of states in fluids, generalizing a solid-state concept, and by giving to specific spectral components, obtained through the VAF exponential expansion, the corresponding meaning of partial densities of states relative to specific dynamical processes. The clear identification of a high-frequency oscillation of the VAF with the near-top excitation frequency in the dispersion curve of acoustic waves is a neat example of the power of the method. As for the transverse mode contribution, its analysis turns out to be particularly important, because the multiexponential expansion reveals a transition marking the onset of propagating excitations when the density is increased beyond a threshold value. While this finding agrees with the recent literature debating the issue of dynamical crossover boundaries, such as the one identified with the Frenkel line, we can add detailed information on the modes involved in this specific process in the domains of both time and frequency. This will help obtain a still missing full account of transverse dynamics, in both its nonpropagating and propagating aspects which are linked through dynamical transitions depending on both the thermodynamic states and the excitation wave vectors.
Collapse
Affiliation(s)
- S Bellissima
- Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino, Italy
| | - M Neumann
- Fakultät für Physik der Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria
| | - E Guarini
- Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino, Italy
| | - U Bafile
- Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
| | - F Barocchi
- Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|
34
|
|
35
|
Bryk T, Ruocco G, Scopigno T, Seitsonen AP. Pressure-induced emergence of unusually high-frequency transverse excitations in a liquid alkali metal: Evidence of two types of collective excitations contributing to the transverse dynamics at high pressures. J Chem Phys 2015; 143:104502. [PMID: 26374045 DOI: 10.1063/1.4928976] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Unlike phonons in crystals, the collective excitations in liquids cannot be treated as propagation of harmonic displacements of atoms around stable local energy minima. The viscoelasticity of liquids, reflected in transition from the adiabatic to elastic high-frequency speed of sound and in absence of the long-wavelength transverse excitations, results in dispersions of longitudinal (L) and transverse (T) collective excitations essentially different from the typical phonon ones. Practically, nothing is known about the effect of high pressure on the dispersion of collective excitations in liquids, which causes strong changes in liquid structure. Here dispersions of L and T collective excitations in liquid Li in the range of pressures up to 186 GPa were studied by ab initio simulations. Two methodologies for dispersion calculations were used: direct estimation from the peak positions of the L/T current spectral functions and simulation-based calculations of wavenumber-dependent collective eigenmodes. It is found that at ambient pressure, the longitudinal and transverse dynamics are well separated, while at high pressures, the transverse current spectral functions, density of vibrational states, and dispersions of collective excitations yield evidence of two types of propagating modes that contribute strongly to transverse dynamics. Emergence of the unusually high-frequency transverse modes gives evidence of the breakdown of a regular viscoelastic theory of transverse dynamics, which is based on coupling of a single transverse propagating mode with shear relaxation. The explanation of the observed high-frequency shift above the viscoelastic value is given by the presence of another branch of collective excitations. With the pressure increasing, coupling between the two types of collective excitations is rationalized within a proposed extended viscoelastic model of transverse dynamics.
Collapse
Affiliation(s)
- Taras Bryk
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Street, UA-79011 Lviv, Ukraine
| | - G Ruocco
- Dipartimento di Fisica, Universita di Roma La Sapienza, 5 Piazzale Aldo Moro, I-00185 Roma, Italy
| | - T Scopigno
- Dipartimento di Fisica, Universita di Roma La Sapienza, 5 Piazzale Aldo Moro, I-00185 Roma, Italy
| | - Ari P Seitsonen
- Département de Chimie, Université de Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
36
|
Bolmatov D, Zhernenkov M, Zav’yalov D, Tkachev SN, Cunsolo A, Cai YQ. The Frenkel Line: a direct experimental evidence for the new thermodynamic boundary. Sci Rep 2015; 5:15850. [PMID: 26537668 PMCID: PMC4633585 DOI: 10.1038/srep15850] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 10/02/2015] [Indexed: 11/15/2022] Open
Abstract
Supercritical fluids play a significant role in elucidating fundamental aspects of liquid matter under extreme conditions. They have been extensively studied at pressures and temperatures relevant to various industrial applications. However, much less is known about the structural behaviour of supercritical fluids and no structural crossovers have been observed in static compression experiments in any temperature and pressure ranges beyond the critical point. The structure of supercritical state is currently perceived to be uniform everywhere on the pressure-temperature phase diagram, and to change only in a monotonic way even moving around the critical point, not only along isotherms or isobars. Conversely, we observe structural crossovers for the first time in a deeply supercritical sample through diffraction measurements in a diamond anvil cell and discover a new thermodynamic boundary on the pressure-temperature diagram. We explain the existence of these crossovers in the framework of the phonon theory of liquids using molecular dynamics simulations. The obtained results are of prime importance since they imply a global reconsideration of the mere essence of the supercritical phase. Furthermore, this discovery may pave the way to new unexpected applications and to the exploration of exotic behaviour of confined fluids relevant to geo- and planetary sciences.
Collapse
Affiliation(s)
- Dima Bolmatov
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Mikhail Zhernenkov
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Sergey N. Tkachev
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA
| | - Alessandro Cunsolo
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Yong Q. Cai
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
37
|
Corradini D, Rovere M, Gallo P. The Widom line and dynamical crossover in supercritical water: Popular water models versus experiments. J Chem Phys 2015; 143:114502. [DOI: 10.1063/1.4930542] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
38
|
Huerta A, Bryk T, Trokhymchuk A. Collective excitations in 2D hard-disc fluid. J Colloid Interface Sci 2015; 449:357-63. [DOI: 10.1016/j.jcis.2014.12.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/14/2014] [Accepted: 12/15/2014] [Indexed: 11/25/2022]
|
39
|
|
40
|
Gallo P, Corradini D, Rovere M. Widom line and dynamical crossovers as routes to understand supercritical water. Nat Commun 2014; 5:5806. [DOI: 10.1038/ncomms6806] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/10/2014] [Indexed: 11/09/2022] Open
|
41
|
Fomin YD, Ryzhov VN, Tsiok EN, Brazhkin VV, Trachenko K. Dynamic transition in supercritical iron. Sci Rep 2014; 4:7194. [PMID: 25424664 PMCID: PMC4244626 DOI: 10.1038/srep07194] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/04/2014] [Indexed: 12/03/2022] Open
Abstract
Recent advance in understanding the supercritical state posits the existence of a new line above the critical point separating two physically distinct states of matter: rigid liquid and non-rigid gas-like fluid. The location of this line, the Frenkel line, remains unknown for important real systems. Here, we map the Frenkel line on the phase diagram of supercritical iron using molecular dynamics simulations. On the basis of our data, we propose a general recipe to locate the Frenkel line for any system, the recipe that importantly does not involve system-specific detailed calculations and relies on the knowledge of the melting line only. We further discuss the relationship between the Frenkel line and the metal-insulator transition in supercritical liquid metals. Our results enable predicting the state of supercritical iron in several conditions of interest. In particular, we predict that liquid iron in the Jupiter core is in the "rigid liquid" state and is highly conducting. We finally analyse the evolution of iron conductivity in the core of smaller planets such as Earth and Venus as well as exoplanets: as planets cool off, the supercritical core undergoes the transition to the rigid-liquid conducting state at the Frenkel line.
Collapse
Affiliation(s)
- Yu. D. Fomin
- Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk 142190, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia
| | - V. N. Ryzhov
- Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk 142190, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia
| | - E. N. Tsiok
- Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk 142190, Moscow, Russia
| | - V. V. Brazhkin
- Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk 142190, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia
| | - K. Trachenko
- School of Physics and Astronomy Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
42
|
Bryk T, Gorelli F, Ruocco G, Santoro M, Scopigno T. Collective excitations in soft-sphere fluids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042301. [PMID: 25375488 DOI: 10.1103/physreve.90.042301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Indexed: 06/04/2023]
Abstract
Despite that the thermodynamic distinction between a liquid and the corresponding gas ceases to exist at the critical point, it has been recently shown that reminiscence of gaslike and liquidlike behavior can be identified in the supercritical fluid region, encoded in the behavior of hypersonic waves dispersion. By using a combination of molecular dynamics simulations and calculations within the approach of generalized collective modes, we provide an accurate determination of the dispersion of longitudinal and transverse collective excitations in soft-sphere fluids. Specifically, we address the decreasing rigidity upon density reduction along an isothermal line, showing that the positive sound dispersion, an excess of sound velocity over the hydrodynamic limit typical for dense liquids, displays a nonmonotonic density dependence strictly correlated to that of thermal diffusivity and kinematic viscosity. This allows rationalizing recent observation parting the supercritical state based on the Widom line, i.e., the extension of the coexistence line. Remarkably, we show here that the extremals of transport properties such as thermal diffusivity and kinematic viscosity provide a robust definition for the boundary between liquidlike and gaslike regions, even in those systems without a liquid-gas binodal line. Finally, we discuss these findings in comparison with recent results for Lennard-Jones model fluid and with the notion of the "rigid-nonrigid" fluid separation lines.
Collapse
Affiliation(s)
- Taras Bryk
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Street, UA-79011 Lviv, Ukraine and Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, 79013 Lviv, Ukraine
| | - Federico Gorelli
- Istituto Nazionale di Ottica INO-CNR, I-50019 Sesto Fiorentino, Italy and European Laboratory for Non Linear Spectroscopy, LENS, I-50019 Sesto Fiorentino, Italy
| | - Giancarlo Ruocco
- Dipartimento di Fisica, Universita di Roma La Sapienza, I-00185, Roma, Italy and Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia, 295 Viale Regina Elena, I-00161, Roma, Italy
| | - Mario Santoro
- Istituto Nazionale di Ottica INO-CNR, I-50019 Sesto Fiorentino, Italy and European Laboratory for Non Linear Spectroscopy, LENS, I-50019 Sesto Fiorentino, Italy
| | - Tullio Scopigno
- Dipartimento di Fisica, Universita di Roma La Sapienza, I-00185, Roma, Italy and Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia, 295 Viale Regina Elena, I-00161, Roma, Italy
| |
Collapse
|
43
|
Abstract
Recent developments show that many liquids and solids have an approximate "hidden" scale invariance that implies the existence of lines in the thermodynamic phase diagram, so-called isomorphs, along which structure and dynamics in properly reduced units are invariant to a good approximation. This means that the phase diagram becomes effectively one-dimensional with regard to several physical properties. Liquids and solids with isomorphs include most or all van der Waals bonded systems and metals, as well as weakly ionic or dipolar systems. On the other hand, systems with directional bonding (hydrogen bonds or covalent bonds) or strong Coulomb forces generally do not exhibit hidden scale invariance. The article reviews the theory behind this picture of condensed matter and the evidence for it coming from computer simulations and experiments.
Collapse
Affiliation(s)
- Jeppe C Dyre
- DNRF Center "Glass and Time", IMFUFA, Department of Sciences, Roskilde University , P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
44
|
Wax JF, Bryk T. Reply to Comment on 'An effective fitting scheme for the dynamic structure of pure liquids'. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:168002. [PMID: 24695374 DOI: 10.1088/0953-8984/26/16/168002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We reply to the comment on our paper by Bafile et al (2014 J. Phys.: Condens. Matter 16 168002).
Collapse
Affiliation(s)
- J-F Wax
- Université de Lorraine, LCP-A2MC, EA4632, 1, boulevard Arago 57078 Metz Cedex 3, France
| | | |
Collapse
|
45
|
Brazhkin VV, Fomin YD, Ryzhov VN, Tareyeva EE, Tsiok EN. True Widom line for a square-well system. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:042136. [PMID: 24827221 DOI: 10.1103/physreve.89.042136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Indexed: 06/03/2023]
Abstract
In the present paper we propose a van der Waals-like model that allows a purely analytical study of fluid properties including the equation of state, phase behavior, and supercritical fluctuations. We take a square-well system as an example and calculate its liquid-gas transition line and supercritical fluctuations. Employing this model allows us to calculate not only the thermodynamic response functions (isothermal compressibility βT, isobaric heat capacity CP, density fluctuations ζT, and thermal expansion coefficient αT), but also the correlation length in the fluid ξ. It is shown that the bunch of extrema widens rapidly upon departure from the critical point. It seems that the Widom line defined in this way cannot be considered as a real boundary that divides the supercritical region into gaslike and liquidlike regions. As it has been shown recently, a dynamic line on the phase diagram in the supercritical region, namely, the Frenkel line, can be used for this purpose.
Collapse
Affiliation(s)
- V V Brazhkin
- Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk 142190, Moscow Region, Russia
| | - Yu D Fomin
- Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk 142190, Moscow Region, Russia
| | - V N Ryzhov
- Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk 142190, Moscow Region, Russia
| | - E E Tareyeva
- Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk 142190, Moscow Region, Russia
| | - E N Tsiok
- Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk 142190, Moscow Region, Russia
| |
Collapse
|
46
|
Gallo P, Corradini D, Rovere M. Fragile to strong crossover at the Widom line in supercooled aqueous solutions of NaCl. J Chem Phys 2013; 139:204503. [DOI: 10.1063/1.4832382] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
47
|
Kumar P, Wikfeldt KT, Schlesinger D, Pettersson LGM, Stanley HE. The Boson peak in supercooled water. Sci Rep 2013; 3:1980. [PMID: 23771033 PMCID: PMC3683701 DOI: 10.1038/srep01980] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 05/22/2013] [Indexed: 11/09/2022] Open
Abstract
We perform extensive molecular dynamics simulations of the TIP4P/2005 model of water to investigate the origin of the Boson peak reported in experiments on supercooled water in nanoconfined pores, and in hydration water around proteins. We find that the onset of the Boson peak in supercooled bulk water coincides with the crossover to a predominantly low-density-like liquid below the Widom line TW. The frequency and onset temperature of the Boson peak in our simulations of bulk water agree well with the results from experiments on nanoconfined water. Our results suggest that the Boson peak in water is not an exclusive effect of confinement. We further find that, similar to other glass-forming liquids, the vibrational modes corresponding to the Boson peak are spatially extended and are related to transverse phonons found in the parent crystal, here ice Ih.
Collapse
Affiliation(s)
- Pradeep Kumar
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
48
|
Brazhkin VV, Fomin YD, Lyapin AG, Ryzhov VN, Tsiok EN, Trachenko K. "Liquid-gas" transition in the supercritical region: fundamental changes in the particle dynamics. PHYSICAL REVIEW LETTERS 2013; 111:145901. [PMID: 24138256 DOI: 10.1103/physrevlett.111.145901] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Indexed: 06/02/2023]
Abstract
Recently, we have proposed a new dynamic line on the phase diagram in the supercritical region, the Frenkel line. Crossing the line corresponds to the radical changes of system properties. Here, we focus on the dynamics of model Lennard-Jones and soft-sphere fluids. We show that the location of the line can be rigorously and quantitatively established on the basis of the velocity autocorrelation function (VAF) and mean-square displacements. VAF is oscillatory below the line at low temperature, and is monotonically decreasing above the line at high temperature. Using this criterion, we show that the crossover of particle dynamics and key liquid properties occur on the same line. We also show that positive sound dispersion disappears in the vicinity of the line in both systems. We further demonstrate that the dynamic line bears no relationship to the existence of the critical point. Finally, we find that the region of existence of liquidlike dynamics narrows with the increase of the exponent of the repulsive part of interatomic potential.
Collapse
Affiliation(s)
- V V Brazhkin
- Institute for High Pressure Physics RAS, 142190 Troitsk, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
49
|
Bryk T, De Panfilis S, Gorelli FA, Gregoryanz E, Krisch M, Ruocco G, Santoro M, Scopigno T, Seitsonen AP. Dynamical crossover at the liquid-liquid transformation of a compressed molten alkali metal. PHYSICAL REVIEW LETTERS 2013; 111:077801. [PMID: 23992083 DOI: 10.1103/physrevlett.111.077801] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Indexed: 06/02/2023]
Abstract
Density-driven phase transformations are a known phenomenon in liquids. Pressure-driven transitions from an open low-density to a higher-density close-packed structure were observed for a number of systems. Here, we show a less intuitive, inverse behavior. We investigated the electronic, atomic, and dynamic structures of liquid Rb along an isothermal line at 573 K, at 1.2-27.4 GPa, by means of ab initio molecular dynamics simulations and inelastic x-ray scattering experiments. The excellent agreement of the simulations with experimental data performed up to 6.6 GPa validates the overall approach. Above 12.5 GPa, the breakdown of the nearly-free-electron model drives a transition of the pure liquid metal towards a less metallic, denser liquid, whose first coordination shell is less compact. Our study unveils the interplay between electronic, structural, and dynamic degrees of freedom along this liquid-liquid phase transition. In view of its electronic nature, we believe that this behavior is general for the first group elements, thus shedding new light into the high-pressure properties of alkali metals.
Collapse
Affiliation(s)
- Taras Bryk
- Dipartimento di Fisica, Università di Roma Sapienza, Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wax JF, Bryk T. An effective fitting scheme for the dynamic structure of pure liquids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:325104. [PMID: 23860372 DOI: 10.1088/0953-8984/25/32/325104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A scheme of analysis for the dynamic structure functions in pure liquids is presented which can be implemented with both experimental and simulation data. Expressions for contributions of relaxing and propagating modes proposed earlier in the framework of the generalized collective modes approach are optimized in order to strictly fulfil three among the required sum-rules. The method is applied to simulation data for liquid cesium, the description of which appears to only require one relaxing and one propagating mode in the investigated wavevector range. These expressions are able to account for the dynamics in both the hydrodynamic and the kinetic regimes, being quantitatively accurate up to the onset of the first peak of the static structure factor and qualitatively beyond. Features of the modes can thus be obtained easily, without resorting to heavy formalism. The scheme of analysis can be straightforwardly extended to account for a higher number of relaxing and propagating modes.
Collapse
Affiliation(s)
- J-F Wax
- Université de Lorraine, LCP-A2MC, EA4632, 1, Boulevard Arago F-57078 Metz Cedex 3, France.
| | | |
Collapse
|