1
|
Pérez-Pérez P, Reyes-Batlle M, Rodríguez-Expósito RL, Perdomo-González A, Sifaoui I, Díaz-Peña FJ, Morchón R, Maciver SK, Piñero JE, Lorenzo-Morales J. First Report of Acanthamoeba Genotype T4 from the Newly Formed Tajogaite Volcano Tephra (La Palma, Canary Islands). Pathogens 2024; 13:626. [PMID: 39204227 PMCID: PMC11357532 DOI: 10.3390/pathogens13080626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
The Tajogaite Volcano erupted on the western slope of the Cumbre Vieja mountain range on La Palma Island in the Canary Islands, Spain, in 2021. As one of the multiple consequences of this eruption, a layer of tephra was deposited, to a variable extent, over a large part of the island. Tephra deposits affect all aspects of vegetation recovery, the water cycle, and the long-term availability of volcanic nutrients. Protozoa, including free-living amoeba (FLA), are known to be among the first microorganisms capable of colonizing harsh environments. In the present study, the presence of FLA has been evaluated in the Tajogaite Volcano deposits. Samples of the tephra were collected and incubated at 26 °C on 2% non-nutrient agar plates with a layer of heat-killed E. coli. Morphological features, as well as the DF3 region sequence of the 18S rDNA, confirmed the presence of a T4 genotype strain of Acanthamoeba. Thermotolerance and osmotolerance assays were used to evaluate the strain's pathogenic potential. This strain was considered thermotolerant but poorly osmotolerant. To the best of our knowledge, this is the first report of Acanthamoeba being isolated from a recently erupted volcano.
Collapse
Affiliation(s)
- Patricia Pérez-Pérez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain; (M.R.-B.); (R.L.R.-E.); (I.S.); (J.E.P.); (J.L.-M.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain; (M.R.-B.); (R.L.R.-E.); (I.S.); (J.E.P.); (J.L.-M.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rubén L. Rodríguez-Expósito
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain; (M.R.-B.); (R.L.R.-E.); (I.S.); (J.E.P.); (J.L.-M.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Adolfo Perdomo-González
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain; (A.P.-G.); (F.J.D.-P.)
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain; (M.R.-B.); (R.L.R.-E.); (I.S.); (J.E.P.); (J.L.-M.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco J. Díaz-Peña
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain; (A.P.-G.); (F.J.D.-P.)
| | - Rodrigo Morchón
- Zoonotic Infections and One Health GIR, Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain;
| | - Sutherland K. Maciver
- Centre for Discovery Brain Sciences, Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK;
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain; (M.R.-B.); (R.L.R.-E.); (I.S.); (J.E.P.); (J.L.-M.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain; (M.R.-B.); (R.L.R.-E.); (I.S.); (J.E.P.); (J.L.-M.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Beierkuhnlein C. Speciation happens in company - not in isolation. NPJ BIODIVERSITY 2024; 3:16. [PMID: 39242908 PMCID: PMC11332003 DOI: 10.1038/s44185-024-00047-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/08/2024] [Indexed: 09/09/2024]
Abstract
Oceanic islands are considered the classic arenas for allopatric speciation and adaptive radiation. Established concepts of speciation and endemism are strongly focused on spatial and temporal scales. However, biotic interactions and ecological drivers, although widely recognized as playing a role, still need to be integrated into our understanding of these processes. Here, I highlight ecosystems as the evolutionary arena within islands. Ecosystem functioning, such as the regulation of abiotic fluxes of energy and matter, has been intensely studied in the context of climate change and biodiversity loss. Biogeography, on the other hand, when it focuses on speciation and endemism, often lacks a functional understanding of the ecosystem beyond species lists. This contribution aims to stimulate a stronger integration of ecological processes, assembly rules, and vegetation structures into future biogeographical and macroecological studies.
Collapse
Affiliation(s)
- Carl Beierkuhnlein
- Department of Biogeography, University of Bayreuth, Universitaetsstr. 30, 95447, Bayreuth, Germany.
- Bayreuth Center of Ecology and Environmental Research, BayCEER, University of Bayreuth, Universitaetsstr. 30, 95447, Bayreuth, Germany.
- Geographical Institute of the University of Bayreuth, GIB, Universitaetsstr. 30, 95447, Bayreuth, Germany.
- Departamento de Botánica, Universidad de Granada, 18071, Granada, Spain.
| |
Collapse
|
3
|
Hernández-Teixidor D, Cussigh A, Suárez D, García J, Scheffrahn RH, Luchetti A. Molecular analyses of the Kalotermes dispar-complex (Blattodea: Kalotermitidae) from the Canary Islands reveal cryptic intraspecific divergence and a connection to a lone Nearctic congener. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:6. [PMID: 38989844 PMCID: PMC11237993 DOI: 10.1093/jisesa/ieae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/15/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
The Canary Islands is a Macaronesian volcanic archipelago with a depauperate community of three species of Kalotermitidae, including Kalotermes dispar. A total of 54 Kalotermes colonies were collected from Gran Canaria, Tenerife, La Gomera, La Palma, and El Hierro islands. Soldiers and imagos were morphologically examined and sequenced for four mitochondrial markers. Although morphological differences could not be detected, phylogenetic analysis of both cox1/tRNA/cox2 and rrnL markers revealed two distinct clades of K. dispar, suggesting cryptic diversity. The diversification within the Canary Kalotermes lineage most likely occurred around 7.5 Mya, while the divergence within the two clades was reconstructed at about 3.6 Mya and 1.9 Mya. Kalotermes approximatus from the southeastern Nearctic constitutes a sister to the Canary Kalotermes, while the Palearctic K. flavicollis, K. italicus, and K. phoenicae form a separate clade. It is hypothesized that a faunal exchange of Kalotermes from the Nearctic to the Canary Islands occurred via transoceanic rafting during the mid-Miocene.
Collapse
Affiliation(s)
- David Hernández-Teixidor
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Spain
- Grupo de Investigaciones Entomológicas de Tenerife (GIET), 38108 La Laguna, Spain
| | - Alex Cussigh
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Daniel Suárez
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Spain
- Grupo de Investigaciones Entomológicas de Tenerife (GIET), 38108 La Laguna, Spain
| | - Javier García
- Grupo de Investigaciones Entomológicas de Tenerife (GIET), 38108 La Laguna, Spain
| | - Rudolf H Scheffrahn
- Fort Lauderdale Research and Education Center, Institute for Food and Agricultural Sciences, 3205 College Avenue, Davie, FL 33314, USA
| | - Andrea Luchetti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
4
|
Rincón-Barrado M, Villaverde T, Perez MF, Sanmartín I, Riina R. The sweet tabaiba or there and back again: phylogeographical history of the Macaronesian Euphorbia balsamifera. ANNALS OF BOTANY 2024; 133:883-904. [PMID: 38197716 PMCID: PMC11082519 DOI: 10.1093/aob/mcae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/01/2024] [Indexed: 01/11/2024]
Abstract
BACKGROUND AND AIMS Biogeographical relationships between the Canary Islands and north-west Africa are often explained by oceanic dispersal and geographical proximity. Sister-group relationships between Canarian and eastern African/Arabian taxa, the 'Rand Flora' pattern, are rare among plants and have been attributed to the extinction of north-western African populations. Euphorbia balsamifera is the only representative species of this pattern that is distributed in the Canary Islands and north-west Africa; it is also one of few species present in all seven islands. Previous studies placed African populations of E. balsamifera as sister to the Canarian populations, but this relationship was based on herbarium samples with highly degraded DNA. Here, we test the extinction hypothesis by sampling new continental populations; we also expand the Canarian sampling to examine the dynamics of island colonization and diversification. METHODS Using target enrichment with genome skimming, we reconstructed phylogenetic relationships within E. balsamifera and between this species and its disjunct relatives. A single nucleotide polymorphism dataset obtained from the target sequences was used to infer population genetic diversity patterns. We used convolutional neural networks to discriminate among alternative Canary Islands colonization scenarios. KEY RESULTS The results confirmed the Rand Flora sister-group relationship between western E. balsamifera and Euphorbia adenensis in the Eritreo-Arabian region and recovered an eastern-western geographical structure among E. balsamifera Canarian populations. Convolutional neural networks supported a scenario of east-to-west island colonization, followed by population extinctions in Lanzarote and Fuerteventura and recolonization from Tenerife and Gran Canaria; a signal of admixture between the eastern island and north-west African populations was recovered. CONCLUSIONS Our findings support the Surfing Syngameon Hypothesis for the colonization of the Canary Islands by E. balsamifera, but also a recent back-colonization to the continent. Populations of E. balsamifera from northwest Africa are not the remnants of an ancestral continental stock, but originated from migration events from Lanzarote and Fuerteventura. This is further evidence that oceanic archipelagos are not a sink for biodiversity, but may be a source of new genetic variability.
Collapse
Affiliation(s)
- Mario Rincón-Barrado
- Real Jardín Botánico (RJB), CSIC, Madrid, 28014, Spain
- Centro Nacional de Biotecnología (CNB), CSIC, Madrid, 28049, Spain
| | - Tamara Villaverde
- Universidad Rey Juan Carlos (URJC), Área de Biodiversidad y Conservación, Móstoles, 28933, Spain
| | - Manolo F Perez
- Institut de Systématique, Evolution, Biodiversité (ISYEB – URM 7205 CNRS), Muséum National d’Histoire Naturelle, SU, EPHE & UA, Paris, France
| | | | - Ricarda Riina
- Real Jardín Botánico (RJB), CSIC, Madrid, 28014, Spain
| |
Collapse
|
5
|
Bastin S, Reyes-Betancort JA, Siverio de la Rosa F, Percy DM. Origins of the central Macaronesian psyllid lineages (Hemiptera; Psylloidea) with characterization of a new island radiation on endemic Convolvulus floridus (Convolvulaceae) in the Canary Islands. PLoS One 2024; 19:e0297062. [PMID: 38277393 PMCID: PMC10817144 DOI: 10.1371/journal.pone.0297062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/27/2023] [Indexed: 01/28/2024] Open
Abstract
A molecular survey of native and adventive psyllids in the central Macaronesian islands provides the first comprehensive phylogenetic assessment of the origins of the psyllid fauna of the Canary and Madeira archipelagos. We employ a maximum likelihood backbone constraint analysis to place the central Macaronesian taxa within the Psylloidea mitogenome phylogeny. The native psyllid fauna in these central Macaronesian islands results from an estimated 26 independent colonization events. Island host plants are predicted by host plants of continental relatives in nearly all cases and six plant genera have been colonized multiple times (Chamaecytisus, Convolvulus, Olea, Pistacia, Rhamnus, and Spartocytisus) from the continent. Post-colonization diversification varies from no further cladogenesis (18 events, represented by a single native taxon) to modest in situ diversification resulting in two to four native taxa and, surprisingly, given the diverse range of islands and habitats, only one substantial species radiation with more than four native species. Specificity to ancestral host plant genera or family is typically maintained during in situ diversification both within and among islands. Characterization of a recently discovered island radiation consisting of four species on Convolvulus floridus in the Canary Islands shows patterns and rates of diversification that reflect island topographic complexity and geological dynamism. Although modest in species diversity, this radiation is atypical in diversification on a single host plant species, but typical in the primary role of allopatry in the diversification process.
Collapse
Affiliation(s)
- Saskia Bastin
- Instituto Canario de Investigaciones Agrarias, Unidad de Protección Vegetal, La Laguna, Tenerife, Spain
| | - J. Alfredo Reyes-Betancort
- Instituto Canario de Investigaciones Agrarias, Jardín de Aclimatación de La Oratava, Puerto de la Cruz, Tenerife, Spain
| | - Felipe Siverio de la Rosa
- Instituto Canario de Investigaciones Agrarias, Unidad de Protección Vegetal, La Laguna, Tenerife, Spain
| | - Diana M. Percy
- Botany Department and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Bellvert A, Adrián-Serrano S, Macías-Hernández N, Toft S, Kaliontzopoulou A, Arnedo MA. The Non-Dereliction in Evolution: Trophic Specialisation Drives Convergence in the Radiation of Red Devil Spiders (Araneae: Dysderidae) in the Canary Islands. Syst Biol 2023; 72:998-1012. [PMID: 37474131 DOI: 10.1093/sysbio/syad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023] Open
Abstract
Natural selection plays a key role in deterministic evolution, as clearly illustrated by the multiple cases of repeated evolution of ecomorphological characters observed in adaptive radiations. Unlike most spiders, Dysdera species display a high variability of cheliceral morphologies, which has been suggested to reflect different levels of specialization to feed on isopods. In this study, we integrate geometric morphometrics and experimental trials with a fully resolved phylogeny of the highly diverse endemic species from the Canary Islands to 1) quantitatively delimit the different cheliceral morphotypes present in the archipelago, 2) test their association with trophic specialization, as reported for continental species, 3) reconstruct the evolution of these ecomorphs throughout the diversification of the group, 4) test the hypothesis of convergent evolution of the different morphotypes, and 5) examine whether specialization constitutes a case of evolutionary irreversibility in this group. We show the existence of 9 cheliceral morphotypes and uncovered their significance for trophic ecology. Further, we demonstrate that similar ecomorphs evolved multiple times in the archipelago, providing a novel study system to explain how convergent evolution and irreversibility due to specialization may be combined to shape phenotypic diversification in adaptive radiations.
Collapse
Affiliation(s)
- Adrià Bellvert
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Av. Diagonal, 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Silvia Adrián-Serrano
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Av. Diagonal, 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Nuria Macías-Hernández
- Department of Animal Biology, Edaphology and Geology, Universidad de La Laguna, Tenerife, Canary Islands, Spain
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History, University of Helsinki, Finland
| | - Søren Toft
- Department of Biology, Aarhus University, Ny Munkegade 116, DK-8000 Århus C, Denmark
| | - Antigoni Kaliontzopoulou
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Av. Diagonal, 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Miquel A Arnedo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Av. Diagonal, 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
7
|
Beierkuhnlein C, Nogales M, Field R, Vetaas OR, Walentowitz A, Weiser F, Stahlmann R, Guerrero-Campos M, Jentsch A, Medina FM, Chiarucci A. Volcanic ash deposition as a selection mechanism towards woodiness. NPJ BIODIVERSITY 2023; 2:14. [PMID: 39242830 PMCID: PMC11332210 DOI: 10.1038/s44185-023-00018-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/18/2023] [Indexed: 09/09/2024]
Abstract
The high proportion of woody plant species on oceanic islands has hitherto been explained mainly by gradual adaptation to climatic conditions. Here, we present a novel hypothesis that such woodiness is adaptative to volcanic ash (tephra) deposition. Oceanic islands are subject to frequent eruptions with substantial and widespread ash deposition on evolutionary time scales. We postulate that this selects for woodiness through an increased ability to avoid burial of plant organs by ash, and to re-emerge above the new land surface. We sense-checked using observations of plant occurrences and distributions on La Palma (Canary Islands) in April 2022, 4 months after the end of the eruptions of the Tajogaite volcano (Cumbre Vieja ridge). In contrast to herbs and grasses, most woody plants persisted and were already in full flower in areas with 10+ cm ash deposition. Remarkably, these persisting woody plants were almost exclusively endemics.
Collapse
Affiliation(s)
- Carl Beierkuhnlein
- Biogeography, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany.
| | - Manuel Nogales
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Canary Islands, Spain
| | - Richard Field
- School of Geography, University of Nottingham, NG7 2RD, Nottingham, UK
| | - Ole R Vetaas
- Department of Geography, University of Bergen, Bergen, Norway
| | - Anna Walentowitz
- Biogeography, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Frank Weiser
- Biogeography, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Reinhold Stahlmann
- Biogeography, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - María Guerrero-Campos
- Área de Medio Ambiente, Gestión y Planeamiento Territorial y Ambiental (GesPlan S. A.), Tenerife, Canary Islands, Spain
| | - Anke Jentsch
- Disturbance Ecology, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Félix M Medina
- Consejería de Medio Ambiente, Cabildo Insular de La Palma, Santa Cruz de La Palma, Canary Islands, Spain
| | - Alessandro Chiarucci
- BIOME Lab, Department of Biological, Geological & Environmental Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Messerschmid TFE, Abrahamczyk S, Bañares-Baudet Á, Brilhante MA, Eggli U, Hühn P, Kadereit JW, dos Santos P, de Vos JM, Kadereit G. Inter- and intra-island speciation and their morphological and ecological correlates in Aeonium (Crassulaceae), a species-rich Macaronesian radiation. ANNALS OF BOTANY 2023; 131:697-721. [PMID: 36821492 PMCID: PMC10147336 DOI: 10.1093/aob/mcad033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/22/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS The most species-rich and ecologically diverse plant radiation on the Canary Islands is the Aeonium alliance (Crassulaceae). In island radiations like this, speciation can take place either within islands or following dispersal between islands. Aiming at quantifying intra- and inter-island speciation events in the evolution of Aeonium, and exploring their consequences, we hypothesized that (1) intra-island diversification resulted in stronger ecological divergence of sister lineages, and that (2) taxa on islands with a longer history of habitation by Aeonium show stronger ecological differentiation and produce fewer natural hybrids. METHODS We studied the biogeographical and ecological setting of diversification processes in Aeonium with a fully sampled and dated phylogeny inferred using a ddRADseq approach. Ancestral areas and biogeographical events were reconstructed in BioGeoBEARS. Eleven morphological characters and three habitat characteristics were taken into account to quantify the morphological and ecological divergence between sister lineages. A co-occurrence matrix of all Aeonium taxa is presented to assess the spatial separation of taxa on each island. KEY RESULTS We found intra- and inter-island diversification events in almost equal numbers. In lineages that diversified within single islands, morphological and ecological divergence was more pronounced than in lineages derived from inter-island diversification, but only the difference in morphological divergence was significant. Those islands with the longest history of habitation by Aeonium had the lowest percentages of co-occurring and hybridizing taxon pairs compared with islands where Aeonium arrived later. CONCLUSIONS Our findings illustrate the importance of both inter- and intra-island speciation, the latter of which is potentially sympatric speciation. Speciation on the same island entailed significantly higher levels of morphological divergence compared with inter-island speciation, but ecological divergence was not significantly different. Longer periods of shared island habitation resulted in the evolution of a higher degree of spatial separation and stronger reproductive barriers.
Collapse
Affiliation(s)
- Thibaud F E Messerschmid
- Botanischer Garten München-Nymphenburg, Staatliche Naturwissenschaftliche Sammlungen Bayerns, 80638 München, Germany
- Prinzessin Therese von Bayern-Lehrstuhl für Systematik, Biodiversität & Evolution der Pflanzen, Ludwig-Maximilians-Universität München, 80638 München, Germany
| | - Stefan Abrahamczyk
- Nees-Institut für Biodiversität der Pflanzen, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
- Abteilung Botanik, Staatliches Museum für Naturkunde Stuttgart, 70191 Stuttgart, Germany
| | - Ángel Bañares-Baudet
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, E-38200 La Laguna, Tenerife, Spain
| | - Miguel A Brilhante
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1340-017 Lisboa, Portugal
| | - Urs Eggli
- Sukkulenten-Sammlung Zürich/Grün Stadt Zürich, 8002 Zürich, Switzerland
| | - Philipp Hühn
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Joachim W Kadereit
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Patrícia dos Santos
- Centre for Ecology, Evolution and Environmental Changes (cE3c) and Global Change and Sustainability Institute (CHANGE), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Department of Environmental Sciences – Botany, University of Basel, 4056 Basel, Switzerland
| | - Jurriaan M de Vos
- Department of Environmental Sciences – Botany, University of Basel, 4056 Basel, Switzerland
| | - Gudrun Kadereit
- Botanischer Garten München-Nymphenburg, Staatliche Naturwissenschaftliche Sammlungen Bayerns, 80638 München, Germany
- Prinzessin Therese von Bayern-Lehrstuhl für Systematik, Biodiversität & Evolution der Pflanzen, Ludwig-Maximilians-Universität München, 80638 München, Germany
| |
Collapse
|
9
|
Campeny M, Menéndez I, Ibáñez-Insa J, Rivera-Martínez J, Yepes J, Álvarez-Pousa S, Méndez-Ramos J, Mangas J. The ephemeral fumarolic mineralization of the 2021 Tajogaite volcanic eruption (La Palma, Canary Islands, Spain). Sci Rep 2023; 13:6336. [PMID: 37072492 PMCID: PMC10113252 DOI: 10.1038/s41598-023-33387-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
The present work aims to characterize the ephemeral mineral assemblage related to the fumarolic fields of the Tajogaite volcano, formed in 2021 in La Palma Island (Canary Islands, Spain). A set of 73 samples was obtained after two sampling campaigns in different fumarole sectors of the studied area. Mineralization related to these fumaroles formed efflorescent patches located at variable distance from the main volcanic craters. Distal patches are predominantly whitish, while in the vicinities they typically show yellowish to orange colours. Field observations also revealed that fumaroles usually occur in elevated topographic areas as well as over fractured and porous volcanic pyroclastic materials. The mineralogical and textural characterisation of the Tajogaite fumaroles unfolds a complex mineral assemblage, comprising cryptocrystalline phases related to low (< 200 °C) and medium temperature (200-400 °C) conditions. In Tajogaite, we propose a classification of three different fumarolic mineralization types: (1) fluorides and chlorides located in proximal fumarolic areas (~ 300-180 °C); (2) native sulphur associated with gypsum, mascagnite and salammoniac (~ 120-100 °C) and (3) sulphates and alkaline carbonates typically occurred in distal fumarolic areas (< 100 °C). Finally, we present a schematic model of the formation of Tajogaite fumarolic mineralization and their compositional evolution developed during the cooling of the volcanic system.
Collapse
Affiliation(s)
- Marc Campeny
- Departament de Mineralogia, Museu de Ciències Naturals de Barcelona, Passeig Picasso s/n, 08003, Barcelona, Spain.
| | - Inmaculada Menéndez
- Instituto de Oceanografía y Cambio Global, IOCAG, Dept. de Física, Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - Jordi Ibáñez-Insa
- Geosciences Barcelona (GEO3BCN), Spanish Council for Scientific Research (CSIC), Lluís Solé i Sabarís s/n, 08028, Barcelona, Spain
| | | | - Jorge Yepes
- Instituto de Oceanografía y Cambio Global, IOCAG, Dept. de Física, Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
- Instituto de Oceanografía y Cambio Global, IOCAG, Dept. de Ingeniería Civil, Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - Soledad Álvarez-Pousa
- Geosciences Barcelona (GEO3BCN), Spanish Council for Scientific Research (CSIC), Lluís Solé i Sabarís s/n, 08028, Barcelona, Spain
| | - Jorge Méndez-Ramos
- Instituto de Materiales y Nanotecnología, Departamento de Física, Universidad de La Laguna, apdo correos 456, 38200, La Laguna, Tenerife, Spain
| | - José Mangas
- Instituto de Oceanografía y Cambio Global, IOCAG, Dept. de Física, Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
10
|
Florencio M, Patiño J, Nogué S, Traveset A, Borges PAV, Schaefer H, Amorim IR, Arnedo M, Ávila SP, Cardoso P, de Nascimento L, Fernández-Palacios JM, Gabriel SI, Gil A, Gonçalves V, Haroun R, Illera JC, López-Darias M, Martínez A, Martins GM, Neto AI, Nogales M, Oromí P, Rando JC, Raposeiro PM, Rigal F, Romeiras MM, Silva L, Valido A, Vanderpoorten A, Vasconcelos R, Santos AMC. Macaronesia as a Fruitful Arena for Ecology, Evolution, and Conservation Biology. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.718169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Research in Macaronesia has led to substantial advances in ecology, evolution and conservation biology. We review the scientific developments achieved in this region, and outline promising research avenues enhancing conservation. Some of these discoveries indicate that the Macaronesian flora and fauna are composed of rather young lineages, not Tertiary relicts, predominantly of European origin. Macaronesia also seems to be an important source region for back-colonisation of continental fringe regions on both sides of the Atlantic. This group of archipelagos (Azores, Madeira, Selvagens, Canary Islands, and Cabo Verde) has been crucial to learn about the particularities of macroecological patterns and interaction networks on islands, providing evidence for the development of the General Dynamic Model of oceanic island biogeography and subsequent updates. However, in addition to exceptionally high richness of endemic species, Macaronesia is also home to a growing number of threatened species, along with invasive alien plants and animals. Several innovative conservation and management actions are in place to protect its biodiversity from these and other drivers of global change. The Macaronesian Islands are a well-suited field of study for island ecology and evolution research, mostly due to its special geological layout with 40 islands grouped within five archipelagos differing in geological age, climate and isolation. A large amount of data is now available for several groups of organisms on and around many of these islands. However, continued efforts should be made toward compiling new information on their biodiversity, to pursue various fruitful research avenues and develop appropriate conservation management tools.
Collapse
|
11
|
Abstract
The flora of the Canary Islands has been subject to botanical studies for more than 200 years. Several biodiversity databases are available for the archipelago. However, there are various drivers of change in real biodiversity and the knowledge about it constantly needs to be kept track of. Island floras are both: exposed to species loss and to species introductions, either through natural processes or by anthropogenic drivers. Additionally, the evolution of endemic plant species plays a substantial role. Endemic species are sensitive to population decline due to small population sizes and possible low competitiveness against incoming species. Additionally, there is continuous progress in systematics and taxonomy. Species names or their taxonomic attribution can be modified. Here, we check published plant lists for the Canary Islands and literature, and compile currently accepted taxa into an updated checklist. For this FloCan checklist, several sources were compiled, checked for completeness and quality, and their taxonomy was updated. We illustrate how far plant names are considered in regional or global databases. This work represents the current state of knowledge on Canary Island plant diversity, including introduced and recently described taxa. We provide a comprehensive and updated basis for biogeographical and macroecological studies. Particularly, the number of non-native species is being extended substantially. The adaptation to standard international nomenclature supports integration into large-scale studies.
Collapse
|
12
|
Albaladejo RG, Martín-Hernanz S, Reyes-Betancort JA, Santos-Guerra A, Olangua-Corral M, Aparicio A. Reconstruction of the spatio-temporal diversification and ecological niche evolution of Helianthemum (Cistaceae) in the Canary Islands using genotyping-by-sequencing data. ANNALS OF BOTANY 2021; 127:597-611. [PMID: 32386290 PMCID: PMC8052925 DOI: 10.1093/aob/mcaa090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/02/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND AND AIMS Several biogeographical models have been proposed to explain the colonization and diversification patterns of Macaronesian lineages. In this study, we calculated the diversification rates and explored what model best explains the current distribution of the 15 species endemic to the Canary Islands belonging to Helianthemum sect. Helianthemum (Cistaceae). METHODS We performed robust phylogenetic reconstructions based on genotyping-by-sequencing data and analysed the timing, biogeographical history and ecological niche conservatism of this endemic Canarian clade. KEY RESULTS Our phylogenetic analyses provided strong support for the monophyly of this clade, and retrieved five lineages not currently restricted to a single island. The pristine colonization event took place in the Pleistocene (~1.82 Ma) via dispersal to Tenerife by a Mediterranean ancestor. CONCLUSIONS The rapid and abundant diversification (0.75-1.85 species per million years) undergone by this Canarian clade seems the result of complex inter-island dispersal events followed by allopatric speciation driven mostly by niche conservatism, i.e. inter-island dispersal towards niches featuring similar environmental conditions. Nevertheless, significant instances of ecological niche shifts have also been observed in some lineages, making an important contribution to the overall diversification history of this clade.
Collapse
Affiliation(s)
- Rafael G Albaladejo
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - Sara Martín-Hernanz
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
- For correspondence. E-mail
| | - J Alfredo Reyes-Betancort
- Jardín de Aclimatación de la Orotava (Instituto Canario de Investigaciones Agrarias - ICIA), Puerto de la Cruz, Santa Cruz de Tenerife, Spain
| | - Arnoldo Santos-Guerra
- Jardín de Aclimatación de la Orotava (Instituto Canario de Investigaciones Agrarias - ICIA), Puerto de la Cruz, Santa Cruz de Tenerife, Spain
| | - María Olangua-Corral
- Departamento de Biología Reproductiva y Micro-morfología, Jardín Botánico Canario ‘Viera y Clavijo’—Unidad Asociada CSIC (Cabildo de Gran Canaria), Las Palmas de Gran Canaria, Spain
| | - Abelardo Aparicio
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
13
|
Testing Side-Scan Sonar and Multibeam Echosounder to Study Black Coral Gardens: A Case Study from Macaronesia. REMOTE SENSING 2020. [DOI: 10.3390/rs12193244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Black corals (order Antipatharia) are important components of mesophotic and deep-water marine communities, but due to their inaccessibility, there is limited knowledge about the basic aspects of their distribution and ecology. The aim of this study was to test methodologies to map and study colonies of a branched antipatharian species, Antipathella wollastoni, in the Canary Islands (Spain). Acoustic tools, side-scan sonar (SSS), and a multibeam echosounder (MBES), coupled with ground-truthing video surveys, were used to determine the habitat characteristics of Antipathella wollastoni. Below 40 m depth, colonies of increasing height (up to 1.3 m) and abundance (up to 10 colonies/m2) were observed, particularly on steep and current-facing slopes on rocky substrates. However, coral presence was not directly imaged on backscatter mosaics and bathymetric data. To improve this situation, promising initial attempts of detecting Antipathella wollastoni by utilizing the MBES water column scatter in an interval for 0.75 m to 1 m above the seafloor are reported.
Collapse
|
14
|
Gramazio P, Jaén-Molina R, Vilanova S, Prohens J, Marrero Á, Caujapé-Castells J, Anderson GJ. Fostering Conservation via an Integrated Use of Conventional Approaches and High-Throughput SPET Genotyping: A Case Study Using the Endangered Canarian Endemics Solanum lidii and S. vespertilio (Solanaceae). FRONTIERS IN PLANT SCIENCE 2020; 11:757. [PMID: 32754166 PMCID: PMC7381301 DOI: 10.3389/fpls.2020.00757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/12/2020] [Indexed: 05/29/2023]
Abstract
Islands provide unique opportunities to integrated research approaches to study evolution and conservation because boundaries are circumscribed, geological ages are often precise, and many taxa are greatly imperiled. We combined morphological and hybridization studies with high-throughput genotyping platforms to streamline relationships in the endangered monophyletic and highly diverse lineage of Solanum in the Canarian archipelago, where three endemic taxa are currently recognized. Inter-taxa hybridizations were performed, and morphological expression was assessed with a common-garden approach. Using the eggplant Single Primer Enrichment Technology (SPET) platform with 5,093 probes, 74 individuals of three endemic taxa (Solanum lidii, S. vespertilio subsp. vespertilio, and S. vespertilio subsp. doramae) were sampled for SNPs. While morphological and breeding studies showed clear distinctions and some continuous variation, inter-taxon hybrids were fertile and heterotic for vigor traits. SPET genotyping revealed 1,421 high-quality SNPs and supported four, not three, distinct taxonomic entities associated with post-emergence geological, ecological and geographic factors of the islands. Given the lack of barriers to hybridization among all the taxa and their molecular differences, great care must be taken in population management. Conservation strategies must take account of the sexual and breeding systems and genotypic distribution among populations to successfully conserve and restore threatened/endangered island taxa, as exemplified by Solanum on the Canary Islands.
Collapse
Affiliation(s)
- Pietro Gramazio
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Ruth Jaén-Molina
- Jardín Botánico Canario “Viera y Clavijo” – Unidad Asociada al CSIC, Cabildo de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Águedo Marrero
- Jardín Botánico Canario “Viera y Clavijo” – Unidad Asociada al CSIC, Cabildo de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Juli Caujapé-Castells
- Jardín Botánico Canario “Viera y Clavijo” – Unidad Asociada al CSIC, Cabildo de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Gregory J. Anderson
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
15
|
León R, Urgeles R, Pérez-López R, Payo E, Vázquez-Izquierdo A, Giménez-Moreno CJ, Casas D. Geological and tectonic controls on morphometrics of submarine landslides of the Spanish margins. ACTA ACUST UNITED AC 2020. [DOI: 10.1144/sp500-2019-153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractA geomorphological analysis of the submarine landslides geographical information system catalogue of the Geological Survey of Spain has revealed three main groups of submarine landslides associated with (1) deep-ocean seamount ridges (extinct spreading centres), (2) volcanic islands and (3) continental margins. These three groups have statistically significant morphometric differences, as determined from analysis of variance (ANOVA) and Tukey's HSD Tests, in total length (runout), total area, maximum deposit width and bathymetric depth. Volcanic island-related slope failures affect larger areas of the seafloor and their headwall escarpments often extend above sea-level. Slope failures associated with seamount ridges are the deepest, between 3500 and 5500 m, and display relatively high width-to-length ratios. Finally, landslides on continental margins show two sub-groups. Landslides on tectonically controlled margins have smaller runouts and total area and larger average slope gradients than margins where tectonic controls are limited. These results demonstrate that submarine landslide morphology is strongly controlled by the geological-tectonic setting.
Collapse
Affiliation(s)
- Ricardo León
- Geological Survey of Spain (IGME), Ríos Rosas, 23. 28003, Madrid, Spain
| | - Roger Urgeles
- Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Raul Pérez-López
- Geological Survey of Spain (IGME), Ríos Rosas, 23. 28003, Madrid, Spain
| | - Emilio Payo
- Geological Survey of Spain (IGME), Ríos Rosas, 23. 28003, Madrid, Spain
| | | | | | - David Casas
- Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| |
Collapse
|
16
|
Restructuring of the 'Macaronesia' biogeographic unit: A marine multi-taxon biogeographical approach. Sci Rep 2019; 9:15792. [PMID: 31690834 PMCID: PMC6831653 DOI: 10.1038/s41598-019-51786-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/03/2019] [Indexed: 01/10/2023] Open
Abstract
The Azores, Madeira, Selvagens, Canary Islands and Cabo Verde are commonly united under the term “Macaronesia”. This study investigates the coherency and validity of Macaronesia as a biogeographic unit using six marine groups with very different dispersal abilities: coastal fishes, echinoderms, gastropod molluscs, brachyuran decapod crustaceans, polychaete annelids, and macroalgae. We found no support for the current concept of Macaronesia as a coherent marine biogeographic unit. All marine groups studied suggest the exclusion of Cabo Verde from the remaining Macaronesian archipelagos and thus, Cabo Verde should be given the status of a biogeographic subprovince within the West African Transition province. We propose to redefine the Lusitanian biogeographical province, in which we include four ecoregions: the South European Atlantic Shelf, the Saharan Upwelling, the Azores, and a new ecoregion herein named Webbnesia, which comprises the archipelagos of Madeira, Selvagens and the Canary Islands.
Collapse
|
17
|
Hydrogenetic, Diagenetic and Hydrothermal Processes Forming Ferromanganese Crusts in the Canary Island Seamounts and Their Influence in the Metal Recovery Rate with Hydrometallurgical Methods. MINERALS 2019. [DOI: 10.3390/min9070439] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Four pure hydrogenetic, mixed hydrogenetic-diagenetic and hydrogenetic-hydrothermal Fe-Mn Crusts from the Canary Islands Seamount Province have been studied by Micro X-Ray Diffraction, Raman and Fourier-transform infrared spectroscopy together with high resolution Electron Probe Micro Analyzer and Laser Ablation Inductively Coupled Plasma Mass Spectrometry in order to find the correlation of mineralogy and geochemistry with the three genetic processes and their influence in the metal recovery rate using an hydrometallurgical method. The main mineralogy and geochemistry affect the contents of the different critical metals, diagenetic influenced crusts show high Ni and Cu (up to 6 and 2 wt. %, respectively) (and less Co and REY) enriched in very bright laminae. Hydrogenetic crusts on the contrary show High Co and REY (up to 1 and 0.5 wt. %) with also high contents of Ni, Mo and V (average 2500, 600 and 1300 μg/g). Finally, the hydrothermal microlayers from crust 107-11H show their enrichment in Fe (up to 50 wt. %) and depletion in almost all the critical elements. One hydrometallurgical method has been used in Canary Islands Seamount Province crusts in order to quantify the recovery rate of valuable elements in all the studied crusts except the 107-11H, whose hydrothermal critical metals’ poor lamina were too thin to separate from the whole crust. Digestion treatment with hydrochloric acid and ethanol show a high recovery rate for Mn (between 75% and 81%) with respect to Fe (49% to 58%). The total recovery rate on valuable elements (Co, Ni, Cu, V, Mo and rare earth elements plus yttrium (REY)) for the studied crusts range between 67 and 92% with the best results for Co, Ni and V (up to 80%). The genetic process and the associated mineralogy seem to influence the recovery rate. Mixed diagenetic/hydrogenetic crust show the lower recovery rate for Mn (75%) and Ni (52.5%) both enriched in diagenetic minerals (respectively up to 40 wt. % and up to 6 wt. %). On the other hand, the presence of high contents of undigested Fe minerals (i.e., Mn-feroxyhyte) in hydrogenetic crusts give back low recovery rate for Co (63%) and Mo (42%). Finally, REY as by-product elements, are enriched in the hydrometallurgical solution with a recovery rate of 70–90% for all the studied crusts.
Collapse
|
18
|
Origin of ocean island basalts in the West African passive margin without mantle plume involvement. Nat Commun 2019; 10:3022. [PMID: 31289264 PMCID: PMC6616360 DOI: 10.1038/s41467-019-10832-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/05/2019] [Indexed: 11/08/2022] Open
Abstract
The geochemical variabilities in intraplate basalts (IB) from the West African passive margin (WAPM) region, have generally been employed to indicate the presence of recycled materials in an associated upwelling mantle plume. However, the absence of time-progressive linear hotspot tracks in WAPM-IB make it difficult to explain their genesis solely by the mantle plume hypothesis. Here, we show that the Sr-Nd-Hf-Pb isotopic variations in basalts from most of the WAPM-IB could have mainly attributed to the derivation from two types of fusible regions of the refertilized subcontinental lithospheric mantle (SCLM) and the sub-lithospheric mantle. The locations and magma genesis of WAPM-IB are strongly related to the distance from the Mesozoic rift axis and the structure of the rifted SCLM. The melting of the source region can possibly be attributed to small-scale mantle convection at the base of the SCLM without the involvement of a mantle plume.
Collapse
|
19
|
Ávila SP, Melo C, Berning B, Sá N, Quartau R, Rijsdijk KF, Ramalho RS, Cordeiro R, De Sá NC, Pimentel A, Baptista L, Medeiros A, Gil A, Johnson ME. Towards a 'Sea-Level Sensitive' dynamic model: impact of island ontogeny and glacio-eustasy on global patterns of marine island biogeography. Biol Rev Camb Philos Soc 2019; 94:1116-1142. [PMID: 30609249 DOI: 10.1111/brv.12492] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 01/04/2023]
Abstract
A synthetic model is presented to enlarge the evolutionary framework of the General Dynamic Model (GDM) and the Glacial Sensitive Model (GSM) of oceanic island biogeography from the terrestrial to the marine realm. The proposed 'Sea-Level Sensitive' dynamic model (SLS) of marine island biogeography integrates historical and ecological biogeography with patterns of glacio-eustasy, merging concepts from areas as diverse as taxonomy, biogeography, marine biology, volcanology, sedimentology, stratigraphy, palaeontology, geochronology and geomorphology. Fundamental to the SLS model is the dynamic variation of the littoral area of volcanic oceanic islands (defined as the area between the intertidal and the 50-m isobath) in response to sea-level oscillations driven by glacial-interglacial cycles. The following questions are considered by means of this revision: (i) what was the impact of (global) glacio-eustatic sea-level oscillations, particularly those of the Pleistocene glacial-interglacial episodes, on the littoral marine fauna and flora of volcanic oceanic islands? (ii) What are the main factors that explain the present littoral marine biodiversity on volcanic oceanic islands? (iii) How can differences in historical and ecological biogeography be reconciled, from a marine point of view? These questions are addressed by compiling the bathymetry of 11 Atlantic archipelagos/islands to obtain quantitative data regarding changes in the littoral area based on Pleistocene sea-level oscillations, from 150 thousand years ago (ka) to the present. Within the framework of a model sensitive to changing sea levels, we discuss the principal factors affecting the geographical range of marine species; the relationships between modes of larval development, dispersal strategies and geographical range; the relationships between times of speciation, modes of larval development, ecological zonation and geographical range; the influence of sea-surface temperatures and latitude on littoral marine species diversity; the effect of eustatic sea-level changes and their impact on the littoral marine biota; island marine species-area relationships; and finally, the physical effects of island ontogeny and its associated submarine topography and marine substrate on littoral biota. Based on the SLS dynamic model, we offer a number of predictions for tropical, subtropical and temperate volcanic oceanic islands on how rates of immigration, colonization, in-situ speciation, local disappearance, and extinction interact and affect the marine biodiversity around islands during glacials and interglacials, thus allowing future testing of the theory.
Collapse
Affiliation(s)
- Sérgio P Ávila
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada 9501-801, Portugal.,Departamento de Biologia, Faculdade de Ciências e Tecnologia da Universidade dos Açores, Ponta Delgada 9501-801, Portugal.,MPB-Marine PalaeoBiogeography Working Group of the University of the Azores, Rua da Mãe de Deus, Ponta Delgada 9501-801, Portugal
| | - Carlos Melo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada 9501-801, Portugal.,MPB-Marine PalaeoBiogeography Working Group of the University of the Azores, Rua da Mãe de Deus, Ponta Delgada 9501-801, Portugal.,Departamento de Geologia, Faculdade de Ciências, Universidade de Lisboa, Lisbon 1749-016, Portugal
| | - Björn Berning
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada 9501-801, Portugal.,Oberösterreichisches Landesmuseum, Geowissenschaftliche Sammlungen, Leonding 4060, Austria
| | - Nuno Sá
- Departamento de Ciências Tecnológicas e do Desenvolvimento, Faculdade de Ciências da Universidade dos Açores, Ponta Delgada 9501-801, Portugal
| | - Rui Quartau
- Instituto Dom Luiz, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal.,Divisão de Geologia Marinha, Instituto Hidrográfico, Lisboa, Portugal
| | - Kenneth F Rijsdijk
- Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem, University of Amsterdam, Amsterdam 1098, The Netherlands
| | - Ricardo S Ramalho
- Departamento de Geologia, Faculdade de Ciências, Universidade de Lisboa, Lisbon 1749-016, Portugal.,Instituto Dom Luiz, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal.,School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K
| | - Ricardo Cordeiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada 9501-801, Portugal.,Departamento de Biologia, Faculdade de Ciências e Tecnologia da Universidade dos Açores, Ponta Delgada 9501-801, Portugal.,MPB-Marine PalaeoBiogeography Working Group of the University of the Azores, Rua da Mãe de Deus, Ponta Delgada 9501-801, Portugal
| | - Nuno C De Sá
- Institute of Environmental Sciences, Leiden University, Leiden, 2300, The Netherlands
| | - Adriano Pimentel
- Centro de Informação e Vigilância Sismovulcânica dos Açores, Rua Mãe de Deus, Ponta Delgada, 9501-801, Portugal.,Instituto de Investigação em Vulcanologia e Avaliação de Riscos, University of the Azores, Ponta Delgada, 9501-801, Portugal
| | - Lara Baptista
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada 9501-801, Portugal.,MPB-Marine PalaeoBiogeography Working Group of the University of the Azores, Rua da Mãe de Deus, Ponta Delgada 9501-801, Portugal
| | - António Medeiros
- Departamento de Biologia, Faculdade de Ciências e Tecnologia da Universidade dos Açores, Ponta Delgada 9501-801, Portugal
| | - Artur Gil
- Departamento de Biologia, Faculdade de Ciências e Tecnologia da Universidade dos Açores, Ponta Delgada 9501-801, Portugal.,Ce3C - Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, University of the Azores, Ponta Delgada, 9501-801, Portugal
| | - Markes E Johnson
- Department of Geosciences, Williams College, Williamstown, MA 01267, U.S.A
| |
Collapse
|
20
|
Dias EF, Kilian N, Silva L, Schaefer H, Carine M, Rudall PJ, Santos-Guerra A, Moura M. Phylogeography of the Macaronesian Lettuce Species Lactuca watsoniana and L. palmensis (Asteraceae). Biochem Genet 2018; 56:315-340. [PMID: 29478137 DOI: 10.1007/s10528-018-9847-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/09/2018] [Indexed: 12/17/2022]
Abstract
The phylogenetic relationships and phylogeography of two relatively rare Macaronesian Lactuca species, Lactuca watsoniana (Azores) and L. palmensis (Canary Islands), were, until this date, unclear. Karyological information of the Azorean species was also unknown. For this study, a chromosome count was performed and L. watsoniana showed 2n = 34. A phylogenetic approach was used to clarify the relationships of the Azorean endemic L. watsoniana and the La Palma endemic L. palmensis within the subtribe Lactucinae. Maximum parsimony, Maximum likelihood and Bayesian analysis of a combined molecular dataset (ITS and four chloroplast DNA regions) and molecular clock analyses were performed with the Macaronesian Lactuca species, as well as a TCS haplotype network. The analyses revealed that L. watsoniana and L. palmensis belong to different subclades of the Lactuca clade. Lactuca watsoniana showed a strongly supported phylogenetic relationship with North American species, while L. palmensis was closely related to L. tenerrima and L. inermis, from Europe and Africa. Lactuca watsoniana showed four single-island haplotypes. A divergence time estimation of the Macaronesian lineages was used to examine island colonization pathways. Results obtained with BEAST suggest a divergence of L. palmensis and L. watsoniana clades c. 11 million years ago, L. watsoniana diverged from its North American sister species c. 3.8 million years ago and L. palmensis diverged from its sister L. tenerrima, c. 1.3 million years ago, probably originating from an African ancestral lineage which colonized the Canary Islands. Divergence analyses with *BEAST indicate a more recent divergence of the L. watsoniana crown, c. 0.9 million years ago. In the Azores colonization, in a stepping stone, east-to-west dispersal pattern, associated with geological events might explain the current distribution range of L. watsoniana.
Collapse
Affiliation(s)
- Elisabete F Dias
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Universidade dos Açores, Rua da Mãe de Deus, Apartado, 1422, 9501-801, Ponta Delgada, Açores, Portugal.
| | - Norbert Kilian
- Botanic Garden and Botanical Museum Berlin, Freie Universität Berlin, Königin-Luise-Straße 6-8, 14195, Berlin, Germany
| | - Luís Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Universidade dos Açores, Rua da Mãe de Deus, Apartado, 1422, 9501-801, Ponta Delgada, Açores, Portugal
| | - Hanno Schaefer
- Plant Biodiversity Research, Technische Universität München, 85354, Freising, Germany
| | - Mark Carine
- Department of Life Sciences, The Natural History Museum, London, UK
| | - Paula J Rudall
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Arnoldo Santos-Guerra
- Calle Guaidil 16, Urbanización Tamarco, Tegueste, 38280, Tenerife, Canary Islands, Spain
| | - Mónica Moura
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Universidade dos Açores, Rua da Mãe de Deus, Apartado, 1422, 9501-801, Ponta Delgada, Açores, Portugal
| |
Collapse
|
21
|
Assessment of the Mineral Resource Potential of Atlantic Ferromanganese Crusts Based on Their Growth History, Microstructure, and Texture. MINERALS 2018. [DOI: 10.3390/min8080327] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The decarbonisation of our energy supply is reliant on new technologies that are raw material intensive and will require a significant increase in the production of metals to sustain them. Ferromanganese (FeMn) crusts are seafloor precipitates, enriched in metals such as cobalt and tellurium, both of which have a predicted future demand above current production rates. In this study, we investigate the texture and composition of FeMn crusts on Tropic Seamount, a typical Atlantic guyot off the coast of western Africa, as a basis for assessing the future mineral resource potential of Atlantic Seamounts. The majority of the summit is flat and covered by FeMn crusts with average thicknesses of 3–4 cm. The crusts are characterized by two dominant textures consisting of either massive pillared growth or more chaotic, cuspate sections of FeMn oxides, with an increased proportion of detrital and organic material. The Fe, Mn, and Co contents in the FeMn oxide layers are not affected by texture. However, detrital material and bioclasts can form about 50% of cuspate areas, and the dilution effect of this entrained material considerably reduces the Fe, Mn, and Co concentrations if the bulk samples are analyzed. Whilst Tropic Seamount meets many of the prerequisites for a crust mining area, the thickness of the crusts and their average metal composition means extraction is unlikely to be viable in the near future. The ability to exploit more difficult terrains or multiple, closely spaced edifices would make economic feasibility more likely.
Collapse
|
22
|
High-Resolution Analysis of Critical Minerals and Elements in Fe–Mn Crusts from the Canary Island Seamount Province (Atlantic Ocean). MINERALS 2018. [DOI: 10.3390/min8070285] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two Fe–Mn crusts among 35 samples, from six seamounts in the Canary Island Seamount Province, were selected as representatives of the endpoint members of two distinct types of genetic processes, i.e., mixed diagenetic/hydrogenetic and purely hydrogenetic. High-resolution analyses pursued the main aim of distinguishing the critical elements and their association with mineral phases and genetic processes forming a long-lived Fe–Mn crust. The Fe–Mn crust collected on the Tropic Seamount is composed of dense laminations of Fe-vernadite (>90%) and goethite group minerals, reflecting the predominance of the hydrogenetic process during their formation. Based on high-resolution age calculation, this purely hydrogenetic crust yielded an age of 99 Ma. The Fe–Mn crust collected on the Paps Seamount shows a typical botryoidal surface yielding an age of 30 Ma. electron probe microanalyzer (EPMA) spot analyses show two main types of manganese oxides, indicating their origin: (i) hydrogenetic Fe-vernadite, the main Mn oxide, and (ii) laminations of interlayered buserite and asbolane. Additionally, the occurrence of calcite, authigenic carbonate fluor-apatite (CFA) and palygorskite suggests early diagenesis and pervasive phosphatization events. Sequential leaching analysis indicated that Co, Ni, Cu, Ba and Ce are linked to Mn minerals. Therefore, Mn-oxides are enriched in Ni and Cu by diagenetic processes or in Co and Ce by hydrogenetic processes. On the other hand, Fe-oxides concentrate V, Zn, As and Pb. Moreover, the evidence of HREE enrichment related to Fe-hydroxides is confirmed in the mixed hydrogenetic/diagenetic crust.
Collapse
|
23
|
Hunt JE, Jarvis I. Prodigious submarine landslides during the inception and early growth of volcanic islands. Nat Commun 2017; 8:2061. [PMID: 29233984 PMCID: PMC5727060 DOI: 10.1038/s41467-017-02100-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/07/2017] [Indexed: 11/09/2022] Open
Abstract
Volcanic island inception applies large stresses as the ocean crust domes in response to magma ascension and is loaded by eruption of lavas. There is currently limited information on when volcanic islands are initiated on the seafloor, and no information regarding the seafloor instabilities island inception may cause. The deep sea Madeira Abyssal Plain contains a 43 million year history of turbidites among which many originate from mass movements in the Canary Islands. Here, we investigate the composition and timing of a distinctive group of turbidites that we suggest represent a new unique record of large-volume submarine landslides triggered during the inception, submarine shield growth, and final subaerial emergence of the Canary Islands. These slides are predominantly multi-stage and yet represent among the largest mass movements on the Earth's surface up to three or more-times larger than subaerial Canary Islands flank collapses. Thus whilst these deposits provide invaluable information on ocean island geodynamics they also represent a significant, and as yet unaccounted, marine geohazard.
Collapse
Affiliation(s)
- James E Hunt
- National Oceanography Centre, Waterfront Campus, University of Southampton, European Way, Southampton, Hampshire, SO14 3ZH, UK.
| | - Ian Jarvis
- Department of Geography and Geology, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 1LQ, UK
| |
Collapse
|
24
|
Percy DM. Making the most of your host: the Metrosideros-feeding psyllids (Hemiptera, Psylloidea) of the Hawaiian Islands. Zookeys 2017:1-163. [PMID: 28325970 PMCID: PMC5345378 DOI: 10.3897/zookeys.649.10213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
The Hawaiian psyllids (Psylloidea, Triozidae) feeding on Metrosideros (Myrtaceae) constitute a remarkable radiation of more than 35 species. This monophyletic group has diversified on a single, highly polymorphic host plant species, Metrosiderospolymorpha. Eleven Metrosideros-feeding species included in the Insects of Hawaii by Zimmerman are redescribed, and an additional 25 new species are described. Contrary to previous classifications that placed the Metrosideros-feeders in two genera, Trioza Foerster, 1848 and Kuwayama Crawford, 1911, all 36 named species are placed in Pariaconus Enderlein, 1926; and the relationship of this genus to other Pacific taxa within the family Triozidae, and other Austro-Pacific taxa feeding on host plants in Myrtaceae is clarified. The processes of diversification in Pariaconus include shifts in galling habit, geographic isolation within and between islands, and preferences for different morphotypes of the host plant. Four species groups are recognized: the bicoloratus and minutus groups are free-living or form pit galls, and together with the kamua group (composing all of the Kauai species) form a basal assemblage; the more derived closed gall species in the ohialoha group are found on all major islands except Kauai. The diversification of Pariaconus has likely occurred over several million years. Within island diversification is exemplified in the kamua group, and within species variation in the ohialoha group, but species discovery rates suggest this radiation remains undersampled. Mitochondrial DNA barcodes are provided for 28 of the 36 species. Genetic divergence, intraspecific genetic structure, and parallel evolution of different galling biologies and morphological traits are discussed within a phylogenetic framework. Outgroup analysis for the genus Pariaconus and ancestral character state reconstruction suggest pit-galling may be the ancestral state, and the closest outgroups are Palaearctic-Australasian taxa rather than other Pacific Metrosideros-feeders.
Collapse
Affiliation(s)
- Diana M Percy
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, UK, and University of British Columbia, Faculty of Science, University Boulevard, Vancouver, BC, Canada
| |
Collapse
|
25
|
Morphometry of Concepcion Bank: Evidence of Geological and Biological Processes on a Large Volcanic Seamount of the Canary Islands Seamount Province. PLoS One 2016; 11:e0156337. [PMID: 27243626 PMCID: PMC4886973 DOI: 10.1371/journal.pone.0156337] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/12/2016] [Indexed: 11/20/2022] Open
Abstract
Concepcion Bank is the largest seamount in the Canary Islands Seamount Province (CISP), an oceanic area off NW Africa including 16 main seamounts, the Canaries archipelago and the Selvagens subarchipelago. The Bank is located 90 km northeast of Lanzarote Island and has been identified as a candidate Marine Protected Area (MPA) to be included in the Natura 2000 network. A compilation of complementary datasets consisting of multibeam bathymetry, TOPAS seismic reflection profiles, side scan sonar sonographs, Remotely Operated Vehicle video records and seafloor samples allowed describing in detail and ground truthing the submarine landforms and bioconstructions exhibited by the bank. The Concepcion Bank presently rises up to 2,433 m above the adjacent seafloor and exhibits two main domains: an extensive summit plateau and steep flanks. The sub-round summit plateau is 50km by 45 km and ranges from 158 to 1,485 m depth. The steep flanks that bound it descend to depths ranging between 1,700 and 2,500 m and define a seamount base that is 66km by 53 km. This morphology is the result of constructive and erosive processes involving different time scales, volumes of material and rates of change. The volcanic emplacement phase probably lasted 25–30 million years and was likely responsible for most of the 2,730 km3 of material that presently form the seamount. Subsequently, marine abrasion and, possibly, subaerial erosion modulated by global sea level oscillations, levelled the formerly emerging seamount summit plateau, in particular its shallower (<400 m), flatter (<0.5°) eastern half. Subsidence associated to the crustal cooling that followed the emplacement phase further contributed the current depth range of the seamount. The deeper and steeper (2.3°) western half of Concepcion Bank may result from tectonic tilting normal to a NNE-SSW fracture line. This fracture may still be expressed on the seafloor surface at some scarps detected on the seamount’s summit. Sediment waves and cold-water coral (CWC) mounds on the bank summit plateau are the youngest features contributing to its final shaping, and may be indicative of internal wave effects. Numerous submarine canyons generally less than 10 km in length are incised on the bank’s flanks. The most developed, hierarchized canyon system runs southwest of the bank, where it merges with other canyons coming from the southern bulges attached to some sections of the seamount flanks. These bulges are postulated as having an intrusive origin, as no major headwall landslide scars have been detected and their role as deposition areas for the submarine canyons seems to be minor. The results presented document how geological processes in the past and recent to subrecent oceanographic conditions and associated active processes determined the current physiography, morphology and sedimentary patterns of Concepcion Bank, including the development and decline of CWC mounds The setting of the seamount in the regional crustal structure is also discussed.
Collapse
|
26
|
Valtueña FJ, López J, Álvarez J, Rodríguez-Riaño T, Ortega-Olivencia A. Scrophularia arguta, a widespread annual plant in the Canary Islands: a single recent colonization event or a more complex phylogeographic pattern? Ecol Evol 2016; 6:4258-73. [PMID: 27386073 PMCID: PMC4930978 DOI: 10.1002/ece3.2109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/05/2016] [Indexed: 02/03/2023] Open
Abstract
Many studies have addressed evolution and phylogeography of plant taxa in oceanic islands, but have primarily focused on endemics because of the assumption that in widespread taxa the absence of morphological differentiation between island and mainland populations is due to recent colonization. In this paper, we studied the phylogeography of Scrophularia arguta, a widespread annual species, in an attempt to determine the number and spatiotemporal origins of dispersal events to Canary Islands. Four different regions, ITS and ETS from nDNA and psbA-trnH and psbJ-petA from cpDNA, were used to date divergence events within S. arguta lineages and determine the phylogenetic relationships among populations. A haplotype network was obtained to elucidate the phylogenetic relationships among haplotypes. Our results support an ancient origin of S. arguta (Miocene) with expansion and genetic differentiation in the Pliocene coinciding with the aridification of northern Africa and the formation of the Mediterranean climate. Indeed, results indicate for Canary Islands three different events of colonization, including two ancient events that probably happened in the Pliocene and have originated the genetically most divergent populations into this species and, interestingly, a recent third event of colonization of Gran Canaria from mainland instead from the closest islands (Tenerife or Fuerteventura). In spite of the great genetic divergence among populations, it has not implied any morphological variation. Our work highlights the importance of nonendemic species to the genetic richness and conservation of island flora and the significance of the island populations of widespread taxa in the global biodiversity.
Collapse
Affiliation(s)
| | - Josefa López
- Área de Botánica Facultad de Ciencias Universidad de Extremadura 06006 Badajoz Spain
| | - Juan Álvarez
- Área de Botánica Facultad de Ciencias Universidad de Extremadura 06006 Badajoz Spain
| | - Tomás Rodríguez-Riaño
- Área de Botánica Facultad de Ciencias Universidad de Extremadura 06006 Badajoz Spain
| | - Ana Ortega-Olivencia
- Área de Botánica Facultad de Ciencias Universidad de Extremadura 06006 Badajoz Spain
| |
Collapse
|
27
|
Pirie MD, Litsios G, Bellstedt DU, Salamin N, Kissling J. Back to Gondwanaland: can ancient vicariance explain (some) Indian Ocean disjunct plant distributions? Biol Lett 2016; 11:20150086. [PMID: 26063747 DOI: 10.1098/rsbl.2015.0086] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Oceans, or other wide expanses of inhospitable environment, interrupt present day distributions of many plant groups. Using molecular dating techniques, generally incorporating fossil evidence, we can estimate when such distributions originated. Numerous dating analyses have recently precipitated a paradigm shift in the general explanations for the phenomenon, away from older geological causes, such as continental drift, in favour of more recent, long-distance dispersal (LDD). For example, the 'Gondwanan vicariance' scenario has been dismissed in various studies of Indian Ocean disjunct distributions. We used the gentian tribe Exaceae to reassess this scenario using molecular dating with minimum (fossil), maximum (geological), secondary (from wider analyses) and hypothesis-driven age constraints. Our results indicate that ancient vicariance cannot be ruled out as an explanation for the early origins of Exaceae across Africa, Madagascar and the Indian subcontinent unless a strong assumption is made about the maximum age of Gentianales. However, both the Gondwanan scenario and the available evidence suggest that there were also several, more recent, intercontinental dispersals during the diversification of the group.
Collapse
Affiliation(s)
- Michael D Pirie
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa Institut für Spezielle Botanik und Botanischer Garten, Johannes Gutenberg-Universität, Anselm-Franz-von-Bentzelweg 9a, 55099 Mainz, Germany
| | - Glenn Litsios
- Department of Ecology and Evolution, University of Lausanne, Biophore, 1015 Lausanne, Switzerland Swiss Institute of Bioinformatics, Quartier Sorge, 1015, Lausanne, Switzerland
| | - Dirk U Bellstedt
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Nicolas Salamin
- Department of Ecology and Evolution, University of Lausanne, Biophore, 1015 Lausanne, Switzerland Swiss Institute of Bioinformatics, Quartier Sorge, 1015, Lausanne, Switzerland
| | - Jonathan Kissling
- Department of Ecology and Evolution, University of Lausanne, Biophore, 1015 Lausanne, Switzerland Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
28
|
Adler PH, Cherairia M, Arigue SF, Samraoui B, Belqat B. Cryptic biodiversity in the cytogenome of bird-biting blackflies in North Africa. MEDICAL AND VETERINARY ENTOMOLOGY 2015; 29:276-289. [PMID: 25801314 DOI: 10.1111/mve.12115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/03/2014] [Accepted: 12/19/2014] [Indexed: 06/04/2023]
Abstract
Bird-biting blackflies in the Simulium (Eusimulium) aureum group (Diptera: Simuliidae) are widespread vectors of Leucocytozoon and Trypanosoma parasites. The polytene chromosomes of 619 larvae of the three nominal members of the S. aureum group in North Africa were evaluated cytogenetically for cryptic biodiversity. Seven chromosomal segregates were discovered among 29 populations in Algeria and Morocco. This diversity was based primarily on two chromosomal inversions, which have assumed unique roles in different lineages, including sex linkage, fixation, loss and autosomal polymorphism. Reproductive isolation was demonstrated for six of the seven segregates, doubling the number of species known in the area. Four species were linked with existing names: (a) Simulium mellah Giudicelli & Bouzidi, which is known only from North African high-salinity habitats; (b) Simulium petricolum (Rivosecchi), which is tentatively conspecific with continental European populations; (c) Simulium rubzovianum (Sherban) and its synonym Simulium latinum (Rubtsov), which is widely distributed from North Africa across Europe into Western Asia, and (d) Simulium velutinum (Santos Abreu) and its new synonym Simulium tenerificum Crosskey, which is restricted to North Africa and the Canary Islands. Of the remaining entities, two are new species precinctive to North Africa and one, known only from Morocco, is of undetermined taxonomic status.
Collapse
Affiliation(s)
- P H Adler
- Entomology Program, School of Agricultural, Forest and Environmental Sciences, Clemson University, Clemson, SC, U.S.A
| | - M Cherairia
- Laboratoire de Recherche et de Conservation des Zones Humides, Université 8 Mai 1945, Guelma, Algeria
| | - S F Arigue
- Département des Sciences de la Nature et de la Vie, Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Kheider, Biskra, Algeria
| | - B Samraoui
- Laboratoire de Recherche et de Conservation des Zones Humides, Université 8 Mai 1945, Guelma, Algeria
- Centre of Excellence for Research in Biodiversity, King Saud University, Riyadh, Saudi Arabia
| | - B Belqat
- Laboratoire Écologie, Biodiversité et Environnement, Département de Biologie, Université Abdelmalek Essaâdi, Tétouan, Morocco
| |
Collapse
|
29
|
Bukontaite R, Ranarilalatiana T, Randriamihaja JH, Bergsten J. In or out-of-Madagascar?--Colonization patterns for large-bodied diving beetles (Coleoptera: Dytiscidae). PLoS One 2015; 10:e0120777. [PMID: 25794184 PMCID: PMC4368551 DOI: 10.1371/journal.pone.0120777] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/01/2015] [Indexed: 12/21/2022] Open
Abstract
High species diversity and endemism within Madagascar is mainly the result of species radiations following colonization from nearby continents or islands. Most of the endemic taxa are thought to be descendants of a single or small number of colonizers that arrived from Africa sometime during the Cenozoic and gave rise to highly diverse groups. This pattern is largely based on vertebrates and a small number of invertebrate groups. Knowledge of the evolutionary history of aquatic beetles on Madagascar is lacking, even though this species-rich group is often a dominant part of invertebrate freshwater communities in both standing and running water. Here we focus on large bodied diving beetles of the tribes Hydaticini and Cybistrini. Our aims with this study were to answer the following questions 1) How many colonization events does the present Malagasy fauna originate from? 2) Did any colonization event lead to a species radiation? 3) Where did the colonizers come from--Africa or Asia--and has there been any out-of-Madagascar event? 4) When did these events occur and were they concentrated to any particular time interval? Our results suggest that neither in Hydaticini nor in Cybistrini was there a single case of two or more endemic species forming a monophyletic group. The biogeographical analysis indicated different colonization histories for the two tribes. Cybistrini required at least eight separate colonization events, including the non-endemic species, all comparatively recent except the only lotic (running water) living Cybister operosus with an inferred colonization at 29 Ma. In Hydaticini the Madagascan endemics were spread out across the tree, often occupying basal positions in different species groups. The biogeographical analyses therefore postulated the very bold hypothesis of a Madagascan origin at a very deep basal node within Hydaticus and multiple out-of-Madagascar dispersal events. This hypothesis needs to be tested with equally intense taxon sampling of mainland Africa as for Madagascar.
Collapse
Affiliation(s)
- Rasa Bukontaite
- Department of Zoology, Swedish Museum of Natural History, Box 50007, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Tolotra Ranarilalatiana
- Departement d’Entomologie, Faculté des Sciences, B.P. 906, Université d’Antananarivo, Antananarivo, Madagascar
- Programme National de Lutte contre le Paludisme de Madagascar, Androhibe, Antananarivo (101), Madagascar
| | - Jacquelin Herisahala Randriamihaja
- Departement d’Entomologie, Faculté des Sciences, B.P. 906, Université d’Antananarivo, Antananarivo, Madagascar
- Programme National de Lutte contre le Paludisme de Madagascar, Androhibe, Antananarivo (101), Madagascar
| | - Johannes Bergsten
- Department of Zoology, Swedish Museum of Natural History, Box 50007, Stockholm, Sweden
| |
Collapse
|
30
|
Zaczek K, Troll VR, Cachao M, Ferreira J, Deegan FM, Carracedo JC, Soler V, Meade FC, Burchardt S. Nannofossils in 2011 El Hierro eruptive products reinstate plume model for Canary Islands. Sci Rep 2015; 5:7945. [PMID: 25609055 PMCID: PMC4302296 DOI: 10.1038/srep07945] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/15/2014] [Indexed: 11/30/2022] Open
Abstract
The origin and life cycle of ocean islands have been debated since the early days of Geology. In the case of the Canary archipelago, its proximity to the Atlas orogen led to initial fracture-controlled models for island genesis, while later workers cited a Miocene-Quaternary east-west age-progression to support an underlying mantle-plume. The recent discovery of submarine Cretaceous volcanic rocks near the westernmost island of El Hierro now questions this systematic age-progression within the archipelago. If a mantle-plume is indeed responsible for the Canaries, the onshore volcanic age-progression should be complemented by progressively younger pre-island sedimentary strata towards the west, however, direct age constraints for the westernmost pre-island sediments are lacking. Here we report on new age data obtained from calcareous nannofossils in sedimentary xenoliths erupted during the 2011 El Hierro events, which date the sub-island sedimentary rocks to between late Cretaceous and Pliocene in age. This age-range includes substantially younger pre-volcanic sedimentary rocks than the Jurassic to Miocene strata known from the older eastern islands and now reinstate the mantle-plume hypothesis as the most plausible explanation for Canary volcanism. The recently discovered Cretaceous submarine volcanic rocks in the region are, in turn, part of an older, fracture-related tectonic episode.
Collapse
Affiliation(s)
- Kirsten Zaczek
- Uppsala University, Dept. of Earth Sciences, Centre for Experimental Mineralogy, Petrology and Geochemistry (CEMPEG), Uppsala, Sweden
| | - Valentin R Troll
- 1] Uppsala University, Dept. of Earth Sciences, Centre for Experimental Mineralogy, Petrology and Geochemistry (CEMPEG), Uppsala, Sweden [2] University of Las Palmas de Gran Canaria, Dept. of Physics (GEOVOL), Las Palmas de Gran Canaria, Spain
| | - Mario Cachao
- University of Lisbon, Faculty of Sciences, Dept. and Centre of Geology, Portugal
| | - Jorge Ferreira
- University of Lisbon, Faculty of Sciences, Dept. and Centre of Geology, Portugal
| | - Frances M Deegan
- Uppsala University, Dept. of Earth Sciences, Centre for Experimental Mineralogy, Petrology and Geochemistry (CEMPEG), Uppsala, Sweden
| | - Juan Carlos Carracedo
- University of Las Palmas de Gran Canaria, Dept. of Physics (GEOVOL), Las Palmas de Gran Canaria, Spain
| | - Vicente Soler
- Estacion Volcanologica de Canarias, IPNA-CSIC, La Laguna, Tenerife, Spain
| | - Fiona C Meade
- Uppsala University, Dept. of Earth Sciences, Centre for Experimental Mineralogy, Petrology and Geochemistry (CEMPEG), Uppsala, Sweden
| | - Steffi Burchardt
- Uppsala University, Dept. of Earth Sciences, Centre for Experimental Mineralogy, Petrology and Geochemistry (CEMPEG), Uppsala, Sweden
| |
Collapse
|
31
|
Gohli J, Leder EH, Garcia-del-Rey E, Johannessen LE, Johnsen A, Laskemoen T, Popp M, Lifjeld JT. The evolutionary history of Afrocanarian blue tits inferred from genomewide SNPs. Mol Ecol 2014; 24:180-91. [DOI: 10.1111/mec.13008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 11/03/2014] [Accepted: 11/14/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Jostein Gohli
- University Museum of Bergen; P.O. Box 7800 5007 Bergen Norway
| | - Erica H. Leder
- Division of Genetics and Physiology; Department of Biological Sciences; University of Turku; Vesilinnantie 5 20014 Turku Finland
| | - Eduardo Garcia-del-Rey
- Macaronesian Institute of Field Ornithology; C/Enrique Wolfson 11-3 38004 Santa Cruz de Tenerife Spain
| | | | - Arild Johnsen
- Natural History Museum; University of Oslo; P.O. Box 1172 Blindern 0318 Oslo Norway
| | - Terje Laskemoen
- Natural History Museum; University of Oslo; P.O. Box 1172 Blindern 0318 Oslo Norway
| | - Magnus Popp
- Natural History Museum; University of Oslo; P.O. Box 1172 Blindern 0318 Oslo Norway
| | - Jan T. Lifjeld
- Natural History Museum; University of Oslo; P.O. Box 1172 Blindern 0318 Oslo Norway
| |
Collapse
|