1
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Koyama K, Yamauchi J. Mechanical drivers of intrinsic foot muscle for maximum toe flexor strength in upright standing across different body size. Foot (Edinb) 2024; 61:102128. [PMID: 39276714 DOI: 10.1016/j.foot.2024.102128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
This study aimed to evaluate maximum toe flexor strength, foot arch height, intrinsic toe flexor muscle size and foot arch stiffness among individuals with different body sizes, and to compare these variables between sitting and standing positions. Maximum toe flexor strength in sitting and standing, and intrinsic foot muscle thicknesses (flexor hallucis brevis: FHB, flexor digitorum brevis: FDB, abductor hallucis: AH and quadratus plantae: QP), were measured using a toe grip dynamometer and a B-mode ultrasound in healthy young men. FHB was thicker than AH, FDB and QP, AH was thicker than FDB and QP, and no significant difference was found between FDB and QP. Toe flexor strength was correlated with FHB and AH, and foot arch height was correlated with FHB. Toe flexor strength was greater in standing than in sitting. Stepwise multiple regression analysis identified FHB and AH as determinants of toe flexor strength in standing, and the relative muscle strength values per body weight in standing were determined by QP, foot arch index and foot arch stiffness. Overweight individuals had a decreased rate of increase in relative toe flexor strength compared to normal individuals. These results suggest that a large muscle thickness of intrinsic foot muscle a key contributor to toe flexor strength. Moreover, toe flexor muscle in upright standing could have the potential to generate force independently of intrinsic foot muscle size, but obese individuals who chronically put weight on their feet might impair the force amplification mechanism in upright standing.
Collapse
|
3
|
Skulborstad A, Goulbourne NC. A chemo-mechanical constitutive model for muscle activation in bat wing skins. J R Soc Interface 2024; 21:20230593. [PMID: 38981517 DOI: 10.1098/rsif.2023.0593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/17/2024] [Indexed: 07/11/2024] Open
Abstract
Birds, bats and insects have evolved unique wing structures to achieve a wide range of flight capabilities. Insects have relatively stiff and passive wings, birds have a complex and hierarchical feathered structure and bats have an articulated skeletal system integrated with a highly stretchable skin. The compliant skin of the wing distinguishes bats from all other flying animals and contributes to bats' remarkable, highly manoeuvrable flight performance and high energetic efficiency. The structural and functional complexity of the bat wing skin is one of the least understood although important elements of the bat flight anatomy. The wing skin has two unusual features: a discrete array of very soft elastin fibres and a discrete array of skeletal muscle fibres. The latter is intriguing because skeletal muscle is typically attached to bone, so the arrangement of intramembranous muscle in soft skin raises questions about its role in flight. In this paper, we develop a multi-scale chemo-mechanical constitutive model for bat wing skin. The chemo-mechanical model links cross-bridge cycling to a structure-based continuum model that describes the active viscoelastic behaviour of the soft anisotropic skin tissue. Continuum models at the tissue length-scale are valuable as they are easily implemented in commercial finite element codes to solve problems involving complex geometries, loading and boundary conditions. The constitutive model presented in this paper will be used in detailed finite element simulations to improve our understanding of the mechanics of bat flight in the context of wing kinematics and aerodynamic performance.
Collapse
Affiliation(s)
| | - N C Goulbourne
- Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Rizk J, Sahu R, Duteil D. An overview on androgen-mediated actions in skeletal muscle and adipose tissue. Steroids 2023; 199:109306. [PMID: 37634653 DOI: 10.1016/j.steroids.2023.109306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Androgens are a class of steroid hormones primarily associated with male sexual development and physiology, but exert pleiotropic effects in either sex. They have a crucial role in various physiological processes, including the regulation of skeletal muscle and adipose tissue homeostasis. The effects of androgens are mainly mediated through the androgen receptor (AR), a ligand-activated nuclear receptor expressed in both tissues. In skeletal muscle, androgens via AR exert a multitude of effects, ranging from increased muscle mass and strength, to the regulation of muscle fiber type composition, contraction and metabolic functions. In adipose tissue, androgens influence several processes including proliferation, fat distribution, and metabolism but they display depot-specific and organism-specific effects which differ in certain context. This review further explores the potential mechanisms underlying androgen-AR signaling in skeletal muscle and adipose tissue. Understanding the roles of androgens and their receptor in skeletal muscle and adipose tissue is essential for elucidating their contributions to physiological processes, disease conditions, and potential therapeutic interventions.
Collapse
Affiliation(s)
- Joe Rizk
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Rajesh Sahu
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Delphine Duteil
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France.
| |
Collapse
|
5
|
AlGhazal F, Khayyat W, AlMesfer S, Awad A, Sesma G. A Novel Technique Using Paretic Superior Rectus as a Globe Suspender for Monocular Elevation Deficiency. Cureus 2023; 15:e46365. [PMID: 37790866 PMCID: PMC10544944 DOI: 10.7759/cureus.46365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 10/05/2023] Open
Abstract
Surgical innovations in strabismus provide opportunities to improve visual function, eye alignment, and cosmesis in rare pediatric ophthalmological conditions. Monocular elevation deficiency is a rare and multifactorial disease in which the affected eye is equally limited in terms of elevation during adduction and abduction. We aimed to present a novel procedure for the treatment of acquired monocular elevation deficiency using the paretic superior rectus muscle as a globe suspender to resolve hypotropia. We report the case of an eight-year-old girl with left eyelid ptosis and hypotropia two months after draining a left orbital abscess. Left inferior rectus muscle recession was performed at five years, with residual left hypotropia. Ophthalmological examination revealed a best-corrected visual acuity of 20/20 OD and 20/100 OS. Severe left eyelid ptosis and poor levator function were also observed. Extraocular motility showed left hypotropia of 40 prism diopters with the left superior rectus muscle under action (-4) in the adduction and abduction positions. A force duction test negative for restrictions on the inferior rectus muscle was performed intraoperatively. To reduce the risks of the Knapp procedure, the left superior rectus muscle was split into medial and temporal halves. Double-armed sutures were secured in half, and the halves were detached from the sclera. The medial and temporal halves were reattached anteriorly to the medial and lateral rectus insertions, respectively. Eight weeks after surgery, the patient had nine prism diopters of hypotropia in the primary gaze. Ten weeks after surgery, there was no change in visual acuity. In the cover test, the patient exhibited residual left hypotropia of nine prism diopters with a restriction (-4) of elevation in adduction and abduction. The parents were pleased with the satisfactory cosmetic outcomes, and postoperative clinical photographs of the patient showed improved hypotropia and persistent minimal elevation of the left eye during adduction and abduction. Superior rectus muscle splitting and vertical transposition to the medial and lateral rectus could be safer and simpler alternatives to the Knapp procedure and may offer a lower risk of anterior segment ischemia. Further studies are required to confirm these findings.
Collapse
Affiliation(s)
- Fatima AlGhazal
- Pediatric Ophthalmology & Strabismus Division, King Khaled Eye Specialist Hospital, Riyadh, SAU
| | - Waleed Khayyat
- Pediatric Ophthalmology & Strabismus Division, King Khaled Eye Specialist Hospital, Riyadh, SAU
| | - Saleh AlMesfer
- Pediatric Ophthalmology & Strabismus Division, King Khaled Eye Specialist Hospital, Riyadh, SAU
| | - Abdulaziz Awad
- Pediatric Ophthalmology & Strabismus Division, King Khaled Eye Specialist Hospital, Riyadh, SAU
| | - Gorka Sesma
- Pediatric Ophthalmology & Strabismus Division, King Khaled Eye Specialist Hospital, Riyadh, SAU
| |
Collapse
|
6
|
Hahn D, Han SW, Joumaa V. The history-dependent features of muscle force production: A challenge to the cross-bridge theory and their functional implications. J Biomech 2023; 152:111579. [PMID: 37054597 DOI: 10.1016/j.jbiomech.2023.111579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
The cross-bridge theory predicts that muscle force is determined by muscle length and the velocity of active muscle length changes. However, before the formulation of the cross-bridge theory, it had been observed that the isometric force at a given muscle length is enhanced or depressed depending on active muscle length changes before that given length is reached. These enhanced and depressed force states are termed residual force enhancement (rFE) and residual force depression (rFD), respectively, and together they are known as the history-dependent features of muscle force production. In this review, we introduce early attempts in explaining rFE and rFD before we discuss more recent research from the past 25 years which has contributed to a better understanding of the mechanisms underpinning rFE and rFD. Specifically, we discuss the increasing number of findings on rFE and rFD which challenge the cross-bridge theory and propose that the elastic element titin plays a role in explaining muscle history-dependence. Accordingly, new three-filament models of force production including titin seem to provide better insight into the mechanism of muscle contraction. Complementary to the mechanisms behind muscle history-dependence, we also show various implications for muscle history-dependence on in-vivo human muscle function such as during stretch-shortening cycles. We conclude that titin function needs to be better understood if a new three-filament muscle model which includes titin, is to be established. From an applied perspective, it remains to be elucidated how muscle history-dependence affects locomotion and motor control, and whether history-dependent features can be changed by training.
Collapse
Affiliation(s)
- Daniel Hahn
- Human Movement Science, Faculty of Sport Science, Ruhr University, Bochum, Germany; School of Human Movement and Nutrition Sciences, University of Queensland, Australia
| | - Seong-Won Han
- Institute of Physiology II, Faculty of Medicine, University of Münster, Germany.
| | - Venus Joumaa
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| |
Collapse
|
7
|
Tomalka A. Eccentric muscle contractions: from single muscle fibre to whole muscle mechanics. Pflugers Arch 2023; 475:421-435. [PMID: 36790515 PMCID: PMC10011336 DOI: 10.1007/s00424-023-02794-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/16/2023]
Abstract
Eccentric muscle loading encompasses several unique features compared to other types of contractions. These features include increased force, work, and performance at decreased oxygen consumption, reduced metabolic cost, improved energy efficiency, as well as decreased muscle activity. This review summarises explanatory approaches to long-standing questions in terms of muscular contraction dynamics and molecular and cellular mechanisms underlying eccentric muscle loading. Moreover, this article intends to underscore the functional link between sarcomeric components, emphasising the fundamental role of titin in skeletal muscle. The giant filament titin reveals versatile functions ranging from sarcomere organisation and maintenance, providing passive tension and elasticity, and operates as a mechanosensory and signalling platform. Structurally, titin consists of a viscoelastic spring segment that allows activation-dependent coupling to actin. This titin-actin interaction can explain linear force increases in active lengthening experiments in biological systems. A three-filament model of skeletal muscle force production (mediated by titin) is supposed to overcome significant deviations between experimental observations and predictions by the classic sliding-filament and cross-bridge theories. Taken together, this review intends to contribute to a more detailed understanding of overall muscle behaviour and force generation-from a microscopic sarcomere level to a macroscopic multi-joint muscle level-impacting muscle modelling, the understanding of muscle function, and disease.
Collapse
Affiliation(s)
- André Tomalka
- Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
8
|
Contini M, Altman D, Cornachione A, Rassier DE, Bagni MA. An increase in force after stretch of diaphragm fibers and myofibrils is accompanied by an increase in sarcomere length non-uniformities and Ca 2+ sensitivity. Am J Physiol Cell Physiol 2022; 323:C14-C28. [PMID: 35613356 DOI: 10.1152/ajpcell.00394.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When muscle fibers from limb muscles are stretched while activated, the force increases to a steady-state level that is higher than that produced during isometric contractions at a corresponding sarcomere length, a phenomenon known as residual force enhancement (RFE). The mechanisms responsible for the RFE are an increased stiffness of titin molecules which may lead to an increased Ca2+ sensitivity of the contractile apparatus,and the development of sarcomere length non-uniformities. RFE is not observed in cardiac muscles, which makes this phenomenon specific to certain preparations. The aim of this study was to investigate if the RFE is present in the diaphragm, and its potential association with an increased Ca2+ sensitivity and the development of sarcomere length non-uniformities. We used two preparations: single intact fibers and myofibrils isolated from the diaphragm from mice. We investigated RFE in a variety of lengths across the force-length relationship. RFE was observed in both preparations at all lengths investigated, and was larger with increasing magnitudes of stretch. RFE was accompanied by an increased Ca2+ sensitivity as shown by a change in the force-pCa2+-curve, and increased sarcomere length non-uniformities. Therefore, RFE is a phenomenon commonly observed in skeletal muscles, with mechanisms that are similar across preparations.
Collapse
Affiliation(s)
- Massimo Contini
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - David Altman
- Department of Physics, Willamette University, Salem, OR, United States
| | - Anabelle Cornachione
- Department of Physiological Sciences, Federal University of São Carlos, São Paulo, Brazil
| | | | - Maria Angela Bagni
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| |
Collapse
|
9
|
The mechanical role of the metatarsophalangeal joint in human jumping. PLoS One 2022; 17:e0268634. [PMID: 35594285 PMCID: PMC9122204 DOI: 10.1371/journal.pone.0268634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 05/04/2022] [Indexed: 11/19/2022] Open
Abstract
This study investigated the mechanical role of metatarsophalangeal (MTP) joints in human jumping. Eighteen healthy young men performed three types of single-leg jumps (SJ: squat jump; CMJ: countermovement jump; HJ: standing horizontal jump) on a force plate under barefoot (BARE) and forefoot immobilisation (FFIM) conditions. For FFIM, the forefoot was immobilised around the MTP joints of the dominant leg by a custom-made splint. Force-time components and the centre of pressure (COP) trajectory were measured from the ground reaction force (GRF) in the take-off phase of jumping. The vertical jump heights calculated from the net vertical impulse were lower under FFIM than under BARE during the CMJ (p < 0.05). The HJ distance under FFIM was significantly shorter than that under BARE (p < 0.01). The relative net vertical impulse was lower under FFIM than under BARE during the CMJ (p < 0.05). During the HJ, all the horizontal GRF variables were significantly lower under FFIM than under BARE (p < 0.01), but none of the vertical GRF variables differed between the two conditions. The horizontal relative GRF in the 90–95% of the final take-off phase during the HJ was significantly lower under FFIM than under BARE (p < 0.01). Under FFIM, the COP range in the antero-posterior direction in the take-off phase of the HJ decreased (p < 0.05), whereas its range in the anterior direction for the SJ and CMJ increased (p < 0.05). The results of this study indicate that MTP joint motion can play an important role in regulating force-generating capacities of toe flexor muscles in the take-off phase of human jumping, especially in the horizontal direction of horizontal jumping.
Collapse
|
10
|
Patteson AE, Asp ME, Janmey PA. Materials science and mechanosensitivity of living matter. APPLIED PHYSICS REVIEWS 2022; 9:011320. [PMID: 35392267 PMCID: PMC8969880 DOI: 10.1063/5.0071648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Living systems are composed of molecules that are synthesized by cells that use energy sources within their surroundings to create fascinating materials that have mechanical properties optimized for their biological function. Their functionality is a ubiquitous aspect of our lives. We use wood to construct furniture, bacterial colonies to modify the texture of dairy products and other foods, intestines as violin strings, bladders in bagpipes, and so on. The mechanical properties of these biological materials differ from those of other simpler synthetic elastomers, glasses, and crystals. Reproducing their mechanical properties synthetically or from first principles is still often unattainable. The challenge is that biomaterials often exist far from equilibrium, either in a kinetically arrested state or in an energy consuming active state that is not yet possible to reproduce de novo. Also, the design principles that form biological materials often result in nonlinear responses of stress to strain, or force to displacement, and theoretical models to explain these nonlinear effects are in relatively early stages of development compared to the predictive models for rubberlike elastomers or metals. In this Review, we summarize some of the most common and striking mechanical features of biological materials and make comparisons among animal, plant, fungal, and bacterial systems. We also summarize some of the mechanisms by which living systems develop forces that shape biological matter and examine newly discovered mechanisms by which cells sense and respond to the forces they generate themselves, which are resisted by their environment, or that are exerted upon them by their environment. Within this framework, we discuss examples of how physical methods are being applied to cell biology and bioengineering.
Collapse
Affiliation(s)
- Alison E. Patteson
- Physics Department and BioInspired Institute, Syracuse University, Syracuse NY, 13244, USA
| | - Merrill E. Asp
- Physics Department and BioInspired Institute, Syracuse University, Syracuse NY, 13244, USA
| | - Paul A. Janmey
- Institute for Medicine and Engineering and Departments of Physiology and Physics & Astronomy, University of Pennsylvania, Philadelphia PA, 19104, USA
| |
Collapse
|
11
|
Marston S. Force Measurements From Myofibril to Filament. Front Physiol 2022; 12:817036. [PMID: 35153821 PMCID: PMC8829514 DOI: 10.3389/fphys.2021.817036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Contractility, the generation of force and movement by molecular motors, is the hallmark of all muscles, including striated muscle. Contractility can be studied at every level of organization from a whole animal to single molecules. Measurements at sub-cellular level are particularly useful since, in the absence of the excitation-contraction coupling system, the properties of the contractile proteins can be directly investigated; revealing mechanistic details not accessible in intact muscle. Moreover, the conditions can be manipulated with ease, for instance changes in activator Ca2+, small molecule effector concentration or phosphorylation levels and introducing mutations. Subcellular methods can be successfully applied to frozen materials and generally require the smallest amount of tissue, thus greatly increasing the range of possible experiments compared with the study of intact muscle and cells. Whilst measurement of movement at the subcellular level is relatively simple, measurement of force is more challenging. This mini review will describe current methods for measuring force production at the subcellular level including single myofibril and single myofilament techniques.
Collapse
|
12
|
de Souza Leite F, Rassier DE. Sarcomere Length Nonuniformity and Force Regulation in Myofibrils and Sarcomeres. Biophys J 2020; 119:2372-2377. [PMID: 33217382 DOI: 10.1016/j.bpj.2020.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/21/2020] [Accepted: 11/05/2020] [Indexed: 10/23/2022] Open
Abstract
The smallest contractile unit in striated muscles is the sarcomere. Although some of the classic features of contraction assume a uniform behavior of sarcomeres within myofibrils, the occurrence of sarcomere length nonuniformities has been well recognized for years, but it is yet not well understood. In the past years, there has been a great advance in experiments using isolated myofibrils and sarcomeres that has allowed scientists to directly evaluate sarcomere length nonuniformity. This review will focus on studies conducted with these preparations to develop the hypotheses that 1) force production in myofibrils is largely altered and regulated by intersarcomere dynamics and that 2) the mechanical work of one sarcomere in a myofibril is transmitted to other sarcomeres in series. We evaluated studies looking into myofibril activation, relaxation, and force changes produced during activation. We conclude that force production in myofibrils is largely regulated by intersarcomere dynamics, which arises from the cooperative work of the contractile and elastic elements within a myofibril.
Collapse
Affiliation(s)
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
13
|
Force enhancement after stretch of isolated myofibrils is increased by sarcomere length non-uniformities. Sci Rep 2020; 10:21590. [PMID: 33299041 PMCID: PMC7726039 DOI: 10.1038/s41598-020-78457-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/11/2020] [Indexed: 11/12/2022] Open
Abstract
When a muscle is stretched during a contraction, the resulting steady-state force is higher than the isometric force produced at a comparable sarcomere length. This phenomenon, also referred to as residual force enhancement, cannot be readily explained by the force-sarcomere length relation. One of the most accepted mechanisms for the residual force enhancement is the development of sarcomere length non-uniformities after an active stretch. The aim of this study was to directly investigate the effect of non-uniformities on the force-producing capabilities of isolated myofibrils after they are actively stretched. We evaluated the effect of depleting a single A-band on sarcomere length non-uniformity and residual force enhancement. We observed that sarcomere length non-uniformity was effectively increased following A-band depletion. Furthermore, isometric forces decreased, while the percent residual force enhancement increased compared to intact myofibrils (5% vs. 20%). We conclude that sarcomere length non-uniformities are partially responsible for the enhanced force production after stretch.
Collapse
|
14
|
Månsson A. The effects of inorganic phosphate on muscle force development and energetics: challenges in modelling related to experimental uncertainties. J Muscle Res Cell Motil 2019; 42:33-46. [PMID: 31620962 PMCID: PMC7932973 DOI: 10.1007/s10974-019-09558-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/09/2019] [Indexed: 02/03/2023]
Abstract
Muscle force and power are developed by myosin cross-bridges, which cyclically attach to actin, undergo a force-generating transition and detach under turnover of ATP. The force-generating transition is intimately associated with release of inorganic phosphate (Pi) but the exact sequence of events in relation to the actual Pi release step is controversial. Details of this process are reflected in the relationships between [Pi] and the developed force and shortening velocity. In order to account for these relationships, models have proposed branched kinetic pathways or loose coupling between biochemical and force-generating transitions. A key hypothesis underlying the present study is that such complexities are not required to explain changes in the force–velocity relationship and ATP turnover rate with altered [Pi]. We therefore set out to test if models without branched kinetic paths and Pi-release occurring before the main force-generating transition can account for effects of varied [Pi] (0.1–25 mM). The models tested, one assuming either linear or non-linear cross-bridge elasticity, account well for critical aspects of muscle contraction at 0.5 mM Pi but their capacity to account for the maximum power output vary. We find that the models, within experimental uncertainties, account for the relationship between [Pi] and isometric force as well as between [Pi] and the velocity of shortening at low loads. However, in apparent contradiction with available experimental findings, the tested models produce an anomalous force–velocity relationship at elevated [Pi] and high loads with more than one possible velocity for a given load. Nevertheless, considering experimental uncertainties and effects of sarcomere non-uniformities, these discrepancies are insufficient to refute the tested models in favour of more complex alternatives.
Collapse
Affiliation(s)
- Alf Månsson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Universitetskajen, 391 82, Kalmar, Sweden.
| |
Collapse
|
15
|
Fukutani A, Herzog W. Residual Force Enhancement Is Preserved for Conditions of Reduced Contractile Force. Med Sci Sports Exerc 2019; 50:1186-1191. [PMID: 29373340 DOI: 10.1249/mss.0000000000001563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The isometric muscle force attained after active stretch is greater than that attained in a purely isometric contraction. This property is referred to as residual force enhancement (RFE). Because RFE is thought to be caused by a titin-based passive force, it should be preserved in reduced contractile force states. Therefore, we evaluated the magnitude of RFE in normal and reduced contractile force states. METHODS Skinned fibers of rabbit psoas and soleus (N = 60) were used in all experiments. Reduced contractile force states were induced (i) by using a low Ca concentration (N = 30), (ii) by adding 20 mM butanedione monoxime (N = 15), and (iii) by lowering the pH level (N = 15). Force enhancement and reference isometric tests were conducted for each condition. In the force enhancement tests, fibers were actively stretched from an average sarcomere length of 2.4 to 3.0 μm. The isometric force attained 15 s after the end of stretching was used for analysis. In the isometric reference tests, fibers were activated isometrically at an average sarcomere length of 3.0 μm, and the force at steady state was used for analysis. The absolute and relative magnitudes of RFE were calculated. RESULTS The absolute RFE was the same for the normal and reduced contractile force states. Because the isometric reference force was smaller in the reduced contractile force states, the relative RFE was greater in the reduced contractile force than the normal states for all conditions. CONCLUSION RFE was preserved in the reduced contractile force states.
Collapse
Affiliation(s)
- Atsuki Fukutani
- Faculty of Kinesiology, The University of Calgary, Calgary, AB, CANADA.,Japan Society for the Promotion of Science, Postdoctoral Fellowships for Research Abroad, Tokyo, JAPAN.,Research Organization of Science and Technology, Ritsumeikan University, Shiga, JAPAN
| | - Walter Herzog
- Faculty of Kinesiology, The University of Calgary, Calgary, AB, CANADA
| |
Collapse
|
16
|
Yamauchi J, Koyama K. Force-generating capacity of the toe flexor muscles and dynamic function of the foot arch in upright standing. J Anat 2019; 234:515-522. [PMID: 30707457 DOI: 10.1111/joa.12937] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2018] [Indexed: 11/28/2022] Open
Abstract
The muscle and tendon complex of the foot helps to support the foot arch and generates the muscle force of the foot. The present study investigated the force-generating capacity of the toe flexor muscles and the dynamic function of the foot arch when standing upright, and the relationships between these indices. The maximum toe flexor force and foot arch height in the sitting and standing positions were studied in the left and right feet of 224 healthy young individuals. To measure the maximum isometric force of the toe flexor muscles, the subjects exerted maximum force on a toe grip dynamometer. Measurements were repeated three times with at least a 1-min rest period between bouts, and the maximum value among the measurements for each foot was used for further analysis. The absolute value of the toe flexor strength was normalised by body mass. The foot arch height was measured the distance between the tuberosity of the navicular bone and the floor, and normalised by height. The relative foot arch height difference between the sitting and standing positions was evaluated as the foot arch dynamics. The maximum isometric toe flexor strength was 42% higher in the standing position than in the sitting position. There was no relationship between the relative toe flexor strength and the relative foot arch height in either the sitting or standing positions; however, the relative increase in toe flexor strength from sitting to standing (the force amplification factor) was related to the foot arch dynamics, and the flexible foot arch showed a greater increase in the toe flexor strength from sitting to standing compared with the strength in the stiff foot arch. The results of this study suggest that the force-generating capacity of the toe flexor muscles is augmented by bodyweight bearing in upright standing. Additionally, the force amplification mechanism is mechanically regulated by the dynamic function of the foot arch in conjunction with the stretching of the muscle-tendon complex of the foot.
Collapse
Affiliation(s)
- Junichiro Yamauchi
- Tokyo Metropolitan University, Tokyo, Japan.,Research Center in Back, Neck, Other Joint Pain and Human Performance (BNOJPH), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | | |
Collapse
|
17
|
Force–length relation of skeletal muscles: from sarcomeres to myofibril. Biomech Model Mechanobiol 2018; 17:1797-1810. [DOI: 10.1007/s10237-018-1057-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
|
18
|
Schappacher-Tilp G. Titin-mediated thick filament activation stabilizes myofibrils on the descending limb of their force-length relationship. JOURNAL OF SPORT AND HEALTH SCIENCE 2018; 7:326-332. [PMID: 30356636 PMCID: PMC6189248 DOI: 10.1016/j.jshs.2018.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/17/2017] [Accepted: 12/29/2017] [Indexed: 06/08/2023]
Abstract
PURPOSE The aim of this study was to extend current half-sarcomere models by involving a recently found force-mediated activation of the thick filament and analyze the effect of this mechanosensing regulation on the length stability of half-sarcomeres arranged in series. METHODS We included a super-relaxed state of myosin motors and its force-dependent activation in a conventional cross-bridge model. We simulated active stretches of a sarcomere consisting of 2 non-uniform half-sarcomeres on the descending limb of the force-length relationship. RESULTS The mechanosensing model predicts that, in a passive sarcomere on the descending limb of the force-length relationship, the longer half-sarcomere has a higher fraction of myosin motors in the on-state than the shorter half-sarcomere. The difference in the number of myosin motors in the on-state ensures that upon calcium-mediated thin filament activation, the force-dependent thick filament activation keeps differences in active force within 20% during an active stretch. In the classical cross-bridge model, the corresponding difference exceeds 80%, leading to great length instabilities. CONCLUSION Our simulations suggest that, in contrast to the classical cross-bridge model, the mechanosensing regulation is able to stabilize a system of non-uniform half-sarcomeres arranged in series on the descending limb of the force-length relationship.
Collapse
|
19
|
Rassier DE. Sarcomere mechanics in striated muscles: from molecules to sarcomeres to cells. Am J Physiol Cell Physiol 2017; 313:C134-C145. [PMID: 28539306 DOI: 10.1152/ajpcell.00050.2017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 11/22/2022]
Abstract
Muscle contraction is commonly associated with the cross-bridge and sliding filament theories, which have received strong support from experiments conducted over the years in different laboratories. However, there are studies that cannot be readily explained by the theories, showing 1) a plateau of the force-length relation extended beyond optimal filament overlap, and forces produced at long sarcomere lengths that are higher than those predicted by the sliding filament theory; 2) passive forces at long sarcomere lengths that can be modulated by activation and Ca2+, which changes the force-length relation; and 3) an unexplained high force produced during and after stretch of activated muscle fibers. Some of these studies even propose "new theories of contraction." While some of these observations deserve evaluation, many of these studies present data that lack a rigorous control and experiments that cannot be repeated in other laboratories. This article reviews these issues, looking into studies that have used intact and permeabilized fibers, myofibrils, isolated sarcomeres, and half-sarcomeres. A common mechanism associated with sarcomere and half-sarcomere length nonuniformities and a Ca2+-induced increase in the stiffness of titin is proposed to explain observations that derive from these studies.
Collapse
Affiliation(s)
- Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Joumaa V, Fitzowich A, Herzog W. Energy cost of isometric force production after active shortening in skinned muscle fibres. J Exp Biol 2017; 220:1509-1515. [DOI: 10.1242/jeb.117622] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/01/2017] [Indexed: 11/20/2022]
Abstract
The steady state isometric force after active shortening of a skeletal muscle is lower than the purely isometric force at the corresponding length. This property of skeletal muscle is known as force depression. The purpose of this study was to investigate whether the energy cost of force production at the steady state after active shortening was reduced compared to the energy cost of force production for a purely isometric contraction performed at the corresponding length (same length, same activation). Experiments were performed in skinned fibres isolated from rabbit psoas muscle. Skinned fibres were actively shortened from an average sarcomere length of 3.0 µm to an average sarcomere length of 2.4 µm. Purely isometric reference contractions were performed at an average sarcomere length of 2.4 µm. Simultaneously with the force measurements, the ATP cost was measured during the last 30 seconds of isometric contractions using an enzyme-coupled assay. Stiffness was calculated during a quick stretch-release cycle of 0.2% fibre length performed once the steady state had been reached after active shortening and during the purely isometric reference contractions. Force and stiffness following active shortening were decreased by 10.0±1.8% and 11.0±2.2%, respectively compared to the isometric reference contractions. Similarly, ATPase activity per second (not normalized to the force) showed a decrease of 15.6±3.0% in the force depressed state compared to the purely isometric reference state. However, ATPase activity per second per unit of force was similar for the isometric contractions following active shortening (28.7±2.4 mM/mN.s.mm3) and the corresponding purely isometric reference contraction (30.9±2.8 mM/mN.s.mm3). Furthermore, the reduction in absolute ATPase activity per second was significantly correlated with force depression and stiffness depression. These results are in accordance with the idea that force depression following active shortening is primarily caused by a decrease in the proportion of attached cross bridges. Furthermore, these findings, along with previously reported results showing a decrease in ATP consumption per unit of force after active muscle stretching, suggest that the mechanisms involved in the steady state force after active muscle shortening and active muscle lengthening are of distinctly different origin.
Collapse
Affiliation(s)
- V. Joumaa
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - A. Fitzowich
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - W. Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| |
Collapse
|
21
|
Nishikawa K. Eccentric contraction: unraveling mechanisms of force enhancement and energy conservation. ACTA ACUST UNITED AC 2016; 219:189-96. [PMID: 26792330 DOI: 10.1242/jeb.124057] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the past century, physiologists have made steady progress in elucidating the molecular mechanisms of muscle contraction. However, this progress has so far failed to definitively explain the high force and low energy cost of eccentric muscle contraction. Hypotheses that have been proposed to explain increased muscle force during active stretch include cross-bridge mechanisms, sarcomere and half-sarcomere length non-uniformity, and engagement of a structural element upon muscle activation. The available evidence suggests that force enhancement results from an interaction between an elastic element in muscle sarcomeres, which is engaged upon activation, and the cross-bridges, which interact with the elastic elements to regulate their length and stiffness. Similarities between titin-based residual force enhancement in vertebrate muscle and twitchin-based 'catch' in invertebrate muscle suggest evolutionary homology. The winding filament hypothesis suggests plausible molecular mechanisms for effects of both Ca(2+) influx and cross-bridge cycling on titin in active muscle. This hypothesis proposes that the N2A region of titin binds to actin upon Ca(2+) influx, and that the PEVK region of titin winds on the thin filaments during force development because the cross-bridges not only translate but also rotate the thin filaments. Simulations demonstrate that a muscle model based on the winding filament hypothesis can predict residual force enhancement on the descending limb of the length-tension curve in muscles during eccentric contraction. A kinematic model of titin winding based on sarcomere geometry makes testable predictions about titin isoforms in different muscles. Ongoing research is aimed at testing these predictions and elucidating the biochemistry of the underlying protein interactions.
Collapse
Affiliation(s)
- Kiisa Nishikawa
- Northern Arizona University, Department of Biological Sciences and Center for Bioengineering Innovation, Flagstaff, AZ 86011-4165, USA
| |
Collapse
|
22
|
Liu AP. Biophysical Tools for Cellular and Subcellular Mechanical Actuation of Cell Signaling. Biophys J 2016; 111:1112-1118. [PMID: 27456131 DOI: 10.1016/j.bpj.2016.02.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/17/2016] [Accepted: 02/01/2016] [Indexed: 10/24/2022] Open
Abstract
The ability to spatially control cell signaling can help resolve fundamental biological questions. Optogenetic and chemical dimerization techniques along with fluorescent biosensors to report cell signaling activities have enabled researchers to both visualize and perturb biochemistry in living cells. A number of approaches based on mechanical actuation using force-field gradients have emerged as complementary technologies to manipulate cell signaling in real time. This review covers several technologies, including optical, magnetic, and acoustic control of cell signaling and behavior and highlights some studies that have led to novel insights. I will also discuss some future direction on repurposing mechanosensitive channel for mechanical actuation of spatial cell signaling.
Collapse
Affiliation(s)
- Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan; Biophysics Program, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
23
|
Schappacher-Tilp G, Leonard T, Desch G, Herzog W. Computing Average Passive Forces in Sarcomeres in Length-Ramp Simulations. PLoS Comput Biol 2016; 12:e1004904. [PMID: 27276390 PMCID: PMC4898704 DOI: 10.1371/journal.pcbi.1004904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 04/05/2016] [Indexed: 01/12/2023] Open
Abstract
Passive forces in sarcomeres are mainly related to the giant protein titin. Titin’s extensible region consists of spring-like elements acting in series. In skeletal muscles these elements are the PEVK segment, two distinct immunoglobulin (Ig) domain regions (proximal and distal), and a N2A portion. While distal Ig domains are thought to form inextensible end filaments in intact sarcomeres, proximal Ig domains unfold in a force- and time-dependent manner. In length-ramp experiments of single titin strands, sequential unfolding of Ig domains leads to a typical saw-tooth pattern in force-elongation curves which can be simulated by Monte Carlo simulations. In sarcomeres, where more than a thousand titin strands are arranged in parallel, numerous Monte Carlo simulations are required to estimate the resultant force of all titin filaments based on the non-uniform titin elongations. To simplify calculations, the stochastic model of passive forces is often replaced by linear or non-linear deterministic and phenomenological functions. However, new theories of muscle contraction are based on the hypothesized binding of titin to the actin filament upon activation, and thereby on a prominent role of the structural properties of titin. Therefore, these theories necessitate a detailed analysis of titin forces in length-ramp experiments. In our study we present a simple and efficient alternative to Monte Carlo simulations. Based on a structural titin model, we calculate the exact probability distributions of unfolded Ig domains under length-ramp conditions needed for rigorous analysis of expected forces, distribution of unfolding forces, etc. Due to the generality of our model, the approach is applicable to a wide range of stochastic protein unfolding problems. We provide a simple and stable algorithm to determine the exact solution of passive forces in a half sarcomere in length-ramp simulations. The approach is applicable to a wide range of stochastic models of protein unfolding.
Collapse
Affiliation(s)
- Gudrun Schappacher-Tilp
- Department for Mathematics and Computational Sciences, University of Graz, Graz, Austria
- * E-mail:
| | - Timothy Leonard
- Human Performance Laboratory, University of Calgary, Calgary, Canada
| | - Gertrud Desch
- Department for Mathematics and Computational Sciences, University of Graz, Graz, Austria
| | - Walter Herzog
- Human Performance Laboratory, University of Calgary, Calgary, Canada
| |
Collapse
|
24
|
Johnston K, Jinha A, Herzog W. The role of sarcomere length non-uniformities in residual force enhancement of skeletal muscle myofibrils. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150657. [PMID: 27069655 PMCID: PMC4821266 DOI: 10.1098/rsos.150657] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/23/2016] [Indexed: 05/10/2023]
Abstract
The sarcomere length non-uniformity theory (SLNT) is a widely accepted explanation for residual force enhancement (RFE). RFE is the increase in steady-state isometric force following active muscle stretching. The SLNT predicts that active stretching of a muscle causes sarcomere lengths (SL) to become non-uniform, with some sarcomeres stretched beyond actin-myosin filament overlap (popping), causing RFE. Despite being widely known, this theory has never been directly tested. We performed experiments on isolated rabbit muscle myofibrils (n = 12) comparing SL non-uniformities for purely isometric reference contractions (I-state) and contractions following active stretch producing RFE (FE-state). Myofibrils were activated isometrically along the descending limb of the force-length relationship (mean ± 1 standard deviation (SD) = 2.8 ± 0.3 µm sarcomere(-1)). Once the I-state was reached, myofibrils were shortened to an SL on the plateau of the force-length relationship (2.4 µm sarcomere(-1)), and then were actively stretched to the reference length (2.9 ± 0.3 µm sarcomere(-1)). We observed RFE in all myofibrils (39 ± 15%), and saw varying amounts of non-uniformity (1 SD = 0.9 ± 0.5 µm) that was not significantly correlated with the amount of RFE, but through pairwise comparisons was found to be significantly greater than the non-uniformity measured for the I-state (0.7 ± 0.4 µm). Three myofibrils exhibited no increase in non-uniformity. Active stretching was accompanied by sarcomere popping in four myofibrils, and seven had popped sarcomeres in the I-state. These results suggest that, while non-uniformities are present with RFE, they are also present in the I-state. Furthermore, non-uniformity is not associated with the magnitude of RFE, and myofibrils that had no increase in non-uniformity with stretch still showed normal RFE. Therefore, it appears that SL non-uniformity is a normal associate of muscle contraction, but does not contribute to RFE following active stretching of isolated skeletal muscle myofibrils.
Collapse
|
25
|
Leite FS, Minozzo FC, Kalganov A, Cornachione AS, Cheng YS, Leu NA, Han X, Saripalli C, Yates JR, Granzier H, Kashina AS, Rassier DE. Reduced passive force in skeletal muscles lacking protein arginylation. Am J Physiol Cell Physiol 2015; 310:C127-35. [PMID: 26511365 DOI: 10.1152/ajpcell.00269.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/28/2015] [Indexed: 11/22/2022]
Abstract
Arginylation is a posttranslational modification that plays a global role in mammals. Mice lacking the enzyme arginyltransferase in skeletal muscles exhibit reduced contractile forces that have been linked to a reduction in myosin cross-bridge formation. The role of arginylation in passive skeletal myofibril forces has never been investigated. In this study, we used single sarcomere and myofibril measurements and observed that lack of arginylation leads to a pronounced reduction in passive forces in skeletal muscles. Mass spectrometry indicated that skeletal muscle titin, the protein primarily linked to passive force generation, is arginylated on five sites located within the A band, an important area for protein-protein interactions. We propose a mechanism for passive force regulation by arginylation through modulation of protein-protein binding between the titin molecule and the thick filament. Key points are as follows: 1) active and passive forces were decreased in myofibrils and single sarcomeres isolated from muscles lacking arginyl-tRNA-protein transferase (ATE1). 2) Mass spectrometry revealed five sites for arginylation within titin molecules. All sites are located within the A-band portion of titin, an important region for protein-protein interactions. 3) Our data suggest that arginylation of titin is required for proper passive force development in skeletal muscles.
Collapse
Affiliation(s)
- Felipe S Leite
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Fábio C Minozzo
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Albert Kalganov
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Anabelle S Cornachione
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Yu-Shu Cheng
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Nicolae A Leu
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xuemei Han
- The Scripps Research Institute, Department of Chemical Physiology, La Jolla, California
| | - Chandra Saripalli
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona; and
| | - John R Yates
- The Scripps Research Institute, Department of Chemical Physiology, La Jolla, California
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona; and
| | - Anna S Kashina
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada; Departments of Physics and Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Cornachione AS, Leite F, Bagni MA, Rassier DE. The increase in non-cross-bridge forces after stretch of activated striated muscle is related to titin isoforms. Am J Physiol Cell Physiol 2015; 310:C19-26. [PMID: 26405100 DOI: 10.1152/ajpcell.00156.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/18/2015] [Indexed: 02/01/2023]
Abstract
Skeletal muscles present a non-cross-bridge increase in sarcomere stiffness and tension on Ca(2+) activation, referred to as static stiffness and static tension, respectively. It has been hypothesized that this increase in tension is caused by Ca(2+)-dependent changes in the properties of titin molecules. To verify this hypothesis, we investigated the static tension in muscles containing different titin isoforms. Permeabilized myofibrils were isolated from the psoas, soleus, and heart ventricle from the rabbit, and tested in pCa 9.0 and pCa 4.5, before and after extraction of troponin C, thin filaments, and treatment with the actomyosin inhibitor blebbistatin. The myofibrils were tested with stretches of different amplitudes in sarcomere lengths varying between 1.93 and 3.37 μm for the psoas, 2.68 and 4.21 μm for the soleus, and 1.51 and 2.86 μm for the ventricle. Using gel electrophoresis, we confirmed that the three muscles tested have different titin isoforms. The static tension was present in psoas and soleus myofibrils, but not in ventricle myofibrils, and higher in psoas myofibrils than in soleus myofibrils. These results suggest that the increase in the static tension is directly associated with Ca(2+)-dependent change in titin properties and not associated with changes in titin-actin interactions.
Collapse
Affiliation(s)
| | - Felipe Leite
- Department of Kinesiology and Physical Education, McGill McGill University, Montreal, Quebec, Canada; and
| | - Maria Angela Bagni
- Dipartimento di Medicina Sperimentale e Clinica, Scienze Fisiologiche, University of Florence, Florence, Italy
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill McGill University, Montreal, Quebec, Canada; and
| |
Collapse
|
27
|
Measuring the micromechanical properties of embryonic tissues. Methods 2015; 94:120-8. [PMID: 26255132 DOI: 10.1016/j.ymeth.2015.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/21/2015] [Accepted: 08/04/2015] [Indexed: 01/06/2023] Open
Abstract
Local mechanical properties play an important role in directing embryogenesis, both at the cell (differentiation, migration) and tissue level (force transmission, organ formation, morphogenesis). Measuring them is a challenge as embryonic tissues are small (μm to mm) and soft (0.1-10 kPa). We describe here how glass fiber cantilevers can be fabricated, calibrated and used to apply small forces (0.1-10 μN), measure contractile activity and assess the bulk tensile elasticity of embryonic tissue. We outline how pressure (hydrostatic or osmotic) can be applied to embryonic tissue to quantify stiffness anisotropy. These techniques can be assembled at low cost and with a minimal amount of equipment. We then present a protocol to prepare tissue sections for local elasticity and adhesion measurements using the atomic force microscope (AFM). We compare AFM nanoindentation maps of native and formaldehyde fixed embryonic tissue sections and discuss how the local elastic modulus obtained by AFM compares to that obtained with other bulk measurement methods. We illustrate all of the techniques presented on the specific example of the chick embryonic digestive tract, emphasizing technical issues and common pitfalls. The main purpose of this report is to make these micromechanical measurement techniques accessible to a wide community of biologists and biophysicists.
Collapse
|
28
|
Residual force depression in single sarcomeres is abolished by MgADP-induced activation. Sci Rep 2015; 5:10555. [PMID: 26037312 PMCID: PMC4453107 DOI: 10.1038/srep10555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/20/2015] [Indexed: 11/08/2022] Open
Abstract
The mechanisms behind the shortening-induced force depression commonly observed in skeletal muscles remain unclear, but have been associated with sarcomere length non-uniformity and/or crossbridge inhibition. The purpose of this study was twofold: (i) to evaluate if force depression is present in isolated single sarcomeres, a preparation that eliminates sarcomere length non-uniformities and (ii) to evaluate if force depression is inhibited when single sarcomeres are activated with MgADP, which biases crossbridges into a strongly-bound state. Single sarcomeres (n = 16) were isolated from rabbit psoas myofibrils using two micro-needles (one compliant, one rigid), piercing the sarcomere externally adjacent to the Z-lines. The sarcomeres were contracted isometrically and subsequently shortened, in both Ca2+- and MgADP-activating solutions. Shortening in Ca2+-activated samples resulted in a 27.44 ± 9.04% force depression when compared to isometric contractions produced at similar final sarcomere lengths (P < 0.001). There was no force depression in MgADP-activated sarcomeres (force depression = −1.79 ± 9.69%, P = 0.435). These results suggest that force depression is a sarcomeric property, and that is associated with an inhibition of myosin-actin interactions.
Collapse
|
29
|
Poorly understood aspects of striated muscle contraction. BIOMED RESEARCH INTERNATIONAL 2015; 2015:245154. [PMID: 25961006 PMCID: PMC4415482 DOI: 10.1155/2015/245154] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/28/2014] [Indexed: 11/23/2022]
Abstract
Muscle contraction results from cyclic interactions between the contractile proteins myosin and actin, driven by the turnover of adenosine triphosphate (ATP). Despite intense studies, several molecular events in the contraction process are poorly understood, including the relationship between force-generation and phosphate-release in the ATP-turnover. Different aspects of the force-generating transition are reflected in the changes in tension development by muscle cells, myofibrils and single molecules upon changes in temperature, altered phosphate concentration, or length perturbations. It has been notoriously difficult to explain all these events within a given theoretical framework and to unequivocally correlate observed events with the atomic structures of the myosin motor. Other incompletely understood issues include the role of the two heads of myosin II and structural changes in the actin filaments as well as the importance of the three-dimensional order. We here review these issues in relation to controversies regarding basic physiological properties of striated muscle. We also briefly consider actomyosin mutation effects in cardiac and skeletal muscle function and the possibility to treat these defects by drugs.
Collapse
|
30
|
Schappacher-Tilp G, Leonard T, Desch G, Herzog W. A novel three-filament model of force generation in eccentric contraction of skeletal muscles. PLoS One 2015; 10:e0117634. [PMID: 25816319 PMCID: PMC4376863 DOI: 10.1371/journal.pone.0117634] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 12/29/2014] [Indexed: 12/18/2022] Open
Abstract
We propose and examine a three filament model of skeletal muscle force generation, thereby extending classical cross-bridge models by involving titin-actin interaction upon active force production. In regions with optimal actin-myosin overlap, the model does not alter energy and force predictions of cross-bridge models for isometric contractions. However, in contrast to cross-bridge models, the three filament model accurately predicts history-dependent force generation in half sarcomeres for eccentric and concentric contractions, and predicts the activation-dependent forces for stretches beyond actin-myosin filament overlap.
Collapse
Affiliation(s)
| | - Timothy Leonard
- Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada
| | - Gertrud Desch
- Department of Mathematics and Scientific Computing, University of Graz, 8010 Graz, Austria
| | - Walter Herzog
- Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
31
|
Rassier DE, Leite FS, Nocella M, Cornachione AS, Colombini B, Bagni MA. Non-crossbridge forces in activated striated muscles: a titin dependent mechanism of regulation? J Muscle Res Cell Motil 2014; 36:37-45. [PMID: 25421125 DOI: 10.1007/s10974-014-9397-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/29/2014] [Indexed: 11/30/2022]
Abstract
When skeletal muscles are stretched during activation in the absence of myosin-actin interactions, the force increases significantly. The force remains elevated throughout the activation period. The mechanism behind this non-crossbridge force, referred to as static tension, is unknown and generates debate in the literature. It has been suggested that the static tension is caused by Ca(2+)-induced changes in the properties of titin molecules that happens during activation and stretch, but a comprehensive evaluation of such possibility is still lacking. This paper reviews the general characteristics of the static tension, and evaluates the proposed mechanism by which titin may change the force upon stretch. Evidence is presented suggesting that an increase in intracellular Ca(2+) concentration leads to Ca(2+) binding to the PEVK region of titin. Such binding increases titin stiffness, which increases the overall sarcomere stiffness and causes the static tension. If this form of Ca(2+)-induced increase in titin stiffness is confirmed in future studies, it may have large implications for understating of the basic mechanisms of muscle contraction.
Collapse
Affiliation(s)
- Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Canada,
| | | | | | | | | | | |
Collapse
|
32
|
Power GA, Herzog W, Rice CL. Decay of force transients following active stretch is slower in older than young men: support for a structural mechanism contributing to residual force enhancement in old age. J Biomech 2014; 47:3423-7. [PMID: 25242133 DOI: 10.1016/j.jbiomech.2014.08.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/23/2014] [Accepted: 08/30/2014] [Indexed: 11/18/2022]
Abstract
Following active lengthening of muscle, force reaches an isometric steady state above that which would be achieved for a purely isometric contraction at the same muscle length. This fundamental property of muscle, termed "residual force enhancement (RFE)," cannot be predicted by the force-length relationship, and is unexplained by the cross-bridge theory of muscle contraction. Recently, we showed that older adults experience higher RFE than young for the ankle dorsiflexors primarily owing to a greater reliance on passive force enhancement (PFE) and similar RFE for the knee extensors but a greater contribution of PFE to total RFE. Natural adult aging may prove a useful model in exploring mechanisms of RFE which may reside in the dissipation of force transients following stretch. A post-hoc analysis was conducted on previously described RFE experiments in young (~26 years) and old (~77 years) men for the dorsiflexors and knee extensors to fit the force following stretch with a biexponential decay. In both muscle groups the decay half-life of the first exponential was two times slower in the older compared with young men. There were significant associations between PFE and the decay in force, suggesting a greater "non-active" contribution to total RFE across muscles in older compared with young men. The greater "non-active" component of RFE in older adults could be due to structural age-related changes causing increased muscle stiffness during and following stretch.
Collapse
Affiliation(s)
- Geoffrey A Power
- Faculty of Kinesiology, Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada.
| | - Walter Herzog
- Faculty of Kinesiology, Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada
| | - Charles L Rice
- Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, Canada; Department of Anatomy and Cell Biology, The University of Western Ontario, Canada
| |
Collapse
|