1
|
Nakazato I, Arimura SI. Genome editing in angiosperm chloroplasts: targeted DNA double-strand break and base editing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:872-880. [PMID: 39276374 DOI: 10.1111/tpj.17027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
Chloroplasts are organelles that are derived from a photosynthetic bacterium and have their own genome. Genome editing is a recently developing technology that allows for specific modifications of target sequences. The first successful application of genome editing in chloroplasts was reported in 2021, and since then, this research field has been expanding. Although the chloroplast genome of several dicot species can be stably modified by a conventional method, which involves inserting foreign DNAs into the chloroplast genome via homologous recombination, genome editing offers several advantages over this method. In this review, we introduce genome editing methods targeting the chloroplast genome and describe their advantages and limitations. So far, CRISPR/Cas systems are inapplicable for editing the chloroplast genome because guide RNAs, unlike proteins, cannot be efficiently delivered into chloroplasts. Therefore, protein-based enzymes are used to edit the chloroplast genome. These enzymes contain a chloroplast-transit peptide, the DNA-binding domain of transcription activator-like effector nuclease (TALEN), or a catalytic domain that induces DNA modifications. To date, genome editing methods can cause DNA double-strand break or introduce C:G-to-T:A and A:T-to-G:C base edits at or near the target sequence. These methods are expected to contribute to basic research on the chloroplast genome in many species and to be fundamental methods of plant breeding utilizing the chloroplast genome.
Collapse
Affiliation(s)
- Issei Nakazato
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku Tokyo, 113-8657, Japan
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Shin-Ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku Tokyo, 113-8657, Japan
| |
Collapse
|
2
|
Nakazato I, Yamori W, Matsumura H, Qu Y, Okuno M, Tsutsumi N, Arimura SI. Resistance to the herbicide metribuzin conferred to Arabidopsis thaliana by targeted base editing of the chloroplast genome. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39427289 DOI: 10.1111/pbi.14490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/26/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
The chloroplast genome has considerable potential to enhance crop productivity, but it remains underutilized in breeding because it is difficult to modify. This study elucidates the potential of recently developed chloroplast-targeted C-to-T base editors in facilitating the use of the chloroplast genome for crop breeding. The herbicide metribuzin interferes with photosynthesis by binding to the D1 protein of photosystem II, encoded by the chloroplast genome. Naturally occurring D1 mutants with V219I or A251V substitutions are known to have resistance to some herbicides including metribuzin. Here, using the base editors, we introduced these substitutions and showed that the A251V single mutation and the V219 & A251V double mutations conferred significant metribuzin resistance to Arabidopsis thaliana. The V219I & A251V double mutants exhibited increased metribuzin resistance and grew better than the A251V single mutants. Furthermore, the double mutants grew as well as wild-type plants in the absence of metribuzin. The single and double mutants, which are a challenge to obtain through traditional mutagenesis and crossbreeding methods, can be relatively easily generated using C-to-T base editors. In view of the conservation of V219 and A251 across numerous species, C-to-T base editing can potentially confer metribuzin resistance to a wide range of crops. Compared to nuclear genes, chloroplast genes are also less likely to spread into wild populations. Our findings suggest that chloroplast-targeting C-to-T base editors will find many roles in future crop breeding efforts.
Collapse
Affiliation(s)
- Issei Nakazato
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Wataru Yamori
- Institute for Sustainable Agro-Ecosystem Services, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| | - Yuchen Qu
- Institute for Sustainable Agro-Ecosystem Services, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Miki Okuno
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Nobuhiro Tsutsumi
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Sato K, Sasaguri H, Kumita W, Sakuma T, Morioka T, Nagata K, Inoue T, Kurotaki Y, Mihira N, Tagami M, Manabe RI, Ozaki K, Okazaki Y, Yamamoto T, Suematsu M, Saido TC, Sasaki E. Production of a heterozygous exon skipping model of common marmosets using gene-editing technology. Lab Anim (NY) 2024; 53:244-251. [PMID: 39215182 PMCID: PMC11368816 DOI: 10.1038/s41684-024-01424-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Nonhuman primates (NHPs), which are closely related to humans, are useful in biomedical research, and an increasing number of NHP disease models have been reported using gene editing. However, many disease-related genes cause perinatal death when manipulated homozygously by gene editing. In addition, NHP resources, which are limited, should be efficiently used. Here, to address these issues, we developed a method of introducing heterozygous genetic modifications into common marmosets by combining Platinum transcription activator-like effector nuclease (TALEN) and a gene-editing strategy in oocytes. We succeeded in introducing the heterozygous exon 9 deletion mutation in the presenilin 1 gene, which causes familial Alzheimer's disease in humans, using this technology. As a result, we obtained animals with the expected genotypes and confirmed several Alzheimer's disease-related biochemical changes. This study suggests that highly efficient heterozygosity-oriented gene editing is possible using TALEN and oocytes and is an effective method for producing genetically modified animals.
Collapse
Affiliation(s)
- Kenya Sato
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
- Dementia Pathophysiology Collaboration Unit, RIKEN Center for Brain Science, Wako, Japan
| | - Wakako Kumita
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Tetsushi Sakuma
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Tomoe Morioka
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Kenichi Nagata
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Inoue
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Yoko Kurotaki
- Center of Basic Technology in Marmoset, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Naomi Mihira
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Michihira Tagami
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ri-Ichiroh Manabe
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kokoro Ozaki
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yasushi Okazaki
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takashi Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Makoto Suematsu
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
- WPI-Bio2Q Research Center, Keio University, Tokyo, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan.
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan.
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan.
| |
Collapse
|
4
|
Wang J, Kan S, Liao X, Zhou J, Tembrock LR, Daniell H, Jin S, Wu Z. Plant organellar genomes: much done, much more to do. TRENDS IN PLANT SCIENCE 2024; 29:754-769. [PMID: 38220520 DOI: 10.1016/j.tplants.2023.12.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024]
Abstract
Plastids and mitochondria are the only organelles that possess genomes of endosymbiotic origin. In recent decades, advances in sequencing technologies have contributed to a meteoric rise in the number of published organellar genomes, and have revealed greatly divergent evolutionary trajectories. In this review, we quantify the abundance and distribution of sequenced plant organellar genomes across the plant tree of life. We compare numerous genomic features between the two organellar genomes, with an emphasis on evolutionary trajectories, transfers, the current state of organellar genome editing by transcriptional activator-like effector nucleases (TALENs), transcription activator-like effector (TALE)-mediated deaminase, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas), as well as genetic transformation. Finally, we propose future research to understand these different evolutionary trajectories, and genome-editing strategies to promote functional studies and eventually improve organellar genomes.
Collapse
Affiliation(s)
- Jie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6000-6999, Australia
| | - Shenglong Kan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Marine College, Shandong University, Weihai, 264209, China
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jiawei Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6030, USA.
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
5
|
Yambe S, Yoshimoto Y, Ikeda K, Maki K, Takimoto A, Tokuyama A, Higuchi S, Yu X, Uchibe K, Miura S, Watanabe H, Sakuma T, Yamamoto T, Tanimoto K, Kondoh G, Kasahara M, Mizoguchi T, Docheva D, Adachi T, Shukunami C. Sclerostin modulates mineralization degree and stiffness profile in the fibrocartilaginous enthesis for mechanical tissue integrity. Front Cell Dev Biol 2024; 12:1360041. [PMID: 38895158 PMCID: PMC11183276 DOI: 10.3389/fcell.2024.1360041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 06/21/2024] Open
Abstract
Fibrocartilaginous entheses consist of tendons, unmineralized and mineralized fibrocartilage, and subchondral bone, each exhibiting varying stiffness. Here we examined the functional role of sclerostin, expressed in mature mineralized fibrochondrocytes. Following rapid mineralization of unmineralized fibrocartilage and concurrent replacement of epiphyseal hyaline cartilage by bone, unmineralized fibrocartilage reexpanded after a decline in alkaline phosphatase activity at the mineralization front. Sclerostin was co-expressed with osteocalcin at the base of mineralized fibrocartilage adjacent to subchondral bone. In Scx-deficient mice with less mechanical loading due to defects of the Achilles tendon, sclerostin+ fibrochondrocyte count significantly decreased in the defective enthesis where chondrocyte maturation was markedly impaired in both fibrocartilage and hyaline cartilage. Loss of the Sost gene, encoding sclerostin, elevated mineral density in mineralized zones of fibrocartilaginous entheses. Atomic force microscopy analysis revealed increased fibrocartilage stiffness. These lines of evidence suggest that sclerostin in mature mineralized fibrochondrocytes acts as a modulator for mechanical tissue integrity of fibrocartilaginous entheses.
Collapse
Affiliation(s)
- Shinsei Yambe
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Yoshimoto
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazutaka Ikeda
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Orthodontics and Craniofacial Developmental Biology, Applied Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koichiro Maki
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Aki Takimoto
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Shinnosuke Higuchi
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Xinyi Yu
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenta Uchibe
- Department of Maxillofacial Anatomy and Neuroscience, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigenori Miura
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hitomi Watanabe
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Applied Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Gen Kondoh
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Taiji Adachi
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
6
|
Arimura SI, Nakazato I. Genome Editing of Plant Mitochondrial and Chloroplast Genomes. PLANT & CELL PHYSIOLOGY 2024; 65:477-483. [PMID: 38113380 PMCID: PMC11094758 DOI: 10.1093/pcp/pcad162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/16/2023] [Indexed: 12/21/2023]
Abstract
Plastids (including chloroplasts) and mitochondria are remnants of endosymbiotic bacteria, yet they maintain their own genomes, which encode vital components for photosynthesis and respiration, respectively. Organellar genomes have distinctive features, such as being present as multicopies, being mostly inherited maternally, having characteristic genomic structures and undergoing frequent homologous recombination. To date, it has proven to be challenging to modify these genomes. For example, while CRISPR/Cas9 is a widely used system for editing nuclear genes, it has not yet been successfully applied to organellar genomes. Recently, however, precise gene-editing technologies have been successfully applied to organellar genomes. Protein-based enzymes, especially transcription activator-like effector nucleases (TALENs) and artificial enzymes utilizing DNA-binding domains of TALENs (TALEs), have been successfully used to modify these genomes by harnessing organellar-targeting signals. This short review introduces and discusses the use of targeted nucleases and base editors in organellar genomes, their effects and their potential applications in plant science and breeding.
Collapse
Affiliation(s)
- Shin-ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Issei Nakazato
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| |
Collapse
|
7
|
Nicolia A, Scotti N, D'Agostino N, Festa G, Sannino L, Aufiero G, Arimura SI, Cardi T. Mitochondrial DNA editing in potato through mitoTALEN and mitoTALECD: molecular characterization and stability of editing events. PLANT METHODS 2024; 20:4. [PMID: 38183104 PMCID: PMC10768376 DOI: 10.1186/s13007-023-01124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND The aim of this study was to evaluate and characterize the mutations induced by two TALE-based approaches, double-strand break (DSB) induction by the FokI nuclease (mitoTALEN) and targeted base editing by the DddA cytidine deaminase (mitoTALECD), to edit, for the first time, the mitochondrial genome of potato, a vegetatively propagated crop. The two methods were used to knock out the same mitochondrial target sequence (orf125). RESULTS Targeted chondriome deletions of different sizes (236-1066 bp) were induced by mitoTALEN due to DSB repair through ectopic homologous recombination of short direct repeats (11-12 bp) present in the target region. Furthermore, in one case, the induced DSB and subsequent repair resulted in the amplification of an already present substoichiometric molecule showing a 4288 bp deletion spanning the target sequence. With the mitoTALECD approach, both nonsense and missense mutations could be induced by base substitution. The deletions and single nucleotide mutations were either homoplasmic or heteroplasmic. The former were stably inherited in vegetative offspring. CONCLUSIONS Both editing approaches allowed us to obtain plants with precisely modified mitochondrial genomes at high frequency. The use of the same plant genotype and mtDNA region allowed us to compare the two methods for efficiency, accuracy, type of modifications induced and stability after vegetative propagation.
Collapse
Affiliation(s)
- Alessandro Nicolia
- CREA, Research Centre for Vegetable and Ornamental Crops, via Cavalleggeri 25, 84098, Pontecagnano, SA, Italy
| | - Nunzia Scotti
- CNR-IBBR, Institute of Biosciences and BioResources, 80055, Portici, NA, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| | - Giovanna Festa
- CREA, Research Centre for Vegetable and Ornamental Crops, via Cavalleggeri 25, 84098, Pontecagnano, SA, Italy
| | - Lorenza Sannino
- CNR-IBBR, Institute of Biosciences and BioResources, 80055, Portici, NA, Italy
| | - Gaetano Aufiero
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| | - Shin-Ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Teodoro Cardi
- CREA, Research Centre for Vegetable and Ornamental Crops, via Cavalleggeri 25, 84098, Pontecagnano, SA, Italy.
- CNR-IBBR, Institute of Biosciences and BioResources, 80055, Portici, NA, Italy.
| |
Collapse
|
8
|
Yamakawa S, Sasakura Y, Morino Y, Wada H. Detection of TALEN-mediated genome cleavage during the early embryonic stage of the starfish Patiria pectinifera. Dev Dyn 2023; 252:1471-1481. [PMID: 37431812 DOI: 10.1002/dvdy.641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Echinoderms have long been utilized as experimental materials to study the genetic control of developmental processes and their evolution. Among echinoderms, the molecular study of starfish embryos has received considerable attention across research topics such as gene regulatory network evolution and larval regeneration. Recently, experimental techniques to manipulate gene functions have been gradually established in starfish as the feasibility of genome editing methods was reported. However, it is still unclear when these techniques cause genome cleavage during the development of starfish, which is critical to understand the timeframe and applicability of the experiment during early development of starfish. RESULTS We herein reported that gene functions can be analyzed by the genome editing method TALEN in early embryos, such as the blastula of the starfish Patiria pectinifera. We injected the mRNA of TALEN targeting rar, which was previously constructed, into eggs of P. pectinifera and examined the efficiency of genome cleavage through developmental stages from 6 to 48 hours post fertilization. CONCLUSION The results will be key knowledge not only when designing TALEN-based experiments but also when assessing the results.
Collapse
Affiliation(s)
- Shumpei Yamakawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Yoshiaki Morino
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Wada
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
9
|
Nakazato I, Okuno M, Itoh T, Tsutsumi N, Arimura SI. Characterization and development of a plastid genome base editor, ptpTALECD. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1151-1162. [PMID: 37265080 DOI: 10.1111/tpj.16311] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
The modification of photosynthesis-related genes in plastid genomes may improve crop yields. Recently, we reported that a plastid-targeting base editor named ptpTALECD, in which a cytidine deaminase DddA functions as the catalytic domain, can homoplasmically substitute a targeted C to T in plastid genomes of Arabidopsis thaliana. However, some target Cs were not substituted. In addition, although ptpTALECD could substitute Cs on the 3' side of T and A, it was unclear whether it could also substitute Cs on the 3' side of G and C. In this study, we identified the preferential positions of the substituted Cs in ptpTALECD-targeting sequences in the Arabidopsis plastid genome. We also found that ptpTALECD could substitute Cs on the 3' side of all four bases in plastid genomes of Arabidopsis. More recently, a base editor containing an improved version of DddA (DddA11) was reported to substitute Cs more efficiently, and to substitute Cs on the 3' side of more varieties of bases in human mitochondrial genomes than a base editor containing DddA. Here, we also show that ptpTALECD_v2, in which a modified version of DddA11 functions as the catalytic domain, more frequently substituted Cs than ptpTALECD in the Arabidopsis plastid genome. We also found that ptpTALECD_v2 tended to substitute Cs at more positions than ptpTALECD. Our results reveal that ptpTALECD can cause a greater variety of codon changes and amino acid substitutions than previously thought, and that ptpTALECD and ptpTALECD_v2 are useful tools for the targeted base editing of plastid genomes.
Collapse
Affiliation(s)
- Issei Nakazato
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Miki Okuno
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Japan, 67, Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Nobuhiro Tsutsumi
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shin-Ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
10
|
Li KL, Nakashima K, Hisata K, Satoh N. Expression and possible functions of a horizontally transferred glycosyl hydrolase gene, GH6-1, in Ciona embryogenesis. EvoDevo 2023; 14:11. [PMID: 37434168 DOI: 10.1186/s13227-023-00215-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The Tunicata or Urochordata is the only animal group with the ability to synthesize cellulose directly and cellulose is a component of the tunic that covers the entire tunicate body. The genome of Ciona intestinalis type A contains a cellulose synthase gene, CesA, that it acquired via an ancient, horizontal gene transfer. CesA is expressed in embryonic epidermal cells and functions in cellulose production. Ciona CesA is composed of both a glycosyltransferase domain, GT2, and a glycosyl hydrolase domain, GH6, which shows a mutation at a key position and seems functionless. Interestingly, the Ciona genome contains a glycosyl hydrolase gene, GH6-1, in which the GH6 domain seems intact. This suggests expression and possible functions of GH6-1 during Ciona embryogenesis. Is GH6-1 expressed during embryogenesis? If so, in what tissues is the gene expressed? Does GH6-1 serve a function? If so, what is it? Answers to these questions may advance our understanding of evolution of this unique animal group. RESULTS Quantitative reverse transcription PCR and in situ hybridization revealed that GH6-1 is expressed in epidermis of tailbud embryos and in early swimming larvae, a pattern similar to that of CesA. Expression is downregulated at later stages and becomes undetectable in metamorphosed juveniles. The GH6-1 expression level is higher in the anterior-trunk region and caudal-tip regions of late embryos. Single-cell RNA sequencing analysis of the late tailbud stage showed that cells of three clusters with epidermal identity express GH6-1, and that some of them co-express CesA. TALEN-mediated genome editing was used to generate GH6-1 knockout Ciona larvae. Around half of TALEN-electroporated larvae showed abnormal development of adhesive papillae and altered distribution of surface cellulose. In addition, three-fourths of TALEN-electroporated animals failed to complete larval metamorphosis. CONCLUSIONS This study showed that tunicate GH6-1, a gene that originated by horizontal gene transfer of a prokaryote gene, is recruited into the ascidian genome, and that it is expressed and functions in epidermal cells of ascidian embryos. Although further research is required, this observation demonstrates that both CesA and GH6-1 are involved in tunicate cellulose metabolism, impacting tunicate morphology and ecology.
Collapse
Affiliation(s)
- Kun-Lung Li
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei City, 115, Taiwan.
| | - Keisuke Nakashima
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| |
Collapse
|
11
|
Jin B, Ishikawa T, Kashima M, Komura R, Hirata H, Okada T, Mori K. Activation of XBP1 but not ATF6α rescues heart failure induced by persistent ER stress in medaka fish. Life Sci Alliance 2023; 6:e202201771. [PMID: 37160311 PMCID: PMC10172766 DOI: 10.26508/lsa.202201771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023] Open
Abstract
The unfolded protein response is triggered in vertebrates by ubiquitously expressed IRE1α/β (although IRE1β is gut-specific in mice), PERK, and ATF6α/β, transmembrane-type sensor proteins in the ER, to cope with ER stress, the accumulation of unfolded and misfolded proteins in the ER. Here, we burdened medaka fish, a vertebrate model organism, with ER stress persistently from fertilization by knocking out the AXER gene encoding an ATP/ADP exchanger in the ER membrane, leading to decreased ATP concentration-mediated impairment of the activity of Hsp70- and Hsp90-type molecular chaperones in the ER lumen. ER stress and apoptosis were evoked from 4 and 6 dpf, respectively, leading to the death of all AXER-KO medaka by 12 dpf because of heart failure (medaka hatch at 7 dpf). Importantly, constitutive activation of IRE1α signaling-but not ATF6α signaling-rescued this heart failure and allowed AXER-KO medaka to survive 3 d longer, likely because of XBP1-mediated transcriptional induction of ER-associated degradation components. Thus, activation of a specific pathway of the unfolded protein response can cure defects in a particular organ.
Collapse
Affiliation(s)
- Byungseok Jin
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tokiro Ishikawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Makoto Kashima
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Rei Komura
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Hiromi Hirata
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Tetsuya Okada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Tahara M, Higurashi N, Hata J, Nishikawa M, Ito K, Hirose S, Kaneko T, Mashimo T, Sakuma T, Yamamoto T, Okano HJ. Developmental changes in brain activity of heterozygous Scn1a knockout rats. Front Neurol 2023; 14:1125089. [PMID: 36998780 PMCID: PMC10043303 DOI: 10.3389/fneur.2023.1125089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/20/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionDravet syndrome (DS) is an infantile-onset developmental and epileptic encephalopathy characterized by an age-dependent evolution of drug-resistant seizures and poor developmental outcomes. Functional impairment of gamma-aminobutyric acid (GABA)ergic interneurons due to loss-of-function mutation of SCN1A is currently considered the main pathogenesis. In this study, to better understand the age-dependent changes in the pathogenesis of DS, we characterized the activity of different brain regions in Scn1a knockout rats at each developmental stage.MethodsWe established an Scn1a knockout rat model and examined brain activity from postnatal day (P) 15 to 38 using a manganese-enhanced magnetic resonance imaging technique (MEMRI).ResultsScn1a heterozygous knockout (Scn1a+/−) rats showed a reduced expression of voltage-gated sodium channel alpha subunit 1 protein in the brain and heat-induced seizures. Neural activity was significantly higher in widespread brain regions of Scn1a+/− rats than in wild-type rats from P19 to P22, but this difference did not persist thereafter. Bumetanide, a Na+-K+-2Cl− cotransporter 1 inhibitor, mitigated hyperactivity to the wild-type level, although no change was observed in the fourth postnatal week. Bumetanide also increased heat-induced seizure thresholds of Scn1a+/− rats at P21.ConclusionsIn Scn1a+/− rats, neural activity in widespread brain regions increased during the third postnatal week, corresponding to approximately 6 months of age in humans, when seizures most commonly develop in DS. In addition to impairment of GABAergic interneurons, the effects of bumetanide suggest a possible contribution of immature type A gamma-aminobutyric acid receptor signaling to transient hyperactivity and seizure susceptibility during the early stage of DS. This hypothesis should be addressed in the future. MEMRI is a potential technique for visualizing changes in basal brain activity in developmental and epileptic encephalopathies.
Collapse
Affiliation(s)
- Mayu Tahara
- Department of Pediatrics, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Norimichi Higurashi
- Department of Pediatrics, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- *Correspondence: Norimichi Higurashi
| | - Junichi Hata
- Division of Regenerative Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa-ku, Tokyo, Japan
| | - Masako Nishikawa
- Clinical Research Support Center, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Ken Ito
- Department of Pediatrics, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Shinichi Hirose
- General Medical Research Center, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Takehito Kaneko
- Division of Fundamental and Applied Sciences, Graduate School of Science and Engineering, Iwate University, Morioka, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Hirotaka James Okano
| |
Collapse
|
13
|
Ezaki R, Sakuma T, Kodama D, Sasahara R, Shiraogawa T, Ichikawa K, Matsuzaki M, Handa A, Yamamoto T, Horiuchi H. Transcription activator-like effector nuclease-mediated deletion safely eliminates the major egg allergen ovomucoid in chickens. Food Chem Toxicol 2023; 175:113703. [PMID: 36889429 DOI: 10.1016/j.fct.2023.113703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/15/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Among the major egg allergens, ovomucoid (OVM) is very stable against heat and digestive enzymes, making it difficult to remove physiochemically and inactivate allergens. However, recent genome editing technology has made it possible to generate OVM-knockout chicken eggs. To use this OVM-knockout chicken egg as food, it is important to evaluate its safety as food. Therefore, in this study, we examined the presence or absence of mutant protein expression, vector sequence insertion, and off-target effects in chickens knocked out with OVM by platinum TALENs. The eggs laid by homozygous OVM-knockout hens showed no evident abnormalities, and immunoblotting showed that the albumen contained neither the mature OVM nor the OVM truncated variant. Whole genome sequencing (WGS) revealed that the potential TALEN-induced off-target effects in OVM-knockout chickens were localized in the intergenic and intron regions. The WGS information confirmed that plasmid vectors used for genome editing were only transiently present and did not integrate into the genome of edited chickens. These results indicate the importance of safety evaluation and reveal that the eggs laid by this OVM knockout chicken solve the allergy problem in food and vaccines.
Collapse
Affiliation(s)
- Ryo Ezaki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
| | - Tetsushi Sakuma
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan; Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Daisuke Kodama
- R&D Division, Institute of Technology Solution, Kewpie Corporation, Sengawa Kewport, Chofu, Tokyo, Japan
| | - Ryou Sasahara
- R&D Division, Institute of Technology Solution, Kewpie Corporation, Sengawa Kewport, Chofu, Tokyo, Japan
| | - Taichi Shiraogawa
- R&D Division, Institute of Technology Solution, Kewpie Corporation, Sengawa Kewport, Chofu, Tokyo, Japan
| | - Kennosuke Ichikawa
- Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Mei Matsuzaki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Akihiro Handa
- Division of Life Science, School of Science and Engineering, Tokyo Denki University, Saitama, Japan
| | - Takashi Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan; Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Hiroyuki Horiuchi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan; Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
14
|
Ohga H, Shibata K, Sakanoue R, Ogawa T, Kitano H, Kai S, Ohta K, Nagano N, Nagasako T, Uchida S, Sakuma T, Yamamoto T, Kim S, Tashiro K, Kuhara S, Gen K, Fujiwara A, Kazeto Y, Kobayashi T, Matsuyama M. Development of a chub mackerel with less-aggressive fry stage by genome editing of arginine vasotocin receptor V1a2. Sci Rep 2023; 13:3190. [PMID: 36823281 PMCID: PMC9950132 DOI: 10.1038/s41598-023-30259-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Genome editing is a technology that can remarkably accelerate crop and animal breeding via artificial induction of desired traits with high accuracy. This study aimed to develop a chub mackerel variety with reduced aggression using an experimental system that enables efficient egg collection and genome editing. Sexual maturation and control of spawning season and time were technologically facilitated by controlling the photoperiod and water temperature of the rearing tank. In addition, appropriate low-temperature treatment conditions for delaying cleavage, shape of the glass capillary, and injection site were examined in detail in order to develop an efficient and robust microinjection system for the study. An arginine vasotocin receptor V1a2 (V1a2) knockout (KO) strain of chub mackerel was developed in order to reduce the frequency of cannibalistic behavior at the fry stage. Video data analysis using bioimage informatics quantified the frequency of aggressive behavior, indicating a significant 46% reduction (P = 0.0229) in the frequency of cannibalistic behavior than in wild type. Furthermore, in the V1a2 KO strain, the frequency of collisions with the wall and oxygen consumption also decreased. Overall, the manageable and calm phenotype reported here can potentially contribute to the development of a stable and sustainable marine product.
Collapse
Affiliation(s)
- Hirofumi Ohga
- grid.177174.30000 0001 2242 4849Aqua-Bioresource Innovation Center (ABRIC) Karatsu Satellite, Faculty of Agriculture, Kyushu University, Saga, 847-0132 Japan
| | - Koki Shibata
- grid.177174.30000 0001 2242 4849Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Ryo Sakanoue
- grid.177174.30000 0001 2242 4849Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Takuma Ogawa
- grid.177174.30000 0001 2242 4849Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Hajime Kitano
- grid.410851.90000 0004 1764 1824Fishery Third Group, Marine Fisheries Research and Development Center, Japan Fisheries Research and Education Agency (FRA), Kanagawa, 221-8529 Japan
| | - Satoshi Kai
- grid.177174.30000 0001 2242 4849Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Kohei Ohta
- grid.177174.30000 0001 2242 4849Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Naoki Nagano
- grid.410849.00000 0001 0657 3887Laboratory of Aquaculture, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192 Japan
| | - Tomoya Nagasako
- grid.177174.30000 0001 2242 4849Human Interface Laboratory, Factory of Information Science and Electrical Engineering, Kyushu University, Fukuoka, 819-0395 Japan
| | - Seiichi Uchida
- grid.177174.30000 0001 2242 4849Human Interface Laboratory, Factory of Information Science and Electrical Engineering, Kyushu University, Fukuoka, 819-0395 Japan
| | - Tetsushi Sakuma
- grid.257022.00000 0000 8711 3200Molecular Genetics Laboratory, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526 Japan
| | - Takashi Yamamoto
- grid.257022.00000 0000 8711 3200Molecular Genetics Laboratory, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526 Japan
| | - Sangwan Kim
- grid.177174.30000 0001 2242 4849Laboratory of Molecular Gene Technics, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581 Japan
| | - Kosuke Tashiro
- grid.177174.30000 0001 2242 4849Laboratory of Molecular Gene Technics, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581 Japan
| | - Satoru Kuhara
- grid.177174.30000 0001 2242 4849Laboratory of Molecular Gene Technics, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581 Japan
| | - Koichiro Gen
- Planning and Coordination Department, Fisheries Technology Institute, FRA, Nagasaki, 851-2213 Japan
| | - Atushi Fujiwara
- grid.410851.90000 0004 1764 1824Aquatic Breeding Division, Aquaculture Research Department, Fisheries Technology Institute, FRA, Mie, 516-0193 Japan
| | - Yukinori Kazeto
- Fisheries Technology Institute, Minamiizu Field Station, FRA, Shizuoka, 415-0156 Japan
| | - Takanori Kobayashi
- grid.410851.90000 0004 1764 1824Aquatic Breeding Division, Aquaculture Research Department, Fisheries Technology Institute, FRA, Kanagawa, 236-8648 Japan
| | - Michiya Matsuyama
- ABRIC, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
15
|
Abstract
Transcription activator-like effector (TALE) nuclease (TALEN) is the second-generation genome editing tool consisting of TALE protein containing customizable DNA-binding repeats and nuclease domain of FokI enzyme. Each DNA-binding repeat recognizes one base of double-strand DNA, and functional TALEN can be created by a simple modular assembly of these repeats. To easily and efficiently assemble the highly repetitive DNA-binding repeat arrays, various construction systems such as Golden Gate assembly, serial ligation, and ligation-independent cloning have been reported. In this chapter, we summarize the updated situation of these systems and publicly available reagents and protocols, enabling optimal selection of best suited systems for every researcher who wants to utilize TALENs in various research fields.
Collapse
Affiliation(s)
- Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
| |
Collapse
|
16
|
Improved Genome Editing in the Ascidian Ciona with CRISPR/Cas9 and TALEN. Methods Mol Biol 2023; 2637:375-388. [PMID: 36773161 DOI: 10.1007/978-1-0716-3016-7_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The ascidian Ciona intestinalis type A (or Ciona robusta) is an important organism for elucidating the mechanisms that make the chordate body plan. CRISPR/Cas9 and TAL effector nuclease (TALEN) are widely used to quickly address genetic functions in Ciona. Our previously reported method of CRISPR/Cas9-mediated mutagenesis in this animal has inferior mutation rates compared to those of TALENs. We here describe an updated way to effectively mutate genes with CRISPR/Cas9 in Ciona. Although the construction of TALENs is much more laborious than that of CRISPR/Cas9, this technique is useful for tissue-specific knockouts that are not easy even by the optimized CRISPR/Cas9 method.
Collapse
|
17
|
Wani AK, Akhtar N, Singh R, Prakash A, Raza SHA, Cavalu S, Chopra C, Madkour M, Elolimy A, Hashem NM. Genome centric engineering using ZFNs, TALENs and CRISPR-Cas9 systems for trait improvement and disease control in Animals. Vet Res Commun 2023; 47:1-16. [PMID: 35781172 DOI: 10.1007/s11259-022-09967-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023]
Abstract
Livestock is an essential life commodity in modern agriculture involving breeding and maintenance. The farming practices have evolved mainly over the last century for commercial outputs, animal welfare, environment friendliness, and public health. Modifying genetic makeup of livestock has been proposed as an effective tool to create farmed animals with characteristics meeting modern farming system goals. The first technique used to produce transgenic farmed animals resulted in random transgene insertion and a low gene transfection rate. Therefore, genome manipulation technologies have been developed to enable efficient gene targeting with a higher accuracy and gene stability. Genome editing (GE) with engineered nucleases-Zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) regulates the targeted genetic alterations to facilitate multiple genomic modifications through protein-DNA binding. The application of genome editors indicates usefulness in reproduction, animal models, transgenic animals, and cell lines. Recently, CRISPR/Cas system, an RNA-dependent genome editing tool (GET), is considered one of the most advanced and precise GE techniques for on-target modifications in the mammalian genome by mediating knock-in (KI) and knock-out (KO) of several genes. Lately, CRISPR/Cas9 tool has become the method of choice for genome alterations in livestock species due to its efficiency and specificity. The aim of this review is to discuss the evolution of engineered nucleases and GETs as a powerful tool for genome manipulation with special emphasis on its applications in improving economic traits and conferring resistance to infectious diseases of animals used for food production, by highlighting the recent trends for maintaining sustainable livestock production.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, 120 Mason Farm Road, CB# 7260, 3093 Genetic Medicine, Chapel Hill, NC, 27599-2760, USA
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P -ta 1Decembrie 10, 410073, Oradea, Romania
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Mahmoud Madkour
- Animal Production Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Ahmed Elolimy
- Animal Production Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Nesrein M Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
| |
Collapse
|
18
|
Yamakawa S, Hayashi Y, Kako K, Sasakura Y, Morino Y, Wada H. Mechanism underlying retinoic acid-dependent metamorphosis in the starfish. Dev Biol 2022; 492:119-125. [DOI: 10.1016/j.ydbio.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/05/2022] [Accepted: 10/07/2022] [Indexed: 11/03/2022]
|
19
|
Construction of a Versatile, Programmable RNA-Binding Protein Using Designer PPR Proteins and Its Application for Splicing Control in Mammalian Cells. Cells 2022; 11:cells11223529. [PMID: 36428958 PMCID: PMC9688318 DOI: 10.3390/cells11223529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
RNAs play many essential roles in gene expression and are involved in various human diseases. Although genome editing technologies have been established, the engineering of sequence-specific RNA-binding proteins that manipulate particular cellular RNA molecules is immature, in contrast to nucleotide-based RNA manipulation technology, such as siRNA- and RNA-targeting CRISPR/Cas. Here, we demonstrate a versatile RNA manipulation technology using pentatricopeptide-repeat (PPR)-motif-containing proteins. First, we developed a rapid construction and evaluation method for PPR-based designer sequence-specific RNA-binding proteins. This system has enabled the steady construction of dozens of functional designer PPR proteins targeting long 18 nt RNA, which targets a single specific RNA in the mammalian transcriptome. Furthermore, the cellular functionality of the designer PPR proteins was first demonstrated by the control of alternative splicing of either a reporter gene or an endogenous CHK1 mRNA. Our results present a versatile protein-based RNA manipulation technology using PPR proteins that facilitates the understanding of unknown RNA functions and the creation of gene circuits and has potential for use in future therapeutics.
Collapse
|
20
|
Yamagishi M, Huang T, Hozumi A, Onuma TA, Sasakura Y, Ogasawara M. Differentiation of endostyle cells by Nkx2-1 and FoxE in the ascidian Ciona intestinalis type A: insights into shared gene regulation in glandular- and thyroid-equivalent elements of the chordate endostyle. Cell Tissue Res 2022; 390:189-205. [PMID: 36048302 DOI: 10.1007/s00441-022-03679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
Due to similarities in iodine concentrations and peroxidase activities, the thyroid in vertebrates is considered to originate from the endostyle of invertebrate chordates even though it is a glandular (mucus-producing) organ for aquatic suspension feeding. Among chordates with an endostyle, urochordates are useful evolutionary research models for the study of vertebrate traits. The ascidian Ciona intestinalis forms an endostyle with specific components of glandular- and thyroid-related elements, and molecular markers have been identified for these components. Since we previously examined a simple endostyle in the larvacean Oikopleura dioica, the expression of the thyroid-related transcription factor genes, Ciona Nkx2-1 and FoxE, was perturbed by TALEN-mediated gene knockout in the present study to elucidate the shared and/or divergent features of a complex ascidian endostyle. The knockout of Ciona Nkx2-1 and FoxE exerted different effects on the morphology of the developing endostyle. The knockout of Nkx2-1 eliminated the expression of both glandular and thyroidal differentiation marker genes, e.g., vWFL1, vWFL2, CiEnds1, TPO, and Duox, while that of FoxE eliminated the expression of the differentiation marker genes, TPO and CiEnds1. The supporting element-related expression of Pax2/5/8a, Pax2/5/8b, FoxQ1, and β-tubulin persisted in the hypoplastic endostyles of Nkx2-1- and FoxE-knockout juveniles. Although the gene regulation of ascidian-specific CiEnds1 remains unclear, these results provide insights into the evolution of the vertebrate thyroid as well as the urochordate endostyle.
Collapse
Affiliation(s)
- Masayuki Yamagishi
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Taoruo Huang
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Akiko Hozumi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima-shi, Kagoshima, 890-0065, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Michio Ogasawara
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| |
Collapse
|
21
|
Maliga P. Engineering the plastid and mitochondrial genomes of flowering plants. NATURE PLANTS 2022; 8:996-1006. [PMID: 36038655 DOI: 10.1038/s41477-022-01227-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Engineering the plastid genome based on homologous recombination is well developed in a few model species. Homologous recombination is also the rule in mitochondria, but transformation of the mitochondrial genome has not been realized in the absence of selective markers. The application of transcription activator-like (TAL) effector-based tools brought about a dramatic change because they can be deployed from nuclear genes and targeted to plastids or mitochondria by an N-terminal targeting sequence. Recognition of the target site in the organellar genomes is ensured by the modular assembly of TALE repeats. In this paper, I review the applications of TAL effector nucleases and TAL effector cytidine deaminases for gene deletion, base editing and mutagenesis in plastids and mitochondria. I also review emerging technologies such as post-transcriptional RNA modification to regulate gene expression, Agrobacterium- and nanoparticle-mediated organellar genome transformation, and self-replicating organellar vectors as production platforms.
Collapse
Affiliation(s)
- Pal Maliga
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, USA.
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
22
|
Sakamoto A, Hozumi A, Shiraishi A, Satake H, Horie T, Sasakura Y. The
TRP
channel
PKD2
is involved in sensing the mechanical stimulus of adhesion for initiating metamorphosis in the chordate
Ciona. Dev Growth Differ 2022; 64:395-408. [DOI: 10.1111/dgd.12801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Aya Sakamoto
- Shimoda Marine Research Center University of Tsukuba, Shimoda Shizuoka Japan
| | - Akiko Hozumi
- Shimoda Marine Research Center University of Tsukuba, Shimoda Shizuoka Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences Kyoto Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences Kyoto Japan
| | - Takeo Horie
- Shimoda Marine Research Center University of Tsukuba, Shimoda Shizuoka Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center University of Tsukuba, Shimoda Shizuoka Japan
| |
Collapse
|
23
|
Targeted base editing in the mitochondrial genome of Arabidopsis thaliana. Proc Natl Acad Sci U S A 2022; 119:e2121177119. [PMID: 35561225 DOI: 10.1073/pnas.2121177119] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceThe mitochondrial genomes of land plants encode genes for cellular energy production and agriculturally important traits, but modification of the genomes is still difficult. Targeted base editing is one of the best ways to modify genes and intergenic regions and thus understand their functions, without drastically changing genome structure. In this study, we succeeded in creating plantlets of the model plant Arabidopsis thaliana, in which all of the many copies of the mitochondrial genomes in each cell had a targeted C:G base pair converted to a T:A pair. Introduced mutations were stably inherited by the next generation. This method will help to unravel the mysteries of plant mitochondrial genomes and may also serve as a basis for increasing crop yields.
Collapse
|
24
|
Establishment of CRFK cells for vaccine production by inactivating endogenous retrovirus with TALEN technology. Sci Rep 2022; 12:6641. [PMID: 35477976 PMCID: PMC9046391 DOI: 10.1038/s41598-022-10497-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
Endogenous retroviruses (ERVs) are retroviral sequences present in the host genomes. Although most ERVs are inactivated, some are produced as replication-competent viruses from host cells. We previously reported that several live-attenuated vaccines for companion animals prepared using the Crandell-Rees feline kidney (CRFK) cell line were contaminated with a replication-competent feline ERV termed RD-114 virus. We also found that the infectious RD-114 virus can be generated by recombination between multiple RD-114 virus-related proviruses (RDRSs) in CRFK cells. In this study, we knocked out RDRS env genes using the genome-editing tool TAL Effector Nuclease (TALEN) to reduce the risk of contamination by infectious ERVs in vaccine products. As a result, we succeeded in establishing RDRS knockout CRFK cells (RDKO_CRFK cells) that do not produce infectious RD-114 virus. The growth kinetics of feline herpesvirus type 1, calicivirus, and panleukopenia virus in RDKO_CRFK cells differed from those in parental cells, but all of them showed high titers exceeding 107 TCID50/mL. Infectious RD-114 virus was undetectable in the viral stocks propagated in RDKO_CRFK cells. This study suggested that RDRS env gene-knockout CRFK cells will be useful as a cell line for the manufacture of live-attenuated vaccines or biological substances with no risk of contamination with infectious ERV.
Collapse
|
25
|
Genome editing with removable TALEN vectors harboring a yeast centromere and autonomous replication sequence in oleaginous microalga. Sci Rep 2022; 12:2480. [PMID: 35169205 PMCID: PMC8847555 DOI: 10.1038/s41598-022-06495-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Algal lipids are expected to become a basis for sustainable fuels because of the highly efficient lipid production by photosynthesis accompanied by carbon dioxide assimilation. Molecular breeding of microalgae has been studied to improve algal lipid production, but the resultant gene-modified algae containing transgenes are rarely used for outdoor culture because the use of genetically modified organisms (GMOs) is strictly restricted under biocontainment regulations. Recently, it was reported that plasmids containing yeast centromere and autonomous replication sequence (CEN/ARS) behaved as episomes in Nannochloropsis species. We previously reported that the Platinum TALEN (PtTALEN) system exhibited high activity in Nannochloropsis oceanica. Therefore, we attempted to develop a genome editing system in which the expression vectors for PtTALEN can be removed from host cells after introduction of mutations. Using all-in-one PtTALEN plasmids containing CEN/ARS, targeted mutations and removal of all-in-one vectors were observed in N. oceanica, suggesting that our all-in-one PtTALEN vectors enable the construction of mutated N. oceanica without any transgenes. This system will be a feasible method for constructing non-GMO high-performance algae.
Collapse
|
26
|
Tsuboi Y, Sakuma T, Yamamoto T, Horiuchi H, Takahashi F, Igarashi K, Hagihara H, Takimura Y. OUP accepted manuscript. FEMS Microbiol Lett 2022; 369:6524178. [PMID: 35137045 PMCID: PMC8863565 DOI: 10.1093/femsle/fnac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/11/2021] [Accepted: 02/04/2022] [Indexed: 12/02/2022] Open
Abstract
The Mucorales fungal genus Rhizopus is used for the industrial production of organic acids, enzymes and fermented foods. The metabolic engineering efficiency of Rhizopus could be improved using gene manipulation; however, exogenous DNA rarely integrates into the host genome. Consequently, a genetic tool for Mucorales fungi needs to be developed. Recently, programmable nucleases that generate DNA double-strand breaks (DSBs) at specific genomic loci have been used for genome editing in various organisms. In this study, we examined gene disruption in Rhizopus oryzae using transcription activator-like effector nucleases (TALENs), with and without exonuclease overexpression. TALENs with an overexpressing exonuclease induced DSBs, followed by target site deletions. Although DSBs are repaired mainly by nonhomologous end joining in most organisms, our results suggested that in R. oryzae microhomology-mediated end joining was the major DSB repair system. Our gene manipulation method using TALENs coupled with exonuclease overexpression contributes to basic scientific knowledge and the metabolic engineering of Rhizopus.
Collapse
Affiliation(s)
- Yuichi Tsuboi
- Corresponding author: Biological Science Laboratories, KAO Corporation, 1334 Minato, Wakayama, Wakayama 640-8580, Japan. Tel: +81-70-3297-1291; Fax: +81-73-426-5027; E-mail:
| | | | - Takashi Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Fumikazu Takahashi
- Biological Science Laboratories, KAO Corporation, 1334 Minato, Wakayama, Wakayama 640-8580, Japan
| | - Kazuaki Igarashi
- Biological Science Laboratories, KAO Corporation, 1334 Minato, Wakayama, Wakayama 640-8580, Japan
| | - Hiroshi Hagihara
- Biological Science Laboratories, KAO Corporation, 1334 Minato, Wakayama, Wakayama 640-8580, Japan
| | - Yasushi Takimura
- Biological Science Laboratories, KAO Corporation, 1334 Minato, Wakayama, Wakayama 640-8580, Japan
| |
Collapse
|
27
|
TALEN-Mediated Gene Editing of slc24a5 (Solute Carrier Family 24, Member 5) in Kawakawa, Euthynnus affinis. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9121378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transcription activator-like effector (TALE) nucleases (TALENs) mediated gene editing methods are becoming popular and have revealed the staggering complexity of genome control during development. Here, we present a simple and efficient gene knockout using TALENs in kawakawa, Euthynnus affinis, using slc24a5. We examined slc24a5 gene expression and functional differences between two TALENs that hold the TALE scaffolds, +153/+47 and +136/+63 and target slc24a5. Developmental changes in slc24a5 transcripts were seen in early-stage embryos by real-time PCR; slc24a5 expression was first detected 48 h post fertilization (hpf), which increased dramatically at 72 hpf. Four TALENs, 47- and 63-type of two different target loci (A and B), respectively, were constructed using Platinum TALEN and evaluated in vitro by a single-strand annealing (SSA) assay. TALEN activities were further evaluated in vivo by injecting TALEN mRNAs in the two-cell stage of the zygote. Most of the TALEN-induced mutants showed mosaic patterns in the retinal pigment epithelium (RPE) and fewer melanin pigments on the body at 72 hpf and later when compared to the control, implying the gene’s association with melanin pigment formation. A heteroduplex mobility assay (HMA) and the genome sequence further confirmed the TALEN-induced mutations of substitution, insertion, and deletion at an endogenous locus.
Collapse
|
28
|
Yamazaki A, Yamakawa S, Morino Y, Sasakura Y, Wada H. Gene regulation of adult skeletogenesis in starfish and modifications during gene network co-option. Sci Rep 2021; 11:20111. [PMID: 34635691 PMCID: PMC8505446 DOI: 10.1038/s41598-021-99521-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
The larval skeleton of the echinoderm is believed to have been acquired through co-option of a pre-existing gene regulatory network (GRN); that is, the mechanism for adult skeleton formation in the echinoderm was deployed in early embryogenesis during echinoderm diversification. To explore the evolutionary changes that occurred during co-option, we examined the mechanism for adult skeletogenesis using the starfish Patiria pectinifera. Expression patterns of skeletogenesis-related genes (vegf, vegfr, ets1/2, erg, alx1, ca1, and clect) suggest that adult skeletogenic cells develop from the posterior coelom after the start of feeding. Treatment with inhibitors and gene knockout using transcription activator-like effector nucleases (TALENs) suggest that the feeding-nutrient sensing pathway activates Vegf signaling via target of rapamycin (TOR) activity, leading to the activation of skeletogenic regulatory genes in starfish. In the larval skeletogenesis of sea urchins, the homeobox gene pmar1 activates skeletogenic regulatory genes, but in starfish, localized expression of the pmar1-related genes phbA and phbB was not detected during the adult skeleton formation stage. Based on these data, we provide a model for the adult skeletogenic GRN in the echinoderm and propose that the upstream regulatory system changed from the feeding-TOR-Vegf pathway to a homeobox gene-system during co-option of the skeletogenic GRN.
Collapse
Affiliation(s)
- Atsuko Yamazaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Shumpei Yamakawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yoshiaki Morino
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan
| | - Hiroshi Wada
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
29
|
Arimura SI. MitoTALENs: A Method for Targeted Gene Disruption in Plant Mitochondrial Genomes. Methods Mol Biol 2021; 2363:335-340. [PMID: 34545502 DOI: 10.1007/978-1-0716-1653-6_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Modification of plant mitochondrial genomes is still a difficult task, especially in multicellular plants. Transcription activator-like effector nucleases with a mitochondrial localization signal (mitoTALENs) can cut out a desired sequence from the mitochondrial genome in plants. Although vector construction of mitoTALENs is complicated, the modification efficiency is high enough to achieve homoplasmy of multicopy mitochondrial genomes. Here I describe how to design mitoTALENs to select a target, construct a vector, and select the mitochondrial transformants.
Collapse
Affiliation(s)
- Shin-Ichi Arimura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
30
|
Omukai S, Arimura SI, Toriyama K, Kazama T. Disruption of mitochondrial open reading frame 352 partially restores pollen development in cytoplasmic male sterile rice. PLANT PHYSIOLOGY 2021; 187:236-246. [PMID: 34015134 PMCID: PMC8418389 DOI: 10.1093/plphys/kiab236] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/01/2021] [Indexed: 05/20/2023]
Abstract
Plant mitochondrial genomes sometimes carry cytoplasmic male sterility (CMS)-associated genes. These genes have been harnessed in various crops to produce high-yielding F1 hybrid seeds. The gene open reading frame 352 (orf352) was reported to be an RT102-type CMS gene in rice (Oryza sativa), although the mechanism underlying its role in CMS is unknown. Here, we employed mitochondrion-targeted transcription activator-like effector nucleases (mitoTALENs) to knockout orf352 from the mitochondrial genome in the CMS rice RT102A. We isolated 18 independent transformation events in RT102A that resulted in genome editing of orf352, including its complete removal from the mitochondrial genome in several plants. Sequence analysis around the mitoTALEN target sites revealed their induced double-strand breaks were repaired via homologous recombination. Near the 5'-target site, repair involved sequences identical to orf284, while repair of the 3'-target site yielded various new sequences that generated chimeric genes consisting of orf352 fragments. Plants with a chimeric mitochondrial gene encoding amino acids 179-352 of ORF352 exhibited the same shrunken pollen grain phenotype as RT102A, whereas plants either lacking orf352 or harboring a chimeric gene encoding amino acids 211-352 of ORF352 exhibited partial rescue of pollen viability and germination, although these plants failed to set seed. These results demonstrated that disruption of orf352 partially restored pollen development, indicating that amino acids 179-210 from ORF352 may contribute to pollen abortion.
Collapse
Affiliation(s)
- Shiho Omukai
- Laboratory of Environmental Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
| | - Shin-ich Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyou-ku, Tokyo 113-8657, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Kinya Toriyama
- Laboratory of Environmental Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
| | - Tomohiko Kazama
- Faculty of Agriculture, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
- Author for communication:
| |
Collapse
|
31
|
Fujimoto T, Nishimura T. Chromosome Set Manipulation and Genome Manipulation in Aquaculture. J JPN SOC FOOD SCI 2021. [DOI: 10.3136/nskkk.68.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Nakazato I, Okuno M, Yamamoto H, Tamura Y, Itoh T, Shikanai T, Takanashi H, Tsutsumi N, Arimura SI. Targeted base editing in the plastid genome of Arabidopsis thaliana. NATURE PLANTS 2021; 7:906-913. [PMID: 34211131 PMCID: PMC8289735 DOI: 10.1038/s41477-021-00954-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/26/2021] [Indexed: 05/17/2023]
Abstract
Bacterial cytidine deaminase fused to the DNA binding domains of transcription activator-like effector nucleases was recently reported to transiently substitute a targeted C to a T in mitochondrial DNA of mammalian cultured cells1. We applied this system to targeted base editing in the Arabidopsis thaliana plastid genome. The targeted Cs were homoplasmically substituted to Ts in some plantlets of the T1 generation and the mutations were inherited by their offspring independently of their nuclear-introduced vectors.
Collapse
Affiliation(s)
- Issei Nakazato
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Miki Okuno
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yoshiko Tamura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hideki Takanashi
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nobuhiro Tsutsumi
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
33
|
Kojima M, Sugimoto K, Kobayashi M, Ichikawa-Tomikawa N, Kashiwagi K, Watanabe T, Soeda S, Fujimori K, Chiba H. Aberrant Claudin-6-Adhesion Signaling Promotes Endometrial Cancer Progression via Estrogen Receptor α. Mol Cancer Res 2021; 19:1208-1220. [PMID: 33727343 DOI: 10.1158/1541-7786.mcr-20-0835] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/04/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022]
Abstract
Cell adhesion proteins not only maintain tissue integrity, but also possess signaling abilities to organize diverse cellular events in a variety of physiologic and pathologic processes; however, the underlying mechanism remains obscure. Among cell adhesion molecules, the claudin (CLDN) family is often aberrantly expressed in various cancers, but the biological relevance and molecular basis for this observation have not yet been established. Here, we show that high CLDN6 expression accelerates cellular proliferation and migration in two distinct human endometrial cancer cell lines in vitro. Using a xenograft model, we also revealed that aberrant CLDN6 expression promotes tumor growth and invasion in endometrial cancer tissues. The second extracellular domain and Y196/200 of CLDN6 were required to recruit and activate Src-family kinases (SFK) and to stimulate malignant phenotypes. Knockout and overexpression of ESR1 in endometrial carcinoma cells showed that the CLDN6-adhesion signal links to estrogen receptor α (ERα) to advance tumor progression. In particular, aberrant CLDN6-ERα signaling contributed to collective cell behaviors in the leading front of endometrial cancer cells. Importantly, we demonstrate that CLDN6/SFK/PI3K-dependent AKT and SGK (serum- and glucocorticoid-regulated kinase) signaling in endometrial cancer cells targets Ser518 in the human ERα to activate ERα transcriptional activity in a ligand-independent manner, thereby promoting tumor progression. Furthermore, CLDN6, at least in part, also regulated gene expression in an ERα-independent manner. IMPLICATIONS: The identification of this machinery highlights regulation of the transcription factors by cell adhesion to advance tumor progression.
Collapse
Affiliation(s)
- Manabu Kojima
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kotaro Sugimoto
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan.
| | - Makoto Kobayashi
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Naoki Ichikawa-Tomikawa
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Korehito Kashiwagi
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takafumi Watanabe
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shu Soeda
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Keiya Fujimori
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan.
| |
Collapse
|
34
|
Oda-Ishii I, Yu D, Satou Y. Two distinct motifs for Zic-r.a drive specific gene expression in two cell lineages. Development 2021; 148:269043. [PMID: 34100063 DOI: 10.1242/dev.199538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/26/2021] [Indexed: 11/20/2022]
Abstract
Zic-r.a, a maternal transcription factor, specifies posterior fate in ascidian embryos. However, its direct target, Tbx6-r.b, does not contain typical Zic-r.a-binding sites in its regulatory region. Using an in vitro selection assay, we found that Zic-r.a binds to sites dissimilar to the canonical motif, by which it activates Tbx6-r.b in a sub-lineage of muscle cells. These sites with non-canonical motifs have weak affinity for Zic-r.a; therefore, it activates Tbx6-r.b only in cells expressing Zic-r.a abundantly. Meanwhile, we found that Zic-r.a expressed zygotically in late embryos activates neural genes through canonical sites. Because different zinc-finger domains of Zic-r.a are important for driving reporters with canonical and non-canonical sites, it is likely that the non-canonical motif is not a divergent version of the canonical motif. In other words, our data indicate that the non-canonical motif represents a motif distinct from the canonical motif. Thus, Zic-r.a recognizes two distinct motifs to activate two sets of genes at two timepoints in development. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Izumi Oda-Ishii
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Deli Yu
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
35
|
Kawada T, Shiraishi A, Matsubara S, Hozumi A, Horie T, Sasakura Y, Satake H. Vasopressin Promoter Transgenic and Vasopressin Gene-Edited Ascidian, Ciona intestinalis Type A ( Ciona robusta): Innervation, Gene Expression Profiles, and Phenotypes. Front Endocrinol (Lausanne) 2021; 12:668564. [PMID: 34025581 PMCID: PMC8135067 DOI: 10.3389/fendo.2021.668564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/25/2021] [Indexed: 01/03/2023] Open
Abstract
Oxytocin (OT) and vasopressin (VP) superfamily neuropeptides are distributed in not only vertebrates but also diverse invertebrates. However, no VPergic innervation of invertebrates has ever been documented. In the ascidian, Ciona intestinalis Type A (Ciona robusta), an OT/VP superfamily peptide was identified, and the Ciona vasopressin (CiVP) induces oocyte maturation and ovulation. In the present study, we characterize the innervation and phenotypes of genetically modified Ciona: CiVP promoter-Venus transgenic and CiVP mutants. CiVP promoter-Venus transgenic Ciona demonstrated that CiVP gene was highly expressed in the cerebral ganglion and several nerves. Fluorescence was also detected in the ovary of young CiVP promoter-Venus transgenic ascidians, suggesting that the CiVP gene is also expressed temporarily in the ovary of young ascidians. Furthermore, a marked decrease of post-vitellogenic (stage III) follicles was observed in the ovary of CiVP mutants, whereas pre-vitellogenic (stage I) and vitellogenic (stage II) follicles were increased in the mutant ovary, compared with that of wildtype Ciona. Gene expression profiles showed that the expression of various genes, including genes related to ovarian follicle growth, was altered in the ovary of CiVP mutants. Altogether, these results indicated that CiVP, mainly as a neuropeptide, plays pivotal roles in diverse biological functions, including growth of early-stage ovarian follicles via regulation of the expression of a wide variety of genes. This is the first report describing a VP gene promoter-transgenic and VP gene-edited invertebrate and also on its gene expression profiles and phenotypes.
Collapse
Affiliation(s)
- Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Akiko Hozumi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| | - Takeo Horie
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| |
Collapse
|
36
|
Abstract
Genetically modified animals, especially rodents, are widely used in biomedical research. However, non-rodent models are required for efficient translational medicine and preclinical studies. Owing to the similarity in the physiological traits of pigs and humans, genetically modified pigs may be a valuable resource for biomedical research. Somatic cell nuclear transfer (SCNT) using genetically modified somatic cells has been the primary method for the generation of genetically modified pigs. However, site-specific gene modification in porcine cells is inefficient and requires laborious and time-consuming processes. Recent improvements in gene-editing systems, such as zinc finger nucleases, transcription activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas) system, represent major advances. The efficient introduction of site-specific modifications into cells via gene editors dramatically reduces the effort and time required to generate genetically modified pigs. Furthermore, gene editors enable direct gene modification during embryogenesis, bypassing the SCNT procedure. The application of gene editors has progressively expanded, and a range of strategies is now available for porcine gene engineering. This review provides an overview of approaches for the generation of genetically modified pigs using gene editors, and highlights the current trends, as well as the limitations, of gene editing in pigs.
Collapse
Affiliation(s)
- Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan.,Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| |
Collapse
|
37
|
Rahman MM, Mohiuddin M, Shamima Keka I, Yamada K, Tsuda M, Sasanuma H, Andreani J, Guerois R, Borde V, Charbonnier JB, Takeda S. Genetic evidence for the involvement of mismatch repair proteins, PMS2 and MLH3, in a late step of homologous recombination. J Biol Chem 2021; 295:17460-17475. [PMID: 33453991 DOI: 10.1074/jbc.ra120.013521] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Homologous recombination (HR) repairs DNA double-strand breaks using intact homologous sequences as template DNA. Broken DNA and intact homologous sequences form joint molecules (JMs), including Holliday junctions (HJs), as HR intermediates. HJs are resolved to form crossover and noncrossover products. A mismatch repair factor, MLH3 endonuclease, produces the majority of crossovers during meiotic HR, but it remains elusive whether mismatch repair factors promote HR in nonmeiotic cells. We disrupted genes encoding the MLH3 and PMS2 endonucleases in the human B cell line, TK6, generating null MLH3-/- and PMS2-/- mutant cells. We also inserted point mutations into the endonuclease motif of MLH3 and PMS2 genes, generating endonuclease death MLH3DN/DN and PMS2EK/EK cells. MLH3-/- and MLH3DN/DN cells showed a very similar phenotype, a 2.5-fold decrease in the frequency of heteroallelic HR-dependent repair of restriction enzyme-induced double-strand breaks. PMS2-/- and PMS2EK/EK cells showed a phenotype very similar to that of the MLH3 mutants. These data indicate that MLH3 and PMS2 promote HR as an endonuclease. The MLH3DN/DN and PMS2EK/EK mutations had an additive effect on the heteroallelic HR. MLH3DN/DN/PMS2EK/EK cells showed normal kinetics of γ-irradiation-induced Rad51 foci but a significant delay in the resolution of Rad51 foci and a 3-fold decrease in the number of cisplatin-induced sister chromatid exchanges. The ectopic expression of the Gen1 HJ re-solvase partially reversed the defective heteroallelic HR of MLH3DN/DN/PMS2EK/EK cells. Taken together, we propose that MLH3 and PMS2 promote HR as endonucleases, most likely by processing JMs in mammalian somatic cells.
Collapse
Affiliation(s)
- Md Maminur Rahman
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mohiuddin Mohiuddin
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Islam Shamima Keka
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kousei Yamada
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masataka Tsuda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jessica Andreani
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Raphael Guerois
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Valerie Borde
- Institut Curie, CNRS, UMR3244, PSL Research University, Paris, France
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
38
|
Lee JM, Kim U, Yang H, Ryu B, Kim J, Sakuma T, Yamamoto T, Park JH. TALEN-mediated generation of Nkx3.1 knockout rat model. Prostate 2021; 81:182-193. [PMID: 33368416 DOI: 10.1002/pros.24095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 11/05/2022]
Abstract
BACKGROUND Recent developments in gene editing, using transcriptional activator-like effector nucleases (TALENs), have greatly helped the generation of genetically engineered animal models. The NK3 homeobox 1 (NKX3.1) protein plays important roles in prostate development and protein production, and functions as a tumor suppressor. Recently, NKX3.1 was shown to be associated with breast cancer in humans. METHODS Our aim was to create a new rat model to elucidate the functions of NKX3.1. To that end, we generated Nkx3.1 knockout rats using TALENs and analyzed their phenotype. TALEN-mediated Nkx3.1 knockout was confirmed by T7 endonuclease I (T7E1) assay and DNA sequencing. Prostate weight and fertility were evaluated in the knockout rats, besides determining the proportion of epithelial cells and messenger RNA (mRNA) expression of genes associated with carcinogenesis. Breast tumors were examined by histopathology. RESULTS Results suggested Nkx3.1 knockout rats have reduced fertility, decreased prostate weights, and increased epithelial cell layers. The mRNA expression of genes related to prostate carcinogenesis, namely Ar, Akt, and Pi3k, also increased. Moreover, the Nkx3.1 knockout rats often developed malignant breast tumors. CONCLUSIONS We, therefore, successfully created the first Nkx3.1 knockout rat model, using TALEN-mediated gene targeting, and used it to identify defects associated with Nkx3.1 deficiency, not previously observed in mice. Loss of Nkx3.1 in rats led to lower reproductive capacity, and decreased prostate weights, apart from the risk of developing breast cancer. We, thus, proposed Nkx3.1 knockout rats as reliable models for studying the role of NKX3.1 in decreased prostate weights, fertility, and breast cancer, as well as in prostate cancer.
Collapse
Affiliation(s)
- Ji Min Lee
- Department of Laboratory Animal Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ukjin Kim
- Department of Laboratory Animal Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyokyung Yang
- Department of Laboratory Animal Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Bokyeong Ryu
- Department of Laboratory Animal Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jin Kim
- Department of Laboratory Animal Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
39
|
Nishinaka-Arai Y, Niwa A, Matsuo S, Kazuki Y, Yakura Y, Hiroma T, Toki T, Sakuma T, Yamamoto T, Ito E, Oshimura M, Nakahata T, Saito MK. Down syndrome-related transient abnormal myelopoiesis is attributed to a specific erythro-megakaryocytic subpopulation with GATA1 mutation. Haematologica 2021; 106:635-640. [PMID: 32354872 PMCID: PMC7849752 DOI: 10.3324/haematol.2019.242693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/29/2020] [Indexed: 01/11/2023] Open
Affiliation(s)
- Yoko Nishinaka-Arai
- Dept. of Clinical Application, Center for iPS cell Research and Application, Kyoto University, Kyoto
| | - Akira Niwa
- Dept. of Clinical Application, Center for iPS cell Research and Application, Kyoto University, Kyoto
| | - Shiori Matsuo
- Dept. of Clinical Application, Center for iPS cell Research and Application, Kyoto University, Kyoto
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Yuwna Yakura
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Takehiko Hiroma
- Perinatal Medical Center, Nagano Children's Hospital, Nagano, Japan
| | - Tsutomu Toki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Tatsutoshi Nakahata
- Center for iPS cell Research and Application, Kyoto University, Kyoto, Japan
| | - Megumu K Saito
- Dept. of Clinical Application, Center for iPS cell Research and Application, Kyoto University, Kyoto
| |
Collapse
|
40
|
Ninagawa S, George G, Mori K. Mechanisms of productive folding and endoplasmic reticulum-associated degradation of glycoproteins and non-glycoproteins. Biochim Biophys Acta Gen Subj 2020; 1865:129812. [PMID: 33316349 DOI: 10.1016/j.bbagen.2020.129812] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The quality of proteins destined for the secretory pathway is ensured by two distinct mechanisms in the endoplasmic reticulum (ER): productive folding of newly synthesized proteins, which is assisted by ER-localized molecular chaperones and in most cases also by disulfide bond formation and transfer of an oligosaccharide unit; and ER-associated degradation (ERAD), in which proteins unfolded or misfolded in the ER are recognized and processed for delivery to the ER membrane complex, retrotranslocated through the complex with simultaneous ubiquitination, extracted by AAA-ATPase to the cytosol, and finally degraded by the proteasome. SCOPE OF REVIEW We describe the mechanisms of productive folding and ERAD, with particular attention to glycoproteins versus non-glycoproteins, and to yeast versus mammalian systems. MAJOR CONCLUSION Molecular mechanisms of the productive folding of glycoproteins and non-glycoproteins mediated by molecular chaperones and protein disulfide isomerases are well conserved from yeast to mammals. Additionally, mammals have gained an oligosaccharide structure-dependent folding cycle for glycoproteins. The molecular mechanisms of ERAD are also well conserved from yeast to mammals, but redundant expression of yeast orthologues in mammals has been encountered, particularly for components involved in recognition and processing of glycoproteins and components of the ER membrane complex involved in retrotranslocation and simultaneous ubiquitination of glycoproteins and non-glycoproteins. This may reflect an evolutionary consequence of increasing quantity or quality needs toward mammals. GENERAL SIGNIFICANCE The introduction of innovative genome editing technology into analysis of the mechanisms of mammalian ERAD, as exemplified here, will provide new insights into the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Ginto George
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
41
|
Arimura SI, Ayabe H, Sugaya H, Okuno M, Tamura Y, Tsuruta Y, Watari Y, Yanase S, Yamauchi T, Itoh T, Toyoda A, Takanashi H, Tsutsumi N. Targeted gene disruption of ATP synthases 6-1 and 6-2 in the mitochondrial genome of Arabidopsis thaliana by mitoTALENs. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1459-1471. [PMID: 33098708 DOI: 10.1111/tpj.15041] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/22/2020] [Accepted: 10/13/2020] [Indexed: 05/22/2023]
Abstract
We recently achieved targeted disruptions of cytoplasmic male sterility (CMS)-associated genes in the mitochondrial genomes of rice and rapeseed by using mitochondria-targeted transcription activator-like effector nucleases (mitoTALENs). It was the first report of stable and heritable targeted gene modification of plant mitochondrial genomes. Here, we attempted to use mitoTALENs to disrupt two mitochondrial genes in the model plant Arabidopsis thaliana(Arabidopsis) using three different promoters and two types of TALENs. The targets were the two isoforms of the ATP synthase subunit 6 gene, atp6-1 and atp6-2. Each of these genes was successfully deleted and the mitochondrial genomes were recovered in a homoplasmic state. The nuclear genome also has a copy of atp6-1, and we were able to confirm that it was the mitochondrial gene and not the nuclear pseudogene that was knocked out. Among the three mitoTALEN promoters tried, the RPS5A promoter was the most effective. Conventional mitoTALENs were more effective than single-molecule mito-compactTALENs. Targeted mitochondrial gene deletion was achieved by crossing as well as by floral-dip transformation to introduce the mitoTALEN constructs into the nucleus. The gene disruptions were caused by large (kb-size) deletions. The ends of the remaining sequences were connected to distant loci, mostly by illegitimate homologous recombinations between repeats.
Collapse
Affiliation(s)
- Shin-Ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiroki Ayabe
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hajime Sugaya
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Miki Okuno
- School of Life Science and Technology, Tokyo Institute of Technology, M6-1, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yoshiko Tamura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yu Tsuruta
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yuta Watari
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shungo Yanase
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takaki Yamauchi
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, M6-1, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Atsushi Toyoda
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Hideki Takanashi
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Nobuhiro Tsutsumi
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
42
|
Zlatow AL, Wilson SS, Bouley DM, Tetens-Woodring J, Buchholz DR, Green SL. Axial Skeletal Malformations in Genetically Modified Xenopus laevis and Xenopus tropicalis. Comp Med 2020; 70:532-541. [PMID: 33203505 PMCID: PMC7754201 DOI: 10.30802/aalas-cm-20-000069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal malformations in captive-bred, adult Xenopus spp., have not previously been reported. Here we describe 10 sexually mature, genetically modified laboratory frogs (6 Xenopus laevis and 4 Xenopus tropicalis) with axial skeletal abnormalities. The young adult frogs were described by veterinary staff as presenting with "hunchbacks," but were otherwise considered to be in good health. All affected frogs were genetically engineered using various techniques: transcription activator-like effector nucleases (TALEN) editing using thyroid hormone receptor α TALEN mRNA, restriction enzyme-mediated integration methods involving insertion of the inducible transgene pCAR/TRDN, or via I-SceI meganuclease transgenesis using either pDRTREdpTR-HS4 or pDPCrtTA-TREG-HS4 plasmid sequences. Radiographic findings (6 frogs) and gross necropsy (10 frogs) revealed vertebral column malformations and sacroiliac deformities that resulted in moderate to severe kyphosis and kyphoscoliosis. These findings were confirmed and additional skeletal abnormalities were identified using computed tomography to create a 3D reconstruction of 4 frogs. Additional findings visible on the 3D reconstructions included incomplete vertebral segmentation, malformed transverse processes, and a short and/or curved urostyle. Histopathologic findings included misshapen intervertebral joints with nonconforming articular surfaces, narrowed joint cavities, flattened or irregularly-formed articular cartilage, irregular maturation lines and nonpolarized chondrocytes, excess fibrocartilage, and evidence of irregular bone resorption and growth. While the specific etiology of the vertebral skeletal abnormalities remains unclear, possibilities include: 1) egg/oocyte physical manipulation (dejellying, microinjection, fertilization, etc.), 2) induction and expression of the transgenes, 3) inactivation (knockout) of existing genes by insertional mutagenesis, or 4) a combination of the above. Furthermore, the possibility of undetected changes in the macro or microenvironment, or a feature of the genetic background of the affected frogs cannot be ruled out.
Collapse
Affiliation(s)
- Anne L Zlatow
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California
| | - Sabrina S Wilson
- Diagnostic Imaging Service, William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Donna M Bouley
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California
| | | | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Sherril L Green
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California;,
| |
Collapse
|
43
|
Yahata N, Boda H, Hata R. Elimination of Mutant mtDNA by an Optimized mpTALEN Restores Differentiation Capacities of Heteroplasmic MELAS-iPSCs. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 20:54-68. [PMID: 33376755 PMCID: PMC7744650 DOI: 10.1016/j.omtm.2020.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/19/2020] [Indexed: 01/20/2023]
Abstract
Various mitochondrial diseases, including mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), are associated with heteroplasmic mutations in mitochondrial DNA (mtDNA). Herein, we refined a previously generated G13513A mtDNA-targeted platinum transcription activator-like effector nuclease (G13513A-mpTALEN) to more efficiently manipulate mtDNA heteroplasmy in MELAS-induced pluripotent stem cells (iPSCs). Introduction of a nonconventional TALE array at position 6 in the mpTALEN monomer, which recognizes the sequence around the m.13513G>A position, improved the mpTALEN effect on the heteroplasmic shift. Furthermore, the reduced expression of the new Lv-mpTALEN(PKLB)/R-mpTALEN(PKR6C) pair by modifying codons in their expression vectors could suppress the reduction in the mtDNA copy number, which contributed to the rapid recovery of mtDNA in mpTALEN-applied iPSCs during subsequent culturing. Moreover, MELAS-iPSCs with a high proportion of G13513A mutant mtDNA showed unusual properties of spontaneous, embryoid body-mediated differentiation in vitro, which was relieved by decreasing the heteroplasmy level with G13513A-mpTALEN. Additionally, drug-inducible, myogenic differentiation 1 (MYOD)-transfected MELAS-iPSCs (MyoD-iPSCs) efficiently differentiated into myosin heavy chain-positive myocytes, with or without mutant mtDNA. Hence, heteroplasmic MyoD-iPSCs controlled by fine-tuned mpTALENs may contribute to a detailed analysis of the relationship between mutation load and cellular phenotypes in disease modeling.
Collapse
Affiliation(s)
- Naoki Yahata
- Department of Anatomy I, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Hiroko Boda
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Ryuji Hata
- Department of Anatomy I, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
44
|
Kurita T, Moroi K, Iwai M, Okazaki K, Shimizu S, Nomura S, Saito F, Maeda S, Takami A, Sakamoto A, Ohta H, Sakuma T, Yamamoto T. Efficient and multiplexable genome editing using Platinum TALENs in oleaginous microalga, Nannochloropsis oceanica NIES-2145. Genes Cells 2020; 25:695-702. [PMID: 32888368 DOI: 10.1111/gtc.12805] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/25/2022]
Abstract
Algae accumulate large amounts of lipids produced by photosynthesis, and these lipids are expected to be utilized as feedstocks for sustainable new energies, known as biodiesels. Nannochloropsis species are eukaryotic microalgae that produce high levels of lipids. However, since the production costs of algal biodiesels are higher than those of fossil fuels, the improved productivity of algal lipids by molecular breeding of algae is required for practical use. In the present study, we developed a highly efficient genome-editing system involving Platinum transcription activator-like effector nucleases (TALENs) in Nannochloropsis oceanica. Platinum TALENs codon-optimized for N. oceanica were synthesized, and their DNA-binding activity was confirmed by single-strand annealing assays in human HEK293T cells. All-in-one expression vectors for Platinum TALEN targeting the nitrate reductase gene, NoNR, and acyltransferase gene, LPAT1, were transfected into Nannochloropsis species. The introduction of each Platinum TALEN revealed high genome-editing efficiency with no detectable off-target mutations at the candidate sites in N. oceanica. By simultaneously introducing TALENs targeting two genes, we obtained double mutant strains. The loss-of-function phenotype of NoNR was also confirmed. These findings will provide an essential technology for molecular breeding in Nannochloropsis species.
Collapse
Affiliation(s)
- Tomokazu Kurita
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Keishi Moroi
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Masako Iwai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kumiko Okazaki
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shinsuke Shimizu
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Seiji Nomura
- Mazda Motor Corporation, Fuchu-cho, Hiroshima, Japan
| | | | | | | | - Atsushi Sakamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
45
|
Yamaji S, Hozumi A, Matsunobu S, Sasakura Y. Orchestration of the distinct morphogenetic movements in different tissues drives tail regression during ascidian metamorphosis. Dev Biol 2020; 465:66-78. [PMID: 32697971 DOI: 10.1016/j.ydbio.2020.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 11/26/2022]
Abstract
Metamorphosis is the dramatic conversion of an animal body from larva to adult. In ascidians, tadpole-shaped, swimming larvae become sessile juveniles by losing their tail during metamorphosis. This study investigated the cellular and molecular mechanisms underlying this metamorphic event called tail regression, in the model ascidian Ciona. The ascidian tail consists of internal organs such as muscle, notochord, nerve cord, and the outer epidermal layer surrounding them. We found that the epidermis and internal organs show different regression strategies. Epidermal cells are shortened along the anterior-posterior axis and gather at the posterior region. The epidermal mass is then invaginated into the trunk by apical constriction. The internal tissues, by contrast, enter into the trunk by forming coils. During coiling, notches are introduced into the muscle cells, which likely reduces their rigidness to promote coiling. Actin filament is the major component necessary for the regression events in both the epidermis and internal tissues. The shortening and invagination of the epidermis depend on the phosphorylation of the myosin regulatory light chain (mrlc) regulated by rho-kinase (ROCK). The coiling of internal tissues does not require ROCK-dependent phosphorylation of mrlc, and they can complete coiling without epidermis, although epidermis can facilitate the coiling of internal tissues. We conclude that tail regression in ascidians consists of active morphogenetic movements in which each tissue's independent mechanism is orchestrated with the others to complete this event within the available time window.
Collapse
Affiliation(s)
- Sota Yamaji
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan
| | - Akiko Hozumi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan
| | - Shohei Matsunobu
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan.
| |
Collapse
|
46
|
Ibrahim MA, Yasui M, Saha LK, Sasanuma H, Honma M, Takeda S. Enhancing the sensitivity of the thymidine kinase assay by using DNA repair-deficient human TK6 cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:602-610. [PMID: 32243652 PMCID: PMC7384079 DOI: 10.1002/em.22371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 05/17/2023]
Abstract
The OECD guidelines define the bioassays of identifying mutagenic chemicals, including the thymidine kinase (TK) assay, which specifically detects the mutations that inactivate the TK gene in the human TK6 lymphoid line. However, the sensitivity of this assay is limited because it detects mutations occurring only in the TK gene but not any other genes. Moreover, the limited sensitivity of the conventional TK assay is caused by the usage of DNA repair-proficient wild-type cells, which are capable of accurately repairing DNA damage induced by chemicals. Mutagenic chemicals produce a variety of DNA lesions, including base lesions, sugar damage, crosslinks, and strand breaks. Base damage causes point mutations and is repaired by the base excision repair (BER) and nucleotide excision repair (NER) pathways. To increase the sensitivity of TK assay, we simultaneously disrupted two genes encoding XRCC1, an important BER factor, and XPA, which is essential for NER, generating XRCC1 -/- /XPA -/- cells from TK6 cells. We measured the mutation frequency induced by four typical mutagenic agents, methyl methane sulfonate (MMS), cis-diamminedichloro-platinum(II) (cisplatin, CDDP), mitomycin-C (MMC), and cyclophosphamide (CP) by the conventional TK assay using wild-type TK6 cells and also by the TK assay using XRCC1 -/- /XPA -/- cells. The usage of XRCC1 -/- /XPA -/- cells increased the sensitivity of detecting the mutagenicity by 8.6 times for MMC, 8.5 times for CDDP, and 2.6 times for MMS in comparison with the conventional TK assay. In conclusion, the usage of XRCC1 -/- /XPA -/- cells will significantly improve TK assay.
Collapse
Affiliation(s)
| | - Manabu Yasui
- Division of Genetics and MutagenesisNational Institute of Health SciencesKawasakiKanagawaJapan
| | - Liton Kumar Saha
- Department of Radiation GeneticsKyoto University, Graduate School of MedicineKyotoJapan
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Hiroyuki Sasanuma
- Department of Radiation GeneticsKyoto University, Graduate School of MedicineKyotoJapan
| | - Masamitsu Honma
- Division of Genetics and MutagenesisNational Institute of Health SciencesKawasakiKanagawaJapan
| | - Shunichi Takeda
- Department of Radiation GeneticsKyoto University, Graduate School of MedicineKyotoJapan
| |
Collapse
|
47
|
Yasumoto S, Sawai S, Lee HJ, Mizutani M, Saito K, Umemoto N, Muranaka T. Targeted genome editing in tetraploid potato through transient TALEN expression by Agrobacterium infection. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:205-211. [PMID: 32821228 PMCID: PMC7434673 DOI: 10.5511/plantbiotechnology.20.0525a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Genome editing using site-specific nucleases, such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeat-CRISPR-associated protein 9 (CRISPR-Cas9), is a powerful technology for crop breeding. For plant genome editing, the genome-editing reagents are usually expressed in plant cells from stably integrated transgenes within the genome. This requires crossing processes to remove foreign nucleotides from the genome to generate null segregants. However, in highly heterozygous plants such as potato, the progeny lines have different agronomic traits from the parent cultivar and do not necessarily become elite lines. Agrobacteria can transfer exogenous genes on T-DNA into plant cells. This has been used both to transform plants stably and to express the genes transiently in plant cells. Here, we infected potato, with Agrobacterium tumefaciens harboring TALEN-expression vector targeting sterol side chain reductase 2 (SSR2) gene and regenerated shoots without selection. We obtained regenerated lines with disrupted-SSR2 gene and without transgene of the TALEN gene, revealing that their disruption should be caused by transient gene expression. The strategy using transient gene expression by Agrobacterium that we call Agrobacterial mutagenesis, developed here should accelerate the use of genome-editing technology to modify heterozygous plant genomes.
Collapse
Affiliation(s)
- Shuhei Yasumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Satoru Sawai
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hyoung Jae Lee
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Naoyuki Umemoto
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- E-mail: Tel: +81-6-6879-7423 Fax: +81-6-6879-7426
| |
Collapse
|
48
|
Hozumi A, Matsunobu S, Mita K, Treen N, Sugihara T, Horie T, Sakuma T, Yamamoto T, Shiraishi A, Hamada M, Satoh N, Sakurai K, Satake H, Sasakura Y. GABA-Induced GnRH Release Triggers Chordate Metamorphosis. Curr Biol 2020; 30:1555-1561.e4. [PMID: 32220316 DOI: 10.1016/j.cub.2020.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/14/2019] [Accepted: 02/03/2020] [Indexed: 01/13/2023]
Abstract
Metamorphosis, a widespread life history strategy in metazoans, allows dispersal and use of different ecological niches through a dramatic body change from a larval stage [1, 2]. Despite its conservation and importance, the molecular mechanisms underlying its initiation and progression have been characterized in only a few animal models. In this study, through pharmacological and gene functional analyses, we identified neurotransmitters responsible for metamorphosis of the ascidian Ciona. Ciona metamorphosis converts swimming tadpole larvae into vase-like, sessile adults. Here, we show that the neurotransmitter GABA is a key regulator of metamorphosis. We found that gonadotropin-releasing hormone (GnRH) is a downstream neuropeptide of GABA. Although GABA is generally thought of as an inhibitory neurotransmitter, we found that it positively regulates secretion of GnRH through the metabotropic GABA receptor during Ciona metamorphosis. GnRH is necessary for reproductive maturation in vertebrates, and GABA is an important excitatory regulator of GnRH in the hypothalamus during puberty [3, 4]. Our findings reveal another role of the GABA-GnRH axis in the regulation of post-embryonic development in chordates.
Collapse
Affiliation(s)
- Akiko Hozumi
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka 415-0025, Japan
| | - Shohei Matsunobu
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka 415-0025, Japan
| | - Kaoru Mita
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka 415-0025, Japan
| | - Nicholas Treen
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka 415-0025, Japan
| | - Takaho Sugihara
- Department of Biology, Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Takeo Horie
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka 415-0025, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto 619-0284, Japan
| | - Mayuko Hamada
- Ushimado Marine Institute, Okayama University, Okayama 701-4303, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Keisuke Sakurai
- Department of Biology, Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto 619-0284, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka 415-0025, Japan.
| |
Collapse
|
49
|
Yasuda S, Tsuchiya H, Kaiho A, Guo Q, Ikeuchi K, Endo A, Arai N, Ohtake F, Murata S, Inada T, Baumeister W, Fernández-Busnadiego R, Tanaka K, Saeki Y. Stress- and ubiquitylation-dependent phase separation of the proteasome. Nature 2020; 578:296-300. [DOI: 10.1038/s41586-020-1982-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/09/2019] [Indexed: 12/30/2022]
|
50
|
Koba H, Jin S, Imada N, Ishikawa T, Ninagawa S, Okada T, Sakuma T, Yamamoto T, Mori K. Reinvestigation of Disulfide-bonded Oligomeric Forms of the Unfolded Protein Response Transducer ATF6. Cell Struct Funct 2020; 45:9-21. [PMID: 31852864 PMCID: PMC10739154 DOI: 10.1247/csf.19030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/12/2019] [Indexed: 12/24/2023] Open
Abstract
ATF6α is an endoplasmic reticulum (ER)-embedded transcription factor which is rapidly activated by ER stress, and a major regulator of ER chaperone levels in vertebrates. We previously suggested that ATF6α occurs as a monomer, dimer and oligomer in the unstressed ER of Chinese hamster ovary cells due to the presence of two evolutionarily conserved cysteine residues in its luminal region (C467 and C618), and showed that ATF6α is reduced upon ER stress, such that only reduced monomer ATF6α is translocated to the Golgi apparatus for activation by proteolysis. However, mutagenesis analysis (C467A and C618A) revealed that the C618A mutant behaves in an unexpected manner (monomer and oligomer) during non-reducing SDS-PAGE, for reasons which remained unclear. Here, we used human colorectal carcinoma-derived HCT116 cells deficient in ATF6α and its relevant ATF6β, and found that ATF6α dimer and oligomer are both dimers, which we designated C618-dimer and C467-dimer, respectively. We demonstrated that C467-dimer (previously considered an oligomer) behaved bigger than C618-dimer (previously considered a dimer) during non-reducing SDS-PAGE, based on their disulfide-bonded structures. Furthermore, ATF6α monomer physically associates with another ATF6α monomer in the absence of disulfide bonding, which renders two C467 residues in close proximity so that formation of C467-dimer is much easier than that of C618-dimer. In contrast, C618-dimer is more easily reduced upon ER stress. Thus, our analysis revealed that all forms of ATF6α, namely monomer, C618-dimer and C467-dimer, are activated by single reduction of a disulfide bond in response to ER stress, ensuring the rapidity of ATF6α activation.Key words: disulfide-bonded structure, endoplasmic reticulum, membrane-bound transcription factor, non-reducing SDS-PAGE, unfolded protein response.
Collapse
Affiliation(s)
- Hibiki Koba
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shengyu Jin
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Nanami Imada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tokiro Ishikawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tetsuya Okada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|