1
|
Kratter M, Beccaccioli M, Vassallo Y, Benedetti F, La Penna G, Proietti A, Zanellato G, Faino L, Cirigliano A, Neisje de Kruif F, Tomassetti MC, Rossi M, Reverberi M, Quagliariello A, Rinaldi T. Long-term monitoring of the hypogeal Etruscan Tomba degli Scudi, Tarquinia, Italy. Early detection of black spots, investigation of fungal community, and evaluation of their biodeterioration potential. J Appl Microbiol 2024; 135:lxae258. [PMID: 39384568 DOI: 10.1093/jambio/lxae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 10/11/2024]
Abstract
AIMS Hypogeal environments with cultural heritage interest pose a real challenge for their preservation and conservation. The ancient Etruscan Necropolis of Tarquinia, Italy, consists of 200 tombs decorated with extraordinary mural paintings, of great artistic and historical value. Since the beginning of the restoration campaign in 2016, a regular microbiological survey has been performed in the Tomba degli Scudi. The aim of this study was to investigate the nature of an expansion of black spots on the pictorial layers recently observed. METHODS AND RESULTS To determine the origin of the black spots in the atrium chamber of the Tomba degli Scudi, the fungal community was sampled using various techniques: cellulose discs, swabs, and nylon membranes and investigated by a multi-analytical approach. The obtained results suggest that the identified fungal strains (e.g. Gliomastix murorum and Pseudogymnoascus pannorum) are common to many subterranean environments around the world, such as Lascaux cave. CONCLUSIONS The continuous and long-term monitoring made it possible to detect alterations at an early stage and assess the harmfulness of different fungal strains. This work is a demonstration of the effectiveness of prevention and monitoring actions within these fragile and valuable environments.
Collapse
Affiliation(s)
- Matilde Kratter
- Department of Biology and Biotechnologies, Sapienza University of Rome, Rome 00185, Italy
| | - Marzia Beccaccioli
- Department of Environmental Biology, Sapienza University of Rome, Rome 00185, Italy
| | - Ylenia Vassallo
- Department of Environmental Biology, Sapienza University of Rome, Rome 00185, Italy
| | - Francesca Benedetti
- Department of Biology and Biotechnologies, Sapienza University of Rome, Rome 00185, Italy
| | - Giancarlo La Penna
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome 00185, Italy
| | - Anacleto Proietti
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome 00185, Italy
| | - Gianluca Zanellato
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome 00185, Italy
- CNIS-Center for Nanotechnology Applied to Industry of La Sapienza, Sapienza University of Rome, Rome 00185, Italy
| | - Luigi Faino
- Department of Environmental Biology, Sapienza University of Rome, Rome 00185, Italy
| | - Angela Cirigliano
- Department of Biology and Biotechnologies, Sapienza University of Rome, Rome 00185, Italy
| | | | | | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome 00185, Italy
- CNIS-Center for Nanotechnology Applied to Industry of La Sapienza, Sapienza University of Rome, Rome 00185, Italy
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza University of Rome, Rome 00185, Italy
| | - Andrea Quagliariello
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova 35123, Italy
| | - Teresa Rinaldi
- Department of Biology and Biotechnologies, Sapienza University of Rome, Rome 00185, Italy
- CNIS-Center for Nanotechnology Applied to Industry of La Sapienza, Sapienza University of Rome, Rome 00185, Italy
| |
Collapse
|
2
|
Gogoleva N, Chervyatsova O, Balkin A, Kuzmina L, Shagimardanova E, Kiseleva D, Gogolev Y. Microbial tapestry of the Shulgan-Tash cave (Southern Ural, Russia): influences of environmental factors on the taxonomic composition of the cave biofilms. ENVIRONMENTAL MICROBIOME 2023; 18:82. [PMID: 37990336 PMCID: PMC10662634 DOI: 10.1186/s40793-023-00538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Cave biotopes are characterized by stable low temperatures, high humidity, and scarcity of organic substrates. Despite the harsh oligotrophic conditions, they are often inhabited by rich microbial communities. Abundant fouling with a wide range of morphology and coloration of colonies covers the walls of the Shulgan-Tash cave in the Southern Urals. This cave is also famous for the unique Paleolithic painting discovered in the middle of the last century. We aimed to investigate the diversity, distribution, and potential impact of these biofilms on the cave's Paleolithic paintings, while exploring how environmental factors influence the microbial communities within the cave. RESULTS The cave's biofilm morphotypes were categorized into three types based on the ultrastructural similarities. Molecular taxonomic analysis identified two main clusters of microbial communities, with Actinobacteria dominating in most of them and a unique "CaveCurd" community with Gammaproteobacteria prevalent in the deepest cave sections. The species composition of these biofilms reflects changes in environmental conditions, such as substrate composition, temperature, humidity, ventilation, and CO2 content. Additionally, it was observed that cave biofilms contribute to biocorrosion on cave wall surfaces. CONCLUSIONS The Shulgan-Tash cave presents an intriguing example of a stable extreme ecosystem with diverse microbiota. However, the intense dissolution and deposition of carbonates caused by Actinobacteria pose a potential threat to the preservation of the cave's ancient rock paintings.
Collapse
Affiliation(s)
- Natalia Gogoleva
- Research Department for Limnology, Mondsee, Universität Innsbruck, Mondsee, 5310, Austria.
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420111, Russia.
| | | | - Alexander Balkin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420111, Russia
- Institute for Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Orenburg, 460000, Russia
| | - Lyudmila Kuzmina
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, 450054, Russia
| | - Elena Shagimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420111, Russia
- Loginov Moscow Clinical Scientific Center, Moscow, 111123, Russia
| | - Daria Kiseleva
- Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620016, Russia
- Institute of Fundamental Education, Ural Federal University named after the first President of Russia B.N. Yeltsin, Ekaterinburg, 620002, Russia
| | - Yuri Gogolev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420111, Russia
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420111, Russia
| |
Collapse
|
3
|
Tsouggou N, Oikonomou A, Papadimitriou K, Skandamis PN. 16S and 18S rDNA Amplicon Sequencing Analysis of Aesthetically Problematic Microbial Mats on the Walls of the Petralona Cave: The Use of Essential Oils as a Cleaning Method. Microorganisms 2023; 11:2681. [PMID: 38004693 PMCID: PMC10673238 DOI: 10.3390/microorganisms11112681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The presence of microbial communities on cave walls and speleothems is an issue that requires attention. Traditional cleaning methods using water, brushes, and steam can spread the infection and cause damage to the cave structures, while chemical agents can lead to the formation of toxic compounds and damage the cave walls. Essential oils (EOs) have shown promising results in disrupting the cell membrane of bacteria and affecting their membrane permeability. In this study, we identified the microorganisms forming unwanted microbial communities on the walls and speleothems of Petralona Cave using 16S and 18S rDNA amplicon sequencing approaches and evaluated the efficacy of EOs in reducing the ATP levels of these ecosystems. The samples exhibited a variety of both prokaryotic and eukaryotic microorganisms, including Proteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, the SAR supergroup, Opisthokonta, Excavata, Archaeplastida, and Amoebozoa. These phyla are often found in various habitats, including caves, and contribute to the ecological intricacy of cave ecosystems. In terms of the order and genus taxonomy, the identified biota showed abundances that varied significantly among the samples. Functional predictions were also conducted to estimate the differences in expressed genes among the samples. Oregano EO was found to reduce ATP levels by 87% and 46% for black and green spots, respectively. Consecutive spraying with cinnamon EO further reduced ATP levels, with reductions of 89% for black and 88% for green spots. The application of a mixture solution caused a significant reduction up to 96% in ATP levels of both areas. Our results indicate that EOs could be a promising solution for the treatment of microbial communities on cave walls and speleothems.
Collapse
Affiliation(s)
- Natalia Tsouggou
- Laboratory of Food Quality Control & Hygiene, Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (N.T.); (P.N.S.)
| | - Alexandra Oikonomou
- Ephorate of Palaeoanthropology and Speleology, Hellenic Republic Ministry of Culture and Sports, Ardittou 34b, 11636 Athens, Greece;
| | - Konstantinos Papadimitriou
- Laboratory of Food Quality Control & Hygiene, Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (N.T.); (P.N.S.)
| | - Panagiotis N. Skandamis
- Laboratory of Food Quality Control & Hygiene, Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (N.T.); (P.N.S.)
| |
Collapse
|
4
|
Bontemps Z, Prigent-Combaret C, Guillmot A, Hugoni M, Moënne-Loccoz Y. Dark-zone alterations expand throughout Paleolithic Lascaux Cave despite spatial heterogeneity of the cave microbiome. ENVIRONMENTAL MICROBIOME 2023; 18:31. [PMID: 37032363 PMCID: PMC10084675 DOI: 10.1186/s40793-023-00488-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Cave anthropization related to rock art tourism can lead to cave microbiota imbalance and microbial alterations threatening Paleolithic artwork, but the underpinning microbial changes are poorly understood. Caves can be microbiologically heterogeneous and certain rock wall alterations may develop in different rooms despite probable spatial heterogeneity of the cave microbiome, suggesting that a same surface alteration might involve a subset of cosmopolitan taxa widespread in each cave room. We tested this hypothesis in Lascaux, by comparing recent alterations (dark zones) and nearby unmarked surfaces in nine locations within the cave. RESULTS Illumina MiSeq metabarcoding of unmarked surfaces confirmed microbiome heterogeneity of the cave. Against this background, the microbial communities of unmarked and altered surfaces differed at each location. The use of a decision matrix showed that microbiota changes in relation to dark zone formation could differ according to location, but dark zones from different locations displayed microbial similarities. Thus, dark zones harbor bacterial and fungal taxa that are cosmopolitan at the scale of Lascaux, as well as dark zone-specific taxa present (i) at all locations in the cave (i.e. the six bacterial genera Microbacterium, Actinophytocola, Lactobacillus, Bosea, Neochlamydia and Tsukamurella) or (ii) only at particular locations within Lascaux. Scanning electron microscopy observations and most qPCR data evidenced microbial proliferation in dark zones. CONCLUSION Findings point to the proliferation of different types of taxa in dark zones, i.e. Lascaux-cosmopolitan bacteria and fungi, dark zone-specific bacteria present at all locations, and dark zone-specific bacteria and fungi present at certain locations only. This probably explains why dark zones could form in various areas of the cave and suggests that the spread of these alterations might continue according to the area of distribution of key widespread taxa.
Collapse
Affiliation(s)
- Zélia Bontemps
- CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, University of Lyon, Université Claude Bernard Lyon 1, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Claire Prigent-Combaret
- CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, University of Lyon, Université Claude Bernard Lyon 1, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Alice Guillmot
- CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, University of Lyon, Université Claude Bernard Lyon 1, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Mylène Hugoni
- CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, University of Lyon, Université Claude Bernard Lyon 1, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
- CNRS, INSA de Lyon, UMR Microbiologie Adaptation et Pathogénie, University of Lyon, Université Claude Bernard Lyon 1, 69622, Villeurbanne, France
- Institut Universitaire de France (IUF), Paris, France
| | - Yvan Moënne-Loccoz
- CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, University of Lyon, Université Claude Bernard Lyon 1, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France.
| |
Collapse
|
5
|
Bontemps Z, Hugoni M, Moënne-Loccoz Y. Microscale dynamics of dark zone alterations in anthropized karstic cave shows abrupt microbial community switch. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160824. [PMID: 36502978 DOI: 10.1016/j.scitotenv.2022.160824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Strong anthropization of karstic caves may result in formation of various wall alterations including dark zones, whose microbial community differs from that of non-altered surfaces nearby. Dark zones grow quickly and without gradual visual changes, leading to the hypothesis of a simple process rather than complex microbial successions, but this is counter-intuitive as underground microbial changes are typically slow and dark zones are microbiologically very distinct from unmarked surfaces. We tested this hypothesis in Paleolithic Lascaux Cave, across two years of microscale sampling. Indeed, Illumina MiSeq metabarcoding evidenced only three community stages for bacteria, fungi and all microeukaryotes together (i.e. unmarked surfaces, newly-formed dark zones and intermediate/old dark zones) and just two stages for archaea (unmarked surfaces vs dark zones), indicating abrupt community changes. The onset of dark zone formation coincided with the development of Ochroconis fungi, Bacteroidota and the bacterial genera Labrys, Nonomuraea and Sphingomonas, in parallel to Pseudomonas counter-selection. Modeling of community assembly processes highlighted that the dynamics of rare taxa in unmarked surfaces adjacent to dark zones and in newly-formed dark zones were governed in part by deterministic processes. This suggests that cooperative relationships between these taxa might be important to promote dark zone formation. Taken together, these findings indicate an abrupt community switch as these new alterations form on Lascaux cave walls.
Collapse
Affiliation(s)
- Zélia Bontemps
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Mylène Hugoni
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France; Univ Lyon, INSA Lyon, CNRS, UMR5240 Microbiologie Adaptation et Pathogénie, F-69621 Villeurbanne, France; Institut Universitaire de France (IUF), France
| | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France.
| |
Collapse
|
6
|
Jurado V, Del Rosal Y, Jimenez de Cisneros C, Liñan C, Martin-Pozas T, Gonzalez-Pimentel JL, Hermosin B, Saiz-Jimenez C. Microbial communities in carbonate precipitates from drip waters in Nerja Cave, Spain. PeerJ 2022; 10:e13399. [PMID: 35529484 PMCID: PMC9074860 DOI: 10.7717/peerj.13399] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/17/2022] [Indexed: 01/14/2023] Open
Abstract
Research on cave microorganisms has mainly focused on the microbial communities thriving on speleothems, rocks and sediments; however, drip water bacteria and calcite precipitation has received less attention. In this study, microbial communities of carbonate precipitates from drip waters in Nerja, a show cave close to the sea in southeastern Spain, were investigated. We observed a pronounced difference in the bacterial composition of the precipitates, depending on the galleries and halls. The most abundant phylum in the precipitates of the halls close to the cave entrance was Proteobacteria, due to the low depth of this sector, the direct influence of a garden on the top soil and the infiltration of waters into the cave, as well as the abundance of members of the order Hyphomicrobiales, dispersing from plant roots, and other Betaproteobacteria and Gammaproteobacteria, common soil inhabitants. The influence of marine aerosols explained the presence of Marinobacter, Idiomarina, Thalassobaculum, Altererythrobacter and other bacteria due to the short distance from the cave to the sea. Nineteen out of forty six genera identified in the cave have been reported to precipitate carbonate and likely have a role in mineral deposition.
Collapse
Affiliation(s)
- Valme Jurado
- Instituto de Recursos Naturales y Agrobiologia (IRNAS-CSIC), Sevilla, Spain
| | | | | | - Cristina Liñan
- Departamento de Ecologia y Geologia, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain
| | | | | | - Bernardo Hermosin
- Instituto de Recursos Naturales y Agrobiologia (IRNAS-CSIC), Sevilla, Spain
| | | |
Collapse
|
7
|
Bontemps Z, Alonso L, Pommier T, Hugoni M, Moënne-Loccoz Y. Microbial ecology of tourist Paleolithic caves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151492. [PMID: 34793801 DOI: 10.1016/j.scitotenv.2021.151492] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/19/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Microorganisms colonize caves extensively, and in caves open for tourism they may cause alterations on wall surfaces. This is a major concern in caves displaying Paleolithic art, which is usually fragile and may be irremediably damaged by microbial alterations. Therefore, many caves were closed for preservation purposes, e.g. Lascaux (France), Altamira (Spain), while others were never opened to the public to avoid microbial contamination, e.g. Chauvet Cave (France), etc. The recent development of high-throughput sequencing technologies allowed several descriptions of cave microbial diversity and prompted the writing of this review, which focuses on the cave microbiome for the three domains of life (Bacteria, Archaea, microeukaryotes), the impact of tourism-related anthropization on microorganisms in Paleolithic caves, and the development of microbial alterations on the walls of these caves. This review shows that the microbial phyla prevalent in pristine caves are similar to those evidenced in water, soil, plant and metazoan microbiomes, but specificities at lower taxonomic levels remain to be clarified. Most of the data relates to Bacteria and Fungi, while other microeukaryotes and Archaea are poorly documented. Tourism may cause shifts in the microbiota of Paleolithic caves, but larger-scale investigation are required as these shifts may differ from one cave to the next. Finally, different types of alterations can occur in caves, especially in Paleolithic caves. Many microorganisms potentially involved have been identified, but diversity analyses of these alterations have not always included a comparison with neighboring unaltered zones as controls, making such associations uncertain. It is expected that omics technologies will also allow a better understanding of the functional diversities of the cave microbiome. This will be needed to decipher microbiome dynamics in response to touristic frequentation, to guide cave management, and to identify the most appropriate reclamation approaches to mitigate microbial alterations in tourist Paleolithic caves.
Collapse
Affiliation(s)
- Zélia Bontemps
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Lise Alonso
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Thomas Pommier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Mylène Hugoni
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France.
| |
Collapse
|
8
|
Skipper PJA, Skipper LK, Dixon RA. A metagenomic analysis of the bacterial microbiome of limestone, and the role of associated biofilms in the biodeterioration of heritage stone surfaces. Sci Rep 2022; 12:4877. [PMID: 35318388 PMCID: PMC8940931 DOI: 10.1038/s41598-022-08851-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 03/02/2022] [Indexed: 12/14/2022] Open
Abstract
There is growing concern surrounding the aesthetic and physical effects of microbial biofilms on heritage buildings and monuments. Carboniferous stones, such as limestone and marble, are soluble in weak acid solutions and therefore particularly vulnerable to biocorrosion. This paper aims to determine the differences and commonalities between the microbiome of physically damaged and undamaged Lincolnshire limestone, an area of research which has not been previously studied. A lack of information about the core microbiome has resulted in conflicting claims in the literature regarding the biodeteriorative potential of many microorganisms. To address this, we used metagenomics alongside traditional microbiological techniques to produce an in-depth analysis of differences between the bacterial microbiomes found on deteriorated and undamaged external limestone surfaces. We demonstrate there is a core microbiome on Lincolnshire limestone present on both damaged and undamaged surfaces. In addition to the core microbiome, significant differences were found between species isolated from undamaged compared to damaged surfaces. Isolated species were characterised for biofilm formation and biodeteriorative processes, resulting in the association of species with biodeterioration that had not been previously described. Additionally, we have identified a previously undescribed method of biofilm-associated biomechanical damage. This research adds significant new understanding to the field, aiding decision making in conservation of stone surfaces.
Collapse
Affiliation(s)
| | - Lynda K Skipper
- School of History and Heritage, University of Lincoln, Lincoln, UK
| | - Ronald A Dixon
- School of Life Sciences, University of Lincoln, Lincoln, UK
| |
Collapse
|
9
|
Michail G, Karapetsi L, Madesis P, Reizopoulou A, Vagelas I. Metataxonomic Analysis of Bacteria Entrapped in a Stalactite's Core and Their Possible Environmental Origins. Microorganisms 2021; 9:microorganisms9122411. [PMID: 34946013 PMCID: PMC8705861 DOI: 10.3390/microorganisms9122411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/02/2023] Open
Abstract
Much is known about microbes originally identified in caves, but little is known about the entrapment of microbes (bacteria) in stalactites and their possible environmental origins. This study presents data regarding the significant environmental distribution of prokaryotic bacterial taxa of a Greek stalactite core. We investigated the involvement of those bacteria communities in stalactites using a metataxonomic analysis approach of partial 16S rRNA genes. The metataxonomic analysis of stalactite core material revealed an exceptionally broad ecological spectrum of bacteria classified as members of Proteobacteria, Actinobacteria, Firmicutes, Verrucomicrobia, and other unclassified bacteria. We concluded that (i) the bacterial transport process is possible through water movement from the upper ground cave environment, forming cave speleothems such as stalactites, (ii) bacterial genera such as Polaromonas, Thioprofundum, and phylum Verrucomicrobia trapped inside the stalactite support the paleoecology, paleomicrobiology, and paleoclimate variations, (iii) the entrapment of certain bacteria taxa associated with water, soil, animals, and plants such as Micrococcales, Propionibacteriales, Acidimicrobiales, Pseudonocardiales, and α-, β-, and γ-Proteobacteria.
Collapse
Affiliation(s)
- George Michail
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
- Correspondence:
| | - Lefkothea Karapetsi
- Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece; (L.K.); (P.M.)
- Centre for Research and Technology (CERTH), Institute of Applied Biosciences (INAB), 57001 Thessaloniki, Greece
| | - Panagiotis Madesis
- Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece; (L.K.); (P.M.)
- Centre for Research and Technology (CERTH), Institute of Applied Biosciences (INAB), 57001 Thessaloniki, Greece
| | | | - Ioannis Vagelas
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece;
| |
Collapse
|
10
|
Biodeterioration of Glass-Based Historical Building Materials: An Overview of the Heritage Literature from the 21st Century. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The main goal of this work was to review the 21st century literature (2000 to 2021) regarding the biological colonisation and biodeterioration of glass-based historical building materials, particularly stained glass and glazed tiles. One of the main objectives of this work was to list and systematize the glass-colonising microorganisms identified on stained glass and glazed tiles. Biodiversity data indicate that fungi and bacteria are the main colonisers of stained-glass windows. Glazed tiles are mainly colonised by microalgae and cyanobacteria. Several studies have identified microorganisms on stained glass, but fewer studies have been published concerning glazed tiles. The analysis of colonised samples is a vital mechanism to understand biodeterioration, particularly for identifying the colonising organisms and deterioration patterns on real samples. However, the complexity of the analysis of materials with high biodiversity makes it very hard to determine which microorganism is responsible for the biodeteriogenic action. The authors compared deterioration patterns described in case studies with laboratory-based colonisation experiments, showing that many deterioration patterns and corrosion products are similar. A working group should develop guidelines or standards for laboratory experiments on fungi, bacteria, cyanobacteria, and algae on stained glass and glazed tiles.
Collapse
|
11
|
Isola D, Bartoli F, Langone S, Ceschin S, Zucconi L, Caneva G. Plant DNA Barcode as a Tool for Root Identification in Hypogea: The Case of the Etruscan Tombs of Tarquinia (Central Italy). PLANTS (BASEL, SWITZERLAND) 2021; 10:1138. [PMID: 34205139 PMCID: PMC8228792 DOI: 10.3390/plants10061138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 11/21/2022]
Abstract
Roots can produce mechanical and chemical alterations to building structures, especially in the case of underground historical artifacts. In archaeological sites, where vegetation plays the dual role of naturalistic relevance and potential threat, trees and bushes are under supervision. No customized measures can be taken against herbaceous plants lacking fast and reliable root identification methods that are useful to assess their dangerousness. In this study, we aimed to test the efficacy of DNA barcoding in identifying plant rootlets threatening the Etruscan tombs of the Necropolis of Tarquinia. As DNA barcode markers, we selected two sections of the genes rbcL and matK, the nuclear ribosomal internal transcribed spacer (nrITS), and the intergenic spacer psbA-trnH. All fourteen root samples were successfully sequenced and identified at species (92.9%) and genus level (7.01%) by GenBank matching and reference dataset implementation. Some eudicotyledons with taproots, such as Echium italicum L., Foeniculum vulgare Mill., and Reseda lutea L. subsp. lutea, showed a certain recurrence. Further investigations are needed to confirm this promising result, increasing the number of roots and enlarging the reference dataset with attention to meso-Mediterranean perennial herbaceous species. The finding of herbaceous plants roots at more than 3 m deep confirms their potential risk and underlines the importance of vegetation planning, monitoring, and management on archaeological sites.
Collapse
Affiliation(s)
- Daniela Isola
- Department of Sciences, Roma Tre University, 00146 Rome, Italy; (F.B.); (S.L.); (S.C.); (G.C.)
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy;
| | - Flavia Bartoli
- Department of Sciences, Roma Tre University, 00146 Rome, Italy; (F.B.); (S.L.); (S.C.); (G.C.)
| | - Simone Langone
- Department of Sciences, Roma Tre University, 00146 Rome, Italy; (F.B.); (S.L.); (S.C.); (G.C.)
| | - Simona Ceschin
- Department of Sciences, Roma Tre University, 00146 Rome, Italy; (F.B.); (S.L.); (S.C.); (G.C.)
| | - Laura Zucconi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy;
| | - Giulia Caneva
- Department of Sciences, Roma Tre University, 00146 Rome, Italy; (F.B.); (S.L.); (S.C.); (G.C.)
| |
Collapse
|
12
|
Dark-pigmented biodeteriogenic fungi in etruscan hypogeal tombs: New data on their culture-dependent diversity, favouring conditions, and resistance to biocidal treatments. Fungal Biol 2021; 125:609-620. [PMID: 34281654 DOI: 10.1016/j.funbio.2021.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 02/08/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
Subterranean Cultural Heritage sites are frequently subject to biological colonization due to the high levels of humidity, even in conditions of low irradiance and oligotrophy. Here microorganisms form complex communities that may be dangerous through mineral precipitation, through the softening of materials or causing frequent surface discolorations. A reduction of contamination's sources along with the control of microclimatic conditions and biocide treatments (overall performed with benzalkonium chloride) are necessary to reduce microbial growths. Dark discolorations have been recorded in the painted Etruscan tombs of Tarquinia, two of which have been analyzed to collect taxonomical, physiological, and ecological information. Eighteen dark-pigmented fungi were isolated among a wider culturable fraction: nine from blackening areas and nine from door sealings, a possible route of contamination. Isolates belonged to three major groups: Chaetothyriales, Capnodiales (Family Cladosporiaceae), and Acremonium-like fungi. Exophiala angulospora and Cyphellophora olivacea, a novelty for hypogea, were identified, while others need further investigations as possible new taxa. The metabolic skills of the detected species showed their potential dangerousness for the materials. Their tolerance to benzalkonium chloride-based products suggested a certain favouring effect through the decreasing competitiveness of less resistant species. The type of covering of the dromos may influence the risk of outer contamination. Fungal occurrence can be favoured by root penetration.
Collapse
|
13
|
Vegetation Cover and Tumuli’s Shape as Affecting Factors of Microclimate and Biodeterioration Risk for the Conservation of Etruscan Tombs (Tarquinia, Italy). SUSTAINABILITY 2021. [DOI: 10.3390/su13063393] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The conservation of underground tombs is affected by several physical-chemical and biological factors, which could be reduced by insulating systems able to maintain the microclimatic stability also decreasing the biodeterioration risk. In Mediterranean areas, wild ephemeral plants, which reduce their cover during the hot season, seem unsuitable for reducing summer overheating. In this study, we wish to assess the influence of vegetation cover and of overlaying soil, after the establishment of an evergreen turf of a cultivar of Cynodon dactylon, on two tombs in the Etruscan Necropolis of Monterozzi, covered by linear-shaped tumuli. Therefore, we evaluated for 10 months the thermo-hygrometric values of these tombs, together with two tombs as controls. We also evaluated the different tumuli’s morphologies and the related received solar radiation. Results confirmed that late summer and early autumn as critical microclimatic periods for the risk factors of hypogeal paintings when peaks of superficial temperature occur. A positive influence of vegetation cover on maintaining constant humidity and internal temperatures was detected, but the mounds orientation, as well as soil depth, seems to have a relevant role. Considering the naturalistic features of the area and the related cultural ecosystem services, a careful selection of wild plants is suggested.
Collapse
|
14
|
Li Q, Hu Y, Zhang B. Polyoxometalate-Ionic Liquids (ILs) and Polyvinyl Alcohol/Chitosan/ILs Hydrogels for Inhibiting Bacteria Colonising Wall Paintings. Carbohydr Polym 2021; 256:117592. [PMID: 33483078 DOI: 10.1016/j.carbpol.2020.117592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 01/09/2023]
Abstract
Historical monuments are increasingly being threatened by unexpected microbial colonizers, leading to their subsequent deterioration. Here, two tetraalkylphosphonium polyoxometalate ionic liquids (Q14-IL and Q16-IL) were successfully synthesized, which showed excellent antibacterial activity against four bacteria colonising wall paintings. Notably, Q14-IL exhibited superior antibacterial efficacy compared to longer alkyl Q16-IL. Additionally, polyvinyl alcohol/chitosan (PVA-CS) hydrogels containing two ILs were prepared, and the morphology, thermal stability, swelling ratio and antibacterial activity were systematically evaluated. The results suggest that higher CS content resulted in more uniform micropores and increased the swelling ratio. However, fewer antibacterial ILs were released and diffused over time from the matrix. Hydrogels with 5% CS content exhibited the highest antibacterial activity, which was mainly attributed to the synergetic antibacterial activity of positively charged ammonium (-NH3+) groups of CS and quaternary phosphonium cation of ILs. This study may provide an alternative strategy for fighting against bacterial communities colonising ancient artworks.
Collapse
Affiliation(s)
- Qiang Li
- Laboratory of Cultural Relics Conservation Materials, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Yulan Hu
- Department of Cultural Heritage and Museology, Zhejiang University, Hangzhou, China
| | - Bingjian Zhang
- Department of Cultural Heritage and Museology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Cirigliano A, Mura F, Cecchini A, Tomassetti MC, Maras DF, Di Paola M, Meriggi N, Cavalieri D, Negri R, Quagliariello A, Hallsworth JE, Rinaldi T. Active microbial ecosystem in
Iron‐Age
tombs of the Etruscan civilization. Environ Microbiol 2020; 23:3957-3969. [DOI: 10.1111/1462-2920.15327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Angela Cirigliano
- Department of Biology and Biotechnology Sapienza University of Rome Rome Italy
| | - Francesco Mura
- CNIS – Center for Nanotechnology Applied to Industry of La Sapienza Sapienza University of Rome Rome Italy
| | - Adele Cecchini
- Associazione No Profit ‘Amici Delle Tombe Dipinte di Tarquinia’ Tarquinia Italy
| | | | - Daniele Federico Maras
- Soprintendenza Archeologia Belle Arti e Paesaggio per l'Area Metropolitana di Roma, la Provincia di Viterbo e l'Etruria Meridionale Ministero dei Beni e delle Attività Culturali e del Turismo Rome Italy
| | | | | | | | - Rodolfo Negri
- Department of Biology and Biotechnology Sapienza University of Rome Rome Italy
| | - Andrea Quagliariello
- Department of Comparative Biomedicine and Food Science University of Padova Padova Italy
| | - John E. Hallsworth
- Institute for Global Food Security School of Biological Sciences, Queen's University Belfast Belfast UK
| | - Teresa Rinaldi
- Department of Biology and Biotechnology Sapienza University of Rome Rome Italy
| |
Collapse
|
16
|
Biological Risk for Hypogea: Shared Data from Etruscan Tombs in Italy and Ancient Tombs of the Baekje Dynasty in Republic of Korea. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10176104] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biological growth represents one of the main threats for the conservation of subterranean cultural heritage. Knowledge of the conditions which favour the various taxonomic groups is important in delineating their control methods. Combining our experience regarding hypogea in Italy and the Republic of Korea, we aim to perform a critical review and comparison of the Biodeterioration Patterns (BPs) found, the materials used, and the conservative treatments applied. For this purpose, we focused on Etruscan tombs (Italy, 7th to 3th century BC) and the ancient tombs of the Baekje Dynasty (Republic of Korea, 6th to 7th centuries AD), most of which have been designated UNESCO World Heritage Sites, collecting original and bibliographic data as well as official documents. Results highlight the rich biodiversity of the bacterial and fungal species. Phototrophs were observed only in niches with sufficient light and the development of roots was also detected. Changes in humidity and temperature, the nature of the soil, nutrient accumulation, and vegetation above the hypogea along with human activities explain the different BPs. The effects of biocide treatments are also discussed, such as the emergence of dangerous fungal species. The shared data also enhance the role of overlaying tumuli and vegetation as well as protective barriers to reduce biological risk.
Collapse
|
17
|
Microbial diversity and biosignatures of amorphous silica deposits in orthoquartzite caves. Sci Rep 2018; 8:17569. [PMID: 30514906 PMCID: PMC6279750 DOI: 10.1038/s41598-018-35532-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/30/2018] [Indexed: 11/08/2022] Open
Abstract
Chemical mobility of crystalline and amorphous SiO2 plays a fundamental role in several geochemical and biological processes, with silicate minerals being the most abundant components of the Earth's crust. Although the oldest evidences of life on Earth are fossilized in microcrystalline silica deposits, little is known about the functional role that bacteria can exert on silica mobility at non-thermal and neutral pH conditions. Here, a microbial influence on silica mobilization event occurring in the Earth's largest orthoquartzite cave is described. Transition from the pristine orthoquartzite to amorphous silica opaline precipitates in the form of stromatolite-like structures is documented through mineralogical, microscopic and geochemical analyses showing an increase of metals and other bioessential elements accompanied by permineralized bacterial cells and ultrastructures. Illumina sequencing of the 16S rRNA gene describes the bacterial diversity characterizing the consecutive amorphization steps to provide clues on the biogeochemical factors playing a role in the silica solubilization and precipitation processes. These results show that both quartz weathering and silica mobility are affected by chemotrophic bacterial communities, providing insights for the understanding of the silica cycle in the subsurface.
Collapse
|
18
|
Calcite moonmilk of microbial origin in the Etruscan Tomba degli Scudi in Tarquinia, Italy. Sci Rep 2018; 8:15839. [PMID: 30367083 PMCID: PMC6203712 DOI: 10.1038/s41598-018-34134-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023] Open
Abstract
A white deposit covering the walls in the Stanza degli Scudi of the Tomba degli Scudi, Tarquinia, Italy, has been investigated. In this chamber, which is still preserved from any kind of intervention such as cleaning and sanitization, ancient Etruscans painted shields to celebrate the military power of the Velcha family. Scanning electron microscopy analysis has revealed the presence of characteristic nanostructures corresponding to a calcite secondary mineral deposit called moonmilk. Analysis of the microbial community identified Proteobacteria, Acidobacteria and Actinobacteria as the most common phyla in strong association with the moonmilk needle fibre calcite and nanofibers of calcium carbonate. Employing classical microbiological analysis, we isolated from moonmilk a Streptomyces strain able to deposit gypsum and calcium carbonate on plates, supporting the hypothesis of an essential contribution of microorganisms to the formation of moonmilk.
Collapse
|
19
|
Sanmartín P, DeAraujo A, Vasanthakumar A. Melding the Old with the New: Trends in Methods Used to Identify, Monitor, and Control Microorganisms on Cultural Heritage Materials. MICROBIAL ECOLOGY 2018; 76:64-80. [PMID: 27117796 DOI: 10.1007/s00248-016-0770-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Microbial activity has an important impact on the maintenance of cultural heritage materials, owing to the key role of microorganisms in many deterioration processes. In order to minimize such deleterious effects, there is a need to fine-tune methods that detect and characterize microorganisms. Trends in microbiology indicate that this need can be met by incorporating modern techniques. All of the methods considered in this review paper are employed in the identification, surveillance, and control of microorganisms, and they have two points in common: They are currently used in microbial ecology (only literature from 2009 to 2015 is included), and they are often applied in the cultural heritage sector. More than 75 peer-reviewed journal articles addressing three different approaches were considered: molecular, sensory and morphological, and biocontrol methods. The goal of this review is to highlight the usefulness of the traditional as well as the modern methods. The general theme in the literature cited suggests using an integrated approach.
Collapse
Affiliation(s)
- Patricia Sanmartín
- Laboratory of Applied Microbiology, School of Engineering and Applied Sciences, Harvard University, 58 Oxford St., Room 301, Cambridge, MA, 02138, USA
- Departamento de Edafología y Química Agrícola, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Alice DeAraujo
- Laboratory of Applied Microbiology, School of Engineering and Applied Sciences, Harvard University, 58 Oxford St., Room 301, Cambridge, MA, 02138, USA
| | - Archana Vasanthakumar
- Laboratory of Applied Microbiology, School of Engineering and Applied Sciences, Harvard University, 58 Oxford St., Room 301, Cambridge, MA, 02138, USA.
| |
Collapse
|
20
|
Yellow coloured mats from lava tubes of La Palma (Canary Islands, Spain) are dominated by metabolically active Actinobacteria. Sci Rep 2018; 8:1944. [PMID: 29386569 PMCID: PMC5792456 DOI: 10.1038/s41598-018-20393-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/16/2018] [Indexed: 11/08/2022] Open
Abstract
Microbial diversity in lava tubes from Canary Islands (Spain) has never been explored thus far offering a unique opportunity to study subsurface microbiology. Abundant yellow coloured mats developing on coralloid speleothems in a lava tube from La Palma Islands were studied by next-generation sequencing and DNA/RNA clone library analyses for investigating both total and metabolically active bacteria. In addition, morphological and mineralogical characterization was performed by field emission scanning electron microscopy (FESEM), micro-computed tomography, X-ray diffraction and infrared spectroscopy to contextualize sequence data. This approach showed that the coralloid speleothems consist of banded siliceous stalactites composed of opal-A and hydrated halloysite. Analytical pyrolysis was also conducted to infer the possible origin of cave wall pigmentation, revealing that lignin degradation compounds can contribute to speleothem colour. Our RNA-based study showed for the first time that members of the phylum Actinobacteria, with 55% of the clones belonging to Euzebyales order, were metabolically active components of yellow mats. In contrast, the DNA clone library revealed that around 45% of clones were affiliated to Proteobacteria. Composition of microbial phyla obtained by NGS reinforced the DNA clone library data at the phylum level, in which Proteobacteria was the most abundant phylum followed by Actinobacteria.
Collapse
|
21
|
Dominguez-Moñino I, Diaz-Herraiz M, Jurado V, Laiz L, Miller AZ, Santos JL, Alonso E, Saiz-Jimenez C. Nature and origin of the violet stains on the walls of a Roman tomb. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:889-899. [PMID: 28458206 DOI: 10.1016/j.scitotenv.2017.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 06/07/2023]
Abstract
The Circular Mausoleum tomb (Roman Necropolis of Carmona, Spain) dates back from the first century AD and is characterized by a dense microbial (phototrophic) colonization on the walls and ceiling. However, some walls exhibited an important number of violet stains of unknown origin. The microbial communities of these violet stains are mainly composed of cyanobacteria, streptomycetes and fungi. A strain of Streptomyces parvus, isolated from the walls, produces a violet pigment in culture media. High performance liquid chromatography-mass spectrometry of the culture extracts obtained from this Streptomyces revealed the presence of a few granaticins, pigments with a benzoisochromanequinone structure. When metabolically active in the tomb, S. parvus synthesizes the pigments that diffuse into the mortar. During rain and/or wetting periods, the pigments are solubilized by alkaline waters and elute from the starting position to the surrounding mortar, enlarging the pigmented area and thus contributing to this exceptional biodeterioration phenomenon.
Collapse
Affiliation(s)
- Irene Dominguez-Moñino
- Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain
| | - Marta Diaz-Herraiz
- Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain
| | - Valme Jurado
- Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain
| | - Leonila Laiz
- Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain
| | - Ana Z Miller
- Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain
| | - Juan Luis Santos
- Escuela Politecnica Superior, Universidad de Sevilla, Virgen de Africa 7, 41011 Sevilla, Spain
| | - Esteban Alonso
- Escuela Politecnica Superior, Universidad de Sevilla, Virgen de Africa 7, 41011 Sevilla, Spain
| | - Cesareo Saiz-Jimenez
- Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain.
| |
Collapse
|
22
|
Structure of melanins from the fungi Ochroconis lascauxensis and Ochroconis anomala contaminating rock art in the Lascaux Cave. Sci Rep 2017; 7:13441. [PMID: 29044220 PMCID: PMC5647350 DOI: 10.1038/s41598-017-13862-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/02/2017] [Indexed: 01/18/2023] Open
Abstract
Two novel species of the fungal genus Ochroconis, O. lascauxensis and O. anomala have been isolated from the walls of the Lascaux Cave, France. The interest in these fungi and their melanins lies in the formation of black stains on the walls and rock art which threatens the integrity of the paintings. Here we report solid-state cross polarization magic-angle spinning 13C and 15N nuclear magnetic resonance (NMR) spectroscopy and surface-enhanced Raman spectroscopy (SERS) of the melanins extracted from the mycelia of O. lascauxensis and O. anomala in order to known their chemical structure. The melanins from these two species were compared with those from other fungi. The melanins from the Ochroconis species have similar SERS and 13C and 15N NMR spectra. Their chemical structures as suggested by the data are not related to 3,4-dihydroxyphenylalanine, 5,6-dihydroxyindole or 1,8-dihydroxynaphthalene precursors and likely the building blocks from the melanins have to be based on other phenols that react with the N-terminal amino acid of proteins. The analytical pyrolysis of the acid hydrolysed melanin from O. lascauxensis supports this assumption.
Collapse
|
23
|
Tomassetti MC, Cirigliano A, Arrighi C, Negri R, Mura F, Maneschi ML, Gentili MD, Stirpe M, Mazzoni C, Rinaldi T. A role for microbial selection in frescoes' deterioration in Tomba degli Scudi in Tarquinia, Italy. Sci Rep 2017; 7:6027. [PMID: 28729734 PMCID: PMC5519700 DOI: 10.1038/s41598-017-06169-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/09/2017] [Indexed: 11/30/2022] Open
Abstract
Mural paintings in the hypogeal environment of the Tomba degli Scudi in Tarquinia, Italy, show a quite dramatic condition: the plaster mortar lost his cohesion and a white layer coating is spread over almost all the wall surfaces. The aim of this research is to verify if the activity of microorganisms could be one of the main causes of deterioration and if the adopted countermeasures (conventional biocide treatments) are sufficient to stop it. A biocide treatment of the whole environment has been carried out before the conservative intervention and the tomb has been closed for one month. When the tomb was opened again, we sampled the microorganisms present on the frescoes and we identified four Bacillus species and one mould survived to the biocide treatment. These organisms are able to produce spores, a highly resistant biological form, which has permitted the survival despite the biocide treatment. We show that these Bacillus strains are able to produce calcium carbonate and could be responsible for the white deposition that was damaging and covering the entire surface of the frescoes. Our results confirm that the sanitation intervention is non always resolutive and could even be deleterious in selecting harmful microbial communities.
Collapse
Affiliation(s)
| | - Angela Cirigliano
- La Sapienza University of Rome, Departement of Biology and Biotechnology "Charles Darwin", Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Chiara Arrighi
- Freelance restorer, Via San Maria Mediatrice 10, 00165, Rome, Italy
| | - Rodolfo Negri
- La Sapienza University of Rome, Departement of Biology and Biotechnology "Charles Darwin", Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Francesco Mura
- La Sapienza University of Rome, Departement of Chemistry, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Maria Lorella Maneschi
- Archaeologist, Presidente FAI, Delegazione Viterbo, Via XX Settembre 56, 01016, Tarquinia, Italy
| | | | - Mariarita Stirpe
- La Sapienza University of Rome, Departement of Biology and Biotechnology "Charles Darwin", Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Cristina Mazzoni
- La Sapienza University of Rome, Departement of Biology and Biotechnology "Charles Darwin", Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Teresa Rinaldi
- La Sapienza University of Rome, Departement of Biology and Biotechnology "Charles Darwin", Piazzale Aldo Moro, 5, 00185, Rome, Italy.
| |
Collapse
|
24
|
Otlewska A, Adamiak J, Stryszewska T, Kańka S, Gutarowska B. Factors Determining the Biodiversity of Halophilic Microorganisms on Historic Masonry Buildings. Microbes Environ 2017; 32:164-173. [PMID: 28592721 PMCID: PMC5478540 DOI: 10.1264/jsme2.me16159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of the present study was to obtain insights into the relationship between the chemical (salt content and pH) and physico-mechanical (humidity and compressive strength) properties of mineral-based materials from historic buildings with salt efflorescence and the growth and biodiversity of halophilic microorganisms. Samples were mainly characterized by pH 6.5–8.5 and a moisture content of between 0.12 and 3.3%. Significant variations were also found in the salt content (sulfates, chlorides, and nitrates) of the materials. An SEM/EDS analysis of material surfaces revealed the presence of halite, calcite, gypsum, sodium sulfate, and potassium-sodium sulfate. Culture-dependent and culture-independent (clone library construction) approaches were both applied to detect halophilic microorganisms. Results derived from culturable methods and the materials analysis revealed a correlation between the total halophile count and pH value as well as sulfate content. A correlation was not observed between the concentration of chlorides or nitrates and the number of halophilic microorganisms. The materials studied were inhabited by the culturable halophilic bacteria Halobacillus sp., Virgibacillus sp., and Marinococcus sp. as well as the yeast Sterigmatomyces sp., which was isolated for the first time from mineral materials. Culture-independent techniques revealed the following bacterial species: Salinibacterium, Salinisphaera, Rubrobacter, Rubricoccus, Halomonas, Halorhodospira, Solirubrobacter, Salinicoccus, and Salinibacter. Biodiversity was the highest in materials with high or moderate salinity.
Collapse
Affiliation(s)
- Anna Otlewska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology
| | - Justyna Adamiak
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology
| | - Teresa Stryszewska
- Institute of Building Materials and Structures, Faculty of Civil Engineering, Cracow University of Technology
| | - Stanisław Kańka
- Institute of Building Materials and Structures, Faculty of Civil Engineering, Cracow University of Technology
| | - Beata Gutarowska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology
| |
Collapse
|
25
|
Distribution and Diversity of Bacteria and Fungi Colonization in Stone Monuments Analyzed by High-Throughput Sequencing. PLoS One 2016; 11:e0163287. [PMID: 27658256 PMCID: PMC5033376 DOI: 10.1371/journal.pone.0163287] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/05/2016] [Indexed: 11/19/2022] Open
Abstract
The historical and cultural heritage of Qingxing palace and Lingyin and Kaihua temple, located in Hangzhou of China, include a large number of exquisite Buddhist statues and ancient stone sculptures which date back to the Northern Song (960-1219 A.D.) and Qing dynasties (1636-1912 A.D.) and are considered to be some of the best examples of ancient stone sculpting techniques. They were added to the World Heritage List in 2011 because of their unique craftsmanship and importance to the study of ancient Chinese Buddhist culture. However, biodeterioration of the surface of the ancient Buddhist statues and white marble pillars not only severely impairs their aesthetic value but also alters their material structure and thermo-hygric properties. In this study, high-throughput sequencing was utilized to identify the microbial communities colonizing the stone monuments. The diversity and distribution of the microbial communities in six samples collected from three different environmental conditions with signs of deterioration were analyzed by means of bioinformatics software and diversity indices. In addition, the impact of environmental factors, including temperature, light intensity, air humidity, and the concentration of NO2 and SO2, on the microbial communities' diversity and distribution was evaluated. The results indicate that the presence of predominantly phototrophic microorganisms was correlated with light and humidity, while nitrifying bacteria and Thiobacillus were associated with NO2 and SO2 from air pollution.
Collapse
|
26
|
Fernandez-Cortes A, Cuezva S, Alvarez-Gallego M, Garcia-Anton E, Pla C, Benavente D, Jurado V, Saiz-Jimenez C, Sanchez-Moral S. Subterranean atmospheres may act as daily methane sinks. Nat Commun 2015; 6:7003. [DOI: 10.1038/ncomms8003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/23/2015] [Indexed: 11/09/2022] Open
|
27
|
Otlewska A, Adamiak J, Gutarowska B. Clone-based comparative sequence analysis of 16S rRNA genes retrieved from biodeteriorating brick buildings of the former Auschwitz II–Birkenau concentration and extermination camp. Syst Appl Microbiol 2015; 38:48-55. [DOI: 10.1016/j.syapm.2014.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/04/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
|