1
|
Sales K, Gage MJG, Vasudeva R. Experimental evolution reveals that males evolving within warmer thermal regimes improve reproductive performance under heatwave conditions in a model insect. J Evol Biol 2024; 37:1329-1344. [PMID: 39283813 DOI: 10.1093/jeb/voae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 11/04/2024]
Abstract
Climate change is increasing mean temperatures, and intensifying heatwaves. Natural populations may respond to stress through shorter-term acclimation via plasticity and/or longer-term inter-generational evolution. However, if the pace and/or extent of thermal change is too great, local extinctions occur; one potential cause in ectotherms is identified to be the heat-liability of male reproductive biology. Recent data from several species, including the beetle Tribolium castaneum, confirmed that male reproductive biology is vulnerable to heatwaves, which may constrain populations. However, such reproductive-damage may be overestimated, if there is potential to adapt to elevated mean temperatures associated with climate change via evolution and/or acclimation. Here, we tested this to evaluate whether pre-exposures could improve heatwave tolerance (adaptation or acclimation), by experimentally evolving Tribolium castaneum populations to divergent thermal regimes (30 °C vs. 38 °C). Findings across assays revealed that relative to 30 °C-regime males, males from the 38 °C regime, maintained constantly at 8 °C warmer for 25 generations, displayed an increase; (i) in post heatwave (42 °C) reproductive fitness by 55%, (ii) survival by 33%, and (iii) 32% larger testes volumes. Unexpectedly, in the acclimation assay, warm-adapted males' post-heatwave survival and reproduction were best if they experienced cool developmental acclimation beforehand, suggesting a cost to adapting to 38 °C. These results help progress knowledge of the potential for survival and reproduction to adapt to climate change; trait specific adaptation to divergent thermal regimes can occur over relatively few generations, but this capacity depended on the interaction of evolutionary and thermal acclimatory processes.
Collapse
Affiliation(s)
- Kris Sales
- Inventory, Forecasting and Operational Support, Forest Research, Farnham, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - M J G Gage
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - R Vasudeva
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- School of Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
2
|
Segura-Hernández L, Hebets EA, Montooth KL, DeLong JP. How Hot is too Hot? Metabolic Responses to Temperature Across Life Stages of a Small Ectotherm. Integr Comp Biol 2024; 64:178-188. [PMID: 38955397 DOI: 10.1093/icb/icae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/18/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
To understand how global warming will impact biodiversity, we need to pay attention to those species with higher vulnerability. However, to assess vulnerability, we also need to consider the thermoregulatory mechanisms, body size, and thermal tolerance of species. Studies addressing thermal tolerance on small ectotherms have mostly focused on insects, while other arthropods, such as arachnids remain understudied. Here, we quantified the physiological thermal sensitivity of the pseudoscorpion Dactylochelifer silvestris using a respirometry setup with a ramping temperature increase. Overall, we found that D. silvestris has a much lower metabolic rate than other organisms of similar size. As expected, metabolic rate increased with body size, with adults having larger metabolic rates, but the overall metabolic scaling exponent was low. Both the temperature at which metabolism peaked and the critical thermal maxima were high (>44°C) and comparable to those of other arachnids. The activation energy, which characterizes the rising portion of the thermal sensitivity curve, was 0.66 eV, consistent with predictions for insects and other taxa in general. Heat tolerances and activation energy did not differ across life stages. We conclude that D. silvestris has low metabolic rates and a high thermal tolerance, which would likely influence how all stages and sexes of this species could endure climate change.
Collapse
Affiliation(s)
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Kristi L Montooth
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - John P DeLong
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
3
|
Sales K, Thomas P, Gage MJG, Vasudeva R. Experimental heatwaves reduce the effectiveness of ejaculates at occupying female reproductive tracts in a model insect. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231949. [PMID: 38721134 PMCID: PMC11076118 DOI: 10.1098/rsos.231949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/22/2024] [Accepted: 03/12/2024] [Indexed: 07/31/2024]
Abstract
Globally, heatwaves have become more common with hazardous consequences on biological processes. Research using a model insect (Tribolium castaneum) found that 5-day experimental heatwave conditions damaged several aspects of male reproductive biology, while females remained unaffected. However, females' reproductive fitness may still be impacted, as insects typically store sperm from multiple males in specialized organs for prolonged periods. Consequently, using males which produce sperm with green fluorescent protein (GFP)-tagged sperm nuclei, we visualized in vivo whether thermal stress affects the ejaculate occupancy across female storage sites under two scenarios; (i) increasing time since insemination and (ii) in the presence of defending competitor sperm. We reconfirmed that sperm from heatwave-exposed males sired fewer offspring with previously mated females and provided new scenarios for in vivo distributions of heat-stress-exposed males' sperm. Sperm from heatwave-exposed males occupied a smaller area and were at lower densities across the females' storage sites. Generally, sperm occupancy decreased with time since insemination, and sperm from the first male to mate dominated the long-term storage site. Reassuringly, although heated males' ejaculate was less successful in occupying female tracts, they were not lost from female storage at a faster rate and were no worse than control males in their offensive ability to enter storage sites occupied by competitor sperm. Future work should consider the potential site-specificity of factors influencing sperm storage where amenable.
Collapse
Affiliation(s)
- Kris Sales
- Forest Research, Inventory, Forecasting and Operational Support (IFOS), FarnhamGU10 4LH, UK
| | - Paul Thomas
- School of Biological Sciences, University of East Anglia, NorwichNR4 7TJ, UK
| | - Matthew J. G. Gage
- School of Biological Sciences, University of East Anglia, NorwichNR4 7TJ, UK
| | - Ramakrishnan Vasudeva
- School of Biological Sciences, University of East Anglia, NorwichNR4 7TJ, UK
- School of Biology, University of Leeds, LeedsLS2 9JT, UK
| |
Collapse
|
4
|
Williams CE, Williams CL, Logan ML. Climate change is not just global warming: Multidimensional impacts on animal gut microbiota. Microb Biotechnol 2023; 16:1736-1744. [PMID: 37247194 PMCID: PMC10443335 DOI: 10.1111/1751-7915.14276] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023] Open
Abstract
Climate change has rapidly altered many ecosystems, with detrimental effects for biodiversity across the globe. In recent years, it has become increasingly apparent that the microorganisms that live in and on animals can substantially affect host health and physiology, and the structure and function of these microbial communities can be highly sensitive to environmental variables. To date, most studies have focused on the effects of increasing mean temperature on gut microbiota, yet other aspects of climate are also shifting, including temperature variation, seasonal dynamics, precipitation and the frequency of severe weather events. This array of environmental pressures might interact in complex and non-intuitive ways to impact gut microbiota and consequently alter animal fitness. Therefore, understanding the impacts of climate change on animals requires a consideration of multiple types of environmental stressors and their interactive effects on gut microbiota. Here, we present an overview of some of the major findings in research on climatic effects on microbial communities in the animal gut. Although ample evidence has now accumulated that shifts in mean temperature can have important effects on gut microbiota and their hosts, much less work has been conducted on the effects of other climatic variables and their interactions. We provide recommendations for additional research needed to mechanistically link climate change with shifts in animal gut microbiota and host fitness.
Collapse
|
5
|
Rodrigues LR, McDermott HA, Villanueva I, Djukarić J, Ruf LC, Amcoff M, Snook RR. Fluctuating heat stress during development exposes reproductive costs and putative benefits. J Anim Ecol 2021; 91:391-403. [PMID: 34775602 DOI: 10.1111/1365-2656.13636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
Temperature and thermal variability are increasing worldwide, with well-known survival consequences. However, effects on other potentially more thermally sensitive reproductive traits are less understood, especially when considering thermal variation. Studying the consequences of male reproduction in the context of climate warming and ability to adapt is becoming increasingly relevant. Our goals were to test how exposure to different average temperatures that either fluctuated or remained constant impacts different male reproductive performance traits and to assess adaptive potential to future heat stress. We took advantage of a set of Drosophila melanogaster isogenic lines of different genotypes, exposing them to four different thermal conditions. These conditions represented a benign and a stressful mean temperature, applied either constantly or fluctuating around the mean and experienced during development when heat stress avoidance is hindered because of restricted mobility. We measured subsequent male reproductive performance for mating success, fertility, number of offspring produced and offspring sex ratio, and calculated the influence of thermal stress on estimated heritability and evolvability of these reproductive traits. Both costs and benefits to different thermal conditions on reproductive performance were found, with some responses varying between genotypes. Mating success improved under fluctuating benign temperature conditions and declined as temperature stress increased regardless of genotype. Fertility and productivity were severely reduced at fluctuating mean high temperature for all genotypes, but some genotypes were unaffected at constant high mean temperature. These more thermally robust genotypes showed a slight increase in productivity under the fluctuating benign condition compared to constant high temperature, despite both thermal conditions sharing the same temperature for 6 hr daily. Increasing thermal stress resulted in higher heritability and evolvability. Overall, the effects of temperature on reproductive performance depended on the trait and genotype; performance of some traits slightly increased when high temperatures were experienced for short periods but decreased substantially even when experiencing a benign temperature for a portion of each day. While thermal stress increased genetic variation that could provide adaptive potential against climate warming, this is unlikely to compensate for the overall severe negative effect on reproductive performance as mean temperature and variance increase.
Collapse
Affiliation(s)
| | | | | | - Jana Djukarić
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Lena C Ruf
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Mirjam Amcoff
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
6
|
Sales K, Vasudeva R, Gage MJG. Fertility and mortality impacts of thermal stress from experimental heatwaves on different life stages and their recovery in a model insect. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201717. [PMID: 33959335 PMCID: PMC8074959 DOI: 10.1098/rsos.201717] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/03/2021] [Indexed: 05/10/2023]
Abstract
With climate change creating a more volatile atmosphere, heatwaves that create thermal stress for living systems will become stronger and more frequent. Using the flour beetle Tribolium castaneum, we measure the impacts of thermal stress from experimental heatwaves in the laboratory on reproduction and survival across different insect life stages, and the extent and pace of any recovery. We exposed larvae, pupae, juvenile and mature adult male beetles to 5-day periods of heat stress where temperatures were maintained at either 40°C or 42°C, a few degrees above the 35°C optimum for this species' population productivity, and then measured survival and reproduction compared with controls at 30°C. Mortality due to thermal stress was greatest among juvenile life stages. Male reproductive function was specifically damaged by high temperatures, especially if experienced through pupal or immature life stages when complete sterility was shown at reproductive maturity; larval exposure did not damage adult male fertility. High temperatures impaired testis development and the production of viable sperm, with damage being strongest when experienced during pupal or juvenile adult stages. Despite this disruption, males recovered from heat stress and, depending on the stage of exposure, testis size, sperm production and fertility returned to normal 15-28 days after exposure. Our experiments reveal how thermal stress from heatwave conditions could impact on insect survival and reproduction across different life stages, and the potential and timescales of recovery.
Collapse
Affiliation(s)
- Kris Sales
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Ramakrishnan Vasudeva
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Matthew J. G. Gage
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
7
|
Kingsolver JG, Moore ME, Hill CA, Augustine KE. Growth, stress, and acclimation responses to fluctuating temperatures in field and domesticated populations of Manduca sexta. Ecol Evol 2020; 10:13980-13989. [PMID: 33391696 PMCID: PMC7771122 DOI: 10.1002/ece3.6991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Diurnal fluctuations in temperature are ubiquitous in terrestrial environments, and insects and other ectotherms have evolved to tolerate or acclimate to such fluctuations. Few studies have examined whether ectotherms acclimate to diurnal temperature fluctuations, or how natural and domesticated populations differ in their responses to diurnal fluctuations. We examine how diurnally fluctuating temperatures during development affect growth, acclimation, and stress responses for two populations of Manduca sexta: a field population that typically experiences wide variation in mean and fluctuations in temperature, and a laboratory population that has been domesticated in nearly constant temperatures for more than 300 generations. Laboratory experiments showed that diurnal fluctuations throughout larval development reduced pupal mass for the laboratory but not the field population. The differing effects of diurnal fluctuations were greatest at higher mean temperature (30°C): Here diurnal fluctuations reduced pupal mass and increased pupal development time for the laboratory population, but had little effect for the field population. We also evaluated how mean and fluctuations in temperature during early larval development affected growth rate during the final larval instar as a function of test temperature. At an intermediate (25°C) mean temperature, both the laboratory and field population showed a positive acclimation response to diurnal fluctuations, in which subsequent growth rate was significantly higher at most test temperatures. In contrast at higher mean temperature (30°C), diurnal fluctuations significantly reduced subsequent growth rate at most test temperatures for the laboratory population, but not for the field population. These results suggest that during domestication in constant temperatures, the laboratory population has lost the capacity to tolerate or acclimate to high and fluctuating temperatures. Population differences in acclimation capacity in response to temperature fluctuations have not been previously demonstrated, but they may be important for understanding the evolution of reaction norms and performance curves.
Collapse
Affiliation(s)
| | | | | | - Kate E. Augustine
- Department of BiologyUniversity of North CarolinaChapel HillNCUSA
- Manaaki Whenua – Landcare ResearchAucklandNew Zealand
| |
Collapse
|
8
|
Wiles SC, Bertram MG, Martin JM, Tan H, Lehtonen TK, Wong BBM. Long-Term Pharmaceutical Contamination and Temperature Stress Disrupt Fish Behavior. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8072-8082. [PMID: 32551542 DOI: 10.1021/acs.est.0c01625] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Natural environments are subject to a range of anthropogenic stressors, with pharmaceutical pollution being among the fastest-growing agents of global change. However, despite wild animals living in complex multi-stressor environments, interactions between pharmaceutical exposure and other stressors remain poorly understood. Accordingly, we investigated effects of long-term exposure to the pervasive pharmaceutical contaminant fluoxetine (Prozac) and acute temperature stress on reproductive behaviors and activity levels in the guppy (Poecilia reticulata). Fish were exposed to environmentally realistic fluoxetine concentrations (measured average: 38 or 312 ng/L) or a solvent control for 15 months using a mesocosm system. Additionally, fish were subjected to one of three acute (24 h) temperature treatments: cold stress (18 °C), heat stress (32 °C), or a control (24 °C). We found no evidence for interactive effects of fluoxetine exposure and temperature stress on guppy behavior. However, both stressors had independent impacts. Fluoxetine exposure resulted in increased male coercive copulatory behavior, while fish activity levels were unaffected. Under cold-temperature stress, both sexes were less active and males exhibited less frequent reproductive behaviors. Our results demonstrate that long-term exposure to a common pharmaceutical pollutant and acute temperature stress alter fundamental fitness-related behaviors in fish, potentially shifting population dynamics in contaminated ecosystems.
Collapse
Affiliation(s)
- Sarah C Wiles
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Michael G Bertram
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
| | - Jake M Martin
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Hung Tan
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Topi K Lehtonen
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
- Ecology and Genetics Research Unit, Faculty of Science, University of Oulu, Oulu, 90570, Finland
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
9
|
Iltis C, Louâpre P, Pecharová K, Thiéry D, Zito S, Bois B, Moreau J. Are life-history traits equally affected by global warming? A case study combining a multi-trait approach with fine-grain climate modeling. JOURNAL OF INSECT PHYSIOLOGY 2019; 117:103916. [PMID: 31344391 DOI: 10.1016/j.jinsphys.2019.103916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/08/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Predicting species responses to climate change requires tracking the variation in individual performance following exposure to warming conditions. One ecologically relevant approach consists of examining the thermal responses of a large number of traits, both related with population dynamics and trophic interactions (i.e. a multi-trait approach). Based on in situ climatic data and projections from climate models, we here designed two daily fluctuating thermal regimes realistically reflecting current and future conditions in Eastern France. These models detected an increase in mean temperature and in the range of daily thermal fluctuations as two local facets of global warming likely to occur in our study area by the end of this century. We then examined the responses of several fitness-related traits in caterpillars of the moth Lobesia botrana - including development, pupal mass, survival rates, energetic reserves, behavioral and immune traits expressed against parasitoids - to this experimental imitation of global warming. Increasing temperatures positively affected development (leading to a 31% reduction in the time needed to complete larval stage), survival rates (+19%), and movement speed as a surrogate for larval escape ability to natural enemies (+60%). Conversely, warming elicited detrimental effects on lipid reserves (-26%) and immunity (total phenoloxidase activity: -34%). These findings confirm that traits should differ in their sensitivity to global warming, underlying complex consequences for population dynamics and trophic interactions. Our study strengthens the importance of combining a multi-trait approach with the use of realistic fluctuating regimes to forecast the consequences of global warming for individuals, species and species assemblages.
Collapse
Affiliation(s)
- Corentin Iltis
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France.
| | - Philippe Louâpre
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Karolina Pecharová
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Denis Thiéry
- UMR INRA 1065 Santé et Agroécologie du Vignoble, Institut des Sciences de la Vigne et du Vin, 71 Avenue Edouard Bourlaux, 33882 Villenave-d'Ornon, France
| | - Sébastien Zito
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Benjamin Bois
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Jérôme Moreau
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| |
Collapse
|
10
|
Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect. Nat Commun 2018; 9:4771. [PMID: 30425248 PMCID: PMC6233181 DOI: 10.1038/s41467-018-07273-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/19/2018] [Indexed: 12/17/2022] Open
Abstract
Climate change is affecting biodiversity, but proximate drivers remain poorly understood. Here, we examine how experimental heatwaves impact on reproduction in an insect system. Male sensitivity to heat is recognised in endotherms, but ectotherms have received limited attention, despite comprising most of biodiversity and being more influenced by temperature variation. Using a flour beetle model system, we find that heatwave conditions (5 to 7 °C above optimum for 5 days) damaged male, but not female, reproduction. Heatwaves reduce male fertility and sperm competitiveness, and successive heatwaves almost sterilise males. Heatwaves reduce sperm production, viability, and migration through the female. Inseminated sperm in female storage are also damaged by heatwaves. Finally, we discover transgenerational impacts, with reduced reproductive potential and lifespan of offspring when fathered by males, or sperm, that had experienced heatwaves. This male reproductive damage under heatwave conditions provides one potential driver behind biodiversity declines and contractions through global warming.
Collapse
|
11
|
Su-Keene EJ, Bonilla MM, Padua MV, Zeh DW, Zeh JA. Simulated climate warming and mitochondrial haplogroup modulate testicular small non-coding RNA expression in the neotropical pseudoscorpion, Cordylochernes scorpioides. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy027. [PMID: 30595847 PMCID: PMC6305488 DOI: 10.1093/eep/dvy027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/22/2018] [Accepted: 10/21/2018] [Indexed: 06/01/2023]
Abstract
Recent theory suggests that tropical terrestrial arthropods are at significant risk from climate warming. Metabolic rate in such ectothermic species increases exponentially with environmental temperature, and a small temperature increase in a hot environment can therefore have a greater physiological impact than a large temperature increase in a cool environment. In two recent studies of the neotropical pseudoscorpion, Cordylochernes scorpioides, simulated climate warming significantly decreased survival, body size and level of sexual dimorphism. However, these effects were minor compared with catastrophic consequences for male fertility and female fecundity, identifying reproduction as the life stage most vulnerable to climate warming. Here, we examine the effects of chronic high-temperature exposure on epigenetic regulation in C. scorpioides in the context of naturally occurring variation in mitochondrial DNA. Epigenetic mechanisms, including DNA methylation, histone modifications and small non-coding RNA (sncRNA) expression, are particularly sensitive to environmental factors such as temperature, which can induce changes in epigenetic states and phenotypes that may be heritable across generations. Our results indicate that exposure of male pseudoscorpions to elevated temperature significantly altered the expression of >60 sncRNAs in testicular tissue, specifically microRNAs and piwi-interacting RNAs. Mitochondrial haplogroup was also a significant factor influencing both sncRNAs and mitochondrial gene expression. These findings demonstrate that chronic heat stress causes changes in epigenetic profiles that may account for reproductive dysfunction in C. scorpioides males. Moreover, through its effects on epigenetic regulation, mitochondrial DNA polymorphism may provide the potential for an adaptive evolutionary response to climate warming.
Collapse
Affiliation(s)
- Eleanor J Su-Keene
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
- Department of Educational Leadership and Research Methodology, Florida Atlantic University, Boca Raton, FL, USA
| | - Melvin M Bonilla
- Graduate Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, Reno, NV, USA
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Michael V Padua
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
- University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - David W Zeh
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
- Graduate Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, Reno, NV, USA
| | - Jeanne A Zeh
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
- Graduate Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, Reno, NV, USA
| |
Collapse
|
12
|
Garb JE, Sharma PP, Ayoub NA. Recent progress and prospects for advancing arachnid genomics. CURRENT OPINION IN INSECT SCIENCE 2018; 25:51-57. [PMID: 29602362 PMCID: PMC6658092 DOI: 10.1016/j.cois.2017.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/10/2017] [Indexed: 06/08/2023]
Abstract
Arachnids exhibit tremendous species richness and adaptations of biomedical, industrial, and agricultural importance. Yet genomic resources for arachnids are limited, with the first few spider and scorpion genomes becoming accessible in the last four years. We review key insights from these genome projects, and recommend additional genomes for sequencing, emphasizing taxa of greatest value to the scientific community. We suggest greater sampling of spiders whose genomes are understudied but hold important protein recipes for silk and venom production. We further recommend arachnid genomes to address significant evolutionary topics, including the phenotypic impact of genome duplications. A barrier to high-quality arachnid genomes are assemblies based solely on short-read data, which may be overcome by long-range sequencing and other emerging methods.
Collapse
Affiliation(s)
- Jessica E Garb
- Department of Biological Sciences, 198 Riverside Street, Olsen Hall 414, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| | - Prashant P Sharma
- Department of Integrative Biology, 352 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, WI 53706, USA
| | - Nadia A Ayoub
- Department of Biology, 204 West Washington Street, Howe Hall, Washington and Lee University, Lexington, VA 24450, USA
| |
Collapse
|
13
|
Saxon AD, O'Brien EK, Bridle JR. Temperature fluctuations during development reduce male fitness and may limit adaptive potential in tropical rainforest Drosophila. J Evol Biol 2018; 31:405-415. [PMID: 29282784 DOI: 10.1111/jeb.13231] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/23/2017] [Accepted: 12/19/2017] [Indexed: 01/19/2023]
Abstract
Understanding the potential for organisms to tolerate thermal stress through physiological or evolutionary responses is crucial given rapid climate change. Although climate models predict increases in both temperature mean and variance, such tolerances are typically assessed under constant conditions. We tested the effects of temperature variability during development on male fitness in the rainforest fly Drosophila birchii, by simulating thermal variation typical of the warm and cool margins of its elevational distribution, and estimated heritabilities and genetic correlations of fitness traits. Reproductive success was reduced for males reared in warm (mean 24 °C) fluctuating (±3 °C) vs. constant conditions but not in cool fluctuating conditions (mean 17 °C), although fluctuations reduced body size at both temperatures. Male reproductive success under warm fluctuating conditions was similar to that at constant 27 °C, indicating that briefly exceeding critical thermal limits has similar fitness costs to continuously stressful conditions. There was substantial heritable variation in all traits. However, reproductive success traits showed no genetic correlation between treatments reflecting temperature variation at elevational extremes, which may constrain evolutionary responses at these ecological margins. Our data suggest that even small increases in temperature variability will threaten tropical ectotherms living close to their upper thermal limits, both through direct effects on fitness and by limiting their adaptive potential.
Collapse
Affiliation(s)
- A D Saxon
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - E K O'Brien
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - J R Bridle
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
14
|
Foucreau N, Jehan C, Lawniczak M, Hervant F. Fluctuating versus constant temperatures: effects on metabolic rate and oxidative damages in freshwater crustacean embryos. CAN J ZOOL 2016. [DOI: 10.1139/cjz-2015-0114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rising temperatures will pose a major threat, notably for freshwater ecosystems, in the decades to come. Temperature, a major environmental factor, affects organisms’ physiology and metabolism. Most studies of temperature effect address constant thermal regime (CTR), whereas organisms are exposed to fluctuating thermal regime (FTR) in their natural environments. In addition, previous works have predominantly addressed issues of thermal tolerance in adults rather than in early life stages. Therefore, for the first time to our knowledge, we aimed to investigate the influence of thermal conditions, either FTR or CTR, on the physiology of the crustacean amphipod Gammarus roeseli Gervais, 1835 at different embryonic stages. We measured the metabolic rate and the TBARS (thiobarbituric acid reactive substances) body content (to assess the level of oxidative damage). Oxygen consumption rate strongly increased throughout embryo development, whereas oxidative damages did not clearly change. In addition, the embryos tended to consume oxygen equally but displayed less oxidative damage when developing under FTR compared with developing under CTR. Moreover, our results revealed that fluctuating temperatures (and especially the existence of a colder (nonstressful) period during the day) could allow cell-damage repairs, and therefore, allow G. roeseli embryos to ensure good development by implementing an efficient protection response against oxidative stress.
Collapse
Affiliation(s)
- Natacha Foucreau
- UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6, rue R. Dubois, 69622 Villeurbanne CEDEX, France
- UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6, rue R. Dubois, 69622 Villeurbanne CEDEX, France
| | - Charly Jehan
- UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6, rue R. Dubois, 69622 Villeurbanne CEDEX, France
- UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6, rue R. Dubois, 69622 Villeurbanne CEDEX, France
| | - Martin Lawniczak
- UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6, rue R. Dubois, 69622 Villeurbanne CEDEX, France
- UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6, rue R. Dubois, 69622 Villeurbanne CEDEX, France
| | - Frédéric Hervant
- UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6, rue R. Dubois, 69622 Villeurbanne CEDEX, France
- UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6, rue R. Dubois, 69622 Villeurbanne CEDEX, France
| |
Collapse
|
15
|
Briga M, Verhulst S. Large diurnal temperature range increases bird sensitivity to climate change. Sci Rep 2015; 5:16600. [PMID: 26563993 PMCID: PMC4643245 DOI: 10.1038/srep16600] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 09/23/2015] [Indexed: 01/05/2023] Open
Abstract
Climate variability is changing on multiple temporal scales, and little is known of the consequences of increases in short-term variability, particularly in endotherms. Using mortality data with high temporal resolution of zebra finches living in large outdoor aviaries (5 years, 359.220 bird-days), we show that mortality rate increases almost two-fold per 1°C increase in diurnal temperature range (DTR). Interestingly, the DTR effect differed between two groups with low versus high experimentally manipulated foraging costs, reflecting a typical laboratory 'easy' foraging environment and a 'hard' semi-natural environment respectively. DTR increased mortality on days with low minimum temperature in the easy foraging environment, but on days with high minimum temperature in the semi-natural environment. Thus, in a natural environment DTR effects will become increasingly important in a warming world, something not detectable in an 'easy' laboratory environment. These effects were particularly apparent at young ages. Critical time window analyses showed that the effect of DTR on mortality is delayed up to three months, while effects of minimum temperature occurred within a week. These results show that daily temperature variability can substantially impact the population viability of endothermic species.
Collapse
Affiliation(s)
- Michael Briga
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
16
|
Dowd WW, King FA, Denny MW. Thermal variation, thermal extremes and the physiological performance of individuals. J Exp Biol 2015; 218:1956-67. [DOI: 10.1242/jeb.114926] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ABSTRACT
In this review we consider how small-scale temporal and spatial variation in body temperature, and biochemical/physiological variation among individuals, affect the prediction of organisms' performance in nature. For ‘normal’ body temperatures – benign temperatures near the species' mean – thermal biology traditionally uses performance curves to describe how physiological capabilities vary with temperature. However, these curves, which are typically measured under static laboratory conditions, can yield incomplete or inaccurate predictions of how organisms respond to natural patterns of temperature variation. For example, scale transition theory predicts that, in a variable environment, peak average performance is lower and occurs at a lower mean temperature than the peak of statically measured performance. We also demonstrate that temporal variation in performance is minimized near this new ‘optimal’ temperature. These factors add complexity to predictions of the consequences of climate change. We then move beyond the performance curve approach to consider the effects of rare, extreme temperatures. A statistical procedure (the environmental bootstrap) allows for long-term simulations that capture the temporal pattern of extremes (a Poisson interval distribution), which is characterized by clusters of events interspersed with long intervals of benign conditions. The bootstrap can be combined with biophysical models to incorporate temporal, spatial and physiological variation into evolutionary models of thermal tolerance. We conclude with several challenges that must be overcome to more fully develop our understanding of thermal performance in the context of a changing climate by explicitly considering different forms of small-scale variation. These challenges highlight the need to empirically and rigorously test existing theories.
Collapse
Affiliation(s)
- W. Wesley Dowd
- Loyola Marymount University, Department of Biology, Los Angeles, CA 90045, USA
| | - Felicia A. King
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA
| | - Mark W. Denny
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA
| |
Collapse
|