1
|
Hashamdar S, Parvin P, Ramezani F, Ahmadinouri F, Jafargholi A, Refahizadeh M, Akbarpour M, Aghaei M, Heidari O. PC12 differentiation to neuron cells activated by a low-level laser at 660 nm on UV pre-treated CR-39 scaffolds with parallel microchannels. BIOMEDICAL OPTICS EXPRESS 2024; 15:4655-4674. [PMID: 39347001 PMCID: PMC11427200 DOI: 10.1364/boe.530876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 10/01/2024]
Abstract
The lack of regeneration of injured neurons in the central and peripheral neural system leads to the failure of damaged tissue repair in patients. While there is no definitive cure for most neurodegenerative diseases, new therapeutic methods that cause the proliferation and differentiation of neurons are of interest. Challenges such as the inability of neuronal cells to proliferate after injury, the lack of a stimulus for initial stimulation, and the presence of the microenvironment around CNS neurons contain several inhibitory factors that prevent neuron regeneration, thus, creating a structure similar to the extracellular matrix helps the cell proliferation in current treatment. A rapid method of neuron-like cell differentiation of PC12 cells is introduced here based on a novel synthetic scaffold. Initially, poly allyldiglycol carbonate (CR-39) substrate is textured under a high dose of ArF UV excimer laser (1000 shot, 300 mJ/pulse equivalent to 300 J/cm2 at 193 nm) to create superficial periodic parallel microchannels with the micrometer spacing and sub-micron width. Ultraviolet treated CR-39 (UT CR-39) provides a suitable scaffold to speed up the transformation/differentiation of PC12 cells. The latter is pheochromocytoma of the rat adrenal medulla as an embryonic origin from the neural crest usually exposed to the nerve growth factor (NGF). In fact, PC12 cells are seeded on the microchannels and simultaneously are stimulated by coherent red photons at 660 nm within the therapeutic window. The UT CR-39 scaffold undergoes extra improvement of ∼ 30% after 12 minutes of laser activation regarding the photo-biomodulation (PBM) mechanism. The cell activation due to the coherent photons also gives rise to enhanced proliferation/differentiation. Here, PC12 cells are efficiently differentiated into neurons according to immunocytochemistry (ICC) and Western Blot verification tests based on MAP2 and synapsin-1 protein expression. In general, UT CR-39 acts as a superior bed to elevate the population of neuron-like cells up to threefold against those of untreated (control)ones. We conclude that the surface cross-linking due to UV exposure and subsequent induced hydrophilicity notably contribute to the neuron-like cell differentiation of PC12 without adding NGF.
Collapse
Affiliation(s)
- Somayeh Hashamdar
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Parviz Parvin
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ahmadinouri
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Amir Jafargholi
- Laboratory of Wave Engineering (LWE), School of Engineering, Ecole polytechnique fédérale de Lausanne (EPFL), Switzerland
| | - Mitra Refahizadeh
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Mahzad Akbarpour
- GMP Immune Cell Development & Manufacturing Hematopoietic Cellular Therapy Program, Department of Medicine, University of Chicago Medical Center Hospitals, Chicago, USA
| | - Mohammadreza Aghaei
- Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology (NTNU), Ålesund, Norway
- Department of Sustainable Systems Engineering (INATECH), University of Freiburg, Freiburg, Germany
| | - Omid Heidari
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| |
Collapse
|
2
|
Li X, Klausen LH, Zhang W, Jahed Z, Tsai CT, Li TL, Cui B. Nanoscale Surface Topography Reduces Focal Adhesions and Cell Stiffness by Enhancing Integrin Endocytosis. NANO LETTERS 2021; 21:8518-8526. [PMID: 34346220 PMCID: PMC8516714 DOI: 10.1021/acs.nanolett.1c01934] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Both substrate stiffness and surface topography regulate cell behavior through mechanotransduction signaling pathways. Such intertwined effects suggest that engineered surface topographies might substitute or cancel the effects of substrate stiffness in biomedical applications. However, the mechanisms by which cells recognize topographical features are not fully understood. Here we demonstrate that the presence of nanotopography drastically alters cell behavior such that neurons and stem cells cultured on rigid glass substrates behave as if they were on soft hydrogels. With atomic force microscopy, we show that rigid nanotopography resembles the effects of soft hydrogels in reducing cell stiffness and membrane tension. Further, we reveal that nanotopography reduces focal adhesions and cell stiffness by enhancing the endocytosis and the subsequent removal of integrin receptors. This mechanistic understanding will support the rational design of nanotopography that directs cells on rigid materials to behave as if they were on soft ones.
Collapse
Affiliation(s)
- Xiao Li
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Lasse H Klausen
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Wei Zhang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Zeinab Jahed
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ching-Ting Tsai
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Thomas L Li
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
The nuclear import of the transcription factor MyoD is reduced in mesenchymal stem cells grown in a 3D micro-engineered niche. Sci Rep 2021; 11:3021. [PMID: 33542304 PMCID: PMC7862644 DOI: 10.1038/s41598-021-81920-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/11/2021] [Indexed: 12/21/2022] Open
Abstract
Smart biomaterials are increasingly being used to control stem cell fate in vitro by the recapitulation of the native niche microenvironment. By integrating experimental measurements with numerical models, we show that in mesenchymal stem cells grown inside a 3D synthetic niche both nuclear transport of a myogenic factor and the passive nuclear diffusion of a smaller inert protein are reduced. Our results also suggest that cell morphology modulates nuclear proteins import through a partition of the nuclear envelope surface, which is a thin but extremely permeable annular portion in cells cultured on 2D substrates. Therefore, our results support the hypothesis that in stem cell differentiation, the nuclear import of gene-regulating transcription factors is controlled by a strain-dependent nuclear envelope permeability, probably related to the reorganization of stretch-activated nuclear pore complexes.
Collapse
|
4
|
Lau S, Liu Y, Maier A, Braune S, Gossen M, Neffe AT, Lendlein A. Establishment of an in vitro thrombogenicity test system with cyclic olefin copolymer substrate for endothelial layer formation. MRS COMMUNICATIONS 2021; 11:559-567. [PMID: 34513262 PMCID: PMC8422954 DOI: 10.1557/s43579-021-00072-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/16/2021] [Indexed: 05/17/2023]
Abstract
UNLABELLED In vitro thrombogenicity test systems require co-cultivation of endothelial cells and platelets under blood flow-like conditions. Here, a commercially available perfusion system is explored using plasma-treated cyclic olefin copolymer (COC) as a substrate for the endothelial cell layer. COC was characterized prior to endothelialization and co-cultivation with platelets under static or flow conditions. COC exhibits a low roughness and a moderate hydrophilicity. Flow promoted endothelial cell growth and prevented platelet adherence. These findings show the suitability of COC as substrate and the importance of blood flow-like conditions for the assessment of the thrombogenic risk of drugs or cardiovascular implant materials. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1557/s43579-021-00072-6.
Collapse
Affiliation(s)
- Skadi Lau
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Yue Liu
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Anna Maier
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Steffen Braune
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Manfred Gossen
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Axel T. Neffe
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Andreas Lendlein
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| |
Collapse
|
5
|
Synergies between Surface Microstructuring and Molecular Nanopatterning for Controlling Cell Populations on Polymeric Biointerfaces. Polymers (Basel) 2020; 12:polym12030655. [PMID: 32183081 PMCID: PMC7183046 DOI: 10.3390/polym12030655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 01/19/2023] Open
Abstract
Polymeric biointerfaces are already being used extensively in a wide set of biomedical devices and systems. The possibility of controlling cell populations on biointerfaces may be essential for connecting biological systems to synthetic materials and for researching relevant interactions between life and matter. In this study, we present and analyze synergies between an innovative approach for surface microstructuring and a molecular nanopatterning procedure of recent development. The combined set of techniques used may be instrumental for the development of a new generation of functional polymeric biointerfaces. Eukaryotic cell cultures placed upon the biointerfaces developed, both before and after molecular patterning, help to validate the proposal and to discuss the synergies between the surface microstructuring and molecular nanopatterning techniques described in the study. Their potential role in the production of versatile polymeric biointerfaces for lab- and organ-on-a-chip biodevices and towards more complex and biomimetic co-culture systems and cell cultivation set-ups are also examined.
Collapse
|
6
|
Wang J, Boddupalli A, Koelbl J, Nam DH, Ge X, Bratlie KM, Schneider IC. Degradation and Remodeling of Epitaxially Grown Collagen Fibrils. Cell Mol Bioeng 2019; 12:69-84. [PMID: 31007771 PMCID: PMC6472930 DOI: 10.1007/s12195-018-0547-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 08/07/2018] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION— The extracellular matrix (ECM) in the tumor microenvironment contains high densities of collagen that are highly aligned, resulting in directional migration called contact guidance that facilitates efficient migration out of the tumor. Cancer cells can remodel the ECM through traction force controlled by myosin contractility or proteolytic activity controlled by matrix metalloproteinase (MMP) activity, leading to either enhanced or diminished contact guidance. METHODS— Recently, we have leveraged the ability of mica to epitaxially grow aligned collagen fibrils in order to assess contact guidance. In this article, we probe the mechanisms of remodeling of aligned collagen fibrils on mica by breast cancer cells. RESULTS— We show that cells that contact guide with high fidelity (MDA-MB-231 cells) exert more force on the underlying collagen fibrils than do cells that contact guide with low fidelity (MTLn3 cells). These high traction cells (MDA-MB-231 cells) remodel collagen fibrils over hours, pulling so hard that the collagen fibrils detach from the surface, effectively delaminating the entire contact guidance cue. Myosin or MMP inhibition decreases this effect. Interestingly, blocking MMP appears to increase the alignment of cells on these substrates, potentially allowing the alignment through myosin contractility to be uninhibited. Finally, amplification or dampening of contact guidance with respect to a particular collagen fibril organization is seen under different conditions. CONCLUSIONS— Both myosin II contractility and MMP activity allow MDA-MB-231 cells to remodel and eventually destroy epitaxially grown aligned collagen fibrils.
Collapse
Affiliation(s)
- Juan Wang
- Present Address: Department of Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011-2230 USA
| | - Anuraag Boddupalli
- Present Address: Department of Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011-2230 USA
| | - Joseph Koelbl
- Present Address: Department of Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011-2230 USA
| | - Dong Hyun Nam
- Department of Chemical Engineering, University of California Riverside, Riverside, CA USA
| | - Xin Ge
- Department of Chemical Engineering, University of California Riverside, Riverside, CA USA
| | - Kaitlin M. Bratlie
- Present Address: Department of Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011-2230 USA
- Department of Materials Science and Engineering, Iowa State University, Ames, IA USA
| | - Ian C. Schneider
- Present Address: Department of Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011-2230 USA
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA USA
| |
Collapse
|
7
|
Sokolova AI, Pavlova ER, Khramova YV, Klinov DV, Shaitan KV, Bagrov DV. Imaging human keratinocytes grown on electrospun mats by scanning electron microscopy. Microsc Res Tech 2019; 82:544-549. [DOI: 10.1002/jemt.23198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/11/2018] [Accepted: 12/03/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Anastasiia I. Sokolova
- Department of Bioengineering, Faculty of BiologyLomonosov Moscow State University Moscow Russia
- Federal Research Clinical Center of Physical‐Chemical Medicine of the Federal Medical and Biological Agency of Russia Moscow Russia
| | - Elizaveta R. Pavlova
- Department of Bioengineering, Faculty of BiologyLomonosov Moscow State University Moscow Russia
- Moscow Institute of Physics and Technology Dolgoprudny Moscow Region Russia
| | - Yuliya V. Khramova
- Department of Embryology, Faculty of BiologyLomonosov Moscow State University Moscow Russia
| | - Dmitry V. Klinov
- Department of Bioengineering, Faculty of BiologyLomonosov Moscow State University Moscow Russia
| | - Konstantin V. Shaitan
- Federal Research Clinical Center of Physical‐Chemical Medicine of the Federal Medical and Biological Agency of Russia Moscow Russia
| | - Dmitry V. Bagrov
- Department of Bioengineering, Faculty of BiologyLomonosov Moscow State University Moscow Russia
- Federal Research Clinical Center of Physical‐Chemical Medicine of the Federal Medical and Biological Agency of Russia Moscow Russia
| |
Collapse
|
8
|
Bressel TAB, de Queiroz JDF, Gomes Moreira SM, da Fonseca JT, Filho EA, Guastaldi AC, Batistuzzo de Medeiros SR. Laser-modified titanium surfaces enhance the osteogenic differentiation of human mesenchymal stem cells. Stem Cell Res Ther 2017; 8:269. [PMID: 29179738 PMCID: PMC5704576 DOI: 10.1186/s13287-017-0717-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/13/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022] Open
Abstract
Background Titanium surfaces have been modified by various approaches with the aim of improving the stimulation of osseointegration. Laser beam (Yb-YAG) treatment is a controllable and flexible approach to modifying surfaces. It creates a complex surface topography with micro and nano-scaled patterns, and an oxide layer that can improve the osseointegration of implants, increasing their usefulness as bone implant materials. Methods Laser beam irradiation at various fluences (132, 210, or 235 J/cm2) was used to treat commercially pure titanium discs to create complex surface topographies. The titanium discs were investigated by scanning electron microscopy, X-ray diffraction, and measurement of contact angles. The surface generated at a fluence of 235 J/cm2 was used in the biological assays. The behavior of mesenchymal stem cells from an umbilical cord vein was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, a mineralization assay, and an alkaline phosphatase activity assay and by carrying out a quantitative real-time polymerase chain reaction for osteogenic markers. CHO-k1 cells were also exposed to titanium discs in the MTT assay. Results The best titanium surface was that produced by laser beam irradiation at 235 J/cm2 fluence. Cell proliferation analysis revealed that the CHO-k1 and mesenchymal stem cells behaved differently. The laser-processed titanium surface increased the proliferation of CHO-k1 cells, reduced the proliferation of mesenchymal stem cells, upregulated the expression of the osteogenic markers, and enhanced alkaline phosphatase activity. Conclusions The laser-treated titanium surface modulated cellular behavior depending on the cell type, and stimulated osteogenic differentiation. This evidence supports the potential use of laser-processed titanium surfaces as bone implant materials, and their use in regenerative medicine could promote better outcomes.
Collapse
Affiliation(s)
- Tatiana A B Bressel
- Departamento de Biologia Celular e Genética, CB-UFRN, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, 59072-970, Natal, RN, Brazil
| | - Jana Dara Freires de Queiroz
- Departamento de Biologia Celular e Genética, CB-UFRN, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, 59072-970, Natal, RN, Brazil.,Programa de Pós Graduação em Ciências da Saúde, Natal, RN, Brazil
| | - Susana Margarida Gomes Moreira
- Departamento de Biologia Celular e Genética, CB-UFRN, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, 59072-970, Natal, RN, Brazil
| | - Jéssyca T da Fonseca
- Departamento de Biologia Celular e Genética, CB-UFRN, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, 59072-970, Natal, RN, Brazil
| | - Edson A Filho
- Departamento de Físico-Química, Instituto de Química de Araraquara-UNESP, Araraquara, SP, Brazil
| | - Antônio Carlos Guastaldi
- Departamento de Físico-Química, Instituto de Química de Araraquara-UNESP, Araraquara, SP, Brazil
| | - Silvia Regina Batistuzzo de Medeiros
- Departamento de Biologia Celular e Genética, CB-UFRN, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, 59072-970, Natal, RN, Brazil.
| |
Collapse
|
9
|
Zhou SF, Gopalakrishnan S, Xu YH, To SKY, Wong AST, Pang SW, Lam YW. Substrates with patterned topography reveal metastasis of human cancer cells. Biomed Mater 2017; 12:055001. [DOI: 10.1088/1748-605x/aa785d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Antonini S, Montali M, Jacchetti E, Meucci S, Parchi PD, Barachini S, Panvini FM, Pacini S, Petrini I, Cecchini M. Nanotopography Induced Human Bone Marrow Mesangiogenic Progenitor Cells (MPCs) to Mesenchymal Stromal Cells (MSCs) Transition. Front Cell Dev Biol 2016; 4:144. [PMID: 28066765 PMCID: PMC5169073 DOI: 10.3389/fcell.2016.00144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/05/2016] [Indexed: 12/28/2022] Open
Abstract
Mesangiogenic progenitor cells (MPCs) are a very peculiar population of cells present in the human adult bone marrow, only recently discovered and characterized. Owing to their differentiation potential, MPCs can be considered progenitors for mesenchymal stromal cells (MSCs), and for this reason they potentially represent a promising cell population to apply for skeletal tissue regeneration applications. Here, we evaluate the effects of surface nanotopography on MPCs, considering the possibility that this specific physical stimulus alone can trigger MPC differentiation toward the mesenchymal lineage. In particular, we exploit nanogratings to deliver a mechanical, directional stimulus by contact interaction to promote cell morphological polarization and stretching. Following this interaction, we study the MPC-MSC transition by i. analyzing the change in cell morphotype by immunostaining of the key cell-adhesion structures and confocal fluorescence microscopy, and ii. quantifying the expression of cell-phenotype characterizing markers by flow cytometry. We demonstrate that the MPC mesengenic differentiation can be induced by the solely interaction with the NGs, in absence of any other external, chemical stimulus. This aspect is of particular interest in the case of multipotent progenitors as MPCs that, retaining both mesengenic and angiogenic potential, possess a high clinical appeal.
Collapse
Affiliation(s)
- Sara Antonini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore Pisa, Italy
| | - Marina Montali
- Department of Clinical and Experimental Medicine, University of Pisa Pisa, Italy
| | - Emanuela Jacchetti
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G.Natta", Politecnico di Milano Milan, Italy
| | - Sandro Meucci
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore Pisa, Italy
| | - Paolo D Parchi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa Pisa, Italy
| | - Serena Barachini
- Department of Clinical and Experimental Medicine, University of Pisa Pisa, Italy
| | - Francesca M Panvini
- Department of Clinical and Experimental Medicine, University of Pisa Pisa, Italy
| | - Simone Pacini
- Department of Clinical and Experimental Medicine, University of Pisa Pisa, Italy
| | - Iacopo Petrini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore Pisa, Italy
| |
Collapse
|
11
|
Multi-Channeled Polymeric Microsystem for Studying the Impact of Surface Topography on Cell Adhesion and Motility. Polymers (Basel) 2015. [DOI: 10.3390/polym7111519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
12
|
Antonini S, Meucci S, Jacchetti E, Klingauf M, Beltram F, Poulikakos D, Cecchini M, Ferrari A. Sub-micron lateral topography affects endothelial migration by modulation of focal adhesion dynamics. ACTA ACUST UNITED AC 2015; 10:035010. [PMID: 26106866 DOI: 10.1088/1748-6041/10/3/035010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Through the interaction with topographical features, endothelial cells tune their ability to populate target substrates, both in vivo and in vitro. Basal textures interfere with the establishment and maturation of focal adhesions (FAs) thus inducing specific cell-polarization patterns and regulating a plethora of cell activities that govern the overall endothelial function. In this study, we analyze the effect of topographical features on FAs in primary human endothelial cells. Reported data demonstrate a functional link between FA dynamics and cell polarization and spreading on structured substrates presenting variable lateral feature size. Our results reveal that gratings with 2 µm lateral periodicity maximize contact guidance. The effect is linked to the dynamical state of FAs. We argue that these results are readily applicable to the rational design of active surfaces at the interface with the blood stream.
Collapse
Affiliation(s)
- S Antonini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 12, I-56126 Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Tuft BW, Xu L, White SP, Seline AE, Erwood AM, Hansen MR, Guymon CA. Neural pathfinding on uni- and multidirectional photopolymerized micropatterns. ACS APPLIED MATERIALS & INTERFACES 2014; 6:11265-76. [PMID: 24911660 PMCID: PMC4215840 DOI: 10.1021/am501622a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/09/2014] [Indexed: 05/22/2023]
Abstract
Overcoming signal resolution barriers of neural prostheses, such as the commercially available cochlear impant (CI) or the developing retinal implant, will likely require spatial control of regenerative neural elements. To rationally design materials that direct nerve growth, it is first necessary to determine pathfinding behavior of de novo neurite growth from prosthesis-relevant cells such as spiral ganglion neurons (SGNs) in the inner ear. Accordingly, in this work, repeating 90° turns were fabricated as multidirectional micropatterns to determine SGN neurite turning capability and pathfinding. Unidirectional micropatterns and unpatterned substrates are used as comparisons. Spiral ganglion Schwann cell alignment (SGSC) is also examined on each surface type. Micropatterns are fabricated using the spatial reaction control inherent to photopolymerization with photomasks that have either parallel line spacing gratings for unidirectional patterns or repeating 90° angle steps for multidirectional patterns. Feature depth is controlled by modulating UV exposure time by shuttering the light source at given time increments. Substrate topography is characterized by white light interferometry and scanning electron microscopy (SEM). Both pattern types exhibit features that are 25 μm in width and 7.4 ± 0.7 μm in depth. SGN neurites orient randomly on unpatterned photopolymer controls, align and consistently track unidirectional patterns, and are substantially influenced by, but do not consistently track, multidirectional turning cues. Neurite lengths are 20% shorter on multidirectional substrates compared to unidirectional patterns while neurite branching and microfeature crossing events are significantly higher. For both pattern types, the majority of the neurite length is located in depressed surface features. Developing methods to understand neural pathfinding and to guide de novo neurite growth to specific stimulatory elements will enable design of innovative biomaterials that improve functional outcomes of devices that interface with the nervous system.
Collapse
Affiliation(s)
- Bradley W. Tuft
- Department
of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242,
United States, United States
| | - Linjing Xu
- Department
of Otolaryngology, University of Iowa Hospitals
and Clinics, Iowa City, Iowa 52242, United States, United States
| | - Scott P. White
- Department
of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242,
United States, United States
| | - Alison E. Seline
- Department
of Otolaryngology, University of Iowa Hospitals
and Clinics, Iowa City, Iowa 52242, United States, United States
| | - Andrew M. Erwood
- Department
of Otolaryngology, University of Iowa Hospitals
and Clinics, Iowa City, Iowa 52242, United States, United States
| | - Marlan R. Hansen
- Department
of Otolaryngology, University of Iowa Hospitals
and Clinics, Iowa City, Iowa 52242, United States, United States
| | - C. Allan Guymon
- Department
of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242,
United States, United States
- Tel.:(319)335-5015
| |
Collapse
|