1
|
Zhang Y, Cheng Y, Zhao W, Song F, Cao Y. Effects of Halloysite Nanotubes and Multi-walled Carbon Nanotubes on Kruppel-like Factor 15-Mediated Downstream Events in Mouse Hearts After Intravenous Injection. Cardiovasc Toxicol 2024; 24:408-421. [PMID: 38411850 DOI: 10.1007/s12012-024-09844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Halloysite nanotubes (HNTs) are nanomaterials (NMs) derived from natural clays and have been considered as biocompatible NMs for biomedical uses. However, the cardiovascular toxicity of HNTs has not been thoroughly investigated. In this study, we compared the cardiotoxicity of HNTs and multi-walled carbon nanotubes (MWCNTs), focusing on the changes in Kruppel-like factor (KLF)-mediated signaling pathways. Mice were intravenously injected with 50 µg NMs, once a day, for 5 days, and then mouse hearts were removed for experiments. While HNTs or MWCNTs did not induce obvious pathological changes, RNA-sequencing data suggested the alterations of KLF gene expression. We further confirmed an increase of Klf15 positive cells, accompanied by changes in Klf15-related gene ontology (GO) terms. We noticed that most of the changed GO terms are related with the regulation of gene expression, and we confirmed that the NMs increased myoneurin (Mynn) but decreased snail family transcriptional repressor 1 (Snai1), two transcription factors (TFs) related with Klf15. Besides, the changed GO terms also include metal ion binding and positive regulation of glucose import, and we verified an increase of phosphoenolpyruvate carboxykinase 1 (Pck1) and insulin receptor (Insr). However, HNTs and MWCNTs only showed minimal impact on cell death signaling pathways, and no increase in apoptotic sites was observed after NM treatment. We concluded that intravenous administration of HNTs and MWCNTs activated a protective TF, namely Klf15 in mouse aortas, to alter gene expression and signaling pathways related with metal ion binding and glucose import.
Collapse
Affiliation(s)
- Yimin Zhang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yujia Cheng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Fengmei Song
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
2
|
Wei YL, Lei YQ, Ye ZJ, Zhuang XD, Zhu LP, Wang XR, Cao H. Effects of bepridil on early cardiac development of zebrafish. Cell Tissue Res 2023; 391:375-391. [PMID: 36422735 PMCID: PMC9686465 DOI: 10.1007/s00441-022-03706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/06/2022] [Indexed: 11/27/2022]
Abstract
Bepridil is a commonly used medication for arrhythmia and heart failure. It primarily exerts hemodynamic effects by inhibiting Na+/K+ movement and regulating the Na+/Ca2+ exchange. In comparison to other Ca2+ inhibitors, bepridil has a long half-life and a complex pharmacology. Additionally, it is widely used in antiviral research and the treatment of various diseases. However, the toxicity of this compound and its other possible effects on embryonic development are unknown. In this study, we investigated the toxicity of bepridil on rat myocardial H9c2 cells. After treatment with bepridil, the cells became overloaded with Ca2+ and entered a state of cytoplasmic vacuolization and nuclear abnormality. Bepridil treatment resulted in several morphological abnormalities in zebrafish embryo models, including pericardium enlargement, yolk sac swelling, and growth stunting. The hemodynamic effects on fetal development resulted in abnormal cardiovascular circulation and myocardial weakness. After inhibiting the Ca2+ transmembrane, the liver of zebrafish larvae also displayed an ectopic and deficient spatial location. Additionally, the results of the RNA-seq analysis revealed the detailed gene expression profiles and metabolic responses to bepridil treatment in zebrafish embryonic development. Taken together, our study provides an important evaluation of antiarrhythmic agents for clinical use in prenatal heart patients.
Collapse
Affiliation(s)
- Ya-Lan Wei
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350013, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350122, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China
| | - Yu-Qing Lei
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350013, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Zhou-Jie Ye
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350013, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350122, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China
| | - Xu-Dong Zhuang
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350013, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350122, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China
| | - Li-Ping Zhu
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350013, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350122, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China
| | - Xin-Rui Wang
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350013, China.
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350122, China.
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China.
| | - Hua Cao
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350013, China.
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350122, China.
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
3
|
Fierro Morales JC, Xue Q, Roh-Johnson M. An evolutionary and physiological perspective on cell-substrate adhesion machinery for cell migration. Front Cell Dev Biol 2022; 10:943606. [PMID: 36092727 PMCID: PMC9453864 DOI: 10.3389/fcell.2022.943606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-substrate adhesion is a critical aspect of many forms of cell migration. Cell adhesion to an extracellular matrix (ECM) generates traction forces necessary for efficient migration. One of the most well-studied structures cells use to adhere to the ECM is focal adhesions, which are composed of a multilayered protein complex physically linking the ECM to the intracellular actin cytoskeleton. Much of our understanding of focal adhesions, however, is primarily derived from in vitro studies in Metazoan systems. Though these studies provide a valuable foundation to the cell-substrate adhesion field, the evolution of cell-substrate adhesion machinery across evolutionary space and the role of focal adhesions in vivo are largely understudied within the field. Furthering investigation in these areas is necessary to bolster our understanding of the role cell-substrate adhesion machinery across Eukaryotes plays during cell migration in physiological contexts such as cancer and pathogenesis. In this review, we review studies of cell-substrate adhesion machinery in organisms evolutionary distant from Metazoa and cover the current understanding and ongoing work on how focal adhesions function in single and collective cell migration in an in vivo environment, with an emphasis on work that directly visualizes cell-substrate adhesions. Finally, we discuss nuances that ought to be considered moving forward and the importance of future investigation in these emerging fields for application in other fields pertinent to adhesion-based processes.
Collapse
Affiliation(s)
| | | | - Minna Roh-Johnson
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
4
|
Thomas R, Menon V, Mani R, Pruszak J. Glycan Epitope and Integrin Expression Dynamics Characterize Neural Crest Epithelial-to-Mesenchymal Transition (EMT) in Human Pluripotent Stem Cell Differentiation. Stem Cell Rev Rep 2022; 18:2952-2965. [PMID: 35727432 DOI: 10.1007/s12015-022-10393-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
Abstract
The neural crest gives rise to progeny as diverse as peripheral neurons, myelinating cells, cranial muscle, bone and cartilage tissues, and melanocytes. Neural crest derivation encompasses complex morphological change, including epithelial-to-mesenchymal transition (EMT) and migration to the eventual target locations throughout the body. Neural crest cultures derived from stem cells provide an attractive source for developmental studies in human model systems, of immediate biomedical relevance for neurocristopathies, neural cancer biology and regenerative medicine, if only appropriate markers for lineage and cell type definition and quality control criteria were available. Implementing a defined, scalable protocol to generate neural crest cells from embryonic stem cells, we identify stage-defining cluster-of-differentiation (CD) surface markers during human neural crest development in vitro. Acquisition of increasingly mesenchymal phenotype was characterized by absence of neuroepithelial stemness markers (CD15, CD133, CD49f) and by decrease of CD57 and CD24. Increased per-cell-expression of CD29, CD44 and CD73 correlated with established EMT markers as determined by immunofluorescence and immunoblot analysis. The further development towards migratory neural crest was associated with decreased CD24, CD49f (ITGA6) and CD57 (HNK1) versus an enhanced CD49d (ITGA4), CD49e (ITGA5) and CD51/CD61 (ITGAV/ITGB3) expression. Notably, a shift from CD57 to CD51/CD61 was identified as a sensitive surrogate surface indicator of EMT in neural crest in vitro development. The reported changes in glycan epitope and integrin surface expression may prove useful for elucidating neural crest stemness, EMT progression and malignancies.
Collapse
Affiliation(s)
- Ria Thomas
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine and Faculty of Biology, University of Freiburg, Freiburg, Germany.,Neuroregeneration Research Institute, McLean Hospital/ Harvard Medical School, Belmont, MB, USA
| | - Vishal Menon
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine and Faculty of Biology, University of Freiburg, Freiburg, Germany.,Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Rakesh Mani
- Institute of Anatomy and Cell Biology, Salzburg, Paracelsus Medical University (PMU), Salzburg, Austria.,Center of Anatomy and Cell Biology, Salzburg and Nuremberg, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Jan Pruszak
- Neuroregeneration Research Institute, McLean Hospital/ Harvard Medical School, Belmont, MB, USA. .,Institute of Anatomy and Cell Biology, Salzburg, Paracelsus Medical University (PMU), Salzburg, Austria. .,Center of Anatomy and Cell Biology, Salzburg and Nuremberg, Paracelsus Medical University (PMU), Salzburg, Austria.
| |
Collapse
|
5
|
Xue J, Liao Q, Luo M, Hua C, Zhao J, Yu G, Chen X, Li X, Zhang X, Ran R, Lu F, Wang Y, Qiao L. Cigarette smoke-induced oxidative stress activates NRF2 to mediate fibronectin disorganization in vascular formation. Open Biol 2022; 12:210310. [PMID: 35472288 PMCID: PMC9042581 DOI: 10.1098/rsob.210310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/20/2022] [Indexed: 01/09/2023] Open
Abstract
Cigarette smoke significantly induces oxidative stress, resulting in cardiovascular disease. NRF2, a well-known antioxidative stress response factor, is generally considered to play protective roles in cardiovascular dysfunction triggered by oxidative stress. Interestingly, recent studies reported adverse effects of NRF2 on the cardiovascular system. These unfavourable pathogenic effects of NRF2 need to be further investigated. Our work shows that cigarette smoke extract (CSE)-induced oxidative stress disturbs fibronectin (FN) assembly during angiogenesis. Furthermore, this effect largely depends on hyperactive NRF2-STAT3 signalling, which consequently promotes abnormal FN deposition. Consistently, disruption of this pathway by inhibiting NRF2 or STAT3 prevents CSE-induced FN disorganization and vasculature disruption in human umbilical vein endothelial cells or zebrafish. Taken together, these findings demonstrate the cardiovascular dysfunction caused by CSE from a novel perspective that NRF2-dependent signalling engages in FN disorganization.
Collapse
Affiliation(s)
- Jinjiang Xue
- College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People's Republic of China
- Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People's Republic of China
| | - Qiong Liao
- Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People's Republic of China
| | - Man Luo
- Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People's Republic of China
| | - Chenfeng Hua
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, 2 Fengyang Street, Zhengzhou 450001, People's Republic of China
| | - Junwei Zhao
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, 2 Fengyang Street, Zhengzhou 450001, People's Republic of China
| | - Gangfeng Yu
- Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People's Republic of China
| | - Xiangyu Chen
- Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People's Republic of China
| | - Xueru Li
- Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People's Republic of China
| | - Xinchun Zhang
- Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People's Republic of China
| | - Ruiguo Ran
- Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People's Republic of China
| | - Fanghui Lu
- Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People's Republic of China
| | - Yingxiong Wang
- College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People's Republic of China
| | - Liangjun Qiao
- College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People's Republic of China
| |
Collapse
|
6
|
Jayachandran J, Srinivasan H, Mani KP. Molecular mechanism involved in epithelial to mesenchymal transition. Arch Biochem Biophys 2021; 710:108984. [PMID: 34252392 DOI: 10.1016/j.abb.2021.108984] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/07/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a biological process that plays an important role during embryonic development. During this process, the epithelial cells lose their polarity and acquire mesenchymal properties. In addition to embryonic development, EMT is also well-known to participate in tissue repair, inflammation, fibrosis, and tumor metastasis. In the present review, we address the basics of epithelial to mesenchymal transition during both development and disease conditions and emphasize the role of various transcription factors and miRNAs involved in the process.
Collapse
Affiliation(s)
| | - Harini Srinivasan
- ASK-II, 212, Vascular Research Lab, SASTRA Deemed University, Thanjavur, India
| | - Krishna Priya Mani
- ASK-II, 212, Vascular Research Lab, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
7
|
Gentile A, Bensimon-Brito A, Priya R, Maischein HM, Piesker J, Guenther S, Gunawan F, Stainier DYR. The EMT transcription factor Snai1 maintains myocardial wall integrity by repressing intermediate filament gene expression. eLife 2021; 10:e66143. [PMID: 34152269 PMCID: PMC8216718 DOI: 10.7554/elife.66143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/07/2021] [Indexed: 12/29/2022] Open
Abstract
The transcription factor Snai1, a well-known regulator of epithelial-to-mesenchymal transition, has been implicated in early cardiac morphogenesis as well as in cardiac valve formation. However, a role for Snai1 in regulating other aspects of cardiac morphogenesis has not been reported. Using genetic, transcriptomic, and chimeric analyses in zebrafish, we find that Snai1b is required in cardiomyocytes for myocardial wall integrity. Loss of snai1b increases the frequency of cardiomyocyte extrusion away from the cardiac lumen. Extruding cardiomyocytes exhibit increased actomyosin contractility basally as revealed by enrichment of p-myosin and α-catenin epitope α-18, as well as disrupted intercellular junctions. Transcriptomic analysis of wild-type and snai1b mutant hearts revealed the dysregulation of intermediate filament genes, including desmin b (desmb) upregulation. Cardiomyocyte-specific desmb overexpression caused increased cardiomyocyte extrusion, recapitulating the snai1b mutant phenotype. Altogether, these results indicate that Snai1 maintains the integrity of the myocardial epithelium, at least in part by repressing desmb expression.
Collapse
Affiliation(s)
- Alessandra Gentile
- Max Planck Institute for Heart and Lung Research, Department of Developmental GeneticsBad NauheimGermany
| | - Anabela Bensimon-Brito
- Max Planck Institute for Heart and Lung Research, Department of Developmental GeneticsBad NauheimGermany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-MainBad NauheimGermany
| | - Rashmi Priya
- Max Planck Institute for Heart and Lung Research, Department of Developmental GeneticsBad NauheimGermany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-MainBad NauheimGermany
| | - Hans-Martin Maischein
- Max Planck Institute for Heart and Lung Research, Department of Developmental GeneticsBad NauheimGermany
| | - Janett Piesker
- Max Planck Institute for Heart and Lung Research, Microscopy Service GroupBad NauheimGermany
| | - Stefan Guenther
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-MainBad NauheimGermany
- Max Planck Institute for Heart and Lung Research, Bioinformatics and Deep Sequencing PlatformBad NauheimGermany
| | - Felix Gunawan
- Max Planck Institute for Heart and Lung Research, Department of Developmental GeneticsBad NauheimGermany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-MainBad NauheimGermany
| | - Didier YR Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental GeneticsBad NauheimGermany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-MainBad NauheimGermany
| |
Collapse
|
8
|
Zhao J, Qiao L, Shang P, Hua C, Xie Y, Li X, Ding M, Liu K, Guo J, Zhao G, Wang S, Liu H, Xie F. Effects of smokeless tobacco on cell viability, reactive oxygen species, apoptosis, and inflammatory cytokines in human umbilical vein endothelial cells. Toxicol Mech Methods 2021; 31:349-358. [PMID: 33467949 DOI: 10.1080/15376516.2021.1876800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Smokeless tobacco products provide an alternative to cigarettes; however, smokeless tobacco is carcinogenic and harmful to human health. This study evaluated the toxicological effects of snus extracts and cigarette smoke total particulate matter (TPM) on human umbilical vein endothelial cells (HUVECs). Treated cells were examined for cell viability, reactive oxygen species (ROS), apoptosis, and inflammatory cytokines. Moreover, we explored the mechanism of programmed cell death induced by snus. The results showed that snus extracts significantly inhibited cell viability in a dose-dependent manner. ROS was significantly increased in treatment groups, and anti-oxidant treatment could not prevent snus extract-induced cell death. Snus extracts induced apoptosis, DNA damage, activation and cleavage of caspase-3 and caspase-8, pathway-related gene change, and interleukin (IL)-6 and IL-8 release in HUVECs. Snus extracts exposure may induce cytotoxicity, ROS generation, inflammatory cytokines release, and apoptosis or DNA damage through intrinsic and extrinsic pathways in HUVECs.
Collapse
Affiliation(s)
- Junwei Zhao
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Liangjun Qiao
- College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Pingping Shang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Chenfeng Hua
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Yuming Xie
- Zhengzhou Foreign Language School, Zhengzhou, China
| | - Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Meizhou Ding
- Technology Center of China Tobacco Henan Industrial Co., Ltd, Zhengzhou, China
| | - Kejian Liu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Junwei Guo
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Ge Zhao
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Sheng Wang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Huimin Liu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| |
Collapse
|
9
|
Weigele J, Bohnsack BL. Genetics Underlying the Interactions between Neural Crest Cells and Eye Development. J Dev Biol 2020; 8:jdb8040026. [PMID: 33182738 PMCID: PMC7712190 DOI: 10.3390/jdb8040026] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022] Open
Abstract
The neural crest is a unique, transient stem cell population that is critical for craniofacial and ocular development. Understanding the genetics underlying the steps of neural crest development is essential for gaining insight into the pathogenesis of congenital eye diseases. The neural crest cells play an under-appreciated key role in patterning the neural epithelial-derived optic cup. These interactions between neural crest cells within the periocular mesenchyme and the optic cup, while not well-studied, are critical for optic cup morphogenesis and ocular fissure closure. As a result, microphthalmia and coloboma are common phenotypes in human disease and animal models in which neural crest cell specification and early migration are disrupted. In addition, neural crest cells directly contribute to numerous ocular structures including the cornea, iris, sclera, ciliary body, trabecular meshwork, and aqueous outflow tracts. Defects in later neural crest cell migration and differentiation cause a constellation of well-recognized ocular anterior segment anomalies such as Axenfeld–Rieger Syndrome and Peters Anomaly. This review will focus on the genetics of the neural crest cells within the context of how these complex processes specifically affect overall ocular development and can lead to congenital eye diseases.
Collapse
Affiliation(s)
- Jochen Weigele
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA;
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave, Chicago, IL 60611, USA
| | - Brenda L. Bohnsack
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA;
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave, Chicago, IL 60611, USA
- Correspondence: ; Tel.: +1-312-227-6180; Fax: +1-312-227-9411
| |
Collapse
|
10
|
Schumacher JA, Wright ZA, Owen ML, Bredemeier NO, Sumanas S. Integrin α5 and Integrin α4 cooperate to promote endocardial differentiation and heart morphogenesis. Dev Biol 2020; 465:46-57. [PMID: 32628938 DOI: 10.1016/j.ydbio.2020.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 10/23/2022]
Abstract
Endocardium is critically important for proper function of the cardiovascular system. Not only does endocardium connect the heart to blood vasculature, it also plays an important role in heart morphogenesis, valve formation, and ventricular trabeculation. The extracellular protein Fibronectin (Fn1) promotes endocardial differentiation, but the signaling pathways downstream of Fn1 that regulate endocardial development are not understood. Here, we analyzed the role of the Fibronectin receptors Integrin alpha5 (Itga5) and Integrin alpha4 (Itga4) in zebrafish heart development. We show that itga5 mRNA is expressed in both endocardium and myocardium during early stages of heart development. Through analysis of both itga5 single mutants and itga4;itga5 double mutants, we show that loss of both itga5 and itga4 results in enhanced defects in endocardial differentiation and morphogenesis compared to loss of itga5 alone. Loss of both itga5 and itga4 results in cardia bifida and severe myocardial morphology defects. Finally, we find that loss of itga5 and itga4 results in abnormally narrow anterior endodermal sheet morphology. Together, our results support a model in which Itga5 and Itga4 cooperate to promote endocardial differentiation, medial migration of endocardial and myocardial cells, and morphogenesis of anterior endoderm.
Collapse
Affiliation(s)
- Jennifer A Schumacher
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Biological Sciences, Miami University, Hamilton, OH, USA.
| | - Zoë A Wright
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mackenzie L Owen
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nina O Bredemeier
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
11
|
Han KH, Arlian BM, Lin CW, Jin HY, Kang GH, Lee S, Lee PCW, Lerner RA. Agonist Antibody Converts Stem Cells into Migrating Brown Adipocyte-Like Cells in Heart. Cells 2020; 9:cells9010256. [PMID: 31968623 PMCID: PMC7017361 DOI: 10.3390/cells9010256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
We present data showing that Iodotyrosine Deiodinase (IYD) is a dual-function enzyme acting as a catalyst in metabolism and a receptor for cooperative stem cell differentiation. IYD is present both in thyroid cells where it is critical for scavenging iodine from halogenated by-products of thyroid hormone production and on hematopoietic stem cells. To close the cooperative loop, the mono- and di-Iodotyrosine (MIT and DIT) substrates of IYD in the thyroid are also agonists for IYD now acting as a receptor on bone marrow stem cells. While studying intracellular combinatorial antibody libraries, we discovered an agonist antibody, H3 Ab, of which the target is the enzyme IYD. When agonized by H3 Ab, IYD expressed on stem cells induces differentiation of the cells into brown adipocyte-like cells, which selectively migrate to mouse heart tissue. H3 Ab also binds to IYD expressed on human myocardium. Thus, one has a single enzyme acting in different ways on different cells for the cooperative purpose of enhancing thermogenesis or of regenerating damaged heart tissue.
Collapse
Affiliation(s)
- Kyung Ho Han
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; (K.H.H.); (C.-W.L.)
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, Korea
| | - Britni M. Arlian
- Departments of Molecular Medicine, Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - Chih-Wei Lin
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; (K.H.H.); (C.-W.L.)
| | - Hyun Yong Jin
- Department of Urology, University of California, San Francisco, CA 94158, USA;
| | - Geun-Hyung Kang
- Division of Cardiology, Asan Medical Center Heart Institute, University of Ulsan College of Medicine, Seoul 05505, Korea; (G.-H.K.); (S.L.)
| | - Sahmin Lee
- Division of Cardiology, Asan Medical Center Heart Institute, University of Ulsan College of Medicine, Seoul 05505, Korea; (G.-H.K.); (S.L.)
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, Korea
- Correspondence: (P.C.-W.L.); (R.A.L.); Tel.: +82-2-3010-2799 (P.C.-W.L.); +1-858-784-8265 (R.A.L.)
| | - Richard A. Lerner
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; (K.H.H.); (C.-W.L.)
- Correspondence: (P.C.-W.L.); (R.A.L.); Tel.: +82-2-3010-2799 (P.C.-W.L.); +1-858-784-8265 (R.A.L.)
| |
Collapse
|
12
|
Soto-Ribeiro M, Kastberger B, Bachmann M, Azizi L, Fouad K, Jacquier MC, Boettiger D, Bouvard D, Bastmeyer M, Hytönen VP, Wehrle-Haller B. β1D integrin splice variant stabilizes integrin dynamics and reduces integrin signaling by limiting paxillin recruitment. J Cell Sci 2019; 132:jcs.224493. [PMID: 30890648 DOI: 10.1242/jcs.224493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/08/2019] [Indexed: 12/30/2022] Open
Abstract
Heterodimeric integrin receptors control cell adhesion, migration and extracellular matrix assembly. While the α integrin subunit determines extracellular ligand specificity, the β integrin chain binds to an acidic residue of the ligand, and cytoplasmic adapter protein families such as talins, kindlins and paxillin, to form mechanosensing cell matrix adhesions. Alternative splicing of the β1 integrin cytoplasmic tail creates ubiquitously expressed β1A, and the heart and skeletal muscle-specific β1D form. To study the physiological difference between these forms, we developed fluorescent β1 integrins and analyzed their dynamics, localization, and cytoplasmic adapter recruitment and effects on cell proliferation. On fibronectin, GFP-tagged β1A integrin showed dynamic exchange in peripheral focal adhesions, and long, central fibrillar adhesions. In contrast, GFP-β1D integrins exchanged slowly, forming immobile and short central adhesions. While adhesion recruitment of GFP-β1A integrin was sensitive to C-terminal tail mutagenesis, GFP-β1D integrin was recruited independently of the distal NPXY motif. In addition, a P786A mutation in the proximal, talin-binding NPXY783 motif switched β1D to a highly dynamic integrin. In contrast, the inverse A786P mutation in β1A integrin interfered with paxillin recruitment and proliferation. Thus, differential β1 integrin splicing controls integrin-dependent adhesion signaling, to adapt to the specific physiological needs of differentiated muscle cells.
Collapse
Affiliation(s)
- Martinho Soto-Ribeiro
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Birgit Kastberger
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Michael Bachmann
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland.,Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Latifeh Azizi
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland.,Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Kenza Fouad
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Marie-Claude Jacquier
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - David Boettiger
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Daniel Bouvard
- Université Grenoble Alpes, Institute for Advanced Bioscience, INSERM U823, F-38042 Grenoble, France
| | - Martin Bastmeyer
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland.,Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
13
|
Abstract
There have been recent developments in the treatment of various cancers, in particular non-metastatic cancers. However, many of the responding patients often relapse initially through the development of spread micro and macro-metastases. Unfortunately, there are very few therapeutic modalities for the treatment of metastatic cancers. The development of cancer metastasis has been proposed to involve the epithelial-mesenchymal transition (EMT), in which the tumor cells with the EMT phenotype exhibit various phenotypic markers and molecular modifications that are manifested to resist most conventional therapies. YY1 is a target of the hyperactivated nuclear factor-kappa beta pathway in cancer and it was reported that YY1 also regulates cell survival and cell proliferation in addition to its role in EMT and resistance. The overexpression of YY1 in the majority of cancers has been correlated with poor prognosis. It is hypothesized that targeting YY1 may result in several anti-tumor activities, including inhibition of cell survival and cell proliferation, inhibition of EMT, and reversal of resistance. This review discusses the potential therapeutic targeting of an overexpressed transcription factor, Yin Yang 1 (YY1), which has been implicated in the development of EMT and drug resistance. Several examples targeting YY1 in experimental models are presented.
Collapse
Affiliation(s)
- Anne Arah Cho
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine, Johnson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA
| |
Collapse
|
14
|
Skin and Its Regenerative Powers: An Alliance between Stem Cells and Their Niche. Dev Cell 2017; 43:387-401. [PMID: 29161590 DOI: 10.1016/j.devcel.2017.10.001] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/03/2017] [Accepted: 10/02/2017] [Indexed: 12/17/2022]
Abstract
Tissues have a natural capacity to replace dying cells and to heal wounds. This ability resides in resident stem cells, which self-renew, preserve, and repair their tissue during homeostasis and following injury. The skin epidermis and its appendages are subjected to daily assaults from the external environment. A high demand is placed on renewal and regeneration of the skin's barrier in order to protect the body from infection and dehydration and to heal wounds. This review focuses on the epithelial stem cells of skin, where they come from, where they reside, and how they function in normal homeostasis and wound repair.
Collapse
|
15
|
Mana G, Clapero F, Panieri E, Panero V, Böttcher RT, Tseng HY, Saltarin F, Astanina E, Wolanska KI, Morgan MR, Humphries MJ, Santoro MM, Serini G, Valdembri D. PPFIA1 drives active α5β1 integrin recycling and controls fibronectin fibrillogenesis and vascular morphogenesis. Nat Commun 2016; 7:13546. [PMID: 27876801 PMCID: PMC5122980 DOI: 10.1038/ncomms13546] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 10/13/2016] [Indexed: 01/16/2023] Open
Abstract
Basolateral polymerization of cellular fibronectin (FN) into a meshwork drives endothelial cell (EC) polarity and vascular remodelling. However, mechanisms coordinating α5β1 integrin-mediated extracellular FN endocytosis and exocytosis of newly synthesized FN remain elusive. Here we show that, on Rab21-elicited internalization, FN-bound/active α5β1 is recycled to the EC surface. We identify a pathway, comprising the regulators of post-Golgi carrier formation PI4KB and AP-1A, the small GTPase Rab11B, the surface tyrosine phosphatase receptor PTPRF and its adaptor PPFIA1, which we propose acts as a funnel combining FN secretion and recycling of active α5β1 integrin from the trans-Golgi network (TGN) to the EC surface, thus allowing FN fibrillogenesis. In this framework, PPFIA1 interacts with active α5β1 integrin and localizes close to EC adhesions where post-Golgi carriers are targeted. We show that PPFIA1 is required for FN polymerization-dependent vascular morphogenesis, both in vitro and in the developing zebrafish embryo.
Collapse
Affiliation(s)
- Giulia Mana
- Department of Oncology, University of Torino School of Medicine, Candiolo, Torino 10060, Italy
- Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute—Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Torino 10060, Italy
| | - Fabiana Clapero
- Department of Oncology, University of Torino School of Medicine, Candiolo, Torino 10060, Italy
- Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute—Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Torino 10060, Italy
| | - Emiliano Panieri
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Valentina Panero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Ralph T. Böttcher
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Hui-Yuan Tseng
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Federico Saltarin
- Department of Oncology, University of Torino School of Medicine, Candiolo, Torino 10060, Italy
- Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute—Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Torino 10060, Italy
| | - Elena Astanina
- Department of Oncology, University of Torino School of Medicine, Candiolo, Torino 10060, Italy
- Laboratory of Vascular Oncology, Candiolo Cancer Institute—Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Torino 10060, Italy
| | - Katarzyna I. Wolanska
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Mark R. Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Martin J. Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Massimo M. Santoro
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
- Laboratory of Endothelial Molecular Biology, Vesalius Research Center, VIB, Leuven B-3000, Belgium
| | - Guido Serini
- Department of Oncology, University of Torino School of Medicine, Candiolo, Torino 10060, Italy
- Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute—Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Torino 10060, Italy
| | - Donatella Valdembri
- Department of Oncology, University of Torino School of Medicine, Candiolo, Torino 10060, Italy
- Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute—Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Torino 10060, Italy
| |
Collapse
|
16
|
Jenkins MH, Alrowaished SS, Goody MF, Crawford BD, Henry CA. Laminin and Matrix metalloproteinase 11 regulate Fibronectin levels in the zebrafish myotendinous junction. Skelet Muscle 2016; 6:18. [PMID: 27141287 PMCID: PMC4852425 DOI: 10.1186/s13395-016-0089-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/31/2016] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Remodeling of the extracellular matrix (ECM) regulates cell adhesion as well as signaling between cells and their microenvironment. Despite the importance of tightly regulated ECM remodeling for normal muscle development and function, mechanisms underlying ECM remodeling in vivo remain elusive. One excellent paradigm in which to study ECM remodeling in vivo is morphogenesis of the myotendinous junction (MTJ) during zebrafish skeletal muscle development. During MTJ development, there are dramatic shifts in the primary components comprising the MTJ matrix. One such shift involves the replacement of Fibronectin (Fn)-rich matrix, which is essential for both somite and early muscle development, with laminin-rich matrix essential for normal function of the myotome. Here, we investigate the mechanism underlying this transition. RESULTS We show that laminin polymerization indirectly promotes Fn downregulation at the MTJ, via a matrix metalloproteinase 11 (Mmp11)-dependent mechanism. Laminin deposition and organization is required for localization of Mmp11 to the MTJ, where Mmp11 is both necessary and sufficient for Fn downregulation in vivo. Furthermore, reduction of residual Mmp11 in laminin mutants promotes a Fn-rich MTJ that partially rescues skeletal muscle architecture. CONCLUSIONS These results identify a mechanism for Fn downregulation at the MTJ, highlight crosstalk between laminin and Fn, and identify a new in vivo function for Mmp11. Taken together, our data demonstrate a novel signaling pathway mediating Fn downregulation. Our data revealing new regulatory mechanisms that guide ECM remodeling during morphogenesis in vivo may inform pathological conditions in which Fn is dysregulated.
Collapse
Affiliation(s)
- Molly H Jenkins
- School of Biology and Ecology, University of Maine, 217 Hitchner Hall, Orono, ME 04469 USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469 USA.,Present Address: Minerva Biotechnologies, Waltham, MA 02451 USA
| | - Sarah S Alrowaished
- School of Biology and Ecology, University of Maine, 217 Hitchner Hall, Orono, ME 04469 USA
| | - Michelle F Goody
- School of Biology and Ecology, University of Maine, 217 Hitchner Hall, Orono, ME 04469 USA
| | - Bryan D Crawford
- Department of Biology, University of New Brunswick, Fredericton, NB Canada
| | - Clarissa A Henry
- School of Biology and Ecology, University of Maine, 217 Hitchner Hall, Orono, ME 04469 USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469 USA
| |
Collapse
|
17
|
Vega ME, Schwarzbauer JE. Collaboration of fibronectin matrix with other extracellular signals in morphogenesis and differentiation. Curr Opin Cell Biol 2016; 42:1-6. [PMID: 27062478 DOI: 10.1016/j.ceb.2016.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
Abstract
Tissue formation and cell differentiation depend on a properly assembled extracellular matrix (ECM). Fibronectin is a key constituent of the pericellular ECM, forming essential connections between cell surface integrin receptors and structural components of the ECM. Recent studies using vertebrate models, conditional gene knockouts, tissue explants, and cell culture systems have identified developmental processes that depend on fibronectin and its receptor α5β1 integrin. We describe requirements for fibronectin matrix in the cardiovascular system, somite and precartilage development, and epithelial-mesenchymal transition. Information about molecular mechanisms shows the importance of fibronectin and integrins during tissue morphogenesis and cell differentiation, as well as their cooperation with growth factors to mediate changes in cell behaviors.
Collapse
Affiliation(s)
- Maria E Vega
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, United States
| | - Jean E Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, United States.
| |
Collapse
|
18
|
Xu S, Cui L, Ma D, Sun W, Wu B. Effect of ITGA5 down-regulation on the migration capacity of human dental pulp stem cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:14425-14432. [PMID: 26823759 PMCID: PMC4713545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/28/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND The purpose of this study was to evaluate the role of integrin-α5 (ITGA5) in regulating the migration capacity of human dental pulp stem cells (hDPSCs), which might provide new evidence for understanding the repair and regeneration mechanisms of dental pulp tissues. MATERIALS AND METHODS The enzyme digestion method was employed to isolate the hDPSCs from dental pulp tissues. The cell surface markers of hDPSCs were detected using flow cytometry analysis. Then the colony forming and multi-differentiation capacity of hDPSCs were evaluated. The lentivirus vector that carried the ITGA5 shRNA was constructed and real-time PCR was used to examine the effectiveness of ITGA5 shRNA lentivirus. Then transwell assay was performed to evaluate the impact of ITGA5 inhibition on the migration capability of hDPSCs. RESULTS Our results showed that the cells we isolated from the dental pulps were positive for mesenchymal stem cells biomarkers. In addition, the cells possessed both colony forming capacity and multi-differentiation potential. ITGA5 shRNA lentivirus could not only infect hDPSCs with high efficiency, but also down-regulate the expression level of ITGA5 mRNA significantly (P<0.01). The transwell assay revealed the number of cells that migrated to the lower chamber was significantly less in the ITGA5 shRNA group compared with that in the scrambled shRNA group (P=0.016). CONCLUSION ITGA5 plays an important role in maintaining and regulating the normal migration capacity of hDPSCs.
Collapse
Affiliation(s)
- Shuaimei Xu
- Department of Endodontics, The Stomatological Hospital of Guangdong ProvinceGuangzhou 510280, China
- Department of Stomatology, Nanfang HospitalGuangzhou 510515, China
| | - Li Cui
- Department of Stomatology, Nanfang HospitalGuangzhou 510515, China
| | - Dandan Ma
- Department of Stomatology, Nanfang HospitalGuangzhou 510515, China
| | - Wenjuan Sun
- Department of Stomatology, The Third Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
| | - Buling Wu
- Department of Stomatology, Nanfang HospitalGuangzhou 510515, China
| |
Collapse
|
19
|
Maartens AP, Brown NH. Anchors and signals: the diverse roles of integrins in development. Curr Top Dev Biol 2015; 112:233-72. [PMID: 25733142 DOI: 10.1016/bs.ctdb.2014.11.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Integrins mediate cell adhesion by providing a link between the actin cytoskeleton and the extracellular matrix. As well as acting to anchor cells, integrin adhesions provide sensory input via mechanotransduction and synergism with signaling pathways, and provide the cell with the conditions necessary for differentiation in a permissive manner. In this review, we explore how integrins contribute to development, and what this tells us about how they work. From a signaling perspective, the influence of integrins on cell viability and fate is muted in a developmental context as compared to cell culture. Integrin phenotypes tend to arise from a failure of normally specified cells to create tissues properly, due to defective adhesion. The diversity of integrin functions in development shows how cell adhesion is continuously adjusted, both within and between animals, to fit developmental purpose.
Collapse
Affiliation(s)
- Aidan P Maartens
- Department of Physiology, Development and Neuroscience, The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas H Brown
- Department of Physiology, Development and Neuroscience, The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|