1
|
Groussman RD, Blaskowski S, Coesel SN, Armbrust EV. MarFERReT, an open-source, version-controlled reference library of marine microbial eukaryote functional genes. Sci Data 2023; 10:926. [PMID: 38129449 PMCID: PMC10739892 DOI: 10.1038/s41597-023-02842-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Metatranscriptomics generates large volumes of sequence data about transcribed genes in natural environments. Taxonomic annotation of these datasets depends on availability of curated reference sequences. For marine microbial eukaryotes, current reference libraries are limited by gaps in sequenced organism diversity and barriers to updating libraries with new sequence data, resulting in taxonomic annotation of about half of eukaryotic environmental transcripts. Here, we introduce Marine Functional EukaRyotic Reference Taxa (MarFERReT), a marine microbial eukaryotic sequence library designed for use with taxonomic annotation of eukaryotic metatranscriptomes. We gathered 902 publicly accessible marine eukaryote genomes and transcriptomes and assessed their sequence quality and cross-contamination issues, selecting 800 validated entries for inclusion in MarFERReT. Version 1.1 of MarFERReT contains reference sequences from 800 marine eukaryotic genomes and transcriptomes, covering 453 species- and strain-level taxa, totaling nearly 28 million protein sequences with associated NCBI and PR2 Taxonomy identifiers and Pfam functional annotations. The MarFERReT project repository hosts containerized build scripts, documentation on installation and use case examples, and information on new versions of MarFERReT.
Collapse
Affiliation(s)
- R D Groussman
- School of Oceanography, University of Washington, Benjamin Hall IRB, Room 306 616 NE Northlake Place, Seattle, WA, 98105, USA.
| | - S Blaskowski
- School of Oceanography, University of Washington, Benjamin Hall IRB, Room 306 616 NE Northlake Place, Seattle, WA, 98105, USA
- Molecular Engineering and Sciences Institute, University of Washington, Molecular Engineering & Sciences Building 3946 W Stevens Way NE, Seattle, WA, 98195, USA
| | - S N Coesel
- School of Oceanography, University of Washington, Benjamin Hall IRB, Room 306 616 NE Northlake Place, Seattle, WA, 98105, USA
| | - E V Armbrust
- School of Oceanography, University of Washington, Benjamin Hall IRB, Room 306 616 NE Northlake Place, Seattle, WA, 98105, USA.
| |
Collapse
|
2
|
Van Etten J, Stephens TG, Bhattacharya D. A k-mer-Based Approach for Phylogenetic Classification of Taxa in Environmental Genomic Data. Syst Biol 2023; 72:1101-1118. [PMID: 37314057 DOI: 10.1093/sysbio/syad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/20/2023] [Accepted: 06/12/2023] [Indexed: 06/15/2023] Open
Abstract
In the age of genome sequencing, whole-genome data is readily and frequently generated, leading to a wealth of new information that can be used to advance various fields of research. New approaches, such as alignment-free phylogenetic methods that utilize k-mer-based distance scoring, are becoming increasingly popular given their ability to rapidly generate phylogenetic information from whole-genome data. However, these methods have not yet been tested using environmental data, which often tends to be highly fragmented and incomplete. Here, we compare the results of one alignment-free approach (which utilizes the D2 statistic) to traditional multi-gene maximum likelihood trees in 3 algal groups that have high-quality genome data available. In addition, we simulate lower-quality, fragmented genome data using these algae to test method robustness to genome quality and completeness. Finally, we apply the alignment-free approach to environmental metagenome assembled genome data of unclassified Saccharibacteria and Trebouxiophyte algae, and single-cell amplified data from uncultured marine stramenopiles to demonstrate its utility with real datasets. We find that in all instances, the alignment-free method produces phylogenies that are comparable, and often more informative, than those created using the traditional multi-gene approach. The k-mer-based method performs well even when there are significant missing data that include marker genes traditionally used for tree reconstruction. Our results demonstrate the value of alignment-free approaches for classifying novel, often cryptic or rare, species, that may not be culturable or are difficult to access using single-cell methods, but fill important gaps in the tree of life.
Collapse
Affiliation(s)
- Julia Van Etten
- Graduate Program in Ecology and Evolution, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901, USA
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
3
|
Yoshino T, Mao Y, Maeda Y, Negishi R, Murata S, Moriya S, Shimada H, Arakaki A, Kobayashi K, Hagiwara Y, Okamoto K, Tanaka T. Single-cell genotyping of phytoplankton from ocean water by gel-based cell manipulation. Biotechnol J 2022; 17:e2100633. [PMID: 35195355 DOI: 10.1002/biot.202100633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/11/2022]
Abstract
A comprehensive understanding of phytoplankton diversity is valuable for assessing an environment of interest as phytoplankton are primary producers in various aquatic food webs. Microscopic analyses are useful for diversity assessment based on characteristic cell morphologies. However, phylogenetic classification based solely on morphology requires an extremely high level of expertise. The genetic approach is another option for evaluating phytoplankton diversity; however, it cannot reveal morphological information. To integrate these two approaches, we developed an original technology that is referred to as microcavity array (MCA)/gel-based cell manipulation (GCM). The model experiments using monocultures of various phytoplankton indicated that the efficiencies of cell recovery and isolation of single-cell plankton were dependent on cell size and shape. Cells with widths larger than the cavity width showed high level of recovery and isolation efficiency. Subsequent whole-genome amplification (WGA) of isolated single-cell plankton provided a sufficient amount (approximately 30 μg) of WGA products for genetic analyses. Furthermore, we showed that MCA/GCM could directly analyze phytoplankton in ocean water obtained from Suruga Bay, Japan, without any cumbersome pretreatment. These results indicate that MCA/GCM technology is a powerful tool for elucidating the phytoplankton diversity in marine environment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Yihao Mao
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Ryo Negishi
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Satoshi Murata
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Seiichiro Moriya
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Hirofumi Shimada
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Atsushi Arakaki
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kenichi Kobayashi
- Shizuoka Prefectural Research Institute of Fishery and Ocean, 136-24, Iwashigashima, Yaizu, Shizuoka, 425-0032, Japan
| | - Yoshitsugu Hagiwara
- Shizuoka Prefectural Research Institute of Fishery and Ocean, 136-24, Iwashigashima, Yaizu, Shizuoka, 425-0032, Japan
| | - Kazutoshi Okamoto
- Shizuoka Prefectural Research Institute of Fishery and Ocean, 136-24, Iwashigashima, Yaizu, Shizuoka, 425-0032, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| |
Collapse
|
4
|
Genome sequencing and de novo assembly of the giant unicellular alga Acetabularia acetabulum using droplet MDA. Sci Rep 2021; 11:12820. [PMID: 34140556 PMCID: PMC8211769 DOI: 10.1038/s41598-021-92092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/28/2021] [Indexed: 11/08/2022] Open
Abstract
The macroscopic single-celled green alga Acetabularia acetabulum has been a model system in cell biology for more than a century. However, no genomic information is available from this species. Since the alga has a long life cycle, is difficult to grow in dense cultures, and has an estimated diploid genome size of almost 2 Gb, obtaining sufficient genomic material for genome sequencing is challenging. Here, we have attempted to overcome these challenges by amplifying genomic DNA using multiple displacement amplification (MDA) combined with microfluidics technology to distribute the amplification reactions across thousands of microscopic droplets. By amplifying and sequencing DNA from five single cells we were able to recover an estimated ~ 7–11% of the total genome, providing the first draft of the A. acetabulum genome. We highlight challenges associated with genome recovery and assembly of MDA data due to biases arising during genome amplification, and hope that our study can serve as a reference for future attempts on sequencing the genome from non-model eukaryotes.
Collapse
|
5
|
Labarre A, López-Escardó D, Latorre F, Leonard G, Bucchini F, Obiol A, Cruaud C, Sieracki ME, Jaillon O, Wincker P, Vandepoele K, Logares R, Massana R. Comparative genomics reveals new functional insights in uncultured MAST species. THE ISME JOURNAL 2021; 15:1767-1781. [PMID: 33452482 PMCID: PMC8163842 DOI: 10.1038/s41396-020-00885-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Heterotrophic lineages of stramenopiles exhibit enormous diversity in morphology, lifestyle, and habitat. Among them, the marine stramenopiles (MASTs) represent numerous independent lineages that are only known from environmental sequences retrieved from marine samples. The core energy metabolism characterizing these unicellular eukaryotes is poorly understood. Here, we used single-cell genomics to retrieve, annotate, and compare the genomes of 15 MAST species, obtained by coassembling sequences from 140 individual cells sampled from the marine surface plankton. Functional annotations from their gene repertoires are compatible with all of them being phagocytotic. The unique presence of rhodopsin genes in MAST species, together with their widespread expression in oceanic waters, supports the idea that MASTs may be capable of using sunlight to thrive in the photic ocean. Additional subsets of genes used in phagocytosis, such as proton pumps for vacuole acidification and peptidases for prey digestion, did not reveal particular trends in MAST genomes as compared with nonphagocytotic stramenopiles, except a larger presence and diversity of V-PPase genes. Our analysis reflects the complexity of phagocytosis machinery in microbial eukaryotes, which contrasts with the well-defined set of genes for photosynthesis. These new genomic data provide the essential framework to study ecophysiology of uncultured species and to gain better understanding of the function of rhodopsins and related carotenoids in stramenopiles.
Collapse
Affiliation(s)
- Aurelie Labarre
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain.
| | - David López-Escardó
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Francisco Latorre
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Guy Leonard
- Department of Zoology, University of Oxford, Oxford, UK
| | - François Bucchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark, Ghent, Belgium
| | - Aleix Obiol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Corinne Cruaud
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de biologie François-Jacob, Genoscope, Evry, France
| | | | - Olivier Jaillon
- Metabolic Genomics, Institut de Biologie François Jacob, Genoscope, CEA, CNRS, Univ Evry, Université Paris Saclay, 91000, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, Ghent, Belgium
| | - Patrick Wincker
- Metabolic Genomics, Institut de Biologie François Jacob, Genoscope, CEA, CNRS, Univ Evry, Université Paris Saclay, 91000, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052, Paris, France
| | - Ramiro Logares
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain.
| |
Collapse
|
6
|
Ciobanu D, Clum A, Ahrendt S, Andreopoulos WB, Salamov A, Chan S, Quandt CA, Foster B, Meier-Kolthoff JP, Tang YT, Schwientek P, Benny GL, Smith ME, Bauer D, Deshpande S, Barry K, Copeland A, Singer SW, Woyke T, Grigoriev IV, James TY, Cheng JF. A single-cell genomics pipeline for environmental microbial eukaryotes. iScience 2021; 24:102290. [PMID: 33870123 PMCID: PMC8042348 DOI: 10.1016/j.isci.2021.102290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/12/2021] [Accepted: 03/04/2021] [Indexed: 12/05/2022] Open
Abstract
Single-cell sequencing of environmental microorganisms is an essential component of the microbial ecology toolkit. However, large-scale targeted single-cell sequencing for the whole-genome recovery of uncultivated eukaryotes is lagging. The key challenges are low abundance in environmental communities, large complex genomes, and cell walls that are difficult to break. We describe a pipeline composed of state-of-the art single-cell genomics tools and protocols optimized for poorly studied and uncultivated eukaryotic microorganisms that are found at low abundance. This pipeline consists of seven distinct steps, beginning with sample collection and ending with genome annotation, each equipped with quality review steps to ensure high genome quality at low cost. We tested and evaluated each step on environmental samples and cultures of early-diverging lineages of fungi and Chromista/SAR. We show that genomes produced using this pipeline are almost as good as complete reference genomes for functional and comparative genomics for environmental microbial eukaryotes.
Collapse
Affiliation(s)
- Doina Ciobanu
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
| | - Alicia Clum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
| | - Steven Ahrendt
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - William B. Andreopoulos
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
| | - Sandy Chan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - C. Alisha Quandt
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brian Foster
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics and Databases, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| | - Yung Tsu Tang
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
| | - Patrick Schwientek
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
| | - Gerald L. Benny
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Matthew E. Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Diane Bauer
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
| | - Shweta Deshpande
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
| | - Alex Copeland
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
| | | | - Tanja Woyke
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Timothy Y. James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jan-Fang Cheng
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
| |
Collapse
|
7
|
Horizontal Gene Transfer in Eukaryotes: Not if, but How Much? Trends Genet 2020; 36:915-925. [DOI: 10.1016/j.tig.2020.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022]
|
8
|
Brown JM, Labonté JM, Brown J, Record NR, Poulton NJ, Sieracki ME, Logares R, Stepanauskas R. Single Cell Genomics Reveals Viruses Consumed by Marine Protists. Front Microbiol 2020; 11:524828. [PMID: 33072003 PMCID: PMC7541821 DOI: 10.3389/fmicb.2020.524828] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/28/2020] [Indexed: 11/29/2022] Open
Abstract
The predominant model of the role of viruses in the marine trophic web is that of the “viral shunt,” where viral infection funnels a substantial fraction of the microbial primary and secondary production back to the pool of dissolved organic matter. Here, we analyzed the composition of non-eukaryotic DNA associated with individual cells of small, planktonic protists in the Gulf of Maine (GoM) and the Mediterranean Sea. We found viral DNA associated with a substantial fraction cells from the GoM (51%) and the Mediterranean Sea (35%). While Mediterranean SAGs contained a larger proportion of cells containing bacterial sequences (49%), a smaller fraction of cells contained bacterial sequences in the GoM (19%). In GoM cells, nearly identical bacteriophage and ssDNA virus sequences where found across diverse lineages of protists, suggesting many of these viruses are non-infective. The fraction of cells containing viral DNA varied among protistan lineages and reached 100% in Picozoa and Choanozoa. These two groups also contained significantly higher numbers of viral sequences than other identified taxa. We consider mechanisms that may explain the presence of viral DNA in protistan cells and conclude that protistan predation on free viral particles contributed to the observed patterns. These findings confirm prior experiments with protistan isolates and indicate that the viral shunt is complemented by a viral link in the marine microbial food web. This link may constitute a sink of viral particles in the ocean and has implications for the flow of carbon through the microbial food web.
Collapse
Affiliation(s)
- Julia M Brown
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Jessica M Labonté
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States
| | - Joseph Brown
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| | - Nicholas R Record
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Nicole J Poulton
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Michael E Sieracki
- Division of Ocean Sciences, National Science Foundation, Alexandria, VA, United States
| | - Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | | |
Collapse
|
9
|
Amses KR, Davis WJ, James TY. SCGid: a consensus approach to contig filtering and genome prediction from single-cell sequencing libraries of uncultured eukaryotes. Bioinformatics 2020; 36:1994-2000. [PMID: 31764940 PMCID: PMC7141854 DOI: 10.1093/bioinformatics/btz866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/09/2019] [Accepted: 11/22/2019] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Whole-genome sequencing of uncultured eukaryotic genomes is complicated by difficulties in acquiring sufficient amounts of tissue. Single-cell genomics (SCG) by multiple displacement amplification provides a technical workaround, yielding whole-genome libraries which can be assembled de novo. Downsides of multiple displacement amplification include coverage biases and exacerbation of contamination. These factors affect assembly continuity and fidelity, complicating discrimination of genomes from contamination and noise by available tools. Uncultured eukaryotes and their relatives are often underrepresented in large sequence data repositories, further impairing identification and separation. RESULTS We compare the ability of filtering approaches to remove contamination and resolve eukaryotic draft genomes from SCG metagenomes, finding significant variation in outcomes. To address these inconsistencies, we introduce a consensus approach that is codified in the SCGid software package. SCGid parallelly filters assemblies using different approaches, yielding three intermediate drafts from which consensus is drawn. Using genuine and mock SCG metagenomes, we show that our approach corrects for variation among draft genomes predicted by individual approaches and outperforms them in recapitulating published drafts in a fast and repeatable way, providing a useful alternative to available methods and manual curation. AVAILABILITY AND IMPLEMENTATION The SCGid package is implemented in python and R. Source code is available at http://www.github.com/amsesk/SCGid under the GNU GPL 3.0 license. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Kevin R Amses
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William J Davis
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Wilken S, Yung CCM, Hamilton M, Hoadley K, Nzongo J, Eckmann C, Corrochano-Luque M, Poirier C, Worden AZ. The need to account for cell biology in characterizing predatory mixotrophs in aquatic environments. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190090. [PMID: 31587652 PMCID: PMC6792458 DOI: 10.1098/rstb.2019.0090] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2019] [Indexed: 12/16/2022] Open
Abstract
Photosynthesis in eukaryotes first arose through phagocytotic processes wherein an engulfed cyanobacterium was not digested, but instead became a permanent organelle. Other photosynthetic lineages then arose when eukaryotic cells engulfed other already photosynthetic eukaryotic cells. Some of the resulting lineages subsequently lost their ability for phagocytosis, while many others maintained the ability to do both processes. These mixotrophic taxa have more complicated ecological roles, in that they are both primary producers and consumers that can shift more towards producing the organic matter that forms the base of aquatic food chains, or towards respiring and releasing CO2. We still have much to learn about which taxa are predatory mixotrophs as well as about the physiological consequences of this lifestyle, in part, because much of the diversity of unicellular eukaryotes in aquatic ecosystems remains uncultured. Here, we discuss existing methods for studying predatory mixotrophs, their individual biases, and how single-cell approaches can enhance knowledge of these important taxa. The question remains what the gold standard should be for assigning a mixotrophic status to ill-characterized or uncultured taxa-a status that dictates how organisms are incorporated into carbon cycle models and how their ecosystem roles may shift in future lakes and oceans. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- Susanne Wilken
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090GE Amsterdam, Noord-Holland, The Netherlands
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-CSIC, 08003 Barcelona, Catalunya, Spain
| | - Charmaine C. M. Yung
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Schleswig-Holstein, Germany
| | - Maria Hamilton
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Division of Physical and Biological Sciences, UC Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kenneth Hoadley
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Schleswig-Holstein, Germany
| | - Juliana Nzongo
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Division of Physical and Biological Sciences, UC Santa Cruz, Santa Cruz, CA 95064, USA
| | - Charlotte Eckmann
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Division of Physical and Biological Sciences, UC Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Camille Poirier
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Schleswig-Holstein, Germany
| | - Alexandra Z. Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Schleswig-Holstein, Germany
- Division of Physical and Biological Sciences, UC Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
11
|
Wideman JG, Monier A, Rodríguez-Martínez R, Leonard G, Cook E, Poirier C, Maguire F, Milner DS, Irwin NAT, Moore K, Santoro AE, Keeling PJ, Worden AZ, Richards TA. Unexpected mitochondrial genome diversity revealed by targeted single-cell genomics of heterotrophic flagellated protists. Nat Microbiol 2019; 5:154-165. [PMID: 31768028 DOI: 10.1038/s41564-019-0605-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 10/08/2019] [Indexed: 11/09/2022]
Abstract
Most eukaryotic microbial diversity is uncultivated, under-studied and lacks nuclear genome data. Mitochondrial genome sampling is more comprehensive, but many phylogenetically important groups remain unsampled. Here, using a single-cell sorting approach combining tubulin-specific labelling with photopigment exclusion, we sorted flagellated heterotrophic unicellular eukaryotes from Pacific Ocean samples. We recovered 206 single amplified genomes, predominantly from underrepresented branches on the tree of life. Seventy single amplified genomes contained unique mitochondrial contigs, including 21 complete or near-complete mitochondrial genomes from formerly under-sampled phylogenetic branches, including telonemids, katablepharids, cercozoans and marine stramenopiles, effectively doubling the number of available samples of heterotrophic flagellate mitochondrial genomes. Collectively, these data identify a dynamic history of mitochondrial genome evolution including intron gain and loss, extensive patterns of genetic code variation and complex patterns of gene loss. Surprisingly, we found that stramenopile mitochondrial content is highly plastic, resembling patterns of variation previously observed only in plants.
Collapse
Affiliation(s)
- Jeremy G Wideman
- Living Systems Institute, University of Exeter, Exeter, UK. .,Wissenschaftskolleg zu Berlin, Berlin, Germany. .,Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada. .,Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Adam Monier
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Raquel Rodríguez-Martínez
- Living Systems Institute, University of Exeter, Exeter, UK.,Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Guy Leonard
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Emily Cook
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Camille Poirier
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA.,Ocean EcoSystems Biology Unit, Division of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Finlay Maguire
- Living Systems Institute, University of Exeter, Exeter, UK.,Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David S Milner
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Nicholas A T Irwin
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Moore
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Alyson E Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Patrick J Keeling
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA.,Ocean EcoSystems Biology Unit, Division of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | |
Collapse
|
12
|
Cruaud P, Vigneron A, Fradette MS, Dorea CC, Culley AI, Rodriguez MJ, Charette SJ. Annual Protist Community Dynamics in a Freshwater Ecosystem Undergoing Contrasted Climatic Conditions: The Saint-Charles River (Canada). Front Microbiol 2019; 10:2359. [PMID: 31681222 PMCID: PMC6805768 DOI: 10.3389/fmicb.2019.02359] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/27/2019] [Indexed: 11/23/2022] Open
Abstract
Protists are key stone components of aquatic ecosystems, sustaining primary productivity and aquatic food webs. However, their diversity, ecology and structuring factors shaping their temporal distribution remain strongly misunderstood in freshwaters. Using high-throughput sequencing on water samples collected over 16 different months (including two summer and two winter periods), combined with geochemical measurements and climate monitoring, we comprehensively determined the pico- and nanoeukaryotic community composition and dynamics in a Canadian river undergoing prolonged ice-cover winters. Our analysis revealed a large protist diversity in this fluctuating ecosystem and clear seasonal patterns demonstrating a direct and/or indirect selective role of abiotic factors, such as water temperature or nitrogen concentrations, in structuring the eukaryotic microbial community. Nonetheless, our results also revealed that primary productivity, predatory as well as parasitism lifestyles, inferred from fine phylogenetic placements, remained potentially present over the annual cycle, despite the large seasonal fluctuations and the remodeling of the community composition under ice. In addition, potential interplays with the bacterial community composition were identified supporting a possible contribution of the bacterial community to the temporal dynamics of the protist community structure. Our results illustrate the complexity of the eukaryotic microbial community and provide a substantive and useful dataset to better understand the global freshwater ecosystem functioning.
Collapse
Affiliation(s)
- Perrine Cruaud
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QC, Canada.,Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, QC, Canada.,CRAD, Université Laval, Québec City, QC, Canada
| | - Adrien Vigneron
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QC, Canada.,Centre D'Études Nordiques, Université Laval, Québec City, QC, Canada.,Département de Biologie, Université Laval, Québec City, QC, Canada
| | - Marie-Stéphanie Fradette
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QC, Canada.,Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, QC, Canada.,CRAD, Université Laval, Québec City, QC, Canada
| | - Caetano C Dorea
- Department of Civil Engineering, University of Victoria, Victoria, BC, Canada
| | - Alexander I Culley
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QC, Canada.,Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, QC, Canada.,Groupe de Recherche en Ecologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec City, QC, Canada
| | - Manuel J Rodriguez
- CRAD, Université Laval, Québec City, QC, Canada.,École Supérieure D'aménagement du Territoire et de Développement Régional (ESAD), Université Laval, Québec City, QC, Canada
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QC, Canada.,Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, QC, Canada
| |
Collapse
|
13
|
Burki F, Roger AJ, Brown MW, Simpson AGB. The New Tree of Eukaryotes. Trends Ecol Evol 2019; 35:43-55. [PMID: 31606140 DOI: 10.1016/j.tree.2019.08.008] [Citation(s) in RCA: 429] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 01/01/2023]
Abstract
For 15 years, the eukaryote Tree of Life (eToL) has been divided into five to eight major groupings, known as 'supergroups'. However, the tree has been profoundly rearranged during this time. The new eToL results from the widespread application of phylogenomics and numerous discoveries of major lineages of eukaryotes, mostly free-living heterotrophic protists. The evidence that supports the tree has transitioned from a synthesis of molecular phylogenetics and biological characters to purely molecular phylogenetics. Most current supergroups lack defining morphological or cell-biological characteristics, making the supergroup label even more arbitrary than before. Going forward, the combination of traditional culturing with maturing culture-free approaches and phylogenomics should accelerate the process of completing and resolving the eToL at its deepest levels.
Collapse
Affiliation(s)
- Fabien Burki
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA; Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS, USA
| | - Alastair G B Simpson
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
14
|
Wideman JG, Lax G, Leonard G, Milner DS, Rodríguez-Martínez R, Simpson AGB, Richards TA. A single-cell genome reveals diplonemid-like ancestry of kinetoplastid mitochondrial gene structure. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190100. [PMID: 31587636 PMCID: PMC6792441 DOI: 10.1098/rstb.2019.0100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Euglenozoa comprises euglenids, kinetoplastids, and diplonemids, with each group exhibiting different and highly unusual mitochondrial genome organizations. Although they are sister groups, kinetoplastids and diplonemids have very distinct mitochondrial genome architectures, requiring widespread insertion/deletion RNA editing and extensive trans-splicing, respectively, in order to generate functional transcripts. The evolutionary history by which these differing processes arose remains unclear. Using single-cell genomics, followed by small sub unit ribosomal DNA and multigene phylogenies, we identified an isolated marine cell that branches on phylogenetic trees as a sister to known kinetoplastids. Analysis of single-cell amplified genomic material identified multiple mitochondrial genome contigs. These revealed a gene architecture resembling that of diplonemid mitochondria, with small fragments of genes encoded out of order and or on different contigs, indicating that these genes require extensive trans-splicing. Conversely, no requirement for kinetoplastid-like insertion/deletion RNA-editing was detected. Additionally, while we identified some proteins so far only found in kinetoplastids, we could not unequivocally identify mitochondrial RNA editing proteins. These data invite the hypothesis that extensive genome fragmentation and trans-splicing were the ancestral states for the kinetoplastid-diplonemid clade but were lost during the kinetoplastid radiation. This study demonstrates that single-cell approaches can successfully retrieve lineages that represent important new branches on the tree of life, and thus can illuminate major evolutionary and functional transitions in eukaryotes. This article is part of a discussion meeting issue ‘Single cell ecology’.
Collapse
Affiliation(s)
- Jeremy G Wideman
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Gordon Lax
- Department of Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Guy Leonard
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - David S Milner
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Raquel Rodríguez-Martínez
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.,Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Alastair G B Simpson
- Department of Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Thomas A Richards
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
15
|
Tyml T, Date SV, Woyke T. A single-cell genome perspective on studying intracellular associations in unicellular eukaryotes. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190082. [PMID: 31587647 PMCID: PMC6792452 DOI: 10.1098/rstb.2019.0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Single-cell genomics (SCG) methods provide a unique opportunity to analyse whole genome information at the resolution of an individual cell. While SCG has been extensively used to investigate bacterial and archaeal genomes, the technique has been rarely used to access the genetic makeup of uncultivated microbial eukaryotes. In this regard, the use of SCG can provide a wealth of information; not only do the methods allow exploration of the genome, they can also help elucidate the relationship between the cell and intracellular entities extant in nearly all eukaryotes. SCG enables the study of total eukaryotic cellular DNA, which in turn allows us to better understand the evolutionary history and diversity of life, and the physiological interactions that define complex organisms. This article is part of a discussion meeting issue ‘Single cell ecology’.
Collapse
Affiliation(s)
- Tomáš Tyml
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA.,Global Viral, San Francisco, CA, USA
| | | | - Tanja Woyke
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| |
Collapse
|
16
|
Abstract
Cells are the building blocks of life, from single-celled microbes through to multi-cellular organisms. To understand a multitude of biological processes we need to understand how cells behave, how they interact with each other and how they respond to their environment. The use of new methodologies is changing the way we study cells allowing us to study them on minute scales and in unprecedented detail. These same methods are allowing researchers to begin to sample the vast diversity of microbes that dominate natural environments. The aim of this special issue is to bring together research and perspectives on the application of new approaches to understand the biological properties of cells, including how they interact with other biological entities. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- Thomas A Richards
- Biosciences and Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), 08003 Barcelona, Spain
| | - Stefano Pagliara
- Biosciences and Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.,School of Biological Sciences, University of East Anglia, Norwich, NR4 7TU, UK
| |
Collapse
|
17
|
Keeling PJ. Combining morphology, behaviour and genomics to understand the evolution and ecology of microbial eukaryotes. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190085. [PMID: 31587641 DOI: 10.1098/rstb.2019.0085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Microbial eukaryotes (protists) are structurally, developmentally and behaviourally more complex than their prokaryotic cousins. This complexity makes it more difficult to translate genomic and metagenomic data into accurate functional inferences about systems ranging all the way from molecular and cellular levels to global ecological networks. This problem can be traced back to the advent of the cytoskeleton and endomembrane systems at the origin of eukaryotes, which endowed them with a range of complex structures and behaviours that still largely dominate how they evolve and interact within microbial communities. But unlike the diverse metabolic properties that evolved within prokaryotes, the structural and behavioural characteristics that strongly define how protists function in the environment cannot readily be inferred from genomic data, since there is generally no simple correlation between a gene and a discrete activity or function. A deeper understanding of protists at both cellular and ecological levels, therefore, requires not only high-throughput genomics but also linking such data to direct observations of natural history and cell biology. This is challenging since these observations typically require cultivation, which is lacking for most protists. Potential remedies with current technology include developing a more phylogenetically diverse range of model systems to better represent the diversity, as well as combining high-throughput, single-cell genomics with microscopic documentation of the subject cells to link sequence with structure and behaviour. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- Patrick J Keeling
- Botany Department, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4
| |
Collapse
|
18
|
Castillo YM, Mangot J, Benites LF, Logares R, Kuronishi M, Ogata H, Jaillon O, Massana R, Sebastián M, Vaqué D. Assessing the viral content of uncultured picoeukaryotes in the global‐ocean by single cell genomics. Mol Ecol 2019; 28:4272-4289. [DOI: 10.1111/mec.15210] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Yaiza M. Castillo
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| | - Jean‐François Mangot
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| | - Luiz Felipe Benites
- Integrative Biology of Marine Organisms (BIOM) CNRS Oceanological Observatory of Banyuls Sorbonne University Banyuls‐sur‐Mer France
| | - Ramiro Logares
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| | - Megumi Kuronishi
- Bioinformatic Center Institute for Chemical Research Kyoto University Uji Japan
| | - Hiroyuki Ogata
- Bioinformatic Center Institute for Chemical Research Kyoto University Uji Japan
| | - Olivier Jaillon
- Génomique Métabolique Genoscope Institut de biologie François Jacob CEA CNRS Université d'Evry Université Paris‐Saclay Evry France
| | - Ramon Massana
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| | - Marta Sebastián
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
- Institute of Oceanography and Global Change (IOCAG) University of Las Palmas de Gran Canaria Telde Spain
| | - Dolors Vaqué
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| |
Collapse
|
19
|
Woyke T, Schulz F. Entities inside one another - a matryoshka doll in biology? ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:26-28. [PMID: 30588764 PMCID: PMC7379638 DOI: 10.1111/1758-2229.12716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Tanja Woyke
- U.S. Department of Energy Joint Genome InstituteWalnut Creek, CA94598USA
| | - Frederik Schulz
- U.S. Department of Energy Joint Genome InstituteWalnut Creek, CA94598USA
| |
Collapse
|
20
|
Ahrendt SR, Quandt CA, Ciobanu D, Clum A, Salamov A, Andreopoulos B, Cheng JF, Woyke T, Pelin A, Henrissat B, Reynolds NK, Benny GL, Smith ME, James TY, Grigoriev IV. Leveraging single-cell genomics to expand the fungal tree of life. Nat Microbiol 2018; 3:1417-1428. [PMID: 30297742 PMCID: PMC6784888 DOI: 10.1038/s41564-018-0261-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 09/03/2018] [Indexed: 11/09/2022]
Abstract
Environmental DNA surveys reveal that most fungal diversity represents uncultured species. We sequenced the genomes of eight uncultured species across the fungal tree of life using a new single-cell genomics pipeline. We show that, despite a large variation in genome and gene space recovery from each single amplified genome (SAG), ≥90% can be recovered by combining multiple SAGs. SAGs provide robust placement for early-diverging lineages and infer a diploid ancestor of fungi. Early-diverging fungi share metabolic deficiencies and show unique gene expansions correlated with parasitism and unculturability. Single-cell genomics holds great promise in exploring fungal diversity, life cycles and metabolic potential.
Collapse
Affiliation(s)
- Steven R Ahrendt
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - C Alisha Quandt
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.,Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Doina Ciobanu
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Alicia Clum
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Bill Andreopoulos
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Jan-Fang Cheng
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Tanja Woyke
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Adrian Pelin
- Ottawa Hospital Research Institute, Centre for Innovative Cancer Research, Ottawa, Ontario, Canada
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, UMR 7857 CNRS, Aix-Marseille University, Marseille, France.,Institut National de la Recherche Agronomique, USC 1408 Architecture et Fonction des Macromolécules Biologiques, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nicole K Reynolds
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Gerald L Benny
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA. .,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
21
|
Cavalier-Smith T, Chao EE, Lewis R. Multigene phylogeny and cell evolution of chromist infrakingdom Rhizaria: contrasting cell organisation of sister phyla Cercozoa and Retaria. PROTOPLASMA 2018; 255:1517-1574. [PMID: 29666938 PMCID: PMC6133090 DOI: 10.1007/s00709-018-1241-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/12/2018] [Indexed: 05/18/2023]
Abstract
Infrakingdom Rhizaria is one of four major subgroups with distinct cell body plans that comprise eukaryotic kingdom Chromista. Unlike other chromists, Rhizaria are mostly heterotrophic flagellates, amoebae or amoeboflagellates, commonly with reticulose (net-like) or filose (thread-like) feeding pseudopodia; uniquely for eukaryotes, cilia have proximal ciliary transition-zone hub-lattices. They comprise predominantly flagellate phylum Cercozoa and reticulopodial phylum Retaria, whose exact phylogenetic relationship has been uncertain. Given even less clear relationships amongst cercozoan classes, we sequenced partial transcriptomes of seven Cercozoa representing five classes and endomyxan retarian Filoreta marina to establish 187-gene multiprotein phylogenies. Ectoreta (retarian infraphyla Foraminifera, Radiozoa) branch within classical Cercozoa as sister to reticulose Endomyxa. This supports recent transfer of subphylum Endomyxa from Cercozoa to Retaria alongside subphylum Ectoreta which embraces classical retarians where capsules or tests subdivide cells into organelle-containing endoplasm and anastomosing pseudopodial net-like ectoplasm. Cercozoa are more homogeneously filose, often with filose pseudopodia and/or posterior ciliary gliding motility: zooflagellate Helkesimastix and amoeboid Guttulinopsis form a strongly supported clade, order Helkesida. Cercomonads are polyphyletic (Cercomonadida sister to glissomonads; Paracercomonadida deeper). Thecofilosea are a clade, whereas Imbricatea may not be; Sarcomonadea may be paraphyletic. Helkesea and Metromonadea are successively deeper outgroups within cercozoan subphylum Monadofilosa; subphylum Reticulofilosa (paraphyletic on site-heterogeneous trees) branches earliest, Granofilosea before Chlorarachnea. Our multiprotein trees confirm that Rhizaria are sisters of infrakingdom Halvaria (Alveolata, Heterokonta) within chromist subkingdom Harosa (= SAR); they further support holophyly of chromist subkingdom Hacrobia, and are consistent with holophyly of Chromista as sister of kingdom Plantae. Site-heterogeneous rDNA trees group Kraken with environmental DNA clade 'eSarcomonad', not Paracercomonadida. Ectoretan fossil dates evidence ultrarapid episodic stem sequence evolution. We discuss early rhizarian cell evolution and multigene tree coevolutionary patterns, gene-paralogue evidence for chromist monophyly, and integrate this with fossil evidence for the age of Rhizaria and eukaryote cells, and revise rhizarian classification.
Collapse
Affiliation(s)
| | - Ema E Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Rhodri Lewis
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
22
|
Grattepanche J, Walker LM, Ott BM, Paim Pinto DL, Delwiche CF, Lane CE, Katz LA. Microbial Diversity in the Eukaryotic SAR Clade: Illuminating the Darkness Between Morphology and Molecular Data. Bioessays 2018; 40:e1700198. [DOI: 10.1002/bies.201700198] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/16/2018] [Indexed: 01/09/2023]
Affiliation(s)
| | - Laura M. Walker
- Department of Biological Sciences, Smith CollegeNorthamptonMA 01063USA
| | - Brittany M. Ott
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkMD 20742USA
| | | | - Charles F. Delwiche
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkMD 20742USA
| | - Christopher E. Lane
- Department of Biological SciencesUniversity of Rhode IslandKingstonRI 02881USA
| | - Laura A. Katz
- Department of Biological Sciences, Smith CollegeNorthamptonMA 01063USA
| |
Collapse
|
23
|
West PT, Probst AJ, Grigoriev IV, Thomas BC, Banfield JF. Genome-reconstruction for eukaryotes from complex natural microbial communities. Genome Res 2018; 28:569-580. [PMID: 29496730 PMCID: PMC5880246 DOI: 10.1101/gr.228429.117] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/27/2018] [Indexed: 11/24/2022]
Abstract
Microbial eukaryotes are integral components of natural microbial communities, and their inclusion is critical for many ecosystem studies, yet the majority of published metagenome analyses ignore eukaryotes. In order to include eukaryotes in environmental studies, we propose a method to recover eukaryotic genomes from complex metagenomic samples. A key step for genome recovery is separation of eukaryotic and prokaryotic fragments. We developed a k-mer-based strategy, EukRep, for eukaryotic sequence identification and applied it to environmental samples to show that it enables genome recovery, genome completeness evaluation, and prediction of metabolic potential. We used this approach to test the effect of addition of organic carbon on a geyser-associated microbial community and detected a substantial change of the community metabolism, with selection against almost all candidate phyla bacteria and archaea and for eukaryotes. Near complete genomes were reconstructed for three fungi placed within the Eurotiomycetes and an arthropod. While carbon fixation and sulfur oxidation were important functions in the geyser community prior to carbon addition, the organic carbon-impacted community showed enrichment for secreted proteases, secreted lipases, cellulose targeting CAZymes, and methanol oxidation. We demonstrate the broader utility of EukRep by reconstructing and evaluating relatively high-quality fungal, protist, and rotifer genomes from complex environmental samples. This approach opens the way for cultivation-independent analyses of whole microbial communities.
Collapse
Affiliation(s)
- Patrick T West
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Alexander J Probst
- Department of Earth and Planetary Science, University of California, Berkeley, California 94709, USA
| | - Igor V Grigoriev
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Brian C Thomas
- Department of Earth and Planetary Science, University of California, Berkeley, California 94709, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, California 94709, USA.,Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, USA.,Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
24
|
Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans. Nat Commun 2018; 9:310. [PMID: 29358710 PMCID: PMC5778133 DOI: 10.1038/s41467-017-02235-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/15/2017] [Indexed: 11/20/2022] Open
Abstract
Single-celled eukaryotes (protists) are critical players in global biogeochemical cycling of nutrients and energy in the oceans. While their roles as primary producers and grazers are well appreciated, other aspects of their life histories remain obscure due to challenges in culturing and sequencing their natural diversity. Here, we exploit single-cell genomics and metagenomics data from the circumglobal Tara Oceans expedition to analyze the genome content and apparent oceanic distribution of seven prevalent lineages of uncultured heterotrophic stramenopiles. Based on the available data, each sequenced genome or genotype appears to have a specific oceanic distribution, principally correlated with water temperature and depth. The genome content provides hypotheses for specialization in terms of cell motility, food spectra, and trophic stages, including the potential impact on their lifestyles of horizontal gene transfer from prokaryotes. Our results support the idea that prominent heterotrophic marine protists perform diverse functions in ocean ecology. The biology of many marine protists, such as stramenopiles, remains obscure. Here, the authors exploit single-cell genomics and metagenomics to analyze the genome content and apparent oceanic distribution of seven prevalent lineages of uncultured heterotrophic stramenopiles.
Collapse
|
25
|
Exploration of the Germline Genome of the Ciliate Chilodonella uncinata through Single-Cell Omics (Transcriptomics and Genomics). mBio 2018; 9:mBio.01836-17. [PMID: 29317511 PMCID: PMC5760741 DOI: 10.1128/mbio.01836-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Separate germline and somatic genomes are found in numerous lineages across the eukaryotic tree of life, often separated into distinct tissues (e.g., in plants, animals, and fungi) or distinct nuclei sharing a common cytoplasm (e.g., in ciliates and some foraminifera). In ciliates, germline-limited (i.e., micronuclear-specific) DNA is eliminated during the development of a new somatic (i.e., macronuclear) genome in a process that is tightly linked to large-scale genome rearrangements, such as deletions and reordering of protein-coding sequences. Most studies of germline genome architecture in ciliates have focused on the model ciliates Oxytricha trifallax, Paramecium tetraurelia, and Tetrahymena thermophila, for which the complete germline genome sequences are known. Outside of these model taxa, only a few dozen germline loci have been characterized from a limited number of cultivable species, which is likely due to difficulties in obtaining sufficient quantities of “purified” germline DNA in these taxa. Combining single-cell transcriptomics and genomics, we have overcome these limitations and provide the first insights into the structure of the germline genome of the ciliate Chilodonella uncinata, a member of the understudied class Phyllopharyngea. Our analyses reveal the following: (i) large gene families contain a disproportionate number of genes from scrambled germline loci; (ii) germline-soma boundaries in the germline genome are demarcated by substantial shifts in GC content; (iii) single-cell omics techniques provide large-scale quality germline genome data with limited effort, at least for ciliates with extensively fragmented somatic genomes. Our approach provides an efficient means to understand better the evolution of genome rearrangements between germline and soma in ciliates. Our understanding of the distinctions between germline and somatic genomes in ciliates has largely relied on studies of a few model genera (e.g., Oxytricha, Paramecium, Tetrahymena). We have used single-cell omics to explore germline-soma distinctions in the ciliate Chilodonella uncinata, which likely diverged from the better-studied ciliates ~700 million years ago. The analyses presented here indicate that developmentally regulated genome rearrangements between germline and soma are demarcated by rapid transitions in local GC composition and lead to diversification of protein families. The approaches used here provide the basis for future work aimed at discerning the evolutionary impacts of germline-soma distinctions among diverse ciliates.
Collapse
|
26
|
López-Escardó D, Grau-Bové X, Guillaumet-Adkins A, Gut M, Sieracki ME, Ruiz-Trillo I. Evaluation of single-cell genomics to address evolutionary questions using three SAGs of the choanoflagellate Monosiga brevicollis. Sci Rep 2017; 7:11025. [PMID: 28887541 PMCID: PMC5591225 DOI: 10.1038/s41598-017-11466-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/17/2017] [Indexed: 11/08/2022] Open
Abstract
Single-cell genomics (SCG) appeared as a powerful technique to get genomic information from uncultured organisms. However, SCG techniques suffer from biases at the whole genome amplification step that can lead to extremely variable numbers of genome recovery (5-100%). Thus, it is unclear how useful can SCG be to address evolutionary questions on uncultured microbial eukaryotes. To provide some insights into this, we here analysed 3 single-cell amplified genomes (SAGs) of the choanoflagellate Monosiga brevicollis, whose genome is known. Our results show that each SAG has a different, independent bias, yielding different levels of genome recovery for each cell (6-36%). Genes often appear fragmented and are split into more genes during annotation. Thus, analyses of gene gain and losses, gene architectures, synteny and other genomic features can not be addressed with a single SAG. However, the recovery of phylogenetically-informative protein domains can be up to 55%. This means SAG data can be used to perform accurate phylogenomic analyses. Finally, we also confirm that the co-assembly of several SAGs improves the general genomic recovery. Overall, our data show that, besides important current limitations, SAGs can still provide interesting and novel insights from poorly-known, uncultured organisms.
Collapse
Affiliation(s)
- David López-Escardó
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain
| | - Xavier Grau-Bové
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Amy Guillaumet-Adkins
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain.
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
27
|
Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat Commun 2017; 8:84. [PMID: 28729688 PMCID: PMC5519541 DOI: 10.1038/s41467-017-00128-z] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/02/2017] [Indexed: 01/13/2023] Open
Abstract
Microbial single-cell genomics can be used to provide insights into the metabolic potential, interactions, and evolution of uncultured microorganisms. Here we present WGA-X, a method based on multiple displacement amplification of DNA that utilizes a thermostable mutant of the phi29 polymerase. WGA-X enhances genome recovery from individual microbial cells and viral particles while maintaining ease of use and scalability. The greatest improvements are observed when amplifying high G+C content templates, such as those belonging to the predominant bacteria in agricultural soils. By integrating WGA-X with calibrated index-cell sorting and high-throughput genomic sequencing, we are able to analyze genomic sequences and cell sizes of hundreds of individual, uncultured bacteria, archaea, protists, and viral particles, obtained directly from marine and soil samples, in a single experiment. This approach may find diverse applications in microbiology and in biomedical and forensic studies of humans and other multicellular organisms. Single-cell genomics can be used to study uncultured microorganisms. Here, Stepanauskas et al. present a method combining improved multiple displacement amplification and FACS, to obtain genomic sequences and cell size information from uncultivated microbial cells and viral particles in environmental samples.
Collapse
|
28
|
|
29
|
Tirichine L, Rastogi A, Bowler C. Recent progress in diatom genomics and epigenomics. CURRENT OPINION IN PLANT BIOLOGY 2017; 36:46-55. [PMID: 28226268 DOI: 10.1016/j.pbi.2017.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 06/06/2023]
Abstract
Diatoms are one of the most diverse and successful groups of phytoplankton at the base of the food chain, sustaining life in the ocean and performing vital biogeochemical functions. The last fifteen years have witnessed the comprehensive analysis of several diatom genomes, revealing that they bear traces of their endosymbiotic origins from algal and heterotrophic ancestors, as well as significant gene transfer from bacteria. Their chimeric genomes are further regulated by a range of chromatin-based processes that are characteristic of both plant and animal genomes. We discuss the conservation of gene regulatory mechanisms in diatoms and propose that epigenetic processes may have a significant role in mediating responses to a highly dynamic and unpredictable environment in these organisms.
Collapse
Affiliation(s)
- Leila Tirichine
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, F-75005 Paris, France.
| | - Achal Rastogi
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, F-75005 Paris, France
| | - Chris Bowler
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, F-75005 Paris, France
| |
Collapse
|
30
|
Mangot JF, Logares R, Sánchez P, Latorre F, Seeleuthner Y, Mondy S, Sieracki ME, Jaillon O, Wincker P, Vargas CD, Massana R. Accessing the genomic information of unculturable oceanic picoeukaryotes by combining multiple single cells. Sci Rep 2017; 7:41498. [PMID: 28128359 PMCID: PMC5269757 DOI: 10.1038/srep41498] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/21/2016] [Indexed: 11/30/2022] Open
Abstract
Pico-sized eukaryotes play key roles in the functioning of marine ecosystems, but we still have a limited knowledge on their ecology and evolution. The MAST-4 lineage is of particular interest, since it is widespread in surface oceans, presents ecotypic differentiation and has defied culturing efforts so far. Single cell genomics (SCG) are promising tools to retrieve genomic information from these uncultured organisms. However, SCG are based on whole genome amplification, which normally introduces amplification biases that limit the amount of genomic data retrieved from a single cell. Here, we increase the recovery of genomic information from two MAST-4 lineages by co-assembling short reads from multiple Single Amplified Genomes (SAGs) belonging to evolutionary closely related cells. We found that complementary genomic information is retrieved from different SAGs, generating co-assembly that features >74% of genome recovery, against about 20% when assembled individually. Even though this approach is not aimed at generating high-quality draft genomes, it allows accessing to the genomic information of microbes that would otherwise remain unreachable. Since most of the picoeukaryotes still remain uncultured, our work serves as a proof-of-concept that can be applied to other taxa in order to extract genomic data and address new ecological and evolutionary questions.
Collapse
Affiliation(s)
- Jean-François Mangot
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)–CSIC, Pg. Marítim de la Barceloneta, 37-49, Barcelona E-08003, Spain
| | - Ramiro Logares
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)–CSIC, Pg. Marítim de la Barceloneta, 37-49, Barcelona E-08003, Spain
| | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)–CSIC, Pg. Marítim de la Barceloneta, 37-49, Barcelona E-08003, Spain
| | - Fran Latorre
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)–CSIC, Pg. Marítim de la Barceloneta, 37-49, Barcelona E-08003, Spain
| | - Yoann Seeleuthner
- CEA, Institut de Génomique, Génoscope, 2 Rue Gaston Crémieux, Evry F-91000, France
- CNRS, UMR 8030, CP5706, Evry, F-91000, France
- Université d’Evry, UMR 8030, CP5706, Evry, F-91000, France
| | - Samuel Mondy
- CEA, Institut de Génomique, Génoscope, 2 Rue Gaston Crémieux, Evry F-91000, France
- CNRS, UMR 8030, CP5706, Evry, F-91000, France
- Université d’Evry, UMR 8030, CP5706, Evry, F-91000, France
| | - Michael E. Sieracki
- National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230, USA
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME 04544, USA
| | - Olivier Jaillon
- CEA, Institut de Génomique, Génoscope, 2 Rue Gaston Crémieux, Evry F-91000, France
- CNRS, UMR 8030, CP5706, Evry, F-91000, France
- Université d’Evry, UMR 8030, CP5706, Evry, F-91000, France
| | - Patrick Wincker
- CEA, Institut de Génomique, Génoscope, 2 Rue Gaston Crémieux, Evry F-91000, France
- CNRS, UMR 8030, CP5706, Evry, F-91000, France
- Université d’Evry, UMR 8030, CP5706, Evry, F-91000, France
| | - Colomban de Vargas
- CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, F-29680, France
- Sorbonne Universités, UPMC Université Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, F-29680, France
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)–CSIC, Pg. Marítim de la Barceloneta, 37-49, Barcelona E-08003, Spain
| |
Collapse
|
31
|
Vannier T, Leconte J, Seeleuthner Y, Mondy S, Pelletier E, Aury JM, de Vargas C, Sieracki M, Iudicone D, Vaulot D, Wincker P, Jaillon O. Survey of the green picoalga Bathycoccus genomes in the global ocean. Sci Rep 2016; 6:37900. [PMID: 27901108 PMCID: PMC5128809 DOI: 10.1038/srep37900] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 11/03/2016] [Indexed: 01/23/2023] Open
Abstract
Bathycoccus is a cosmopolitan green micro-alga belonging to the Mamiellophyceae, a class of picophytoplankton that contains important contributors to oceanic primary production. A single species of Bathycoccus has been described while the existence of two ecotypes has been proposed based on metagenomic data. A genome is available for one strain corresponding to the described phenotype. We report a second genome assembly obtained by a single cell genomics approach corresponding to the second ecotype. The two Bathycoccus genomes are divergent enough to be unambiguously distinguishable in whole DNA metagenomic data although they possess identical sequence of the 18S rRNA gene including in the V9 region. Analysis of 122 global ocean whole DNA metagenome samples from the Tara-Oceans expedition reveals that populations of Bathycoccus that were previously identified by 18S rRNA V9 metabarcodes are only composed of these two genomes. Bathycoccus is relatively abundant and widely distributed in nutrient rich waters. The two genomes rarely co-occur and occupy distinct oceanic niches in particular with respect to depth. Metatranscriptomic data provide evidence for gain or loss of highly expressed genes in some samples, suggesting that the gene repertoire is modulated by environmental conditions.
Collapse
Affiliation(s)
- Thomas Vannier
- CEA - Institut de Génomique, GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry, France.,CNRS, UMR 8030, CP5706 Evry, France.,Université d'Evry, UMR 8030, CP5706 Evry, France
| | - Jade Leconte
- CEA - Institut de Génomique, GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry, France.,CNRS, UMR 8030, CP5706 Evry, France.,Université d'Evry, UMR 8030, CP5706 Evry, France
| | - Yoann Seeleuthner
- CEA - Institut de Génomique, GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry, France.,CNRS, UMR 8030, CP5706 Evry, France.,Université d'Evry, UMR 8030, CP5706 Evry, France
| | - Samuel Mondy
- CEA - Institut de Génomique, GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry, France.,CNRS, UMR 8030, CP5706 Evry, France.,Université d'Evry, UMR 8030, CP5706 Evry, France
| | - Eric Pelletier
- CEA - Institut de Génomique, GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry, France.,CNRS, UMR 8030, CP5706 Evry, France.,Université d'Evry, UMR 8030, CP5706 Evry, France
| | - Jean-Marc Aury
- CEA - Institut de Génomique, GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Colomban de Vargas
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Michael Sieracki
- National Science Foundation, 4201 Wilson Blvd., Arlington, VA 22230, USA
| | - Daniele Iudicone
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Daniel Vaulot
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Patrick Wincker
- CEA - Institut de Génomique, GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry, France.,CNRS, UMR 8030, CP5706 Evry, France.,Université d'Evry, UMR 8030, CP5706 Evry, France
| | - Olivier Jaillon
- CEA - Institut de Génomique, GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry, France.,CNRS, UMR 8030, CP5706 Evry, France.,Université d'Evry, UMR 8030, CP5706 Evry, France
| |
Collapse
|
32
|
Derelle R, López-García P, Timpano H, Moreira D. A Phylogenomic Framework to Study the Diversity and Evolution of Stramenopiles (=Heterokonts). Mol Biol Evol 2016; 33:2890-2898. [PMID: 27512113 DOI: 10.1093/molbev/msw168] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Stramenopiles or heterokonts constitute one of the most speciose and diverse clades of protists. It includes ecologically important algae (such as diatoms or large multicellular brown seaweeds), as well as heterotrophic (e.g., bicosoecids, MAST groups) and parasitic (e.g., Blastocystis, oomycetes) species. Despite their evolutionary and ecological relevance, deep phylogenetic relationships among stramenopile groups, inferred mostly from small-subunit rDNA phylogenies, remain unresolved, especially for the heterotrophic taxa. Taking advantage of recently released stramenopile transcriptome and genome sequences, as well as data from the genomic assembly of the MAST-3 species Incisomonas marina generated in our laboratory, we have carried out the first extensive phylogenomic analysis of stramenopiles, including representatives of most major lineages. Our analyses, based on a large data set of 339 widely distributed proteins, strongly support a root of stramenopiles lying between two clades, Bigyra and Gyrista (Pseudofungi plus Ochrophyta). Additionally, our analyses challenge the Phaeista-Khakista dichotomy of photosynthetic stramenopiles (ochrophytes) as two groups previously considered to be part of the Phaeista (Pelagophyceae and Dictyochophyceae), branch with strong support with the Khakista (Bolidophyceae and Diatomeae). We propose a new classification of ochrophytes within the two groups Chrysista and Diatomista to reflect the new phylogenomic results. Our stramenopile phylogeny provides a robust phylogenetic framework to investigate the evolution and diversification of this group of ecologically relevant protists.
Collapse
Affiliation(s)
- Romain Derelle
- Unité d'Ecologie, Systématique et Evolution, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud/Paris-Saclay, AgroParisTech, Orsay, France
| | - Purificación López-García
- Unité d'Ecologie, Systématique et Evolution, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud/Paris-Saclay, AgroParisTech, Orsay, France
| | - Hélène Timpano
- Unité d'Ecologie, Systématique et Evolution, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud/Paris-Saclay, AgroParisTech, Orsay, France
| | - David Moreira
- Unité d'Ecologie, Systématique et Evolution, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud/Paris-Saclay, AgroParisTech, Orsay, France
| |
Collapse
|
33
|
Martinson EO, Martinson VG, Edwards R, Mrinalini, Werren JH. Laterally Transferred Gene Recruited as a Venom in Parasitoid Wasps. Mol Biol Evol 2016; 33:1042-52. [PMID: 26715630 PMCID: PMC5013869 DOI: 10.1093/molbev/msv348] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Parasitoid wasps use venom to manipulate the immunity and metabolism of their host insects in a variety of ways to provide resources for their offspring. Yet, how genes are recruited and evolve to perform venom functions remain open questions. A recently recognized source of eukaryotic genome innovation is lateral gene transfer (LGT). Glycoside hydrolase family 19 (GH19) chitinases are widespread in bacteria, microsporidia, and plants where they are used in nutrient acquisition or defense, but have previously not been known in metazoans. In this study, a GH19 chitinase LGT is described from the unicellular microsporidia/Rozella clade into parasitoid wasps of the superfamily Chalcidoidea, where it has become recruited as a venom protein. The GH19 chitinase is present in 15 species of chalcidoid wasps representing four families, and phylogenetic analysis indicates that it was laterally transferred near or before the origin of Chalcidoidea (∼95 Ma). The GH19 chitinase gene is highly expressed in the venom gland of at least seven species, indicating a role in the complex host manipulations performed by parasitoid wasp venom. RNAi knockdown in the model parasitoid Nasonia vitripennis reveals that-following envenomation-the GH19 chitinase induces fly hosts to upregulate genes involved in an immune response to fungi. A second, independent LGT of GH19 chitinase from microsporidia into mosquitoes was also found, also supported by phylogenetic reconstructions. Besides these two LGT events, GH19 chitinase is not found in any other sequenced animal genome, or in any fungi outside the microsporidia/Rozella clade.
Collapse
Affiliation(s)
| | | | | | - Mrinalini
- Biology Department, University of Rochester
| | | |
Collapse
|
34
|
Del Campo J, Guillou L, Hehenberger E, Logares R, López-García P, Massana R. Ecological and evolutionary significance of novel protist lineages. Eur J Protistol 2016; 55:4-11. [PMID: 26996654 DOI: 10.1016/j.ejop.2016.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/23/2016] [Accepted: 02/12/2016] [Indexed: 01/12/2023]
Abstract
Environmental molecular surveys targeting protist diversity have unveiled novel and uncultured lineages in a variety of ecosystems, ranging from completely new high-rank lineages, to new taxa moderately related to previously described organisms. The ecological roles of some of these novel taxa have been studied, showing that in certain habitats they may be responsible for critical environmental processes. Moreover, from an evolutionary perspective they still need to be included in a more accurate and wider understanding of the eukaryotic tree of life. These seminal discoveries promoted the development and use of a wide range of more in-depth culture-independent approaches to access this diversity, from metabarcoding and metagenomics to single cell genomics and FISH. Nonetheless, culturing using classical or innovative approaches is also essential to better characterize this new diversity. Ecologists and evolutionary biologists now face the challenge of apprehending the significance of this new diversity within the eukaryotic tree of life.
Collapse
Affiliation(s)
- Javier Del Campo
- Department of Botany, University of British Columbia, Vancouver, Canada; Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain.
| | - Laure Guillou
- Sorbonne Universités, UPMC Univ. Paris 6, CNRS, Adaptation et Diversité en Milieu Marin (UMR 7144), équipe DIPO, Station Biologique de Roscoff, 29688 Roscoff, France
| | | | - Ramiro Logares
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| |
Collapse
|
35
|
Gasc C, Ribière C, Parisot N, Beugnot R, Defois C, Petit-Biderre C, Boucher D, Peyretaillade E, Peyret P. Capturing prokaryotic dark matter genomes. Res Microbiol 2015; 166:814-30. [PMID: 26100932 DOI: 10.1016/j.resmic.2015.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 11/18/2022]
Abstract
Prokaryotes are the most diverse and abundant cellular life forms on Earth. Most of them, identified by indirect molecular approaches, belong to microbial dark matter. The advent of metagenomic and single-cell genomic approaches has highlighted the metabolic capabilities of numerous members of this dark matter through genome reconstruction. Thus, linking functions back to the species has revolutionized our understanding of how ecosystem function is sustained by the microbial world. This review will present discoveries acquired through the illumination of prokaryotic dark matter genomes by these innovative approaches.
Collapse
Affiliation(s)
- Cyrielle Gasc
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Céline Ribière
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Nicolas Parisot
- Biologie Fonctionnelle Insectes et Interactions, UMR203 BF2I, INRA, INSA-Lyon, Université de Lyon, Villeurbanne, France.
| | - Réjane Beugnot
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Clémence Defois
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Corinne Petit-Biderre
- Université Blaise Pascal, Laboratoire Microorganismes, Génome et Environnement, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 6023, F-63171 Aubière, France.
| | - Delphine Boucher
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Eric Peyretaillade
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Pierre Peyret
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| |
Collapse
|
36
|
Reen FJ, Gutiérrez-Barranquero JA, Dobson ADW, Adams C, O’Gara F. Emerging concepts promising new horizons for marine biodiscovery and synthetic biology. Mar Drugs 2015; 13:2924-54. [PMID: 25984990 PMCID: PMC4446613 DOI: 10.3390/md13052924] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/22/2015] [Accepted: 04/28/2015] [Indexed: 12/23/2022] Open
Abstract
The vast oceans of the world, which comprise a huge variety of unique ecosystems, are emerging as a rich and relatively untapped source of novel bioactive compounds with invaluable biotechnological and pharmaceutical potential. Evidence accumulated over the last decade has revealed that the diversity of marine microorganisms is enormous with many thousands of bacterial species detected that were previously unknown. Associated with this diversity is the production of diverse repertoires of bioactive compounds ranging from peptides and enzymes to more complex secondary metabolites that have significant bioactivity and thus the potential to be exploited for innovative biotechnology. Here we review the discovery and functional potential of marine bioactive peptides such as lantibiotics, nanoantibiotics and peptidomimetics, which have received particular attention in recent years in light of their broad spectrum of bioactivity. The significance of marine peptides in cell-to-cell communication and how this may be exploited in the discovery of novel bioactivity is also explored. Finally, with the recent advances in bioinformatics and synthetic biology, it is becoming clear that the integration of these disciplines with genetic and biochemical characterization of the novel marine peptides, offers the most potential in the development of the next generation of societal solutions.
Collapse
Affiliation(s)
- F. Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork—National University of Ireland, Cork, Ireland; E-Mails: (F.J.R.); (J.A.G.-B.); (C.A.)
| | - José A. Gutiérrez-Barranquero
- BIOMERIT Research Centre, School of Microbiology, University College Cork—National University of Ireland, Cork, Ireland; E-Mails: (F.J.R.); (J.A.G.-B.); (C.A.)
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork—National University of Ireland, Cork, Ireland; E-Mail:
| | - Claire Adams
- BIOMERIT Research Centre, School of Microbiology, University College Cork—National University of Ireland, Cork, Ireland; E-Mails: (F.J.R.); (J.A.G.-B.); (C.A.)
| | - Fergal O’Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork—National University of Ireland, Cork, Ireland; E-Mails: (F.J.R.); (J.A.G.-B.); (C.A.)
- School of Biomedical Sciences, Curtin University, Perth WA 6845, Australia
| |
Collapse
|
37
|
Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ. Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. Science 2015; 347:1257594. [DOI: 10.1126/science.1257594] [Citation(s) in RCA: 439] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
Bhattacharya D, Qiu H, Price DC, Yoon HS. Why we need more algal genomes. JOURNAL OF PHYCOLOGY 2015; 51:1-5. [PMID: 26986254 DOI: 10.1111/jpy.12267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/10/2014] [Indexed: 06/05/2023]
Affiliation(s)
- Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources and Institute of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, 08901, USA
| | - Huan Qiu
- Department of Ecology, Evolution and Natural Resources and Institute of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, 08901, USA
| | - Dana C Price
- Department of Ecology, Evolution and Natural Resources and Institute of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, 08901, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 440-746, Korea
| |
Collapse
|
39
|
Single-cell sequencing technologies: current and future. J Genet Genomics 2014; 41:513-28. [PMID: 25438696 DOI: 10.1016/j.jgg.2014.09.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/01/2014] [Accepted: 09/16/2014] [Indexed: 12/15/2022]
Abstract
Intensively developed in the last few years, single-cell sequencing technologies now present numerous advantages over traditional sequencing methods for solving the problems of biological heterogeneity and low quantities of available biological materials. The application of single-cell sequencing technologies has profoundly changed our understanding of a series of biological phenomena, including gene transcription, embryo development, and carcinogenesis. However, before single-cell sequencing technologies can be used extensively, researchers face the serious challenge of overcoming inherent issues of high amplification bias, low accuracy and reproducibility. Here, we simply summarize the techniques used for single-cell isolation, and review the current technologies used in single-cell genomic, transcriptomic, and epigenomic sequencing. We discuss the merits, defects, and scope of application of single-cell sequencing technologies and then speculate on the direction of future developments.
Collapse
|